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enterocyte inflammatory
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Pharmacological doses of zinc oxide (ZnO) have been widely used in pig

industry to control post-weaning diarrhea (PWD) symptoms exacerbated by

enterotoxigenic Escherichia coli F4 infections. Because of environmental issues

and regulatory restrictions, ZnO is no longer sustainable, and novel nutritional

alternatives to manage PWD are urgently required. Botanicals represent a wide

class of compounds employed in animal nutrition because of their diverse

beneficial functions. The aim of this study was to investigate the in vitro protective

action of a panel of essential oils and natural extracts on intestinal Caco-2 cells

against an E. coli F4 infection. Moreover, we explored the potential mechanisms

of action of all the botanicals compared to ZnO. Amongst the others, thyme

essential oil, grape seed extract, and Capsicum oleoresin were the most e�ective

in maintaining epithelial integrity and reducing bacterial translocation. Their

mechanism of action was related to the modulation of cellular inflammatory

response, the protection of tight junctions’ expression and function, and the

control of bacterial virulence, thus resembling the positive functions of ZnO.

Moreover, despite their mild e�ects on the host side, ginger and tea tree

essential oils provided promising results in the control of pathogen adhesion

when employed during the challenge. These outcomes support the advantages of

employing selected botanicals to manage E. coli F4 infections in vitro, therefore

o�ering novel environmentally-friendly alternatives to pharmacological doses of

ZnO capable to modulate host-pathogen interaction at di�erent levels during

PWD in pigs.

KEYWORDS

piglets, weaning, post-weaning diarrhea, Escherichia coli F4, zinc oxide, essential oils,

natural extracts, botanicals

Introduction

Zinc oxide (ZnO) is a molecule widely employed at pharmacological doses in animal

husbandry (1,000–3,000 ppm in complete feed) to treat post-weaning diarrhea (PWD). This

condition mainly affects piglets, causing significant economic losses because of reduced

animal growth performance, costs for treatments, and mortality (1). The onset of PWD is

primarily linked to Enterotoxigenic Escherichia coli (ETEC) strain F4, which exploits piglets’

weaning stress to target the gastrointestinal tract (2). ETEC overgrowth in the small intestine
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triggers the expression of several virulence genes, like bacterial

adhesins or heat-labile and heat-stable toxins. Thus, pathogen

easily adhere to enterocytes, where they secrete toxins to finally

elicit the production of diarrhea (3). Studies demonstrated that

E. coli F4 infection further impairs weaning stress by stimulating

inflammation and reducing gut integrity in one of the most delicate

phases of the pig production cycle (4–7).

It has been suggested that the reason why ZnO is particularly

effective inmanaging PWD symptoms is related to its antimicrobial

effect (8–10). However, whether it is true that ZnO possesses

the capacity to reduce bacterial growth in vitro, several in vivo

studies showed that antimicrobial effects against E. coli F4 are mild

and limited to medicinal doses (11–13). Rather, the mechanism

of action of ZnO seems broadly due to its antioxidant, anti-

inflammatory, and anti-adhesive properties, together with its

extensive supportive action on the intestinal mucosa (1, 14).

However, the large and prolonged utilization of

pharmacological doses of ZnO in pig nutrition led to the

onset of environmental issues and the acceleration of antimicrobial

and heavy metal resistance spread amongst bacteria (15–17). For

these reasons, European authorities decided to impose a ban on

medicinal doses of ZnO (18), so novel alternatives to manage

PWD and weaning stress are urgently required (19). The new

substitutes should not only represent safe and sustainable ZnO

replacements, but also embody the same multi-factorial properties

that pharmacological ZnO exerts at the gut level.

A wide reservoir of potential novel molecules comes from

nature, where a large number of bioactive compounds are innately

synthesized by plants to protect themselves against pathogens

and face stressful situations (20–22). Essential oils (EO) and

powder extracts are widely studied in animal nutrition to support

growth performance and control microbial growth (23, 24).

Other than antibacterial activity, such compounds also exert anti-

inflammatory and antioxidant actions, together with their capacity

to enhance epithelial integrity and function at the intestinal level

(25). All the effects of natural products are largely ascribed to the

active principles they contain, such as polyphenols and terpenes

(25, 26). The bioactive functions of these molecules generally follow

the ones exerted by ZnO, so EO and extracts represent promising

candidates to help piglets face weaning inflammation and stress,

especially when triggered by E. coli F4 infections (1).

The aim of this study was to explore the protective effects of

several EO and powder extracts during an in vitro infection by E.

coli F4 on Caco-2 cells, a recognized model for intestinal studies

(27). In particular, we tried to elucidate the potential mechanism of

action of all the tested compounds, to identify the most effective

to maintain enterocyte’s monolayer integrity by modulating the

inflammatory response, reducing cellular susceptibility to the

pathogen, and affecting ETEC adhesive properties.

