
28 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Birrane E.J., Caini C., De Cola G.M., Marchetti F., Mazzuca L., Persampieri L. (2022). Opportunities and
limits of moderate source routing in delay-/disruption-tolerant networking space networks.
INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 40(6), 428-444
[10.1002/sat.1421].

Published Version:

Opportunities and limits of moderate source routing in delay-/disruption-tolerant networking space networks

Published:
DOI: http://doi.org/10.1002/sat.1421

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/899482 since: 2024-04-16

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1002/sat.1421
https://hdl.handle.net/11585/899482

2

Opportunities and Limits of Moderate Source

Routing in DTN Space Networks

*E. J. Birrane, °C. Caini, °G.M. De Cola, °F. Marchetti, °L. Mazzuca, °L. Persampieri

*Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, US

°DEI/ARCES, University of Bologna, Italy

edward.birrane@jhuapl.edu, carlo.caini@unibo.it, gianmarco.decola@studio.unibo.it, federico.marchetti4@studio.unibo.it,
laura.mazzuca@studio.unibo.it, lorenzo.persampieri@studio.unibo.it

Abstract — This paper aims to investigate the potential

advantages but also the limits of source routing when applied to

DTN space networks. To this end, it uses a variant of Contact

Graph Routing (CGR) called Moderate Source Routing (MSR),

recently proposed by the authors and fully compatible with

ION, the DTN suite developed by NASA-JPL. MSR differs from

standard CGR as the route to destination is not recalculated

from scratch at each node, but possibly reused, if still valid, by

next nodes. For this purpose, the route is saved in a dedicated

extension block of the forwarded bundle (the data unit of the

Bundle Protocol, used in DTN). Performance of MSR vs. CGR

is assessed by considering a simple but very challenging space

layout. Numerical results, obtained on a GNU/Linux testbed,

show that MSR is effective at reducing the chances of loops, in

particular when the source has full knowledge of the state of the

network, otherwise network instabilities are still possible. In this

case, they can be neutralized by means of the combined use of

source routing and anti-loop tools, as shown in the paper. A

further advantage of MSR is that it is compatible with standard

CGR, which would facilitate a gradual or partial deployment.

Keywords— Delay-/Disruption-Tolerant Networking, Inter-

Planetary Networking, CGR, SABR, Bundle Protocol

I. INTRODUCTION

Communication links between nodes in a space network
may be challenged by long signal propagation delays, planned
disruptions, and frequent, unplanned service outages. Path
diversity in these networks is expected to be less than the
diversity achieved over terrestrial networks. Spacecraft are
often constrained in their transmit power, reliance on
directional communications to span long distances, and are
not standardized around a common physical and data link
layer. For these reasons, space network topologies are both
dynamic and sparsely populated as compared to usual
terrestrial networks. These challenges prevent the use of
terrestrial networking protocols and algorithms such as those
maintaining Internet’s TCP/IP architecture.

Delay-/Disruption Tolerant Networking (DTN) defines a
networking architecture [1], [2] capable of providing network
communications in “challenged networks”, as in space. The
most significant innovation is the addition of the bundle layer
between the application and the transport layers of the
ISO/OSI model [3]. The aim of the new layer and of the
related Bundle Protocol (BP) [4] is to provide an overlay that
relies on persistent storage to cope with network interruption.
After a few years of research and tests, DTN standardization
has recently moved from IRTF (Internet Research Task Force)
to IETF (Internet Engineering Task Force), where a new
version of the BP (version 7) [5] is about to be finalized,
together with new security extensions [6]. For space

applications DTN protocols are standardized in parallel by the
Consultative Committee for Space Data System (CCSDS) and
since 2016 they have been tested on the International Space
Station [9], as a first step towards a Solar System Internet.

Concerning routing, it must be emphasized that link
intermittency requires a totally different approach, as it
prevents the use of Internet solutions based on a continuous
and fast exchange of information between nodes, clearly
impossible in DTNs. Given the complexity of the problem,
routing has always been one of the most important DTN
research topics, with abundant literature. Routing proposals
can be divided into opportunistic and deterministic solutions,
depending on the kind of connectivity they must deal with
[10], [11]. In space networks, transmission opportunities
between nodes (i.e. contacts) are mainly deterministic, as a
function of spacecraft power management, antenna pointing,
and orbital dynamics. This determinism can be exploited to
develop routing algorithms that accommodate time-variant
topologies. One such algorithm is Contact Graph Routing
(CGR) developed by NASA-JPL, which inputs a set of
scheduled contacts, computes a time-variant route among
them, and forwards data to the entry node of that route [12]-
[16]. The latest version of CGR has recently been standardized
by CCSDS as Schedule-Aware Bundle Routing (SABR) [17].

In all variants of CGR, including SABR, the algorithm is
re-run at every node along the path to destination, as a safety
measure to cope with the impossibility of having real-time
updates of network state. Although justified, this feature
increases the likelihood of encountering routing loops -
particularly in space networks that experience frequent
topological changes- and is also demanding in terms of
computational power. A possible alternative is source-
routing, which requires that data in a network follow the route
as calculated by the data source [18].

This paper aims to investigate the advantages and limits of
source-routing when applied to CGR. It focuses on the
“Moderate Source Routing” (MSR) implementation of the
source-routing principle, recently presented by some of the
authors in [19]. Following the approach originally suggested
by another co-author in [20], MSR captures the time-variant
route calculated by CGR in a special “extension block” within
a bundle. At MSR-aware nodes, the route is verified and used
in lieu of a CGR route computation whenever possible, which
limits route recomputation to the hopefully rare case of
verification failure. MSR is at present included as an optional
feature in Unibo-CGR, an implementation of CGR algorithm
recently developed at the University of Bologna [21], fully
compatible with ION (Interplanetary Overlay Network), the

3

NASA-maintained open-source collection of DTN software
[22], [23]. The potential advantages of MSR are investigated
in the paper by installing this software in a GNU/Linux-based
testbed, designed to be particularly challenging to CGR but
also representative of near-term space network deployments.
The results achieved are analyzed bundle-by-bundle, to
illustrate not only performance, but also the internal
mechanisms of both SABR and MSR.

The remainder of this paper is organized as follows:
Section II contains an overview of interplanetary networking;
Section III summarizes the logical phases of SABR; Section
IV describes MSR; Section V introduces the test scenario;
Section VI is the core of the paper, with the analysis of
numerical results. Conclusions are drawn in Section VII.

II. INTERPLANETARY NETWORKING AND DTN

Interplanetary networks differ from Internet in that they
are often partitioned because of their sparse connectivity.
Frequent partitioning means that there may not exist a
concurrent, end-to-end path between a message source and a
message destination. The need to transmit messages even to
destinations that do not belong to the network partition of the
source is paramount in the design of the DTN architecture.
The key aspects that differentiate it from Internet architecture
are summarized below.

