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Abstract
The inverse electrical impedance tomography (EIT) problem involves collecting electrical
measurements on the smooth boundary of a region to determine the spatially varying electrical
conductivity distributionwithin the bounded region. Effective applications of EIT technology
emerged in different areas of engineering, technology, and applied sciences. However, the
mathematical formulation of EIT is well known to suffer from a high degree of nonlinearity
and severe ill-posedness. Therefore, regularization is required to produce reasonable electri-
cal impedance images. Using difference imaging, we propose a spatially-variant variational
method which couples sparsity regularization and smoothness regularization for improved
EIT linear reconstructions. The EIT variational model can benefit from structural prior infor-
mation in the form of an edge detection map coming either from an auxiliary image of the
same object being reconstructed or automatically detected. We propose an efficient algo-
rithm for minimizing the (non-convex) function based on the alternating direction method of
multipliers. Experiments are presented which strongly indicate that using non-convex versus
convex variational EIT models holds the potential for more accurate reconstructions.

Keywords Ill-posed inverse problems · Variational approach · Electrical impedance
tomography · Spatially-adaptive reconstruction

1 Introduction

Electrical impedance tomography is an imaging technique that aims to reconstruct the inner
conductivity distribution of a medium starting from a set of measured voltages registered by
a series of electrodes that are positioned on the surface of the medium. EIT is therefore a
nondestructive testing technique, meaning that it allows to analyse the property of a material
or structure without causing damage. It can be considered a tomographic modality due to
the fact that it generates images of the internal features of a body. However, if compared to
other tomography techniques, EIT provides lower spatial resolution outputs, but data can be
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acquired relatively fast (EIT temporal resolution is estimated in the order of millisecond) and
the apparatus is more manageable.

The first applications of EIT techniques date back to 1930 on geology [35], and to the
mid 80s with the first clinical use by Brown and Barber. Since then EIT technology has had a
huge development in various application fields. Applications of EIT in biomedical imaging
range from clinical imaging for organ monitoring to cell monitoring in tissue engineering
[27,28]. The promising advantages of this imaging procedure over X-Ray, CT and MRI are
the fact that the device can be brought to the patient and no exposition to radiation is required
for data collection. Recently, feasibility studies on biomaterial-engineering applications of
EIT have focused on non-invasive approaches to monitoring and tissue reconstruction [9].

In addition to the broad spectrum of possible application fields, EIT has aroused con-
siderable interest also from a mathematical point of view, both in the forward problem and
in the inverse problem, since the pioneering work of Calderón [4]. The forward problem
corresponds to the prediction of the boundary voltage distribution when the conductivity dis-
tribution and the injected current are known. The governing model for the forward problem,
known as Complete Electrode Model, is based on an elliptic partial differential equation sub-
ject to a set of constraints and Neumann boundary conditions that account for the fitting with
real data, discreteness of the electrodes and the extra parameters defined by the measuring
devices.

The inverse conductivity problem, as formulated by Calderón [4], is to infer the distributed
conductivity based on boundary potential measurements. If the forward problem is charac-
terized by a nonlinear mapping, called Forward Operator, from the conductivity distribution
to the measured voltages, the inverse EIT consists of inverting the Forward Operator. How-
ever, due to the ill-posedness nature of the problem, some sort of regularization is required
to stabilize the reconstruction. Regularization methods make use of some a priori structural
information about the unknown conductivity, which proves crucial in the case of limited and
noisy data, as is often in practical EIT situations.

For instance, the method commonly known as total variation regularization, aims to
enforce sparsity in the magnitude conductivity gradient distribution, and thus it is suitable
for reconstructing piecewise constant conductivities, while the well-known Tikhonov regu-
larization is widely used to promote smoothness in the solution. However, in many practical
situations, a conductivity distribution can be naturally characterized by homogeneous and
constant regions as well as inhomogeneous and smooth parts. This space-variant aspect of
the distribution can undermine the choice of the proper regularizer to be applied to the entire
distribution.

A spatially-adaptive regularization allows for a locally different regularization effect, so
that local, structural properties of the sought-for conductivity can be potentially addressed.
The usefulness of this great flexibility is however conditioned to the existence of effective
procedures for the automatic estimation of a space-variant map of regularization parameters
based on a priori knowledge on the solution. However, unlike in the image restoration sce-
nario, where the input data is a degraded version of the sought-for solution and can therefore
provide some information about it, in EIT reconstruction problems, the data on the boundary
does not give any useful insights on the solution.

In the present paper, we propose a new spatially-adaptive variational model for the res-
olution of the linear EIT inverse problem in time difference imaging reconstructions. The
functional to be minimized includes the linearized version of the forward operator and two
nonlinear regularization terms, driven by a space-variant regularizationmap that incorporates
structural prior information and sparsity. In particular, we consider a smooth convex general-
ized Tikhonov-type regularizer and a nonsmooth non-convex TV-like regularizer to enforce
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sparsity in the conductivity reconstruction. The effect of these two regularizers is controlled
by a space-variant function which locally defines whether to favour smoothing or sparsifi-
cation. This variational model is non-convex and nonsmooth so it demands for challenging
numerical optimization solutions. We propose an ADMM-based iterative algorithm for the
minimization of the proposed variational model. In the field of image and signal processing,
the ADMM has been one of the most powerful and successful methods for solving various
convex or non-convex optimization problems, as it resorts to the variable splitting which
reduces to the alternating resolution of simpler optimization problems. Numerical examples
of EIT conductivity reconstructions show that the proposed approach is particularly effective
and well suited for a wide range of spatially variant conductivity distributions.

The paper is organized as follows. In Sect. 1.1 we briefly review the mathematical
approaches to the inverse EIT problem. In Sect. 2 the forward model is introduced and
Sect. 3 presents two widely known variational approaches for the regularization of the recon-
struction EIT problem. The proposed variational space-variant model is described in Sect. 4
together with the procedure proposed for the automatic estimation of the space-variant regu-
larization map, Sect. 4.1. The ADMM-based minimization algorithm is illustrated in Sect. 5
and numerical results are reported and commented in Sect. 6. Conclusions are drawn in
Sect. 7.

1.1 RelatedWorks

Impedance measurements are characterized by high temporal resolution and low-cost instru-
mentation. This fueled intense research in EIT image reconstruction in diverse fields over
the last few decades.

Early image reconstruction attempts by Santosa and Vogelius [33] relied on the back-
projection approach. This is derived from the Radon transform and is commonly applied
for the analysis of computed tomography data. This approach was characterized by impor-
tant limitations, such as low resolution and severe artifacts that were partly addressed by the
Landwebermethod [37], obtained bymodifying the generalized inversematrixmethod.How-
ever, the strictly bi-dimensional approach and the lack of prior information on the domain to
be reconstructed makes the Landweber method useful only for very simplified experimental
setups.

Variational approaches are currently the most successful and widely used EIT reconstruc-
tion methods. A notable example is Tikhonov reconstruction, which is a regularized least
squares approach that contains a penalty term to favour smooth conductivity reconstruc-
tions [40]. Generalized Tikhonov approaches allow for a more general smoothing penalty
term which includes approximations of differential operators [23] or structural priors [36].
Another common regularization strategy relies on the �1 norm to promote the reconstruc-
tion of piece-wise constant conductivity regions since it maintains the discontinuities in the
reconstructed profiles. This regularization method is generally referred to as Total Varia-
tion [3]. This feature makes it particularly suited for medical and industrial applications (e.g.
definition of inter-organ and inter-phase boundaries).