Materials and methods

Chemicals and reagents

Cell culture reagents and chemicals were obtained from Sigma-

Aldrich (Milan, Italy), unless otherwise specified. Thyme essential

oil (ThyEO, 48% thymol), Capsicum oleoresin (CapOR, 6% total

capsaicinoids), ginger essential oil (GEO, 29–40% zingiberene, 10–

14% sesquiphellandrene), and tea tree oil (TTO, >30% terpinene-

4-ol, 5–13% α-terpinene, 10–28% γ-terpinene) were provided by

Frey+Lau (Henstedt-Ulzburg, Germany). Grape seed extract (GSE,

>80% total polyphenols as catechin equivalents at 280 nm—

UV/VIS) and olive leaf extract (OE, 10% oleuropein) were obtained

from Layn Natural Ingredients (Shangai, China). Zinc oxide (ZnO)

was obtained from Alfa Aesar (Karlsruhe, Germany).

Stock solutions of all the bioactive compounds were prepared

in ethanol 100% (v/v) and supplemented in culture medium at a

final working concentration of ethanol≤ 1% (v/v). Zinc oxide stock

solution was prepared in 5% acetic acid (v/v) and supplemented in

culture medium at a final working concentration of acetic acid ≤

0.1% (v/v).

Final tested concentrations were 20 ppm for ThyEO, 100

ppm for GSE, CapOR, GEO, TTO, OE, and 0.2mM for ZnO.

For essential oils and extracts, the 100 ppm concentration was

chosen basing on their effect on viability and their antioxidant

potential previously assessed on unchallenged Caco-2 cells by

our research group (28). ThyEO and ZnO concentrations differ

from the others because higher doses were not tolerated by Caco-

2 cells on 3.0µm diameter Transwell
R©

inserts, as shown by

our preliminary experiments (see Supplementary Figures 1, 2), in

which high ThyEO and ZnO alone (without bacterial challenge)

produced a considerable drop in TER.

Cell line and culture conditions

The human colon carcinoma cell line (Caco-2) was obtained

fromDSMZ (Braunschweig, Germany). Cells were used at a passage

between 10 and 20, and were routinary maintained at 37◦C, 5%

CO2 atmosphere, and 95% relative humidity. Basal maintenance

medium was composed of Dulbecco’s modified Eagle’s medium

(DMEM) high-glucose supplemented with 10% fetal bovine serum,

1% L-glutamine, 1% penicillin/streptomycin, and 1% non-essential

amino acids.

Bacteria and culture conditions

The bacterium employed in the study was a field strain of

Escherichia coli K88/F4, expressing heat-labile and heat-stable

toxins (LT+, STa+, STb+), and originally isolated from the intestine

of a piglet with post-weaning diarrhea. Bacteria were routinely

cultured in brain-heart infusion broth (BHI, WVR International,

Milan, Italy) at+37◦C for 24 h. Daily 1:100 passage was performed

to maintain active cultures (29).

On challenge day, bacterial inoculumwas prepared bymaking a

1:80 passage of the overnight culture in a fresh BHI tube. After 4 h,

when bacteria reached the late-midlog phase of growth, bacterial

turbidity was measured by assessing absorbance at 630 nm. The

obtained turbidity was interpolated in an absorbance—CFU/mL

growth curve previously prepared to obtain a precise bacterial

count for the inoculum of the following experiments, as previously

described by Roselli et al. (14).
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Infection of Caco-2 cells on porous filters

To measure Transepithelial Electrical Resistance (TER) and

Bacterial Translocation (BT) during a bacterial challenge, Caco-2

cells were grown and differentiated for 30 days in 12 well plates

on porous Transwell
R©
inserts (3.0µm diameter pores) (Corning,

Massachusetts, USA) (30).

Infection method was adapted from previously published

studies (14, 31, 32). Briefly, on the challenge day, TERwasmeasured

using an epithelial tissue voltohmmeter (Millicell ERS-2, Merck,

Darmstadt, Germany) to obtain basal TER values for each filter.

Then, cells were washed twice with DPBS and apically infected

with 5 × 107 CFU/mL bacteria (multiplicity of infection of 100)

in basal medium without P/S and supplemented with the various

tested substances. Treatments were also included in the basolateral

media, which consisted of basal media without P/S. Two controls

were prepared: a negative control (CTR), without bacteria, and a

positive control (CTR+), with only the bacteria.

At 2 and 4 h after the beginning of the infection, cellular

integrity was monitored by measuring TER. At both timepoints,

100 µL of basolateral medium were collected from each filter

and serially diluted in sterile saline. Then, aliquots of the most

appropriate dilutions were seeded on BHI plates. After 24 h of

incubation at+37◦C, viable translocated bacteria were counted.

