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Abstract — This paper aims to investigate the potential 

advantages but also the limits of source routing when applied to 

DTN space networks. To this end, it uses a variant of Contact 

Graph Routing (CGR) called Moderate Source Routing (MSR), 

recently proposed by the authors and fully compatible with 

ION, the DTN suite developed by NASA-JPL. MSR differs from 

standard CGR as the route to destination is not recalculated 

from scratch at each node, but possibly reused, if still valid, by 

next nodes. For this purpose, the route is saved in a dedicated 

extension block of the forwarded bundle (the data unit of the 

Bundle Protocol, used in DTN). Performance of MSR vs. CGR 

is assessed by considering a simple but very challenging space 

layout. Numerical results, obtained on a GNU/Linux testbed, 

show that MSR is effective at reducing the chances of loops, in 

particular when the source has full knowledge of the state of the 

network, otherwise network instabilities are still possible. In this 

case, they can be neutralized by means of the combined use of 

source routing and anti-loop tools, as shown in the paper. A 

further advantage of MSR is that it is compatible with standard 

CGR, which would facilitate a gradual or partial deployment. 

Keywords— Delay-/Disruption-Tolerant Networking, Inter-

Planetary Networking, CGR, SABR, Bundle Protocol 

I. INTRODUCTION 

Communication links between nodes in a space network 
may be challenged by long signal propagation delays, planned 
disruptions, and frequent, unplanned service outages. Path 
diversity in these networks is expected to be less than the 
diversity achieved over terrestrial networks. Spacecraft are 
often constrained in their transmit power, reliance on 
directional communications to span long distances, and are 
not standardized around a common physical and data link 
layer. For these reasons, space network topologies are both 
dynamic and sparsely populated as compared to usual 
terrestrial networks. These challenges prevent the use of 
terrestrial networking protocols and algorithms such as those 
maintaining Internet’s TCP/IP architecture. 

Delay-/Disruption Tolerant Networking (DTN) defines a 
networking architecture [1], [2] capable of providing network 
communications in “challenged networks”, as in space. The 
most significant innovation is the addition of the bundle layer 
between the application and the transport layers of the 
ISO/OSI model [3]. The aim of the new layer and of the 
related Bundle Protocol (BP) [4] is to provide an overlay that 
relies on persistent storage to cope with network interruption. 
After a few years of research and tests, DTN standardization 
has recently moved from IRTF (Internet Research Task Force) 
to IETF (Internet Engineering Task Force), where a new 
version of the BP (version 7) [5] is about to be finalized, 
together with new security extensions [6]. For space 

applications DTN protocols are standardized in parallel by the 
Consultative Committee for Space Data System (CCSDS) and 
since 2016 they have been tested on the International Space 
Station [9], as a first step towards a Solar System Internet. 

Concerning routing, it must be emphasized that link 
intermittency requires a totally different approach, as it 
prevents the use of Internet solutions based on a continuous 
and fast exchange of information between nodes, clearly 
impossible in DTNs. Given the complexity of the problem, 
routing has always been one of the most important DTN 
research topics, with abundant literature. Routing proposals 
can be divided into opportunistic and deterministic solutions, 
depending on the kind of connectivity they must deal with 
[10], [11]. In space networks, transmission opportunities 
between nodes (i.e. contacts) are mainly deterministic, as a 
function of spacecraft power management, antenna pointing, 
and orbital dynamics. This determinism can be exploited to 
develop routing algorithms that accommodate time-variant 
topologies. One such algorithm is Contact Graph Routing 
(CGR) developed by NASA-JPL, which inputs a set of 
scheduled contacts, computes a time-variant route among 
them, and forwards data to the entry node of that route [12]-
[16]. The latest version of CGR has recently been standardized 
by CCSDS as Schedule-Aware Bundle Routing (SABR) [17]. 

In all variants of CGR, including SABR, the algorithm is 
re-run at every node along the path to destination, as a safety 
measure to cope with the impossibility of having real-time 
updates of network state. Although justified, this feature 
increases the likelihood of encountering routing loops -
particularly in space networks that experience frequent 
topological changes- and is also demanding in terms of 
computational power. A possible alternative is source- 
routing, which requires that data in a network follow the route 
as calculated by the data source [18]. 