The possibility of adding further prior information about the domain to be reconstructed
has been a crucial advancement for EIT reconstruction algorithms, that has allowed for real-
life problems to be tackled more effectively. Among these methods, sparse Bayesian learning
has recently been used to improve the spatial resolution of the reconstructed conductivity
distributions [24] and reduce systematic artifacts in 3D volumes [25]. Alternatively, subdo-
main methods and similar approaches rely on prior information to limit the reconstruction to
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specific regions of the domain [18]. While these methods are generally application-specific,
they are associated with increased accuracy and a reduced reconstruction time [17,26,32].
Several branches of artificial intelligence, such as neural networks, swarm intelligence, and
evolutionary methods have been applied to the EIT image reconstruction problem. In par-
ticular, particle swarm optimization has been used in the past to improve the reconstruction
quality while reducing the number of iterations [30] and to optimize the current injection
pattern [38]. More recently, neural networks have been extensively applied to increase image
quality and reduce reconstruction time [10,11]. The D-Bar method has lately gained traction
for EIT imaging, thanks to a quick non-iterative approach relying on the Fourier and inverse
transform [13] which has also been combined with deep learning techniques to improve
reconstruction quality [12].

In this work, we focus on variational methods for EIT image reconstruction, due to the
proven wide applicability of these approaches in real-life scenarios [19].

2 Formulation of the Forward EIT Problem

Let � ⊂ R
d , d = 2, 3 be a bounded simply connected C∞ domain, which represents the

measurement domain, and σ : � → R a strictly bounded measurable function (σ(x) ≥ c >

0) which denotes the electric conductivity. In the absence of interior current sources and in
the quasi-electrostatic case, Maxwell’s system describing electromagnetic fields inside the
domain � reduces to the following second-order elliptic partial differential equation which
models the electric potential u ∈ H1(�) inside the body �

∇ · (σ (x)∇u(x)) = 0, on �, (1)

u|∂� = U (x), for x ∈ ∂�, (2)

where U (x) is the electrical potential distribution on the boundary. Let �σ : H
1
2 (∂�) →

H− 1
2 (∂�), be the Dirichlet to Neumann (DtN) map associated to the problem (1)–(2) which

relates boundary voltage U (x) with the current density I (x) = σ(x) ∂u(x)
∂n , and is defined as

�σ : U (x) → σ(x)
∂u(x)

∂n
|∂� , (3)

with n the outer normal at x ∈ ∂�. Hence problem (1) can be expressed with Neumann
boundary conditions

σ(x)
∂u(x)

∂n
= I (x), on ∂�. (4)

The boundary value problem (1)–(4), for a known function σ(x) in� and data I (x), given
for all x ∈ ∂�, is referred to as Continuum, forward mathematical model for EIT, which
implies complete knowledge of all boundary data.

More recently, in order to provide a more physically realistic mathematical model, some
electrode models have been introduced which consider a priori knowledge on the experi-
mental setup: the Gap Model, which allows for regular gaps in the boundary data, the Shunt
Electrode Model (SEM), that assumes a finite number of electrodes with associated constant
potential, and the Complete Electrode Model (CEM), introduced in [7] and [34], which adds
a complex impedance for each electrode in order to model the metal electrode, conductive
gel and chemical interaction at the skin-electrode interface.

Let L be the number of electrodes, which is known. Following the CEM model, the
boundary of � can be modelled as a family of subsets of ∂�:
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• Boundary with electrodes

� =
L⋃

l=1

|El | ⊂ ∂�, (5)

• Boundary without electrodes

�̃ = ∂�\
L⋃

l=1

|El |,

where |El | is the measure (length for d = 2 or area for d = 3) of electrode El .
This leads to replace the Neumann boundary conditions (4) by two weaker conditions

∫

El

σ
∂u

∂n
ds = Il , l = 1, . . . , L on �, σ

∂u

∂n
= 0, on �̃ (6)

where Il is the known current sent to the lth electrode El , and the current density is zero on
the boundaries between the electrodes (on �̃).

The CEMmodel takes into account the extra resistance (due to an electrochemical effect)
between the electrode and the tank, id est the formation of a thin, highly resistive layer.
A parameter zl , called effective contact impedance, defines the contact impedance between
the object and the electrode El . Boundary conditions (2) on El , l = 1, . . . , L , are therefore
replaced in the CEM model by the following Robin boundary conditions

u + zlσ
∂u

∂n
= Ul on El l = 1, . . . , L, (7)

whereUl denotes the unknown voltage to be measured on the lth electrode and predicted by
the model.

Summarizing, the accurate CEM model for the forward EIT problem can be formulated
as follows: ⎧

⎪⎪⎨

⎪⎪⎩

∇ · (σ (x)∇u(x)) = 0 in�,

u + zlσ
∂u
∂n = Ul on El , l = 1, . . . , L,∫

El
σ ∂u

∂n ds = Il on�,

σ ∂u
∂n = 0 on �̃,

(8)

where x ∈ R
d is the position vector.

The forward EIT problem consists in determining the potentials u in �, and Ul on the
electrodes when the applied currents Il , conductivity σ and contact impedances zl are known;
its solution amounts to solving the boundary problem (8). In [34] the authors proved that the
CEM model for the EIT forward problem has a unique solution and the solution depends
continuously on the input current I . Specifically, the existence of the solution is obtained
by assuming the charge conservation law

∑L
l=1 Il = 0, and the uniqueness is obtained by

choosing a ground level for the voltages, for example by
∑L

l=1Ul = 0. Numerically, we will
consider approximate solutions of (8) obtained by applying the finite element method [22].

The forward problem can be restricted to a relation between the inner conductivity σ

and the boundary voltages U (x) and can be modelled by a mapping which is referred to as
Forward Operator

F̃ : S → H (9)

σ �→ (u,U ) = (u(x), (Ul)
L
i=1) (10)

where S = {σ ∈ L∞(�) | σ∇u = 0}.
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The discrete forward operator, denoted by F(σ, I ), obtained with the aid of FEM dis-
cretization of (8), relates, for given σ , the applied electrode current data I with the computed
electrode voltage data U , namely U = F(σ, I ), and depends linearly on I but nonlinearly
on σ . For a fixed current vector I , we can view F(σ ; I ) as a function of σ only, which will
be denoted simply by F(σ ).

An EIT experimental setup follows a given stimulation pattern, which establishes as the
nM measurements are collected, each obtained by injecting current from an electrodes pair
and then measuring the corresponding induced voltageUm on another pair of electrodes. Let
the domain � be discretized into nT subdomains {τ j }nTj=1 and let σ be considered constant
on each of them. The forward operator F can be seen as a nonlinear vector map from
R
nT → R

nM .
As themeasured data is unavoidably noisy, we can adopt an additive Gaussian noisemodel

for the measurement error, assuming the following noisy forward observation model

Um = F(σ ) + n̄, (11)

where Um ∈ R
nM represents the vector of all the measured electrode potentials whose

dimension nM depends on the choice of a measurement protocol, and n̄ ∈ R
nM is a zero-

mean Gaussian distributed measurement noise vector.

2.1 The Linearized Forward Operator and the Sensitivity Matrix

Calderón in [4] showed that the forward mapping F̃ , defined as F̃(σ ) = �σ (U ) with �σ

being the DtN map (3), is Fréchet differentiable with respect to σ , and gave an explicit
formula for the derivative F̃ ′ which leads to the definition of the best linear approximation
of F̃ at some fixed value of σ . In the following the formula for the derivative and the linear
approximation are derived using the weak formulation of the forward problem.