At the end of all the TERmeasurements, infection medium was

removed, cells were washed twice with DPBS, harvested, and stored

at−80◦C until further processing for gene expression analysis.

Gene expression of infected Caco-2 cells

Gene expression was performed according to previously

published studies on similar in vitromodels of Caco-2 cells (28, 30).

Briefly, after thawing of the harvested samples, Caco-2 RNA was

extracted using NucleoSpin RNA Kit (Macherey-Nagel, Düren,

Germany) with DNase digestion according to manufacturer’s

instructions. RNA yield and purity was assessed by A230, A260,

and A280 nm measurements at the spectrophotometer (µDrop

Plate and Varioskan LUX, Thermo Fisher Scientific, Waltham,

MA, USA).

RNA was then retrotranscribed with iScript cDNA Synthesis

Kit (Bio-Rad Laboratories, Hercules, CA, USA) according to

manufacturer’s instruction. cDNA was subsequently diluted to 5

ng/µL and analyzed via qPCR analysis. Reactions were prepared

using iTaq Universal SYBRGreen Supermix (Bio-Rad Laboratories,

Hercules, CA, USA) and analyzed through CFX96 Real-Time

PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA)

under the following conditions: 3min at 95◦C, followed by 40 cycles

of 95◦C for 10 s and 60◦C for 30 s. The specificity of each reaction

was evaluated by melting-curve analysis.

Gene expression was normalized using two reference genes,

i.e., ribosomal protein lateral stalk subunit P0 (RPLP0) and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The

relative changes in gene expression were calculated using the

2−11Ct method (33).

Table 1 displays forward and reverse primers of selected target

genes, which were obtained fromMerck (Darmstadt, Germany).

Adhesion assay

As a marker of bacterial virulence, an adhesion assay was

performed to assess bacterial ability to interact with target cells (14).

Caco-2 cells were differentiated in 24 well plates; on the infection

day, after twowashes with DPBS, Caco-2 were infected with 5× 107

CFU/mL bacteria in basal medium without P/S and supplemented

with the various tested substances. Two controls were prepared:

a negative control (CTR), without bacteria, and a positive control

(CTR+), with only the bacteria.

After 1 h of incubation, bacteria in suspension were eliminated

by washing cells four times with DPBS. Then, Caco-2 were lysed

with 0.5% Triton X-100 in DPBS for 10min and, after serially

diluting lysed cells in sterile saline, appropriate dilutions were

seeded on BHI agar. After 24 h of incubation at +37◦C, viable

adhered bacteria were counted.

Immunofluorescence assay

To assess the localization of zonula occludens 1 (ZO-1), a tight

junction protein, during the bacterial challenge, Caco-2 cells were

stained via an immunofluorescence assay. Cells were cultivated

on glass coverslips maintained inside 6 well plates, with each well

corresponding to a single group of treatment.

After differentiation, Caco-2 cells were washed twice with

DPBS, and then infected with 5 × 107 CFU/mL bacteria in basal

medium without P/S and supplemented with the various tested

substances. Two controls were prepared: a negative control (CTR),

without bacteria, and a positive control (CTR+).

After 2 h of incubation, bacteria in suspension were eliminated

and cells washed twice with DPBS. Then, Caco-2 were fixed with

4% paraformaldehyde in DPBS for 20min. Subsequently, cells were

permeabilized with 0.5% Triton X-100 for 15min, and then blocked

in 10% goat serum for 1 h. ZO-1 primary monoclonal antibody

(ThermoFisher Scientific, Walthan, MA, USA) was diluted in

DPBS containing 2% bovine serum albumin (BSA) and 0.05%

saponins, and incubated on Caco-2 cells for 3 h at +4◦C in a

humidified chamber. After three washes with 0.2% BSA + 0.05%

saponins in DPBS, secondary antibody conjugated to fluorescein

isothiocyanate (FITC) (ThermoFisher Scientific, Walthan, MA,

USA) was used to probe for 1 h the bounded primary antibody.

Two washes were finally performed with DPBS supplemented with

0.2% BSA and 0.05% saponins to remove unbounded antibodies.

Slides were mounted with Fluoroshield containing 4
′
,6-diamidino-

2-phenylindole (DAPI), images acquired using a fluorescence

microscope (Nikon Corporation, Tokyo, Japan), and pictures

processed using NIS-Elements software (Nikon Corporation,

Tokyo, Japan).

Statistical analysis

Results are obtained from at least two independent

experiments. For each experiment, the experimental unit was

the well, with n = 6. Data are displayed on graphs as means ±

SEM. For TER, BT, gene expression, and adhesion assays, data were
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TABLE 1 Primers used in this study for gene expression analysis.