A. Bundle layer

The DTN architecture relies on overlay networking
techniques to insulate applications from all the transport
protocols that may be used in challenged environments. This
overlay layer, the Bundle Layer, comprises Bundle Protocol
Agents (BPAs) that accept signaling and application data on
behalf of some Application Agent running on a node [24].

Application Agent

Adminstrative Application-specific

Bundle Protocol Agent

CLA

CL

CLA

CL

CLA

CL

CLA

CL

Bundles

Admin.
records

Payloads

Fig. 1. The DTN architecture integrates multiple transport protocols.

That the BP overlay may use multiple underlying
networks for end-to-end transmission can be abstracted from
applications. As shown in Fig. 1, application agents interact
with a BPA by passing administrative records and data plane
information for transmission. The BPA then sends bundles to
one or more underlying transport protocols, termed
“Convergence Layers” (CL) in this context, through a series
of interfaces called “Convergence Layer Adapters” (CLA).

B. Transport layer

In the DTN architecture, the role of transport layer is no
longer end-to-end, but instead confined to a DTN hop. This
allows selection of different transport protocols on each DTN
hop to match its specific challenges. For example, let us
consider the end-to-end path from a camera on a lander
located on the surface of Mars to a science operations center
located on Internet, as illustrated in Fig. 2.

Starting from the right, when an image is taken by the
camera on board of a Martian rover, it is encapsulated into a
bundle and then sent (when possible) to a Mars Orbiter by
means of the LTP [25] convergence layer, on top of CCSDS
Encapsulation Packet Protocol [26] and Unified Space Data
Link Protocol [27]. The Orbiter keeps the bundle in its
memory until the next contact to a ground station on Earth.
From there, is forwarded to its destination, a science operation
center on Internet via the usual TCP/IP stack. While each
transport protocol in this chain is customized to each hop of
the path, all nodes implement a BPA and process data
messages as bundles.

TCP

IP

Ethernet

BPBP

TCP

IP

Ethernet

LTP

CCSDS En.

USDLP

RF

BP

LTP

CCSDS En.

USDLP

RF

LTP

CCSDS En.

USDLP

RF

LTP

CCSDS En

USDLP

RF

BP

Fig. 2. In the example, the DTN architecture allows the use of diverse,

specialized, transport protocols on different hops from Mars to Earth.

C. Bundle storage and retranmission

As previously discussed, the frequent partitioning of an
interplanetary network requires persistent storage. While
terrestrial Internet traffic can be buffered for milliseconds,
DTN traffic requires longer storage (seconds, minutes, hours,
or even days) while waiting for a next viable transmission
opportunity, i.e. for next contact. Persistent storage also
changes the ways in which retransmissions occur. The TCP/IP
“end-to-end principle” states that retransmission should come
from the data source, as in Internet this solution is simple,
robust and fast, thanks to continuous connectivity and short
round trip times. However, this does not hold true in
challenged networks where long delays and network
partitioning make retransmission from intermediate nodes
preferable. This may happen at both transport and bundle
layers, as we can see by again considering the previous
example. First, we can note that the redefinition of transport
scope allows transport protocol to recover segment losses
occurring in one DTN hop. Second, in special circumstances,
e. g. when the custody option is enabled, or in case of a reliable
CL failure, a bundle itself can be retransmitted by intermediate
nodes [2], [4]. In both cases, costly end-to-end retransmissions
between Earth and Mars are generally avoided.

D. Bundle staus reports

Finally, information about the transmission status of a
bundle can be communicated to a “report-to” node in the
network in the form of administrative records. These records
are generated by the application agent’s administrative
element, as shown in Fig. 1. These administrative bundles,
named “status reports”, notify the status of each bundle
processed (forwarded, received, delivered and deleted) [4].
Once collected in a file by a monitor node, status reports offer
researchers a very convenient way to study the path followed
by each bundle. We will make extensive use of them in the
numerical results section.

III. CONTACT GRAPH ROUTING

A fundamental difference between Internet and DTN
routing is that an Internet route consists of a series of

4

intermediate nodes (the routers), while a DTN route consists
of a series of contacts between nodes. In DTN space networks,
these contacts can be known a priori, because they are due to
the deterministic motion of planets and spacecraft. Scheduled
contacts and expected ranges (propagation delays between
nodes) are thus inserted into a “contact plan” and disseminated
by a Mission Control Centre (MCC) to all nodes. Starting
from this, the task of CGR is to find the most suitable route to
destination, based on specific metrics, such as the earliest
delivery time [12]-[16]. Note that the “CGR route” (sequence
of contacts) implies a “geographical route” (sequence of
intermediate nodes to be visited in order), but not vice versa,
as many different contacts between two nodes are possible.
While routing in Internet is similar to the search for the best
itinerary for vehicles (roads can usually be assumed to be
always available), CGR routing is analogous to planning the
best sequence of flights to a remote destination (flights, as
contacts, have a source, a destination and are operated only at
scheduled times). In this analogy we will often use, DTN
nodes are airports, contacts are flights and bundles are
passengers [15].

Routing in intermittent networks is per se an arduous
problem. In this regard it must be stressed that CGR is best-
effort, not optimal, being a necessary compromise between
accuracy and computation load. Here it is only possible to
provide the reader with a brief overview, referring to the
SABR version [17].

A. SABR algorithm

To facilitate comprehension, we will divide the algorithm
into three logical phases, following the approach originally
presented in [28]. These phases, moreover, correspond to the
three core modules of the Unibo-CGR implementation used in
tests (Fig. 3).

1) Phase I: route computation
Starting from contacts and ranges declared in the contact

plan, the first time a bundle heading for node D appears,
“computed” routes, i.e. routes that offer the shortest arrival
time for this destination, are calculated. The search on the
graph of contacts uses Yen’s variant [29] of Dijkstra’s
algorithm, to facilitate the search for new routes stemming
from a previously computed route. ION implementation stops
the search of computed routes, after the first (the fastest) is
found, while SABR specifications leave the decision on when
to stop to the implementation. In fact, Unibo-CGR could insert
more routes, but this option is not enabled in tests for
consistency with ION behavior. As computation time of
Dijkstra’s search is significant, this phase is not performed for
subsequent bundles destined to D, unless considered
necessary by Phase II (see the feedback loop in Fig. 3).

2) Phase II: route validation
Computed routes, calculated in Phase I, are independent of

bundle characteristics and of the state of the network, thus
their arrival times are optimistic. The effective ability of a
computed route to bring the current bundle to destination D in
time needs to be validated in Phase II. In particular, the PBAT
(Projected Bundle Arrival Time) of the route is calculated,
considering both bundle characteristics and local queues, to be
sure that it is lower than bundle lifetime. A very important
SABR innovation is that the check on the residual volume
availability is now extended to all contact of the route (in the
analogy, if there are enough seats in all flights). This is done
by comparing the current bundle dimension with the local

MTV (Maximum Transmission Volume) counters (one for
each level of priority) of the route contacts, representing the
residual volumes. A long list of other checks is also
performed; if all are passed, the computed route becomes a
“candidate” route (a viable route for the bundle). Otherwise
Phase I is performed again, to find a new computed route to
be added to the initial set, and so on.