An equivalent integral formulation of (1) is obtained by considering the standard varia-
tional formulation of the Dirichlet problem (1), using the test function v ∈ H1(�) such that,
if u, v are solutions of (1)–(2) with Dirichlet data U ,V respectively, then

Qσ (U , V ) =
∫

�

σ∇u · ∇v dx =
∫

∂�

uσ
∂v

∂n
ds =

∫

∂�

u�σ V ds =
∫

∂�

u F̃(σ ) ds =
∫

∂�

uIv ds,

(12)
where for u = v, Qσ (U ,U ) represents the total power dissipated in�when the distribution
voltage on the boundary isU , and the last term in (12) is the power input across the boundary.
In particular, Calderón in [4] showed that, considering a change in conductivity from σ0 to
σ0 + δ, then

Qσ0+δ(U ,U ) = Qσ0(U ,U ) +
∫

�

δ|∇u|2 dx + O(‖δ‖2). (13)

If F̃ ′(σ ) is the Fréchet derivative of the forward map F̃(σ ) at conductivity σ then
∫

∂�

u(F̃(σ0 + δ) − F̃(σ0)) ds =
∫

∂�

−u(F̃ ′(σ0)δ) ds =
∫

�

δ|∇u|2 dx + O(‖δ‖2),
(14)

∂Qδ =
∫

�

δ|∇u|2 dx . (15)

Note that the discrete forward operator F is a nonlinear vector field. Since F̃ is Fréchet
differentiable, F ′ is a matrix, called the Jacobian of F and denoted by J . In order to derive a
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formula for J we follow [6], using the discretization of the domain � introduced in Sect. 2,
and assuming an experimental protocol of nM measures. Let δ in (15) be the characteristic
function of the jth subdomain, then each element of the symmetric matrix J ∈ R

nM×nT is
defined as

{J }i, j = ∂Qd,m

∂σ j
=

∫

τ j

∇ud · ∇um dx . (16)

The row index i corresponds to the i th measurement, associated with the dth driving poten-
tial ud and mth measurement potential um , while the column index j corresponds to the
subdomain τ j . Matrix (16) is called the sensitivity matrix since it measure the sensitivity of
a boundary voltage to a change in conductivity.

Finally, (14) leads to the linear approximation of the discrete operator F

F(σ ) ≈ F(σ0) + Jδ = F(σ0) + J (σ − σ0), (17)

where J defined in (16) is calculated at the initial conductivity estimate σ0.

3 Inverse EIT Problem

In the EIT forward problem, the potential distribution u inside� satisfies an elliptic equation
with Cauchy data, that is with data given on a part of the boundary � defined in (6); this is
itself an ill-posed problem, according to the Hadamard criteria.

The EIT inverse problem aims to reconstruct the conductivity σ inside the body� starting
from a finite set of measured voltages Um on the boundary ∂� by inverting the nonlinear
Forward Operator F(σ ). However, the inverse map F−1 is typically discontinuous (it is
unbounded), the measurements are usually noisy, and thus the EIT inverse is a severely ill-
posed reconstruction problem, as well described in [1]. This practically means that small
changes in boundary measurements can correspond to large changes in the internal conduc-
tivity distribution. Consequently, regularization techniques have been adopted in order to
stabilize the inversion and thus ensuring convergence of reconstruction algorithms. At this
aim, we need some additional information about the conductivity distribution to restrict the
conductivity to a proper space.

Therefore, assuming the degradation model (11), the natural way to reconstruct the con-
ductivity data is to consider the following non-linear regularized least squares problem

σ ∗ = argmin
σ

f (σ ), f (σ ) = λ

2

∫

�

(F(σ ) −Um)2 d� + R(σ ), (EITNL)

which includes a regularization term R(σ ) that constrains the solution to satisfy a priori
information about the conductivity distribution, and a regularization parameter λ > 0 that
controls the trade-off amidst data fitting and bounding the derivatives of σ . Iterative numerical
optimization methods to solve the nonlinear least squares problem (EITNL) are necessarily
time-consuming. A conventional approach for a more efficient solution of the EIT inverse
problem relies on the linearized model (17) of the nonlinear forward operator F , which
is accurate for a sufficiently small change about an initial conductivity distribution σ0. The
reconstruction of a small conductivity change is thus obtained by solving the following linear
regularized least squares problem

δσ ∗ = argmin
δσ

f (δσ ), f (δσ ) = λ

2

∫

�

(J (δσ ) − δUm)2 d� + R(δσ ), (EITL)
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where δσ = σ − σ0 and δUm = Um − F(σ0). It is important to highlight the fact that due
to the linearization of the problem, the fidelity term in (EITL) leads to an underdetermined
linear system of equations to be solved, which further demands for a regularization.

The functional R(·) is often assumed to be either linear or nonlinear. A standard choice
for the prior R(·) is a linear term within a L2 norm framework

R(σ ) =
∫

�

(L(σ − σ0))
2 d�. (LR)

Among the several choices for the linear operator L in literature, the one suggested by the
NOSER algorithm in [6] takes L as a positive diagonal matrix given by the diagonal elements
of J T J . Another typical simple choice which promotes smoothness in the solution is the
well-known Tikhonov regularization, where L is the discrete Laplacian filter to penalize for
non-smooth regions in the conductivity.

The regularizer R(·) can also be chosen to be nonlinear. The most common choice in this
case is the Total Variation (TV) functional, introduced in [31] and proposed in EIT inverse
problem by Borsic [3]:

R(σ ) = T V (σ ), T V (σ ) =
∫

�

|∇σ | d�. (NLR)

Total Variation is a L1 norm regularization penalty, hence it allows to preserve discontinu-
ities in the reconstructed conductivity. This structural characteristic, as described in [3], is
common to several fields where EIT has been applied: in medicine, where the conductivity
discontinuities are defined by internal organ boundaries, as each organ has different electric
features, or in industrial process tomography where they are defined by the different phase
interfaces of a multiphasic fluid. The gain in the accuracy of the reconstruction is however
obtained at the expense of the loss of differentiability for the objective function, thus leading
to consider non-smooth optimization methods.

The different notation σ and δσ aims to underline the fact that the former represents an
absolute conductivity distribution while the latter represents a relative change of conductivity
distribution at a posterior statewith respect to an initial state with conductivity distribution σ0.
Linearized models are generally involved in the reconstruction of such conductivity change
δσ . The idea of computing the difference in conductivity between two states is of interest to
many applications, and it is known as difference imaging. However, the linear approximation
cannot reconstruct large contrasts or complex geometries so the process must be applied
iteratively. At each iteration, the solution of a regularized linear problem (EITL) consists of
a small conductivity change δσn = σn+1 − σn , and a new computation for the Jacobian is
performed. The difference imaging is to some extent tolerant to approximation errors since
absolute errors in the measured voltages are partially canceled when the difference of the
measurements is computed. Due to this property the difference imaging has been favoured
over absolute imaging, and is considered in the present work. From this point onwards for
the simplicity of notation σ will be regarded as conductivity difference and Um as voltage
difference.
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4 A Variational Space-Variant Model for the Inverse EIT Problem

The proposed variational model aims at reconstructing the difference conductivity, from now
on named σ , on the planar domain �, and consists of the following minimization problem:

σ ∗ ∈ argminσ∈RnT J (σ ; λ, η, a),

J (σ ; λ, η, a) := λ
2

∫
�
(Jσ −Um)2 d� + ∫

�
η(x)
2 (∇σ)2 d� + ∫

�
(1−η(x))

2 φ (|∇σ |; a) d�,

(18)
whereλ > 0 is the regularization parameter,∇σ is the conductivity gradient defined on�, and
η : � ⊂ R

2 → [0, 1] is a space variant function that works as a trade-off between the smooth
convex quadratic regularization term, which penalizes large gradients of the conductivity, and
hence favours smooth reconstructions, and the non-convex nonsmooth regularization term,
which promotes sparsity in the conductivity distribution. The first term ofJ in (18), so-called
fidelity term, represents the consistency to the measurements given on the boundary of �

and follows the linearization (17).
The regularization is driven by the a priori information on the sought for conductivity

distribution, here represented by η(x). In many applications of EIT it is reasonable to assume
that the conductivity is piecewise constant with sharp boundaries between the homogeneous
regions. The sparsity-promoting penalty term of J in (18) relies on the parameterized, non-
convex function φ( · ; a) : [ 0,+∞) → R, with parameter a ≥ 0, which controls the
degree of non-convexity and will be referred to as the concavity parameter. As function φ,
a rescaled and reparameterized version of the minmax concave penalty function [41] was
chosen, yielding the following piecewise quadratic function:

φ(t; a) =
{

−a

2
t2 + √

2at for t ∈ [0,√2/a)

1 for t ∈ [√2/a,∞).
(19)

The attractiveness of such non-convex penalty resides in its ability to promote sparsity more
strongly than the �1-norm TV penalty [20].

4.1 Spatially Varying� Function

A space variant weighting function η(x) has been introduced in (18) to get a good balance
between the two regularization terms. The goal of η(x) is to distinguish the local regions
where to prioritize the action of the smoothing term and the ones where to promote sparsity
instead, so that coexistent smoothly inhomogeneous and piecewise constant conductivity
distributions can be accurately reconstructed. At this aim, a certain prior knowledge about
the solution is then required. However, unlike what happens in image restoration problems
where the input data is a degradated version of the sought for solution and can therefore
provide some information about it, in EIT reconstruction problems, solution and data are
defined on different spaces.

Two scenarios can thus be identified: (a) the configuration inside the domain (tank) is
known or at least visible, which allows to preliminary construct an ad hoc discretization of
the domain � on which to assign appropriate η values in the different regions; (b) the setup
is blind, meaning no information is provided about the content of the domain (tank).

The procedure followed in case (b) in our experiments has been to consider the solution σ ∗
0

obtained by a preliminary step of the proposedmethodwithη(x) ≡ 0,∀x ∈ �. This generates
a piece-wise constant reconstruction σ ∗

0 where sharp variations are detected. Inspired by the
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edge-map functions used in image processing, the η-map is then obtained by applying the
bounded non-negative continuous and monotonically descending function

η(t) = 1

(1 + (t/κ)2)
, (20)

where t = ‖∇σ ∗
0 ‖2, and κ is a positive constant.

4.2 Space and Operator Discretization

Let the planar computational domain� ⊂ R
2 being discretized by a 2D triangulated domain

�h , represented by the meshM = (V, T , E) where V is the set of nV vertices, T = {τ j }nTj=1

the set of nT triangles and E = {e j }nEj=1 the set of nE edges. We approximate the conductivity
distribution σ : T → R by a piecewise-constant function over the elements of M, thus, the
conductivity function attains a constant value σ j , j = 1, . . . , nT over triangle τ j ∈ T .

The gradient operator applied to a piecewise-constant function σ vanishes to zero every-
where but the mesh edges, thus ∇σ : E → R. Therefore, adapting a forward finite difference
scheme, the discrete gradient operator is represented by a matrix D ∈ R

nE×nT having two
nonzero elements per row defined as

Di j =
⎧
⎨

⎩

1 if τ j
⋂

τk = ei , j < k, k �= j, k = 1, . . . , nT ,

−1 if τ j
⋂

τk = ei , j > k, k �= j, k = 1, . . . , nT ,

0 otherwise,
(21)

where the nonzero entries correspond to position of adjacent triangles τ j , τk sharing the
edge ei . Applying homogeneous Neumann boundary conditions, ∇σ |∂�h = 0, the rows of
D corresponding to the boundary edges can be eliminated from D, thus, nE will refer to the
number of inner mesh edges.

The Jacobian operator J in (16) is discretized on �h following the implementation in the
EIDORS software [29].

The weak formulation of the fidelity term in (18) vanishes to zero everywhere but on the
electrodes through which the boundary voltage Um is measured, that is on ∂�h . Hence the
fidelity term simplifies as

∫

�h

(Jσ −Um)2 d�h =
∫

∂�h

(Jσ −Um)2 ds . (22)

Considering any injection-measurement protocol consisting ofnM measurementsUm ∈ R
nM ,

each characterized by a pair of measuring electrodes {E1
mi

, E2
mi

}, i = 1, . . . , nM , where
E1
mi

⋃
E2
mi

is the portion of the boundary subset of �, then we get

∫

∂�h

(Jσ −Um)2 ds =
nM∑

i=1

∫

�

((Jσ)i −Umi )
2 ds

=
nM∑

i=1

∫

E1
mi

⋃
E2
mi

((Jσ)i −Umi )
2 ds

= |E |‖Jσ −Um‖22, (23)

where the simplification in the last row assumed that all the electrodes in the model are of
the same length |E |/2.
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The two regularizers in (18) are expressed in terms of the gradient ∇σ , which is non-
vanishing only on the boundaries of each triangle of M, thus the weak formulation can be
consequently rewritten in the element-wise form as a sum over all the inner mesh edges. In
particular, the first regularization term in Eq. (18) can be rewritten as

∫

�h

η(x)

2
(∇σ)2 d�h =

nT∑

i=1

∑

e j∈τi

∫

e j

η j

2
(Dσ)2j ds ≈

nE∑

j=1

l j
η j

2
(Dσ)2j , (24)

and, analogously, the second regularization term in Eq. (18) takes the discrete form
∫

�h

1 − η(x)

2
φ (|∇σ |; a) d�h ≈

nE∑

j=1

l j
1 − η j

2
φ(|(Dσ) j |; a), (25)

where we denoted by η j = η(x)|e j , j = 1, . . . , nE the sampling of the η(x) function
restricted at each edge, andwe considered that, since the integrands are constants, the integrals
over the edges reduced to the length of the edges e j , denoted as l j .

Putting (23), (24) and (25) together, the discrete version of problem (18) takes the form

σ ∗ ∈ argminσ∈RnT J (σ ; λ, η, a),

J (σ ; λ, η, a) := |E | λ
2 ‖Jσ −Um‖22 + ∑nE

j=1 l j
{

η j
2 (Dσ)2j + 1−η j

2 φ
(|(Dσ) j |; a

)}
.

(26)

4.3 Some Issues on the Optimization Problem

We conclude by highlighting some properties of functional J in (26).
First, we recall the result in Lemma 2.7.1 in [8], where nullM denotes the null space of

matrix M .