Function Gene Sequences (5′ → 3′) Product length
(bp)

References

Tight-junction integrity ZO-1 F: CGGGACTGTTGGTATTGGCTAGA

R: GGCCAGGGCCATAGTAAAGTTTG

184 (101)

ZO-2 F: CTAGCAGCGATCAACTTAGGGACAA

R: CCCAGGAGTTTCATTACCAGCAA

158 (101)

CLD-1 F: GCACATACCTTCATGTGGCTCAG

R: TGGAACAGAGCACAAACATGTCA

92 (101)

Innate immune response TNFα F: TCTCGAACCCCGAGTGACAA

R: TATCTCTCAGCTCCACGCCA

124 (102)

IL-1β F: AATCTGTACCTGTCCTGCGTGTT

R: TGGGTAATTTTTGGGATCTACACTCT

78 (103)

IL-8 F: ATGACTTCCAAGCTGGC

R: ACTTCTCCACAACCCT

174 (104)

BD1 F: CCTACCTTCTGCTGTTTACTC

R: ACTTGGCCTTCCCTCTGTAAC

186 (105)

Housekeeping genes RPLP0 F: GCAATGTTGCCAGTGTCTG

R: GCCTTGACCTTTTCAGCAA

142 (106)

GAPDH F: TGCACCACCAACTGCTTAGC

R: GGCATGGACTGTGGTCATGAG

87 (107)

F, forward; R, reverse; ZO-1, zonula occludens 1; ZO-2, zonula occludens 2; CLD-1, claudin 1; TNFα, tumor necrosis factor α; IL-1β, interleukin 1β; IL-8, interleukin 8; BD1, beta defensin 1;

RPLP0, ribosomal protein lateral stalk subunit P0; GAPDH, glyceraldehyde 3 phosphate dehydrogenase.

analyzed using GraphPad Prism v.9.4.0 (GraphPad Software, Inc.,

San Diego, CA, USA) performing One-Way ANOVA analysis with

Dunnett multiple comparisons test, comparing all the experimental

groups with the mean of CTR+ group. Differences were considered

significant when p ≤ 0.05, trends were identified when p ≤ 0.1.

Results

Epithelial integrity

Figure 1 reports the TER measurements of Caco-2 cells

treated with selected compounds during an E. coli F4 challenge.

Results are presented as percentage of TER referred to the

negative control group, considered as the normal TER value in a

steady condition of culture.

Data show that the ETEC challenge could significantly reduce

the integrity of the cellular monolayer at both 2 h and 4 h after the

beginning of the infection. At 4 h, considerable damages on infected

Caco-2 led TER to a value equal to 28% of the negative control.

Despite the presence of the challenge, several treatments were

effective in protecting Caco-2 cells from the drop in TER exerted

by E. coli F4. In particular, ThyEO and GSE kept TER at a level

significantly higher than the positive control, with values even

greater than the negative control at the first timepoint (129% for

ThyEO+ and 121% for GSE+ groups). Moreover, CapOR limited

the drop in TER that Caco-2 cells would have experienced at 4 h

(79% of CapOR+ instead of 28% of CTR+). Also, ZnO significantly

protected cells from the effects of the challenge, even if its action

was considerable at 2 h (108%), but mild at 4 h (47%). Similar

behaviors were registered also for TTO and OE, while GEO did not

show significant improvements in TER at both timepoints.

Bacterial translocation

To understand the capacity of the tested bioactive compounds

to limit E. coli F4 passage across the cellular monolayer, a

bacterial translocation assay was performed. Results are presented

in Figure 2 and expressed as a percentage of bacterial translocation

referred to the value obtained at each timepoint by CTR+,

considered the highest possible passage in our system.

Results show that ThyEO and GSE significantly reduced

bacterial passage across Caco-2 cells at 2 h (−24 and −28%,

respectively), with mean values numerically close to the ones

of ZnO (77% of CTR+). A reduction trend was measured for

CapOR, while other treatments, despite improving TER, did not

significantly reduce bacterial translocation.

At 4 h differences are less evident, even if GSE significantly

reduced E. coli F4 passage at the same extent of ZnO (−20 and

−15%, respectively). Other treatments, like ThyEO, CapOR, TTO,

and GEO, could only numerically reduce bacterial translocation,

while OE did not help cells to avoid pathogen passage across the

enterocyte monolayer.

Gene expression of tight junctions and
inflammatory markers

Infected cells were harvested and mRNA levels investigated to

monitor the ability of the tested bioactive principles to modulate

the expression of tight junctions (Figure 3) and innate immune

response markers (Figure 4). Tight junction integrity was assessed

by investigating the expression of zonula occludens 1 (ZO-1),

zonula occludens 2 (ZO-2), and claudin 1 (CLD-1) genes, while

immune response was evaluated by analyzing the expression of

cytokines like TNFα, IL-1β, IL-8, and beta defensin 1 (BD-1).
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FIGURE 1

TER of Caco-2 cells treated with essential oils or powder extracts and challenged with E. coli F4 at 2 h (A) and 4h (B) after the beginning of the

infection. Groups with bacterial infection are represented with a “+” in the name. Data in the graphs are represented as means ± SEM; percentage

values are referred to negative control (CTR–) for both the investigated timepoints. One-Way ANOVA analysis is performed against positive control

(CTR+), identified with a red arrow; asterisks “*” denote significant di�erences with p < 0.05, while tendencies are highlighted by their p-value.