This paper aims to investigate the advantages and limits of 
source-routing when applied to CGR. It focuses on the 
“Moderate Source Routing” (MSR) implementation of the 
source-routing principle, recently presented by some of the 
authors in [19]. Following the approach originally suggested 
by another co-author in [20], MSR captures the time-variant 
route calculated by CGR in a special “extension block” within 
a bundle. At MSR-aware nodes, the route is verified and used 
in lieu of a CGR route computation whenever possible, which 
limits route recomputation to the hopefully rare case of 
verification failure. MSR is at present included as an optional 
feature in Unibo-CGR, an implementation of CGR algorithm 
recently developed at the University of Bologna [21], fully 
compatible with ION (Interplanetary Overlay Network), the 
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NASA-maintained open-source collection of DTN software 
[22], [23]. The potential advantages of MSR are investigated 
in the paper by installing this software in a GNU/Linux-based 
testbed, designed to be particularly challenging to CGR but 
also representative of near-term space network deployments. 
The results achieved are analyzed bundle-by-bundle, to 
illustrate not only performance, but also the internal 
mechanisms of both SABR and MSR. 

The remainder of this paper is organized as follows: 
Section II contains an overview of interplanetary networking; 
Section III summarizes the logical phases of SABR; Section 
IV describes MSR; Section V introduces the test scenario; 
Section VI is the core of the paper, with the analysis of 
numerical results. Conclusions are drawn in Section VII. 

II. INTERPLANETARY NETWORKING AND DTN 

Interplanetary networks differ from Internet in that they 
are often partitioned because of their sparse connectivity. 
Frequent partitioning means that there may not exist a 
concurrent, end-to-end path between a message source and a 
message destination. The need to transmit messages even to 
destinations that do not belong to the network partition of the 
source is paramount in the design of the DTN architecture. 
The key aspects that differentiate it from Internet architecture 
are summarized below. 

A. Bundle layer 

The DTN architecture relies on overlay networking 
techniques to insulate applications from all the transport 
protocols that may be used in challenged environments. This 
overlay layer, the Bundle Layer, comprises Bundle Protocol 
Agents (BPAs) that accept signaling and application data on 
behalf of some Application Agent running on a node [24]. 

Application Agent

Adminstrative Application-specific

Bundle Protocol Agent

CLA

CL

CLA

CL

CLA

CL

CLA

CL

Bundles

Admin.
records

Payloads

 
Fig. 1. The DTN architecture integrates multiple transport protocols. 

That the BP overlay may use multiple underlying 
networks for end-to-end transmission can be abstracted from 
applications. As shown in Fig. 1, application agents interact 
with a BPA by passing administrative records and data plane 
information for transmission. The BPA then sends bundles to 
one or more underlying transport protocols, termed 
“Convergence Layers” (CL) in this context, through a series 
of interfaces called “Convergence Layer Adapters” (CLA).  

B. Transport layer 

In the DTN architecture, the role of transport layer is no 
longer end-to-end, but instead confined to a DTN hop. This 
allows selection of different transport protocols on each DTN 
hop to match its specific challenges. For example, let us 
consider the end-to-end path from a camera on a lander 
located on the surface of Mars to a science operations center 
located on Internet, as illustrated in Fig. 2. 

Starting from the right, when an image is taken by the 
camera on board of a Martian rover, it is encapsulated into a 
bundle and then sent (when possible) to a Mars Orbiter by 
means of the LTP [25] convergence layer, on top of CCSDS 
Encapsulation Packet Protocol [26] and Unified Space Data 
Link Protocol [27]. The Orbiter keeps the bundle in its 
memory until the next contact to a ground station on Earth. 
From there, is forwarded to its destination, a science operation 
center on Internet via the usual TCP/IP stack. While each 
transport protocol in this chain is customized to each hop of 
the path, all nodes implement a BPA and process data 
messages as bundles. 
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Fig. 2. In the example, the DTN architecture allows the use of diverse, 

specialized, transport protocols on different hops from Mars to Earth. 

C. Bundle storage and retranmission 

As previously discussed, the frequent partitioning of an 
interplanetary network requires persistent storage. While 
terrestrial Internet traffic can be buffered for milliseconds, 
DTN traffic requires longer storage (seconds, minutes, hours, 
or even days) while waiting for a next viable transmission 
opportunity, i.e. for next contact. Persistent storage also 
changes the ways in which retransmissions occur. The TCP/IP 
“end-to-end principle” states that retransmission should come 
from the data source, as in Internet this solution is simple, 
robust and fast, thanks to continuous connectivity and short 
round trip times. However, this does not hold true in 
challenged networks where long delays and network 
partitioning make retransmission from intermediate nodes 
preferable. This may happen at both transport and bundle 
layers, as we can see by again considering the previous 
example. First, we can note that the redefinition of transport 
scope allows transport protocol to recover segment losses 
occurring in one DTN hop. Second, in special circumstances, 
e. g. when the custody option is enabled, or in case of a reliable 
CL failure, a bundle itself can be retransmitted by intermediate 
nodes [2], [4]. In both cases, costly end-to-end retransmissions 
between Earth and Mars are generally avoided.  