Proposition 1 Assume that the following mappings are given:
i) Two matrices/linear mappings A : Rn → R

r ; B : Rn → R
q with

nullA ∩ nullB = {0}. (27)

ii) Two proper, lower semicontinuous and coercive mappings f1, f2 : Rn → [−∞,+∞].
Then the mapping h : Rn → [−∞,+∞], given by

h(v) = f1(Av) + f2(Bv), (28)

is lower semicontinuous and coercive. In particular, the mapping h attains its infimum inf h ∈
[−∞,+∞] at some point in Rn.

Remark 1 Let J ∈ R
nM×nT , nM < nT , be the matrix defined in (16), with rank equal

to nM , and D ∈ R
nE×nT , nE > nT , be defined in (21) with rank equal to nT − 1 and

nullD = span{(1, 1, . . . , 1)T }. It is reasonable to assume that property i) in Proposition 1
holds for the matrices J and D, which means that a constant conductivity change σ̄ does
not belong to the null space of J . Assume σ̄ is in the null space of J , so that J σ̄ = 0, then
according to the linearized model (17), F(σ ) − F(σ0) = Ūm = 0, which would lead to the
“absurd” conclusion that the corresponding boundary voltage does not change with respect
to a constant change from an initial conductivity distribution σ0 �= σ̄ . This suggests that
any linear combination of the generating vectors of the null space of J cannot represent the
constant vector. This has been experimentally verified in the conducted experiments.
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On the other hand, property i) in Proposition 1 for D and J matrices is required when
the EIT inverse problem is solved by generalized Tikhonov regularization approaches which
have been commonly used in electrical impedance tomography in the past [15,36].

Proposition 2 Let φ( · ; a) : R+ → R be a non-convex penalty function as the one defined
in (19) and let the parameters (λ, η, a) satisfy conditions λ, a > 0, 0 ≤ η ≤ 1. Then,
the functional J ( · ; λ, η, a) in (26) is proper, continuous, bounded from below by zero, and
coercive, hence J ( · ; λ, η, a) admits global minimizers.

Proof From the definition of the MC penalty in (19) and the form of J in (26), it follows
easily that J is proper, continuous, and bounded from below by zero.

Due to the non-convex MC penalty function φ, the functional J is non-smooth and could
be convex or non-convex depending on the parameter a. Since matrix J ∈ R

nM×nT , with
nM < nT , cannot be full column rank, and the penalty is additive separable, we cannot
resort to the convex non-convex strategy to derive conditions on the parameter a so that the
associated functional J in (26) is convex, see [20].

The non-convex MC penalty, the last in (26), is continuous and bounded from above by
(1 − η)l/2 and from below by zero, hence does not affect coerciveness of J .

Let f1,2 := 1
2‖·−c‖22 where c is a constant. They satisfy the assumption ii) in Proposition 1,

with J and D satisfying assumption i) in Proposition 1 according to Remark 1, then the sum
of the first two terms of J in (26) can be written as f1(Jv) + f2(Dv), and it is lower
semicontinuous and coercive. This implies that the total function J is also coercive and,
thus, admits minimizers over RnT , equivalently, the variational model (26) admits solutions.

We finally notice that the special case of constant η = 0, requires that the penalty function
φ is coercive, which is not the case of theMC penalty (19). However, many other non-convex
penalty functions can be equivalently used, for example the φlog(t; a) := log(1 + at)/a,
see [21]. ��

5 ADMM-Based Numerical Optimization

In order to numerically solve the non-convex non-smooth minimization problem (26) over
the triangulated domain �h , an efficient ADMM-based iterative minimization algorithm
is proposed, where we provide an additional condition to guarantee the uniqueness of the
solution for one of the two ADMM sub-problems.

Towards this aim,we introduce the auxiliary variable t ∈ R
nE , andwe resort to the variable

splitting technique, such that problem (26) can be reformulated in the following equivalent
discrete form:

{
σ ∗, t∗

} ← argmin
σ,t

⎧
⎨

⎩|E |λ
2
‖Jσ −Um‖22 +

nE∑

j=1

l j

[
η j

2
t2j + (1 − η j )

2
φ(|t j |; a)

]⎫
⎬

⎭ (29)

subject to : t = Dσ . (30)
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To solve the constrained optimization problem (29)–(30) we define the augmented
Lagrangian functional

L(σ, t; ρ; λ, η, a) = |E |λ
2
‖Jσ −Um‖22 +

nE∑

j=1

l j

{
η j

2
t2j + (1 − η j )

2
φ(|t j |; a)

}

− 〈 ρ, t − Dσ 〉 + β

2
‖t − Dσ‖22, (31)

where β > 0 is a scalar penalty parameter and ρ ∈ R
nE is the vector of Lagrange multipliers

associated with the linear constraint t = Dσ in (30). The following saddle-point problem is
then considered:

Find (σ ∗, t∗; ρ∗) ∈ R
nT × R

nE × R
nE

s.t. L (σ ∗, t∗; ρ; λ, η, a) ≤ L (σ ∗, t∗; ρ∗; λ, η, a) ≤ L (σ, t; ρ∗; λ, η, a)

∀(σ, t; ρ) ∈ R
nT × R

nE × R
nE . (32)

Given vectors σ (k) and ρ(k) computed at the kth iteration (or initialized if k = 0), the
(k + 1)th iteration of the ADMM-based iterative scheme applied to the solution of the
saddle-point problem (31)–(32) is split into the following three sub-problems:

t (k+1) ← arg min
t∈RnE

L(σ (k), t; ρ(k); λ, η, a) (33)

σ (k+1) ← arg min
σ∈RnT

L(σ, t (k+1); ρ(k); λ, η, a) (34)

ρ(k+1) ← ρ(k) − β
(
t (k+1) − Dσ (k+1)

)
. (35)

We remark that the Jacobian J in (31) is computed with respect to an initial conductivity
distribution σ0 and is not updated throughout the iterative scheme.

In the following sections the methods to tackle the two minimization sub-problems (33)
and (34) for the primal variables will be described in detail.

5.1 Solving the Sub-problem for t

Recalling the separability property of φ(·; a), defined in (19), the minimization sub-problem
for t in (33) can be rewritten in the following element-wise (edge-per-edge) form:

t (k+1) ← arg min
t∈RnE

nE∑

j=1

{
l j

η j

2
t2j + l j

(1 − η j )

2
φ(|t j |; a) − ρ

(k)
j t j + β

2
(t j − (Dσ (k)) j )

2
}

,

(36)
where constant terms have been omitted. Therefore, solving (36) is equivalent to solving nE
one-dimensional problems for t j , j = 1, . . . , nE

t (k+1)
j ← argmin

t∈R

{
l j

η j

2
t2 + l j

(1 − η j )

2
φ(|t |; a) − ρ

(k)
j t + β

2
(t − (Dσ (k)) j )

2
}

. (37)

After some algebraic manipulation, we can rewrite (37) in the following form

t (k+1)
j ← argmin

t∈R

{
α j

2

(
t − r (k+1)

j

)2 + φ(|t |; a)

}
, (38)
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where

α j := 2

(
l jη j + β

(1 − η j )l j

)
, r (k+1)

j :=
(

1

l jη j + β

)(
β(Dσ (k)) j + ρ

(k)
j

)
. (39)

Based on results in [16, Proposition 7.1], we can ensure strong convexity of the sub-
problems for the primal variables t j , j = 1, . . . , nE , if and only if the following condition
holds:

α j > a, for j = 1, . . . , nE ⇔ β > max
j=1,...,nE

(
al j (1 − η j ) − 2l jη j

2

)
. (40)

In case that (40) is satisfied, following [[16], Proposition7.1], the unique solutions of
the strongly convex problems in (38) can be obtained in closed-form by applying the soft-
thresholding operator:

t (k+1)
j = min

{
max

{
ν j − ζ j/|r (k+1)

j |, 0
}

, 1
}
r (k+1)
j , (41)

where ν j = α j
α j−a , and ζ j =

√
2a

α j−a .