3) Phase III: bundle forwarding or replication
Unless the bundle is “critical”, the best route is selected

from among the “candidate” routes (provided that there is a
choice) by choosing the one with the shortest PBAT, and the
bundle is then forwarded to the neighbor indicated by the first
contact of the route. If the bundle is critical, however, SABR
performs a replication scheme where one copy of the bundle
is sent to all neighbors for which there is at least a viable route.

Phase 1
Route computation

Dijkstra and Yen
(independent of bundle)

Phase 2
Route validation

(based on bundle char.)

First bundle to D ?

Phase 3
Best route(s) selection

Computed routes

Candidate routes

Best route(s)

Exit

Bundle to D

Yes

No

Computed routes
subset for Yen &

ancillary information

Fig. 3. SABR logical flow chart, as implemented in Unibo-CGR.

B. Rationale and limits of route recomputation

In SABR the best route is used to find which local MTV
counters must be decreased and to select the proximate node
to which the current bundle must be enqueued. The route is
not saved and is then recomputed from scratch at each node
(as if after having found the best sequence of flights to a
remote destination, only the first was booked). This is a safety
measure, dictated by the fact that in a DTN network the state
of other nodes, such as traffic generated, contact availability,
etc., cannot be exchanged in real time (in contrast with flight
bookings in the Internet). Although this concern is justified,
recomputing the route at all nodes may be computationally
intensive, especially when Phase I must be re-entered, and in
fact useless whenever the new route coincides with the
residual part of the original one. More importantly, it can
increase routing instabilities, because CGR uses not only
“common” information available to all nodes, such as the
contact plan, but also “local” information, such as actual link
availability, local queues (ETO on first hop [14]), estimates on
contact residual volumes (MTV counters), etc. On the one
hand, local information is essential to validate a route and

5

select the best; on the other, it varies from node to node by
definition, which may lead to inconsistent routing decisions.

IV. MODERATE SOURCE ROUTING

Moderate Source Routing (MSR) aims to conjugate the
advantages of the source routing principle with the flexibility
and safety of route recomputation performed by CGR. The
key is enforcing the CGR route computed by the source at
intermediate nodes, but only if this route is still viable,
otherwise a new route must be computed from scratch, as in
standard CGR.

With respect to the original idea of applying source routing
to DTN [12], MSR presents two significant differences. First
the extension block used to convey the CGR route is different,
second, the route verification in MSR is no longer limited to
the control of residual volume availability in the contact of the
saved route, but is identical to route validation of SABR, with
all checks of Phase II applied.

A. The CGRR extension block

The “CGR-Routes” extension block (CGRR) carries the
route selected by SABR in Phase III with the bundle, possibly
to be applied by following nodes along the path to destination.
CGRR differs from the analogous “CGR extension block”
[20] in that it contains only the essential elements, i.e. the
contacts of the route and uses another format for route
encoding. The CGR route is saved as an ordered series of
contacts (or “hops”), identified by the two contact endpoints
and the contact start time. Thus, the length of CGRR extension
is directly proportional to the number of hops, which may
largely vary, but the total length is usually only a few tens of
bytes, an absolutely negligible value for data bundles,
normally much larger than ordinary IP packets.

A second possible use of CGRR extension, recently
discovered, is to reintegrate local MTVs when a bundle is
reprocessed by CGR before leaving the local node, either
because not transmitted in time (before the forfeit time
expiration), or because the intervention of the overbooking
management option (enabled by default in ION) [12]. In this
case, it is obvious that the bundle will not consume the volume
in next contacts of the planned route, thus the corresponding
MTV counters need to be reintegrated. This is impossible in
standard SABR, because the planned route is not saved, but
can be easily accomplished by exploiting the CGRR
extension, as done by the latest versions of Unibo-CGR.

B. The MSR algorithm: basic steps

Although the idea of source routing is simple, its
implementation is not. Preliminary versions [19] were
implemented by modifying the existing ION code, but later
MSR was included in Unibo-CGR. Although the code has
evolved, the MSR algorithm is almost the same, therefore here
we will limit the treatment to a brief summary, referring the
interested reader to the cited paper for more details.

In MSR we can distinguish between two phases. In the
first phase, three “applicability” checks are performed: a) the
bundle must not be flagged as critical; b) the CGRR extension
must be enabled; c) the route carried by the extension must
contain a contact with the local node as entry point. If all tests
are passed, the algorithm continues, otherwise SABR is
called.

In the second phase, the saved route must be validated.
Two preliminary steps are performed: a) the residual route

must be extracted; b) then it must be converted into the SABR
format, possible only if all contacts of the residual route are
present in the contact plan (this step, route conversion, is
actually quite elaborate, see [19]). Eventually, the route is
validated by calling the same routine used in SABR Phase II.
If validation is successful, the bundle is forwarded to the next
node, as planned; otherwise, a new route is computed, by
entering SABR, and the old route is replaced in the CGRR
extension block.

In accordance with [20], the current MSR version can
optionally limit route validation to the first hops. A node is
called “wise” if the control encompasses all hops, otherwise,
“unwise”. In the latter case, the maximum number L of hops
to validate is set by the user. Note that unwise nodes need not
to know the destination node, while this knowledge is
essential to SABR and wise nodes. Thus, unwise nodes could
be provided with a contact plan limited to neighbors, which
would limit the computational effort required by MSR routing
to a minimum. In this way MSR could be used in spacecraft
with limited computational power, such as in nano satellites
[30].

V. TEST SCENARIO

The test environment used in this paper is similar to that
used in [19], but with different contacts. It was explicitly
designed to be particularly challenging for CGR, but also to
be as simple as possible to facilitate accurate analysis of
results. Although this scenario does not pretend to be fully
representative of any specific space environment, we have
maintained application-oriented node-names, to stress the fact
that the situations we are going to examine could happen in a
real deployment.

DTN topology

The DTN topology of the test scenario is shown in Fig. 4.
It consists of 5 nodes, a Mission Control Centre (MCC), two
Ground Stations (GS1 and 2), one Orbiter and one Lander.
Terrestrial nodes are connected by continuous links,
(represented by continuous lines in the figure), while those
between space and terrestrial nodes are scheduled intermittent
(dotted and dashed lines). TCP is used at convergence layer
on continuous links and LTP on the others.

Orbiter
141

GS1
201

GS2
202

Lander
143

MCC
231

Fig. 4. The DTN Layout used in this paper. Terrestrial nodes, in grey, are

connected by continuous lines that denote continuous terrestrial links (TCP).

Space links (LTP) are denoted by dashed or dotted lines, depending on their
level of connectivity, high or low, respectively.

6

A propagation delay of 1s is inserted between space and
terrestrial nodes and all links are assumed error free, essential
in order to have actual transfer rates close to the nominal
speeds declared in the contact plan. Note that the symmetry of
the layout considered and the presence of very good
connectivity between the Orbiter and GSs (almost continuous)
are instrumental to increasing the chances of loops (e.g. MCC-
>GS1->Orbiter->GS2->MCC, or vice versa), especially for
uplink traffic, as bandwidth and thus contact volumes tend to
reduce the further from earth.