D. Bundle staus reports 

Finally, information about the transmission status of a 
bundle can be communicated to a “report-to” node in the 
network in the form of administrative records. These records 
are generated by the application agent’s administrative 
element, as shown in Fig. 1. These administrative bundles, 
named “status reports”, notify the status of each bundle 
processed (forwarded, received, delivered and deleted) [4]. 
Once collected in a file by a monitor node, status reports offer 
researchers a very convenient way to study the path followed 
by each bundle. We will make extensive use of them in the 
numerical results section. 

III. CONTACT GRAPH ROUTING 

A fundamental difference between Internet and DTN 
routing is that an Internet route consists of a series of 
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intermediate nodes (the routers), while a DTN route consists 
of a series of contacts between nodes. In DTN space networks, 
these contacts can be known a priori, because they are due to 
the deterministic motion of planets and spacecraft. Scheduled 
contacts and expected ranges (propagation delays between 
nodes) are thus inserted into a “contact plan” and disseminated 
by a Mission Control Centre (MCC) to all nodes. Starting 
from this, the task of CGR is to find the most suitable route to 
destination, based on specific metrics, such as the earliest 
delivery time [12]-[16]. Note that the “CGR route” (sequence 
of contacts) implies a “geographical route” (sequence of 
intermediate nodes to be visited in order), but not vice versa, 
as many different contacts between two nodes are possible. 
While routing in Internet is similar to the search for the best 
itinerary for vehicles (roads can usually be assumed to be 
always available), CGR routing is analogous to planning the 
best sequence of flights to a remote destination (flights, as 
contacts, have a source, a destination and are operated only at 
scheduled times). In this analogy we will often use, DTN 
nodes are airports, contacts are flights and bundles are 
passengers [15]. 

Routing in intermittent networks is per se an arduous 
problem. In this regard it must be stressed that CGR is best-
effort, not optimal, being a necessary compromise between 
accuracy and computation load. Here it is only possible to 
provide the reader with a brief overview, referring to the 
SABR version [17]. 

A. SABR algorithm 

To facilitate comprehension, we will divide the algorithm 
into three logical phases, following the approach originally 
presented in [28]. These phases, moreover, correspond to the 
three core modules of the Unibo-CGR implementation used in 
tests (Fig. 3). 

1) Phase I: route computation  
Starting from contacts and ranges declared in the contact 

plan, the first time a bundle heading for node D appears, 
“computed” routes, i.e. routes that offer the shortest arrival 
time for this destination, are calculated. The search on the 
graph of contacts uses Yen’s variant [29] of Dijkstra’s 
algorithm, to facilitate the search for new routes stemming 
from a previously computed route. ION implementation stops 
the search of computed routes, after the first (the fastest) is 
found, while SABR specifications leave the decision on when 
to stop to the implementation. In fact, Unibo-CGR could insert 
more routes, but this option is not enabled in tests for 
consistency with ION behavior. As computation time of 
Dijkstra’s search is significant, this phase is not performed for 
subsequent bundles destined to D, unless considered 
necessary by Phase II (see the feedback loop in Fig. 3). 

2) Phase II: route validation 
Computed routes, calculated in Phase I, are independent of 

bundle characteristics and of the state of the network, thus 
their arrival times are optimistic. The effective ability of a 
computed route to bring the current bundle to destination D in 
time needs to be validated in Phase II. In particular, the PBAT 
(Projected Bundle Arrival Time) of the route is calculated, 
considering both bundle characteristics and local queues, to be 
sure that it is lower than bundle lifetime. A very important 
SABR innovation is that the check on the residual volume 
availability is now extended to all contact of the route (in the 
analogy, if there are enough seats in all flights). This is done 
by comparing the current bundle dimension with the local 

MTV (Maximum Transmission Volume) counters (one for 
each level of priority) of the route contacts, representing the 
residual volumes. A long list of other checks is also 
performed; if all are passed, the computed route becomes a 
“candidate” route (a viable route for the bundle). Otherwise 
Phase I is performed again, to find a new computed route to 
be added to the initial set, and so on. 

3) Phase III: bundle forwarding or replication 
Unless the bundle is “critical”, the best route is selected 

from among the “candidate” routes (provided that there is a 
choice) by choosing the one with the shortest PBAT, and the 
bundle is then forwarded to the neighbor indicated by the first 
contact of the route. If the bundle is critical, however, SABR 
performs a replication scheme where one copy of the bundle 
is sent to all neighbors for which there is at least a viable route. 
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Route computation

Dijkstra and Yen
(independent of bundle)

Phase 2
Route validation

(based on bundle char.)