5.2 Solving the Sub-problem for�

The minimization sub-problem for σ in (34) can be rewritten as follows:

σ (k+1) ← arg min
σ∈RnT

{ |E |λ
2

‖Jσ −Um‖22 +
〈
ρ(k), Dσ

〉
+ β

2
‖t (k+1) − Dσ‖22

}
, (42)

The first-order optimality conditions of the quadratic minimization problem (42) lead to the
following linear system:

(
J T J + β

|E |λ DT D

)
σ = J TUm + β

|E |λDT
(
t (k+1) − 1

β
ρ(k)

)
. (43)

The solution of (43) is unique when the coefficient matrix of the equivalent linear least square
problem has full rank, that is

rank

([
J√
β

|E |λ D

])
= nT ,

which holds since, as stated in Remark 1, the null spaces of J and D intersect trivially:

nullJ ∩ nullD = {0}. (44)

The nT × nT coefficient matrix of the linear system (43) is symmetric positive definite
and remains constant along the iterations, thus the solution of (43) can be efficiently obtained
by conjugate gradients method or by computing the Cholesky factorization once and for all,
depending on the size of the problem.

The proposed ADMM-based algorithm, applied to solve the inverse EIT problem, relies
on the key role of the space-adaptive η(x) function. In the following section we validate
the algorithm, named Spatial Adaptive Electrical Impedance Tomography η (SAEiTη), on
synthetic data.

The special case η ≡ 1 (SAEiT1) reduces the model (18) to the well-known, convex
L2-Tikhonov model. In this case the first-optimality conditions for (18) involve the solution
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of the following system of linear equations for σ

(
J T J + 1

|E |λDT LeD

)
σ = J TUm, (45)

where Le = diag(l1, . . . , lnE ) is the diagonal matrix of the edge lengths. Summarizing, we
can apply the proposed algorithm for the solution of the minimization problem (18) either
using the space-variant η-map, SAEiTη, which locally balances the two regularization terms,
or using a constant value forη over the entire�h domain. In particular, in the following section
we will denote by SAEiTc, c ∈ [0, 1] the choice of η ≡ c. Special cases are represented
by c = 1, denoted as SAEiT1, which corresponds to the L2–Tikhonov model, and c = 0,
denoted as SAEiT0, which corresponds to the non-convex TV-like–L2 model.

Remark 2 Theminimization sub-problems are all strictly convex and admit a unique solution
under proper conditions [16]. However, this is not sufficient to guarantee the convergence
of the overall ADMM algorithm. It is in fact well-known that, for non-convex problems, the
convergence of the ADMM has not been well assessed, despite the fact it has been widely
used in applications. We will further investigate this topic in a future work.

6 Numerical Experiments

In this section we evaluate the proposed SAEiTη method on a set of synthetic 2D experi-
ments. All examples simulate a circular tank slice of unitary radius with a boundary ring
of 16 electrodes; drive current value is set to 0.1mA and conductivity of the background
liquid is set to 1 (�∗m)−1. Measurements are simulated through opposite injection-adjacent
measurement protocol via EIDORS software using a generic forward mesh of nT = 39488
triangles and nV = 19937 vertices. A coarse backward mesh was employed for inverse EIT
solutions, without overlapping elements with the ones of the fine forward mesh so that to
avoid the so called inverse crime in EIT [39].

The performance is assessed both qualitatively and quantitatively. The quantitative anal-
ysis is performed via the following slice metric:

εs = ‖σGT − σ ∗‖22
‖σGT ‖22

, (46)

which measures how well the original conductivity distribution is reconstructed in case a
ground truth (GT) conductivity distribution σGT is known. In order to allow for a mesh
independent comparison, the conductivity distributions are evaluated on an image structure
of dimension 576× 576 pixels. In all the experiments, the regularization parameter λ in (18)
as well as the parameters of all the compared algorithms have been hand-tuned so as to
achieve the lowest possible εs norm error.

In all the examples but Example 5, the setup is considered blind, that is no a priori
information about the conductivity distribution is given. In this case, defined as case (b) in
Sect. 4.1, the construction of the η-map consists of the following two steps:

(i) SAEiT0: the spatially adaptive method is applied with η ≡ 0 to generate a preliminary
’observed image’ solution σ ∗

0 ;
(ii) η-map is generated via the edge-detection thresholding function (20) applied on ∇σ ∗

0 .

The parameter κ in (20) for these examples is set as κ = 1.5max� |∇σ ∗
0 |.
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6.1 Example 1: Benefits of the�-map in SAEiT�

In this example we illustrate the full potential of our method with the space-variant map
η(x) ∈ [0, 1) in the reconstruction of several conductivity distributions, illustrated in
Fig. 1, synthetically built to validate the proposed method. Moreover, we compare its per-
formance with some state-of-the-art regularization algorithms for inverse EIT, implemented
via EIDORS, a specific software for EIT problems. Specifically, for the class of nonlinear
EIT methods (EIT-NL), we considered the Gauss–Newtons algorithm with linear regulariza-
tion terms (IGNL) and non-linear regularization terms (Iterative Reweighted Least Squares,
IRLS, [14]); while for the methods belonging to the class of linearized approaches (EIT-
L), we compared with the One-step Gauss–Newton with Tikhonov priors, the (OGNT), the
Primal–Dual Interior Point algorithm for Total Variation regularization (TVPIM, [5]), and
the Newton One-Step Algorithm (NOSER [6]), which performs only the first step of the
Newtons method for the solution of the (EIT-NL) problem.

In Fig. 1(first row) the Empty Measurement Chamber setup is reported (EMPTY), illus-
trated on a mesh of nV = 750 vertices and nT = 1402 triangles. This setup, sampled on the
generic forward mesh, has been used as a baseline for the time difference reconstruction. In
Fig. 1 different kinds of inclusions inside the scaffold are illustrated and considered in order
to test the different performances of themethods: piece-wise constant (PC-test), smooth (SM-
test), and mixed piece-wise constant and smooth (PCSM-test). The colormap on the right
represents the intensity of the conductivity which is imposed over the background mesh.

The η maps are generated by the blind procedure described in the beginning of Sect. 6.
By the way of illustration, in Fig. 2 we illustrate the two-steps procedure for the PCSM-
test setup. The preliminary conductivity distribution σ ∗

0 , shown in Fig. 2b, is obtained by
applying SAEiT0 to the measurements Um = F(σ ), where σ is the PCSM-test distribution
illustrated in Fig. 2a. Finally, by the edge-detection procedure on∇σ ∗

0 , the η-map is detected
and illustrated in Fig. 2c.

The obtained space-variant η-map is then used in the proposed SAEiTη algorithm; the
reconstructed piece-wise smooth conductivity distribution σ ∗ is shown in Fig. 3 (second
row) and compared with the conductivity reconstructed by TVPIM algorithm, shown in the
first row of Fig. 3. Our spatially adaptive proposal, as expected, provides more accurate
reconstructions for the piecewise-constant region as well as for the smooth area, which is
free from staircase effects. In Fig. 3 (third row) the cross-sections along the reconstructed
conductivity distributions are shown, which confirm the improvements.