FIGURE 2

Bacterial translocation of E. coli F4 across Caco-2 cells treated with essential oils or powder extracts at 2 h (A) and 4h (B) after the beginning of the

bacterial infection. Groups with bacterial infection are represented with a “+” in the name. Data in the graphs are represented as means ± SEM;

percentage values are referred to positive control (CTR+) for both the investigated timepoints. One-Way ANOVA analysis is performed against

positive control (CTR+), identified with a red arrow; asterisks “*” denote significant di�erences with p < 0.05, while tendencies are highlighted by

their p-value.

Escherichia coli F4 challenge significantly reduced the

expression of the three intestinal integrity markers involved in

the organization of tight junctions. On the contrary, many of

the treatments improved the expression of the three considered

genes, even if at different extents. ZO-1 expression was ameliorated

by GEO (+32%), while ZO-2 levels were enhanced by CapOR

(+47%); ZnO increased mRNA levels of the two markers.

Conversely, while ZnO did not improve CLD-1 expression,

both CapOR and TTO significantly increased CLD-1 (+32%)

compared to CTR+. ThyEO could numerically improve the levels

of the three tight junctional markers, even if differences were

not significant.

Despite not substantially ameliorating the expression of ZO-

1, ZO-2, and CLD-1, GSE significantly decreased TNFα (−32%),

IL-1β (−40%), and IL-8 (−50%), counteracting their dramatic

activation when an E. coli F4 challenge was applied to Caco-2 cells.

TNFα levels were also reduced by ThyEO (−37%) and CapOR

(−40%), while ZnO tended to decrease its expression as well. On

the other hand, TTO, ZnO and, to a lesser extent, ThyEO, increased

the mRNA amount of IL-8 compared to CTR+, while ZnO also

significantly augmented IL-1β levels.

Even though the bacterial challenge reduced the mRNA levels

of BD1, ThyEO, CapOR, OE, ZnO, and GSE improved or restored

its expression at the same value of the negative control.
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FIGURE 3

Gene expression analysis of Caco-2 cells treated with essential oils or powder extracts and challenged with E. coli F4 at 4 h after the beginning of the

infection. The analyzed markers of cellular monolayer integrity are ZO-1 (A), ZO-2 (B), and CLD-1 (C). Groups with bacterial infection are represented

with a “+” in the name. Data in the graphs are represented as means ± SEM. One-Way ANOVA analysis is performed against positive control (CTR+),

identified with a red arrow; asterisks “*” denote significant di�erences with p < 0.05, while tendencies are highlighted by their p-value.

Adhesion assay

To investigate the ability of the employed essential oils and

powder extracts to influence bacterial virulence bymodulating their

interaction with target cells, an adhesion assay was performed.

Results are displayed by Figure 5. All the compounds significantly

reduced the capacity of E. coli F4 to adhere to Caco-2 cells, except

for OE. The most effective ones were ThyEO and GEO, followed by

GSE. CapOR, ZnO, and TTO significantly reduced the adhesion of

the pathogen as well, even if to a lesser extent.

Immunofluorescence assay for ZO-1

The immunofluorescence staining for ZO-1 is shown in

Figures 6, 7. The infection of Caco-2 with E. coli F4 produced

significant damages on the cellular monolayer. In particular,

intestinal epithelial cells suffered fromZO-1 loss of sealing capacity,

producing open holes between adjacent cells. Moreover, bacterial

challenge caused areas of significant mortality, with cells detaching

from the surface of glass slides, generating acellular zones. Finally,

in some areas, ZO-1 lost its correct localization, to form irregular

agglomerates near cell borders, differing from the homogeneous

and uniform pattern usually highlighted in unchallenged Caco-

2 enterocytes.

Amongst treatments, ZnO significantly reduced the damages

exerted by E. coli F4 infection: the integrity of Caco-2 monolayer

was maintained, with only minor sites of ZO-1 misplacement

or loss of tightness. Similar results were obtained with GSE,

while ThyEO and CapOR, despite showing some areas of

tight junction disruption, were generally effective in preventing

profound damages or extensive losses of cell-to-cell contacts.

On the contrary, broader damages were observed for TTO and

OE: a higher number of areas left opened between adjacent cells

were found with TTO and OE treatments, together with zones of

partial impairment in ZO-1 localization, even if not at the same

extent of CTR+.