A. Contact plan

The contact plan used in tests is shown in Table I. It differs
from that used in [19], in three significant aspects: first, an
additional contact between GS2 and the Space Asset has been
inserted (#4), to make more complex tests possible; second,
the first two contacts between GSs and Lander (#1 and #2) no
longer overlap, to improve the reading of plots; last, contacts
to/from orbiter (#6 and #7) are no longer continuous, but start
at +25s, which helps to simplify analysis. We have also
adopted a different contact numbering criterion, to focus
attention on the most significant contacts, the first four, now
happening in temporal order. Other notes:

 Times are expressed differentially with respect to a
reference time (ION startup).

 Space contacts are often asymmetric in space, thus they
must be declared as unidirectional contacts, as in Table
I, which follows ION syntax. However, for the sake of
simplicity, all contacts in Table I have a corresponding
symmetrical contact.

 The Intermittent contacts from GS to Lander have the
same short length and the same low Tx rate, thus the
same small volume.

 In the absence of a specific notation in ION, continuous
contacts between MCC and GSs are declared as very
long contacts; they have the same high Tx rates and large
contact volumes.

 For the sake of simplicity, as they are totally
uninfluential regarding loops, all nominal propagation
delays (“ranges” in ION) are set to 1s and therefore not
included in the table.

TABLE I. CONTACT PLAN (ION FORMAT).

Cont. From To Start (s) End (s) Rate
(byte/s)

1 201 143 +30 +42 4000

2 202 143 +48 +60 4000

3 201 143 +70 +82 4000

4 202 143 +88 +100 4000

5-8 The same as 1-4 but in the opposite direction

6 201 141 +25 +36000 125000

7 202 141 +25 +36000 125000

8-9 The same as 6-7 but in the opposite direction

10 231 201 +0 +36000 1250000

11 231 202 +0 +36000 1250000

12-13 The same as 10-11 but in the opposite direction

B. Emulation platforms

We implemented the test scenario on two emulation
platforms: CORE (Common Open Research Emulator) [30],
based on Linux containers, and Virtualbricks [32], based on
Virtual Machines (VM). In both cases we have one

GNU/Linux virtual device for each DTN node of the test
layout, plus one additional “Monitor” node, used to launch the
test and collect status reports. The advantage of CORE is that
it allows the user a faster switch between CGR variants,
because the BP implementation that contains the CGR code
must be recompiled only on the host machine (containers
share the operating system and the application of the host). By
contrast, with CORE it is almost impossible to use different
CGR variants on different nodes (e.g. to test the “unwise”
MSR feature), as there is only one ION implementation
running, that on the host. To have the best of two worlds, we
used both emulation platforms.

Together with Unibo-CGR, we used the latest available
release of ION (3.7.2); this allows the user the choice between
BPv6 [4] or the still experimental BPv7 [5]; we opted for
BPv6, but routing decisions are independent of the BP
versions, thus all results presented here would be valid with
BPv7. We did not insert any security feature, but is worth
mentioning that in a real deployment with possible security
concerns, the CGRR extension could be protected from
tampering by the insertion of security blocks [6].

In our tests we compared 3 CGR variants, namely SABR,
MSR and MSR-AL (MSR plus Anti-Loop options), all easily
obtainable by changing Unibo-CGR settings. To generate
bundles and collect bundle status reports we used several
concurrent instances of the DTNperf_3 tool [33], launched on
different nodes by means of a “do test” script file on the
Monitor node. Status reports were complemented by Unibo-
CGR logs, essential for investigating not only which routing
decisions were taken, but why.

VI. NUMERICAL RESULTS

We will start the analysis by considering the ideal case of

a source that has perfect knowledge of the network when

CGR is called the first time and later examine a more

complex situation where this knowledge is only partial.

Considerations on possible computational savings offered by

MSR will close the section.

In all tests, the focus is on the uplink flow generated by the

MCC and destined to Lander, consisting of 5 bundles of 50

kB each, generated at 1s interval, with lifetime 120s, i.e.

longer than the expected duration of the experiment.

A. Source with full knowledge of network state

In this first test, there is only one source, the MCC, the
network is unloaded, and all contacts happen as expected. The
5 bundles are generated immediately after completion of ION
startup and are processed by CGR one-by-one as soon as
generated. They are represented by the “Generated 231” time
series in Fig. 5, where the four contacts to Lander are also
plotted. From test layout (Fig. 4) and contacts (Table I) it is
evident that there are 4 obvious routes to get to Lander from
MCC:

 Route 1, via GS1 consisting of contacts 10 (continuous)
and 1 (starting at +30s).

 Route 2, via GS2, - contacts 11 (continuous) and 2
(starting at +48s).

 Route 3, the second via GS1, - contacts 13 (continuous)
and 3 (starting at +70s).

 Route 4, the second via GS2, - contacts 11 (continuous)
and 4 (starting at +70s).

7

The four routes are in order of convenience, i.e. the first is
the fastest. This, however, holds true only at the beginning of
the experiment, when contact volumes are intact. In fact, we
must recall that the volume of the four contacts to Lander can
only contain two full bundles, considering bundle overheads.
With this essential constraint in mind, we can presume that the
first two bundles will follow Route1, the next two Route 2 and
the last Route 3. We will see however that this prediction is
not always confirmed. From now on, it is convenient to
proceed by distinguishing between SABR and MSR (MSR-
AL is not considered in this first test, as results would coincide
with MSR).

1) SABR (general analysis, from status reports)
Examining SABR results in Fig. 5, we can observe that

although all bundles are delivered in the first two contacts and
a half, as expected, the last three bundles are delivered out of
order. Moreover, bundle 3 performs a loop, which indicates
severe routing problems. From GS1 and GS2 “received”
status report (“GS rcv” in figures), we can see that decisions
of the source meet expectations (bundle 1 and 2 are sent to
GS1, 2 and 3 to GS2, 5 again to GS1, in accordance with
Routes 1, 2 and 3). The problem is that the expected routes are
confirmed on intermediate nodes only for bundles 1 and 2, the
only ones directly delivered as expected, i.e. on contact 1.
Bundles 4 and 5 are redirected to the alternate station, via the
orbiter, instead of being directly delivered on contact 2;
finally, bundle 3 performs a loop, as said. This example clearly
shows how SABR recomputation at intermediate nodes may
lead to routing instabilities. A much more detailed analysis,
for interested readers, is given in the Appendix. The same
applies to all other tests considered in this section.

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100 110

n
. B

u
n

d
le

Time elapsed (s)

SABR

Generated 231

GS1 rcv

GS2 rcv

Orbiter rcv

MCC (loop)

Delivered

201->143

202->143

Fig. 5. Full knowledge of network state; SABR, one flow from MCC to

Lander: time sequences of bundle generation, forwarding and delivery. Note

the loop performed by bundle 3.