From the several numerical tests reported in Table 1 in terms of error εs values, the TVPIM
algorithm turned out to perform better than the other competitors, hence in the remainder of
this numerical section the comparisons will be limited to this method.

6.2 Example 2: SAEiT0 Versus TV-L2

In order to validate the performance due to the non-convex φ(·; a) penalty in our model, we
set η ≡ 0, which reduces the variational model (18) to the non-convex TV-like-L2 model
(SAEiT0), and compare its performance with a TV-L2 model solved by the primal–dual
internal-point method (TVPIM) proposed in [5].

The results obtained by applying TVPIM and SAEiT0 methods to the reconstruction of
the PC-test setup are reported in Fig. 4, first and second row, respectively. The qualitative
benefits obtained by the sparsity-inducing regularizer in SAEiT0 w.r.t. the TV regularizer in
TVPIM range from reducing contrast loss to preservation of corners and finer details. The
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EMPTY PC-test

SM-test PCSM-test

Fig. 1 Empty Measurement Chamber setup (EMPTY) and other different test setup: 2D view (left), 3D view
(right)

Fig. 2 Example 1. Generation of the η-map. a PCSM-test setup; b σ∗
0 , the result of SAEiT0; c η-map generated

from b

slice error metric εs , indicated in brackets, clearly confirms these advantages and suggest that
SAEiT0 holds the potential for promoting sparsity of the vector Dσ more effectively than
the TV regularizer.

Both the comparedmodels SAEiT0 and TV-L2 belong to the (EITL) class which considers
a linear fidelity term, resorting on the linearized model (17) of the nonlinear forward operator
F(σ ). To evaluate the effect of this model simplification on the reconstruction accuracy, we
regenerated the input measurementsUm by using the linear forward model, that isUm = Jσ ,
and rerun the two algorithms. The reconstructed conductivities reported in Fig. 5, show a
visible improvement especially in the square shaped reconstructions while the circular shape
profile is accurately reconstructed only by imposing the sparsity penalty in SAEiT0. The
plots of a cross-section along the conductivity distributions together with the ground truth
conductivity are reported both in case the measurements Um are achieved by the non-linear
forward operator F(σ ) (Fig. 4), and by its linearization (Fig. 5).

The error metric εU , defined as

εU = ‖Um − F(σ ∗)‖22
‖Um‖22

,

determines how well the reconstructed conductivity σ ∗ matches the input voltages Um

obtained with respect to a given ground truth distribution σGT . For both algorithms, this
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Fig. 3 Example 1. TVPIM reconstruction (first row); SAEiTη reconstruction (second row); 1D cross section
of the reconstructed conductivity σ∗ (third row)
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Table 1 Example 1. Error εs values for the reconstructed conductivity σ∗ using SAEiTη and other methods

SAEiTη TVPIM IRLS IGNL NOSER OGNT

EMPTY – – – – – –

PC-test 0.3115 0.3715 0.5628 0.5541 0.5541 0.5498

SM-test 0.2377 0.2576 0.3305 0.3447 0.3279 0.5050

PCSM-test 0.2747 0.3302 0.5687 0.5391 0.5211 0.5477

error reduces as expected from 1× 10−2, for measurementsUm = F(σGT ) generated by the
nonlinear forward model, to 1 × 10−18 for Um = JσGT generated by the linearized model,
thus confirming the weakness of the linearized fitting term.

6.3 Example 3: Robustness to Noisy Measurements

In order to evaluate the robustness of the proposed method to noisy measurements we cor-
rupted the voltagemeasurements generated from the solution of the forwardmodel by additive
white Gaussian noise. In particular, considering the PCSM-test setup, we generated the noisy
measurement vector Um following the perturbed acquisition model (11), by adding to the
difference of voltage a vector n̄ ∼ N (0, s2) of Gaussian noise characterized by standard
deviation s and zero-mean.

We assume as data quality measure the Signal-to-Noise Ratio in dB, defined by the fol-
lowing formula

SNR(Um) = 10 log10

(
‖Um − E[Um]‖22

‖n̄‖22

)
, (47)

which represents the ratio between the standard deviation of the data with respect to the noise
variation.

To a given set of SNR values SN R(Um) = {30, 40, 60}dB is corresponding a set of noise
standard deviations s, which can be expressed in terms of percentage value of the standard
variation of the measurements std(Um), that is s = {3.16, 1, 0.1}% of std(Um).

Figure 6 reports the reconstructions from noisy measurements Um for decreasing noise
perturbations, left to right, applying TVPIM (first row) and SAEiTη (second row). From a
visual inspection we can see that SAEiTη algorithm outperforms the TV-L2 method, even
for severe noise corruptions on the input dataUm . This is partially motivated by the fact that
the space-variant η-map, even if generated from noisy measurements Um , is well recovered,
as illustrated in Fig. 6, third row. This is confirmed as well by the relative errors εs reported
in Fig. 6, which improve, especially for TV-L2, as the noise level decreases.

6.4 Example 4: Generic ReconstructionMesh

In the previous examples the η-map was preliminary exploited to define the backward mesh
so that to take advantage of the detected objects for mesh edges alignment to the object
boundaries. When, instead, a generic backward mesh is used, then the reconstruction quality
inevitably worsens. However, thanks to the shrinkage property that characterizes both TV
regularizer as well as the non-convex penalty proposed in SAEiTη, the performance remains
of high level.
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Fig. 4 Example 2. Reconstruction results of SAEiT0 and TVPIM for input measurements Um generated
through the nonlinear forward model (Um = F(σ )). Third row: 1D cross section of the reconstructed con-
ductivity σ∗
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Fig. 5 Example 2. Reconstruction results of SAEiT0 and TVPIM for input measurements Um generated
through linearized forward model, (Um = Jσ ). Third row: 1D cross section of the reconstructed conductivity
σ∗
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Fig. 6 Example 3. Reconstructions from noisy measurements Um using TVPIM (first row) and SAEiTη

(second row) for different degradations, together with the associated η-maps (third row)

Fig. 7 Example 4. Ground Truth PCSM-test setup imposed on a generic backward mesh (left); 3D view (right)

123



Journal of Scientific Computing (2020) 84 :46 Page 23 of 29 46

Fig. 8 Example 4. Reconstruction results with SAEiTη for linearly obtained measurements: (first column) σ∗
0

obtained by SAEiT0; (second column) η-map ; (third column) σ∗ obtained by the proposed SAEiTη method
using η-map in the second column. Number of electrodes: first row L = 8, second row L = 16, third row
L = 32

In order to validate this performance, we consider the reconstruction of the PCSM-test
setup, on a generic backward mesh with nV = 2625 vertices and nT = 5056 triangles,
illustrated in Fig. 7 (left), where the ground truth conductivity is overimposed in false colors.
As expected, the straight boundaries of the rectangular inclusion do not overlay exactly on
themesh edges, thus, the perimeter of the object is longer than the original profile. The effects
of how this generic backward mesh influences the η-map generation are illustrated in Fig. 8,
where σ ∗

0 obtained by applying SAEiT0 (Fig. 8, left column) and the η-map detected from
it (Fig. 8, middle column) are reported for L = 8, L = 16 and L = 32 electrodes in the
first, second and third row, respectively. ThemeasurementsUm have been linearly obtained in
order to validate the actual improvement due to the increasing number of electrodes, avoiding
the inaccuracy due to the linearized fidelity term.