Despite showing a high degree of cellularity, without evident

holes in the Caco-2 monolayer, treatment with GEO during the

bacterial challenge did not protect cells from alterations to ZO-1

disposition along the cellular margins. In fact, sites of cell-to-cell

contact loss were evident, together with frequent zones of ZO-1

abnormal localization, far from the common regular arrangement

with sharp cellular borders.

Discussions

Historically, pharmacological doses of ZnO were widely

employed during the weaning phase of piglets to prevent the
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FIGURE 4

Gene expression analysis of Caco-2 cells treated with essential oils or powder extracts and challenged with E. coli F4 at 4 h after the beginning of the

infection. The analyzed markers of innate immune response are TNFα (A), IL-1β (B), IL-8 (C), and BD1 (D). Groups with bacterial infection are

represented with a “+” in the name. Data in the graphs are represented as means ± SEM. One-Way ANOVA analysis is performed against positive

control (CTR+), identified with a red arrow; asterisks “*” denote significant di�erences with p < 0.05, while tendencies are highlighted by their p-value.

FIGURE 5

Escherichia coli F4 adhesion assay performed on Caco-2 cells

treated with essential oils or powder extracts for 1 h. Groups with

bacterial infection are represented with a “+” in the name. Data in

the graphs are represented as means ± SEM. One-Way ANOVA

analysis is performed against positive control (CTR+), identified with

a red arrow; asterisks “*” denote significant di�erences with p < 0.05.

onset of PWD symptoms (34, 35). For a long time, it was

believed that ZnO had a strong antimicrobial activity, but several

studies demonstrated a remarkable action only at very high

doses, principally against Gram-positive species (36, 37). Indeed,

many in vivo trials reported how ZnO exerts mild effects on the

fecal excretion of E. coli F4, the Gram-negative pathogen mainly

responsible of PWD in piglets (38).

The ZnO mechanism of action seems rather related to a

multifactorial effect on small intestinal enterocytes, the main target

of ETEC infections (1). As confirmed by our results, ZnO protects

cultured intestinal cells against E. coli F4 by maintaining a better

epithelial integrity, thus reducing bacterial translocation across the

cellular monolayer. The increased expression of selected tight-

junctions, the modulation of inflammatory cytokines expression,

and the enhanced levels of beta defensins, all contribute to explain

the higher resilience that Caco-2 cells have when treated with

ZnO during a bacterial challenge. Moreover, consistently with the

outcomes reported by Roselli et al. (14), ZnO significantly reduced

the count of viable E. coli F4 adhered to enterocytes, since it

interferes with bacterial adhesins expression and function (39).

Despite their powerful activity, pharmacological doses of

ZnO are no longer sustainable because of the risks related to

their extensive use in animal husbandry (17). To overcome

these issues, novel environmentally friendly alternatives to

support piglets’ weaning transition at the nutritional level are

urgently needed. Natural extracts represent ideal candidates to

substitute ZnO because the bioactive molecules they convey
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FIGURE 6

Immunofluorescence staining of Caco-2 cells treated with essential oils or powder extracts and simultaneously challenged with E. coli F4 for 2 h.

Groups with bacterial infection are represented with a “+” in the name. In the image, the left column represents DAPI staining, the central column

ZO-1 staining with FITC, while right column depicts the merge of the first two images, where white arrows identify areas of tight-junction

detachment, loss of cells, holes in the monolayer or anomalies in ZO-1 disposition. Each row displays a di�erent treatment.

possess diverse mechanisms of action which modulate pathogens

growth, while simultaneously supporting intestinal morphology

and function (25, 32).

Maintaining intestinal integrity is a key factor to ensure

piglets health and a smoother weaning transition: the loss of

the gastrointestinal barrier elicits the establishment of a mild

inflammatory status which results in the onset of diarrhea (40–

43). Our infection model proved that, when E. coli F4 was

incubated on Caco-2 cells with ThyEO, GSE, and CapOR, the

damages of the challenge were significantly reduced, with TER

levels in line with negative control. Thanks to the enhancement

of the barrier integrity, a reduced bacterial translocation was

also reported for the three extracts. Data are supported by

the immunofluorescence staining of infected cells: a significant

reduction of damages and an improved tight junction function

was registered when ThyEO, GSE, and CapOR were added

to the system, in agreement with ZnO. The positive effects

of the three botanicals can be ascribed to their mechanisms

of action.

Intestinal integrity is ensured by a complex system of sealing

proteins that form tight junctions between adjacent cells and strictly

regulate paracellular pathways (44). Two of the main actors are
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FIGURE 7

Immunofluorescence staining of Caco-2 cells treated with essential oils or powder extracts and simultaneously challenged with E. coli F4 for 2 h.