2) MSR (general analysis, from status reports)
By repeating the same experiment with MSR (Fig. 6) all

bundles are now delivered in order, and what is more
important, without any loops. As a general remark, we can
state that MSR is effective at preventing the instabilities that
may derive from route recomputation at each node, at least in
this ideal case.

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100 110

n
. B

u
n

d
le

Time elapsed (s)

MSR

Generated 231

GS1 rcv

GS2 rcv

Orbiter rcv

MCC (loop)

Delivered

201->143

202->143

Fig. 6. Full knowledge of network state; MSR, one flow from MCC to

Lander: time sequences of bundle generation, forwarding and delivery. All
bundles delivered in order, without loops, as expected.

B. Source with partial knowledge of network state

This second test differs from the previous one because of
the presence of concurrent traffic. Now two bundles, still
destined to Lander, are generated by GS1 (Generated 201 time
series, Fig. 7) immediately before the MCC five, now
renumbered as 3-7 (Generated 231).

1) SABR (general analysis, from status reports)
The introduction of concurrent traffic in other nodes, as

here, means that the source can have only partial knowledge
of the state of the network, resulting in inaccurate predictions.
As MCC is unaware of the two bundles introduced in GS1, on
MCC all locally generated bundles are processed as before.
The first two (now 3 and 4) are consequently sent to GS1
(Route 1), the other two (now 5 and 6) to GS2 (Route 2), and
the last (now 7) to GS1 again (Route 3), as shown by GS1 and
GS2 rcv markers, at around + 22s). Looking at Fig. 7 again,
however, we can see that only one bundle (ironically the last,
7) is enqueued to Lander for direct delivery (on contact 3), as
planned by MCC. For the other 4 bundles (3-6) the
recalculated route brings them to the opposite GS. Here, 3, 4
and 5 are enqueued to Lander and later delivered on contact 2
and 3 respectively (see 3, 4 and 5 Delivered markers on Fig.
7). Unfortunately for bundle 6 the outcome is the worst: after
looping twice, it is blocked on GS1 and never delivered.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100 110

n
. B

u
n

d
le

Time elapsed (s)

SABR Generated 201

Generated 231

GS1 rcv

GS2 rcv

Orbiter rcv

MCC (loop)

Delivered

201->143

202->143

Fig. 7. Partial knowledge; SABR, one flow from GS1 (201) and one from

MCC (231) to Lander: time sequences of bundle generation, forwarding and

delivery. Bundle 6 loops twice and is never delivered.

2) MSR (general analysis, from status reports)
The introduction of concurrent traffic from other nodes is

also challenging to MSR, because this time decisions taken by

8

the source, which are the same as those of the ideal case, are
no longer optimal, as shown by the looping of bundles 3 and
4 (Fig. 8). In brief, by jeopardizing the routes planned by the
source, concurrent traffic has exposed the inherent limits of
MSR. However, in spite of the loops all bundles are delivered,
which is an important point in favor of MSR.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100 110

n
. B

u
n

d
le

Time elapsed (s)

MSR Generated 201

Generated 231

GS1 rcv

GS2 rcv

Orbiter rcv

MCC (loop)

Delivered

201->143

202->143

Fig. 8. Partial knowledge; MSR, one flow from GS1 (201) and one from

MCC (231) to Lander: time sequences of bundle generation, forwarding and

delivery. Bundles 3 and 4 loops once before being delivered.

3) MSR-AL (general analysis form staus reports)
Unibo-CGR has an experimental feature to counteract

loops, which comes in two variants, reactive and proactive
[21]. They are both based on a second experimental bundle
extension, called RGR (Record Geographical Route), which
records the nodes already visited by the bundle. By inspecting
it, the proactive variant controls whether a candidate route
contains a visited node. If so, the route is marked as “closing-
loop”, because it would result in a loop. In Phase III, closing-
loop routes are only selected in the absence of any alternative.
This way, it is possible to avoid loops by influencing the
decision process of CGR. Conversely, the reactive variant
intervenes only a posteriori, after a loop has happened. This
variant too is based on the RGR extension: if a loop is detected
(the current node appears in the RGR list), the node visited
after the current one should be avoided not to repeat the same
geographical loop. To this end, the candidate route starting
with this node are selected in Phase III only as a last resort, as
before. The difference is that the reactive variant cannot avoid
the first loop and thus is generally less performant.

To see if it is possible to eliminate the loops in the MSR
test, we repeated the current test with both MSR and AL
features enabled. From Fig. 9 we can see that this time all
bundles are delivered without entering in any loop, thus
proving the effectiveness of MSR when associated to the anti-
loop features.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100 110

n
. B

u
n

d
le

Time elapsed (s)

MSR-AL Generated 201

Generated 231

GS1 rcv

GS2 rcv

Orbiter rcv

MCC (loop)

Delivered

201->143

202->143

Fig. 9. Partial situation awareness; MSR-AL, one flow from GS1 (201) and

one from MCC (231): time sequences of bundle generation, forwarding and

delivery.

C. Computation time analysis

Source routing presumably leads to a significant reduction
in the processing time. To assess this theoretical advantage in
practical terms, we have “instrumented” Unibo-CGR to
produce time-logs and then repeated all our experiments.
Overall corresponding computation times are presented in Fig.
10. The relative values (absolute values are of little
significance, as they depend on the hardware) confirm the
presumed advantage of MSR, with a reduction of about 60%
in both cases. This reduction depends on two factors. First, by
reducing instabilities, MSR also reduces the times a bundle is
processed by CGR. The actual number of total CGR calls can
be obtained approximately by summing up the number of
markers in previous figures, except those of delivered series.
We have 13 calls for SABR versus only 5 for MSR in the full
knowledge case, (Fig. 5 and Fig. 6); 21 for SABR, 15 for MSR
and 9 for MSR-AL in the partial knowledge one (Fig. 7, Fig.
8 and Fig. 9). The second factor is that every time the saved
route is validated, instead of recomputed, we have an
additional gain, contributing to the overall reduction of Fig.
10. The amount of this second gain, however, is particularly
significant only in cases when SABR would have performed
Phase I, as Dijkstra’s computation time dominates validation
times.

The results presented here are preliminary, and do not
pretend to be general. In this regard, we think that a general
quantitative evaluation of MSR’s impact on real deployments
is actually almost impossible, because of the heavy
dependence on the specific characteristics of the scenarios
considered, in terms of layout, contact plan and traffic flows.
With this caveat in mind, we can however observe that as
SABR and MSR perform the same on source nodes, in more
complex layouts, with longer paths, the MSR advantage might
be greater than that found in this paper, where the layout is
challenging in terms of stability, but the best path from source
to destination consists of only two hops.

9

0

2000

4000

6000

8000

10000

12000

14000

Full knowledge Partial knowledge

O
ve

ra
ll

C
G

R
 p

ro
ce

ss
in

g
ti

m
e

(
s)

CGR Processing Time

SABR MSR MSR-AL

Fig. 10. Comparison of CGR variants computation times. The values are

comprehensive of all CGR calls performed on the different nodes, during the

full length of the experiment. The values presented are the mean on four
launches, to average off oscillation due to operating system scheduler. Error

bars are also plotted.