In Fig. 8 (right) the 3D view of the reconstructed conductivities σ ∗ obtained by SAEiTη

are shown. Comparing the reconstruction results in Fig. 8 by rows, we can notice how the
quality of the η-map as well as of the reconstructed conductivity σ ∗ increases with number
of electrodes used to generate the measurements. This is confirmed by the reconstruction
error εs reported in the first row of Table 2 which decreases almost by the same factor as the
increase of the number of electrodes.
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Table 2 Example 4. Error εs
values for the reconstructed
conductivity σ∗ using SAEiTη

for different number of electrodes
L for linearly (first row) and
non-linearly (second row)
obtained measurements

εs L = 8 L = 16 L = 32

Um = Jσ 0.6977 0.3327 0.1754

Um = F(σ ) 0.7266 0.3546 0.3495

Fig. 9 Example 4.Reconstructions for non-linearly obtainedmeasurements: (left) resultwithTVPIM; (middle)
result with SAEiTη; (right) 1D cross section of the reconstructed conductivity σ∗

In the second row of Table 2 we considered the same reconstruction problem with mea-
surements Um given by the nonlinear operator Um = F(σ ). The improvement in εs follows
the same behavior when the number of electrodes increases from L = 8 to L = 16. How-
ever, increasing the number of electrodes to L = 32 there is no longer an improvement that
justifies the higher cost of the new actual setup.

The comparison between the two rows in Table 2 highlights that the linearization error, of
which the results in the second row are affected, eliminates the reconstruction improvement
obtained by increasing the number of electrodes. Nevertheless, this limitation stays in line
with other works [2,14], where the authors claim that the improvement in the reconstruction
for L = 32 electrodes is only marginal with respect to the reconstruction with measurement
obtained from L = 16 electrodes.

Finally, the reconstructed conductivities σ ∗ obtained by the TVPIM and SAEiTη methods
are compared and shown in Fig. 9, together with the attained error values, in case L = 16
and Um = F(σ ). A cross-section comparison along a vertical line through the middle of the
reconstructed conductivity is shown in Fig. 9 on the right. The shrinkage of the boundary
length, which is a property that mostly characterizes the TV regularizer, and tends to round
the corners of the sharp inclusion, is well visible in the TVPIM reconstruction in Fig. 9 (left)
and thus further influences the accuracy of the reconstruction results.

6.5 Example 5:�-map Construction by Auxiliary Image

In the previous examples the numerical experiments have been conducted in a blind scenario
[case (b) in Sect. 4.1], thus the previous η-maps have been constructed by the procedure
outlined at the beginning of Sect. 6.

In contrast, this last example illustrates how to embed a priori information on the domain
content, represented by a photographic image, to construct an ad-hoc backward mesh and to
design a proper η-map. This is identified as case (a) in Sect. 4.1.
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Fig. 10 Example 5. a EIT tank with a 16 electrodes sensor array and two inclusions; b segmented image; c
detected boundary curves; d space-variant η-map

Fig. 11 Example 5. Ground Truth conductivity distribution: imposed on an ad hoc backward mesh generated
from the photograph of the experimental setup (left); 3D view (right)

Several applications can be framed in this scenario. For example, in tissue engineering,
an interesting goal is to measure mineral deposition by differentiated stem cells cultured in
a hydrogel scaffold. The position of the object of interest inside the domain is known, while
the useful information is hidden and encoded in the conductivity distribution.

Given a photograph of the experimental setup as shown in Fig. 10, the η-map and the
backward mesh are constructed by the following steps:

• Region segmentation of the interior of the domain (tank) to detect and label the back-
ground and the contained objects;

• Edge detection of the inner N detected regions and boundaries extractions (closed con-
tour curves) C = {Cs}Ns=1;• Backwardmesh construction by scaling of the interior of the tank onto a unitary circle;

• Building of the η-map by mapping the set C onto the backward mesh.

Figure 10a shows a tankwith a sensor array of 16 electrodes and two inclusions, a hydrogel
scaffold with smooth conductivity distribution and a constant conductivity triangular shaped
object, immersed in a buffer for cell cultures that keeps the pH of the experiment under
control. In Fig. 10b the inner inclusions have been segmented and labelled; Fig. 10c shows
the boundary curves generated by the edge detection procedure on the segmented image.
Finally, Fig. 10d shows the detected space variant η-map imposed on the backward mesh
which contains nV = 1301 vertices and nT = 2504 triangles.

The simulation was conducted considering an EIT setup composed of 16 electrodes
and an injected current with intensity 0.1mA; the background conductivity was set to
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Fig. 12 Example 5. TVPIM reconstruction (first row); SAEiTη reconstruction (second row); 1D cross section
of the reconstructed conductivity σ∗ (third row)

1.1 (�∗m)−1, the triangular shaped object was assigned 1.05 (�∗m)−1 which represents a
downward jump in conductivity, and the scaffold has a smoothly increasing conductivity up
to 1.1267 (�∗m)−1. The space variant η-map, shown in Fig. 10(d), is zero on the boundary
of the inclusions and constant value 0.5 in the remaining edges.
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The GT conductivity distribution which aims to be reconstructed is illustrated in Fig. 11,
imposed on an ad hoc backward mesh generated from the photograph of the experimental
setup in Fig. 10.

Reconstructions of the conductivity variation distributions with respect to an empty tank
are shown in Fig. 12. A visual inspection reveals that TV-L2 generates some artifacts around
the rubber triangle and completely flattens the variation inside the scaffold, while SAEiTη

well reconstructs both the sharp step variation and the inhomogeneous smooth distribution,
which is confirmed by the lower εs value for SAEiTη.

7 Conclusion

In this paper, a spatially adaptive non-convex variational model is proposed for dealing
with the reconstruction of conductivity distributions in EIT problems that present sharp as
well as inhomogeneous variations, as encountered in situations of bioengineering/medical
interest. The reconstructions are enhanced by incorporating prior structural information into
the regularization through an η-map which is either automatically detected, in case that no a
priori knowledge is given, or derived by a photographic image of the acquisition setup. The
η-mapweights differently two regularization terms. For the reconstruction of sharp variations
a non-convex penalty is introduced, while a convex generalized Tikhonov-type regularizer is
applied in smoothly varying regions. Experiments demonstrate how the non-convex penalty
can promote sparsity better than the convex �1 norm penalty (TV). However, since the matrix
J does not have full-column rank, a convex non-convex formulation to choose the parameter a
in such away that the total cost functionalJ in (18) is convex is not possible ifφ is separable as
in (19), see [20]. Future directions will consider non-convex non-separable penalty functions
as proposed in [20], that do maintain strong convexity of the cost functional J for any matrix
J . This would ensure the uniqueness of the regularized solution and the convergence of the
ADMM optimization algorithm. However, it will involve a strategy to set the matrix of free
parameters suitably derived to face the specific EIT problem.

Finally, from the conducted experiments emerged the crucial role of the backward mesh
and the benefit to adapt it to the structural information of the sought for distribution. Therefore,
another interesting future direction could be to incorporate a space-adaptive refinement of the
backward mesh, driven by a dynamic η-map. Including prior information about the boundary
location is feasible in tissue engineering applications, where a picture of the culture well
clearly shows the boundaries of the scaffold but misses the crucial information embedded
in the conductivity distribution. In a future work, the authors plan to exploit the presented
method to measure and map the mineral deposition by alive differentiated stem cells in real
time.
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