Groups with bacterial infection are represented with a “+” in the name. In the image, the left column represents DAPI staining, the central column

ZO-1 staining with FITC, while right column depicts the merge of the first two images, where white arrows identify areas of tight-junction

detachment, loss of cells, holes in the monolayer or anomalies in ZO-1 disposition. Each row displays a di�erent treatment.

zonula occludens and claudins (45, 46). Escherichia coli F4 deeply

affects the structure and functionality of these proteins: studies

showed that ETEC toxins disrupt junctions by targeting ZO-1,

CLD-1, and many cytoskeletal components (4, 7, 47). This is

confirmed by our results: the pathogen impaired the expression of

all the analyzed markers. However, when CapOR was added to the

system, it increased the expression of CLD-1 and ZO-2, showing

the ability to modulate two markers of intestinal integrity as occurs

with ZnO.

Capsaicin, the main component of CapOR, transiently

increases tight junction permeability without affecting their

structure (48). This phenomenon is also reported by our data:

at 2 h after the beginning of the infection, CapOR reported a

lower TER, if compared to several other treatments. However,

at 4 h, TER was maintained at a high level, demonstrating

how the opening of the paracellular way is only temporary,

and that it is reversed by an increase in tight junction

expression (49, 50), as also displayed by the qPCR results.

The CapOR transient loosening in epithelial integrity is not

due to a disruption of cellular monolayer but, instead, it is

tightly regulated (51–53): despite the slight drop in TER at 2 h,

bacterial translocation still showed a reduction trend compared

to CTR+.

The protective action of CapOR on tight junctions during E.

coli F4 challenge is likely related to its main bioactive principle,

capsaicin, the ligand of TRPV1 channels (54). Activation of

TRPV1 by capsaicin reduced inflammation in LPS-challenged mice

(55). Moreover, after binding TRPV1, capsaicin modulated the

inflammatory activation in human endothelial cells treated with

LPS, resulting in a decreased cytokine release (56). Consistently,

our results show that CapOR controlled the upregulation of

TNFα and IL-8 expression during an E. coli F4 challenge. This

is in agreement with the findings of Alhamoruni et al., that

confirmed howTRPV1 agonists protect Caco-2 intestinal cells from

the increased permeability generated by high pro-inflammatory

cytokines levels (57).
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Slight numerical increases in tight junctions’ expression and

a modulation of TNFα was registered also for ThyEO during the

E. coli F4 infection on Caco-2 cells. ThyEO is particularly rich in

thymol, a bioactive compound recognized as a candidate agonist of

TRPV1 (58) and a direct ligand of TRPV3 (59). Thymol’s ability

to interact with the endocannabinoid system and stimulate its

anti-inflammatory potential could explain its ability to counteract

ETEC negative effects. Thymol has also a direct action on the

cellular inflammatory response, because its phenolic hydroxyl

group interacts with NF-kB, a transcription factor involved in the

response to stressful stimuli (60, 61) and associated with the MAPK

pro-inflammatory pathway (62–64).

Other than modulating cellular inflammatory response, thymol

deeply influences bacterial virulence genes expression (65, 66).

Several studies demonstrated how thymol not only limits bacterial

growth, but also controls E. coli F4 quorum sensing effectors,

reducing ETEC ability to target intestinal cells (29, 67). This

secondary mechanism of action against pathogens could explain

why ThyEO did not exert extensive effects on Caco-2 cells, though

keeping high TER values. Instead of exclusively acting on the

intestinal mucosa side, thymol effect could be also oriented toward

bacterial virulence, as previously demonstrated with Salmonella

typhimurium (68). As a confirmation, thymol reduced the adhesion

of the pathogen to Caco-2 cells at an extent higher than ZnO.

A similar effect is registered also for GSE, an extract

rich in polyphenols. Traditionally, polyphenols were considered

antinutritional factors because of their ability to bind proteins (69,

70). However, since many bacterial toxins are proteins, researchers

have explored the impact of polyphenols against bacteria (71–73).

Polyphenols are effective in inhibiting Vibrio cholerae CT toxin

by preventing its cellular internalization (74–76). These results

are of particular interest since CT toxin shares a high sequence

homology to ETEC LT toxins (74, 77), and contribute to explain

why GSE protected Caco-2 cells from the E. coli F4 infection at

levels close to ZnO. Moreover, since polyphenol-rich extracts are

able to control the expression of E. coli virulence as well (78), it is

possible that the bacterial adhesion reduction in the GSE-treated

Caco-2 cells is due to polyphenols’ ability to interfere with ETEC

quorum sensing systems.