VII. CONCLUSIONS

In this paper the possible advantages, but also the limits,
of Source Routing in space DTN networks are investigated,
using the MSR variant of CGR, recently implemented by
some of the authors. Tests were carried out on an emulated
environment, with GNU/Linux machines running the latest
version of ION with Unibo-CGR added, and this in turn
includes MSR. The results show that MSR can offer ideal
performance in terms of ordered and fast delivery, when the
source has perfect knowledge of the network. In particular,
MSR can prevent the loops that affect SABR in the
challenging test scenario considered in the paper. However, if
knowledge of the source is partial, MSR can no longer prevent
loops, although it continues to offer better performance than
original SABR. Loops are eventually eliminated by the joint
use of MSR and the anti-loop mechanism offered by Unibo-
CGR. Preventing routing instabilities, however, it is not the
sole possible advantage of source routing, it can also lead to a
significant reduction in the processing time, as quantified in
the paper. As a final remark, however, we must stress that
given the complexity of the routing problem in intermittent
scheduled networks, source routing cannot be considered
optimal per se, but only a promising alternative/complement
to SABR. MSR implementation of source routing is
compatible with standard SABR in ION, which would
facilitate gradual or partial deployment.

APPENDIX
The inspection of status reports, carried out in the

Numerical Results section, describes what happens, but
cannot explain why. In other words, we can see routing
decisions, but not the internal process that leads to these
decisions. The comprehensive analysis that follows, based on
the very informative Unibo-CGR logs, fills this gap. However,
this analysis is only destined to those readers who are really
interested to know all SABR details, being necessarily quite
long and intricate. For the reader’s convenience, we will adopt
the same structure already used in the Numerical Results
section.

A. Source with full knowledge of network state

1) SABR (detailed analysis from logs)
When the first bundle is processed on MCC, CGR

performs route computation to Lander using Dijkstra’s
algorithm (Phase I), in which neither bundle characteristics

nor available contact volumes are considered. It finds that
Route 1 is the fastest and inserts it in the set of “computed”
routes, until now empty. Then, Route 1 is validated in Phase
II, where a long list of checks is performed, the most important
of which is the control of MTV counters, to be sure that there
is enough volume for the current bundle in all contacts of the
route. Route 1 passes all checks, so becoming a “candidate”
route and is then obviously selected, being the sole one, in
Phase III. The bundle is put in the queue to GS1 where it is
immediately sent and received (see “GS1 rcv” time series in
Fig. 5).

The same holds true for bundle 2, with the notable
exception that Phase I is now skipped, as Route 1 is already
among the computed routes. When bundle 3 is processed,
Phase I is temporarily skipped, but this time Route 1 is barred
in Phase II, because its MTV counters indicates that there is
not enough residual volume on contact 1 to accommodate a
third bundle. After this failure, Phase I is re-entered and Route
2 is added to computed routes. Route 2 is then found valid in
Phase II, selected (it is actually the sole one) in Phase III, and
the bundle is accordingly sent to GS2 (“GS2 rcv” time series
in Fig. 5). As before for bundle 4, except that Phase I is
skipped. At this point, on MCC the MTVs of contacts 1 and 2
are almost depleted and Phase I must be re-entered for bundle
5. Route 3 is thus added to computed routes, validated and
selected, and bundle 5 is immediately sent to GS1, as were
bundles 1 and 2. To make a long story short, everything
happens on the source as expected, but this detailed
explanation was necessary to understand why now, on GS1
and GS2 things are not going to happen as predicted by the
source.

As soon as the first bundle arrives at GS1, CGR is called,
and the route recomputed from scratch, as prescribed by
SABR. The obvious decision is in favor of the direct route
consisting of the sole contact 1, therefore the bundle is
enqueued to Lander to be successfully delivered after contact
1 starts (marker 1, Delivered series). The same holds true for
bundle 2, but not for bundle 5, because contact 1 is now full.
Route 2, selected by the source for bundle 5, indicates the use
of contact 3 (i.e. to stay here, waiting for contact 3 to start),
but GS1 has a different opinion. After failure of Route 1, the
Alternate Route 2 via Orbiter and GS2 (contacts 6, 9, 2) is
preferred by Dijkstra to contact 3, because it offers a shorter
arrival time. The Alternate Route 2 is then validated in Phase
II, selected in Phase III and the bundle is enqueued to Orbiter,
waiting for the opening of contact 6 (at +25s). The origin of
different routing decisions, with respect of what was planned
by the source, lies in the fact that GS1 is unaware of not locally
processed traffic, thus its MTV counters for contact 2 are not
depleted by bundles 3 and 4, as those of the source were. This
is why Alternate Route 2 is not barred in Phase II.

After this key observation, we can move on to GS2, where
the situation is almost specular to bundle 5 processing. At the
arrival of bundle 3 Dijkstra prefers the local Alternate Route
1 (7, 8, 1) to contact 2 because it is seen as faster, thus is
validated and eventually selected, and the same happens for
bundle 4. When contacts to Orbiter open (6 and 7), bundles 3
and 4 from GS2 to GS1, and bundle 5, in the opposite
direction, cross on board the orbiter at about the same time,
(“Orbiter rcv” markers, at around +28s), which clearly proves
that the decisions taken on GS1 and GS2 are far from optimal.
Here, on Orbiter, CGR must confirm the direction of

10

movement for all bundles, as the SABR anti ping-pong
mechanism prevents CGR from sending back any bundle.

Let us continue from bundle 5, re-processed by CGR on
arrival at GS2. This time, the MTV for contact 1 appears
depleted (by bundles 3 and 4, just processed), which forces
CGR to re-enter Phase I, add the direct route consisting of
contact 2, validate and select it. Bundle 5 is therefore
enqueued to Lander and eventually delivered after contact 2
starts (marker 3 of the Delivered time series), in third position.

In the meantime, bundles 3 and 4 have arrived at GS1.
When bundle 4 is processed, the local MTVs of contact 1 are
full (depleted by bundles 1 and 2), while there is still room for
one bundle on contact 2, departing, however, from the other
GS. Therefore, the selected route for bundle 3 is Looping
Route 2 (contacts 12, 11, 2). Markers on the figure show that
bundle 3 passes first through the MCC, thus completing the
loop, and then it reaches GS2 again, to be eventually delivered
after bundle 5, on contact 2 (marker 3, Delivered time series).
The decision taken by GS1 for bundle 3 depletes the MTV of
contact 2, thus for bundle 4 the Looping Route 2 is no longer
viable and the decision is to wait for contact 3, during which
the bundle is actually delivered (marker 4, Delivered time
series).

2) MSR (Detailed analysis, from logs)
The MSR story is, luckily, much shorter than the previous

one. Source decisions are the same as before, but this time the
original route is saved in the CGRR extension. Next nodes
check the saved route by directly calling the SABR Phase II
routine. All checks are passed and thus all bundles follow the
original route planned by the source (Fig. 6).

B. Source with partial knowledge of network state

1) SABR Detailed analysis, from logs
The bundles generated by GS1 are immediately enqueued

to Lander associated to contact 1, making it unavailable to
other bundles. As MCC is unaware of that, all its bundles are
processed as before and then forwarded either to GS1 (bundles
3, 4, 7), or GS2 (bundles 5 and 6), see Fig. 7. By contrast to
the full knowledge case, the first two bundles (4 and 5) are
now redirected to GS2, as local MTV counters for contact 1
are depleted (by bundles 1 and 2). Bundles sent to GS2 (now
5 and 6) are redirected to GS1 as in the previous SABR test,
as GS2 MTV for contact 1 is intact. The last bundle (now 7),
when received by GS1, finds local MTVs of both contact 1
and 2 depleted (by bundles 1, 2, 3 and 4) and directly routed
to Lander on contact 3, as planned by the source. After the
contacts to Orbiter start, four bundles cross in opposite
directions (Orbiter rcv markers, around 30s), a clear symptom
of routing problems. When bundles 3 and 4 arrive at GS2
(about +30s), they are directly routed to contact 2, as the local
MTV counter of contact 1 is now depleted (by bundles 5 and
6, which arrived at about +22s). At this point the only bundles
not yet enqueued are 5 and 6. When they arrive at GS1 from
the Orbiter, local MTVs of contacts 1 and 2 are depleted (by
bundles 1, 2, 3 and 4) and there is only room for one bundle
on contact 3 (partially used by bundle 7). Bundle 5 takes the
residual volume first and it is enqueued to Lander and
delivered (marker 5, Delivered time series). From now on
(from about +31s), we can focus on bundle 6, the only one not
yet enqueued to Lander. It is waiting to be routed by GS1,
where local MTVs of contacts 1, 2, and 3 are depleted, while
the MTV of contact 4 is intact. This is correct, as contacts 1-3
are already been fully allocated to the other 6 bundles. In the

absence of any alternative, the route chosen for bundle 6 is the
counterclockwise Looping Route 4 (contacts 12, 11, 4), which
brings it to GS2, for the second time, after two hops (marker
6 of GS2 rcv time series, at about 32s). What appears to GS2,
however, is wrong: although local MTVs of contact 1 and 2
are depleted, the contact 3 appears empty but is not. Therefore,
Alternate Route 3 (contacts 7, 8, 3) is preferred to contact 4.
The counterclockwise loop thus continues; when bundle 6
arrives at GS1 for the second time, local MTVs of contacts 1-
3 are all depleted as before, the only difference is that contact
4 MTV is no longer intact (because of previous redirection of
bundle 6 itself). The story repeats itself, as Looping Route 4 is
chosen again, and bundle 6 reaches GS2 for the third time and
is sent to GS1 on Alternate Route 3, as in the previous loop.
When bundle 6 arrives at GS1 for the third time, all four
MTVs are now depleted (ironically, that of contact 4 as a
result of bundle 6’s two loops, but GS2 is unaware of that).
Consequently, bundle 6 is put in “limbo”, re-processed by
CGR every 4 s, and eventually deleted at lifetime expiration.

2) MSR Detailed analysis, from logs
When the first two bundles generated by MCC (now 3 and

4) arrive at GS1, Route 1 is extracted from the CGRR
extension and the remaining part, consisting only of contact 1
is checked, by calling the Phase II routine. The check however
fails, as contact 1 is not available, thus CGR is called to find a
new route from scratch, as with SABR. Bundles 3 and 4 are
thus sent to Lander via GS2, after selection of Alternate Route
2 (contacts 6, 9 and 2), see Fig. 8.. This route is saved in the
CGRR extension, then validated by the Orbiter but not by
GS2, because bundles 5 and 6 have arrived in the meantime
(“GS2 rcv” time series) and been routed to contact 2, as
planned by MCC. After this second failure, the route is
recomputed for both bundles 3 and 4 and the clockwise
Looping Route 3 (13, 10, 3) is the only one possible. It is
validated on all nodes, for both bundles, until they arrive at
GS2. Here it is confirmed for bundle 3 but not for bundle 4, as
on local MTV for contact 3 there is space for one bundle only
(bundle 7 had arrived in the meantime and forwarded on it).
Consequently, the route is recomputed for the third time for
bundle 4 and Alternate Route 4 (contacts 6, 9 and 4) is
selected. It is confirmed everywhere, and bundle 4 too can be
eventually be delivered, last of all, on contact 4.

3) MSR-AL Detailed analysis, from logs
Let us focus on bundles 3 and 4, the only ones for which

the original route is recalculated (see Fig. 9). In GS1 (“GS1
rcv” markers 3 and 4) the candidate route has no loops, and
the same decisions are taken as before. Vice versa, in GS2
(“GS2 rcv” markers 3 and 4) this time Looping Route 3 is
discarded, in favor of contact 4, although the latter is less
appealing in terms of projected bundle arrival time.

ACKNOWLEDGMENT
The authors would like to thank Scott Burleigh of NASA-

JPL for his continued support on ION and the many valuable
discussions on CGR.

REFERENCES
[1] K. Fall, "A Delay-Tolerant Network Architecture for Challenged

Internets", in Proc. of Conf. on Applications, Technologies,
Architectures, and Protocols For Computer Commun. SIGCOMM '03,
Karlsruhe, pp. 27-34, 2003.

[2] V. Cerf , A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, H. Weiss
“Delay-Tolerant Networking Architecture”, Internet RFC 4838, Apr.
2007.

[3] "ISO/IEC 7498-4:1989 -- Information technology -- Open Systems
Interconnection Basic Reference Model: Naming and addressing”,

11

standards.iso.org/ittf/PubliclyAvailableStandards/s014258_ISO_IEC_
7498-4_1989(E).zip

[4] K. Scott, S. Burleigh, “Bundle Protocol Specification”, Internet RFC
5050, Nov 2007, http://tools.ietf.org/html/rfc5050.

[5] S. Burleigh, K. Fall, E. Birrane, “Bundle Protocol Version 7”, IETF
Draft, Dec. 2020, https://tools.ietf.org/html/draft-ietf-dtn-bpbis-30,
work in progress.

[6] E. Birrane, K. McKeever “Bundle Protocol Security Specification”,
IETF Draft, Jan. 2021, https://tools.ietf.org/html/draft-ietf-dtn-bpsec-
26, work in progress.

[7] CCSDS 734.0-G-3 “Rationale, Scenarios, and Requirements for DTN
in Space.” CCSDS Green Book, Issue 3, Jul. 2014.
https://public.ccsds.org/Pubs/734x0g1e1.pdf

[8] CCSDS 734.2-B-1 “CCSDS Bundle Protocol Specification”, CCSDS
Blue Book, Issue 1, Sept. 2015.
https://public.ccsds.org/Pubs/734x1b1.pdf

[9] A. Schlesinger, B. M. Willman, L. Pitts, S. R. Davidson and W. A.
Pohlchuck, “Delay/Disruption Tolerant Networking for the
International Space Station (ISS),”, in Proc. of 2017 IEEE Aerospace
Conference, Big Sky, MT, 2017, pp. 1-14.