Phenolic compounds from grape by-products embody a wide

number of antioxidant molecules (79). Bacterial components such

as LPS, after binding TLR4 receptors, induce an inflammatory

response: the stimulation of transcription factors like NF-kB

triggers oxidative enzymes and the uncontrolled accumulation of

ROS (80, 81). In turn, ROS promote the inflammasome formation,

creating a self-amplifying cycle that dramatically impairs cellular

health (82). Grape by-products such as GSE directly detoxify ROS

species and break this pro-inflammatory loop (83), improving

cellular integrity, as highlighted by our results. The increased

variability registered for this result might be due to the indirect

effect that this extract exerts against the bacterial infection:

the degree of activation of anti-virulence and anti-inflammatory

responses relies on complex pathways that might produce a higher

variability in the final response if compared to compounds that also

possess more direct mechanisms of action such as the antimicrobial

one, as happens for ThyEO.

Our study showed that GSE significantly downregulated TNFα,

IL-1β, and IL-8 pro-inflammatory cytokines during E. coli F4

infection. This effect is due to the capacity of polyphenols to inhibit

NF-kB by repressing the phosphorylation and elimination of IkB

(84–86), the peptide that prevents NF-kB translocation into the

nucleus. This is probably due to the scavenging ability of GSE

polyphenols: by limiting ROS production, IkB phosphorylation is

reduced, and NF-kB translocation is repressed (81). Furthermore,

polyphenols activate Nrf2, a transcription factor that triggers

several antioxidant enzymes (87). That is, polyphenols promote

the degradation of the Nrf2 inhibitor Keap1 and increase

Nrf2 nuclear translocation, revealing their dualistic effect in

controlling both ROS production and the inflammatory cellular

response (88, 89).

The supplementation of GEO, TTO, or OE did not significantly

help cells against the E. coli F4 challenge. While some TER

improvements were registered for TTO and OE at 2 h, the same

were quickly lost at 4 h: the extracts were not able to maintain

the positive effects during time. The results are confirmed by

ETEC translocation, proving that structural damages to intestinal

cells were not prevented. As a matter of fact, more irregular

zones of ZO-1 distribution were observed in GEO, TTO, and OE

groups, showing structural impairments to tight junctions. Their

disposition, with ruffles and spikes, is in fact correlated with a

higher epithelial permeability (90).

The reason why OE did not exert positive effects during

the E. coli F4 infection is probably related to its main active

principle, oleuropein. As an anticancer agent (91), oleuropein

might dramatically exacerbate cellular apoptosis and autophagy,

two natural tightly-regulated defense mechanisms of intestinal

cells against ETEC (92), vanishing the mild antioxidant effect

that the extract has (93). This hypothesis is corroborated by the

high bacterial translocation and the loss of cells evidenced by the

immunofluorescence staining of OE-infected enterocytes.

TTO and GEO are well known for their antioxidant and anti-

inflammatory activity (94–97). However, our data demonstrate

that, during an E. coli F4 infection, the two extracts could neither

reduce cytokine expression, nor extensively restore tight-junction

or defensin levels, except for TTO with CLD-1. It is possible that

the experimental timeframe did not allow TTO and GEO to exert

their beneficial effect on Caco-2 cells. Moreover, as previously

demonstrated, their antioxidant potential is not as high as the one

of ThyEO, GSE, or CapOR: during an oxidative challenge, TTO and

GEO reduced ROS levels, but not at the same extent of the other

extracts (28). This also depends on the exact composition of the

essential oils employed, because different extracts harbor diverse

bioactive principles at unique ratios.

Nevertheless, both GEO and TTO show interesting properties

related to the control of E. coli F4 virulence (98–100). This

is confirmed by our outcomes: even if they were not able to

strongly help cells against the challenge, they still reduced bacterial

adhesion to Caco-2 enterocytes, suggesting a potential modulation

of ETEC adhesins. Further studies might be directed toward the

confirmation of this mechanism of action and could also assess if

GEO and TTO might be more effective as preventive treatments to

prime intestinal cells before an infection.
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Conclusions

In conclusion, despite individual differences, ThyEO, GSE,

and CapOR, were all effective in controlling E. coli F4 infection

on intestinal enterocytes, showing peculiar mechanisms of action

that mimic the ones of ZnO. While ThyEO had stronger effects

on pathogen control itself and the production of defensins,

GSE effectively mitigated the inflammatory response, and CapOR

markedly re-established the expression of tight junctions, thus

acting at many levels in the host-pathogen interaction. These

outcomes support the utilization of botanicals to manage PWD in

piglets, and future studies should now explore their effectiveness

also in vivo. Furthermore, other researches could also evaluate

the benefits of employing technologies like microencapsulation to

ensure the delivery of unaltered botanicals’ bioactive principles,

preventing unwanted gastric modifications and enabling a more

precise control of their inclusion in the feed. Other investigations

might include the evaluation of their combination, to analyse if

synergistic effects would enhance and complement the action of

each single extract. Moreover, it would be interesting to explore

how such botanicals could prepare cells to better react to E. coli F4,

or to recover after a bacterial challenge.
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