[10] S. Jain, K. Fall, and R. Patra, Routing in a delay tolerant network, in
Proc. of ACM SIGCOMM Portland, Aug./Sep. 2004, pp. 145–157.

[11] C. Caini, H. Cruickshank, S. Farrell, M. Marchese, “Delay- and
Disruption-Tolerant Networking (DTN): An Alternative Solution for
Future Satellite Networking Applications”, Proceedings of IEEE, Vol.
99, N. 11, pp. 1980-1997, Nov. 2011. doi:
10.1109/JPROC.2011.2158378

[12] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini,
M. Feldmann, M. Marchese, J. Segui, K. Suzuki. “Contact Graph
Routing in DTN Space Networks: Overview, Enhancements and
Performance”, IEEE Commun. Mag., Vol.53, No.3, pp.38-46, Mar.
2015. doi: 10.1109/MCOM.2015.7060480

[13] E.Birrane, S.Burleigh and N. Kasch, “Analysis of the contact graph
routing algorithm: Bounding interplanetary paths”, Acta Astronautica,
Vol. 75, pp. 108-119, June-July 2012

[14] N. Bezirgiannidis C. Caini,V. Tsaoussidis, “Analysis of contact graph
routing enhancements for DTN in space”, Int. J. Satell. Commun.
Network., pp.695-709, No.34, Sept./Oct. 2016, doi: 10.1002/sat.1138.

[15] S. Burleigh, C. Caini, J. J. Messina, M. Rodolfi, “Toward a Unified
Routing Framework for Delay-Tolerant Networking”, in Proc. of IEEE
WiSEE 2016, Aachen, Germany, Sept. 2016, pp. 82 - 86, doi:
10.1109/WiSEE.2016.7877309

[16] M. Marchese and F. Patrone, "E-CGR: Energy-Aware Contact Graph
Routing Over Nanosatellite Networks," IEEE Trans. on Green
Commun. and Network., vol. 4, no. 3, pp. 890-902, Sept. 2020, doi:
10.1109/TGCN.2020.2978296.

[17] CCSDS 734.3-B-1 “Schedule-Aware Bundle Routing”, recommended
standard, Blue Book, July 2019, https://public.ccsds.org/Pubs/
734x3b1.pdf

[18] S. Previdi, C. Filsfils, B. Decraene, S. Litkowski, M. Horneffer and R.
Shakir, “Source Packet Routing in Networking (SPRING)”, Internet
RFC 7855, May 2016, https://tools.ietf.org/html/rfc7855

[19] C. Caini, G. M. De Cola, F. Marchetti, L. Mazzuca, “Moderate Source
Routing for DTN Space Networks”, in Proc. of ASMS 2020, Virtual,
Oct.. 2020, pp. 1-7. doi: 10.1109/ASMS/SPSC48805.2020.9268926

[20] E.Birrane “Contact Graph Routing Extension Block”, IETF Draft, Oct.
2013, https://tools.ietf.org/html/draft-irtf-dtnrg-cgreb-00

[21] C. Caini, G. M. De Cola, L. Persampieri, “Schedule-Aware Bundle
Routing: Analysis and Enhancements”, Int J Satell Commun Network,
2020. doi: 10.1002/sat.1384

[22] S. Burleigh, "Interplanetary Overlay Network (ION) an
Implementation of the DTN Bundle Protocol, In the Proc. of 4th IEEE
Consumer Commun. and Network. Conf., 2007, pp. 222-226.

[23] ION code and manual: http://sourceforge.net/projects/ion-dtn/.

[24] Birrane, Ed, and Jason Soloff. Designing Delay-Tolerant Applications
for Store-and-Forward Networks. Artech House, 2020.

[25] M. Ramadas, S. Burleigh and S. Farrell, "Licklider Transmission
Protocol – Specification,” Internet RFC 5326, Sept. 2008,
http:/www.rfc-editor.org/rfc/rfc5326.txt

[26] CCSDS 133.1-B-3, “Encapsulation Space Protcol” CCSDS Blue Book,
Issue 3, May 2020. https://public.ccsds.org/Pubs/133x1b3e1.pdf

[27] CCSDS 732.1-R-3, “Unified Space Data Link Protcol” CCSDS Red
Book, Issue 3, Sept. 2017. https://public.ccsds.org/Lists/
CCSDS%207321 R3/732x0r3.pdf

[28] G.M. De Cola, “Contact Graph Routing Enhancements in ION 3.7.0”,
Bachelor’s thesis, University of Bologna, Feb. 2020 (available on
request)

[29] Jin Y. Yen, “Finding the K Shortest Loopless Paths in a Network”,
Management Science, Vol. 17, No. 11, pp. 712-716, Theory Series, Jul.
1971.

[30] M. Marchese and F. Patrone, "A Source Routing Algorithm Based on
CGR for DTN-Nanosatellite Networks," GLOBECOM 2017 - 2017
IEEE Global Commun. Conf., Singapore, 2017, pp. 1-6, doi:
10.1109/GLOCOM.2017.8255092.

[31] CORE (Common Open Research Emulator) code and documentation:
https://github.com/coreemu/core

[32] P. Apollonio, C. Caini, M. Giusti and D. Lacamera, "Virtualbricks for
DTN satellite communications research and education”, in Proc. of
PSATS 2014, Genoa, Italy, July 2014, pp. 1-14. doi: 10.1007/978-3-
319-47081-8_7

[33] C. Caini, A. d’Amico and M. Rodolfi, “DTNperf_3: a Further
Enhanced Tool for Delay-/Disruption- Tolerant Networking
Performance Evaluation”, in Proc. of IEEE Globecom 2013, Atlanta,
USA, Dec. 2013, pp. 3009 - 3015. doi: 10.1109/GLOCOM.2013.
6831533

http://tools.ietf.org/html/rfc5050
https://tools.ietf.org/html/draft-ietf-dtn-bpbis-30
https://tools.ietf.org/html/draft-ietf-dtn-bpsec-26
https://tools.ietf.org/html/draft-ietf-dtn-bpsec-26
https://doi.org/10.1109/JPROC.2011.2158378
file:///D:/Uni/Pubblicazioni/SABR%20Extended/10.1109/MCOM.2015.7060480
https://tools.ietf.org/html/rfc7855
https://doi.org/10.1109/ASMS/SPSC48805.2020.9268926
https://doi.org/10.1002/sat.1384
http://sourceforge.net/projects/ion-dtn/
https://github.com/coreemu/core
https://doi.org/10.1007/978-3-319-47081-8_7
https://doi.org/10.1007/978-3-319-47081-8_7
https://doi.org/10.1109/GLOCOM.2013.6831533
https://doi.org/10.1109/GLOCOM.2013.6831533