First bundle to D ?

Phase 3
Best route(s) selection

Computed routes

Candidate routes

Best route(s)

Exit

Bundle to D

Yes

No

Computed routes
subset for Yen &

ancillary information

 

Fig. 3. SABR logical flow chart, as implemented in Unibo-CGR. 

B. Rationale and limits of route recomputation 

In SABR the best route is used to find which local MTV 
counters must be decreased and to select the proximate node 
to which the current bundle must be enqueued. The route is 
not saved and is then recomputed from scratch at each node 
(as if after having found the best sequence of flights to a 
remote destination, only the first was booked). This is a safety 
measure, dictated by the fact that in a DTN network the state 
of other nodes, such as traffic generated, contact availability, 
etc., cannot be exchanged in real time (in contrast with flight 
bookings in the Internet). Although this concern is justified, 
recomputing the route at all nodes may be computationally 
intensive, especially when Phase I must be re-entered, and in 
fact useless whenever the new route coincides with the 
residual part of the original one. More importantly, it can 
increase routing instabilities, because CGR uses not only 
“common” information available to all nodes, such as the 
contact plan, but also “local” information, such as actual link 
availability, local queues (ETO on first hop [14]), estimates on 
contact residual volumes (MTV counters), etc. On the one 
hand, local information is essential to validate a route and 
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select the best; on the other, it varies from node to node by 
definition, which may lead to inconsistent routing decisions. 

IV. MODERATE SOURCE ROUTING 

Moderate Source Routing (MSR) aims to conjugate the 
advantages of the source routing principle with the flexibility 
and safety of route recomputation performed by CGR. The 
key is enforcing the CGR route computed by the source at 
intermediate nodes, but only if this route is still viable, 
otherwise a new route must be computed from scratch, as in 
standard CGR.  

With respect to the original idea of applying source routing 
to DTN [12], MSR presents two significant differences. First 
the extension block used to convey the CGR route is different, 
second, the route verification in MSR is no longer limited to 
the control of residual volume availability in the contact of the 
saved route, but is identical to route validation of SABR, with 
all checks of Phase II applied. 

A. The CGRR extension block 

The “CGR-Routes” extension block (CGRR) carries the 
route selected by SABR in Phase III with the bundle, possibly 
to be applied by following nodes along the path to destination. 
CGRR differs from the analogous “CGR extension block” 
[20] in that it contains only the essential elements, i.e. the 
contacts of the route and uses another format for route 
encoding. The CGR route is saved as an ordered series of 
contacts (or “hops”), identified by the two contact endpoints 
and the contact start time. Thus, the length of CGRR extension 
is directly proportional to the number of hops, which may 
largely vary, but the total length is usually only a few tens of 
bytes, an absolutely negligible value for data bundles, 
normally much larger than ordinary IP packets. 

A second possible use of CGRR extension, recently 
discovered, is to reintegrate local MTVs when a bundle is 
reprocessed by CGR before leaving the local node, either 
because not transmitted in time (before the forfeit time 
expiration), or because the intervention of the overbooking 
management option (enabled by default in ION) [12]. In this 
case, it is obvious that the bundle will not consume the volume 
in next contacts of the planned route, thus the corresponding 
MTV counters need to be reintegrated. This is impossible in 
standard SABR, because the planned route is not saved, but 
can be easily accomplished by exploiting the CGRR 
extension, as done by the latest versions of Unibo-CGR. 

B. The MSR algorithm: basic steps 

Although the idea of source routing is simple, its 
implementation is not. Preliminary versions [19] were 
implemented by modifying the existing ION code, but later 
MSR was included in Unibo-CGR. Although the code has 
evolved, the MSR algorithm is almost the same, therefore here 
we will limit the treatment to a brief summary, referring the 
interested reader to the cited paper for more details. 

In MSR we can distinguish between two phases. In the 
first phase, three “applicability” checks are performed: a) the 
bundle must not be flagged as critical; b) the CGRR extension 
must be enabled; c) the route carried by the extension must 
contain a contact with the local node as entry point. If all tests 
are passed, the algorithm continues, otherwise SABR is 
called. 

In the second phase, the saved route must be validated. 
Two preliminary steps are performed: a) the residual route 

must be extracted; b) then it must be converted into the SABR 
format, possible only if all contacts of the residual route are 
present in the contact plan (this step, route conversion, is 
actually quite elaborate, see [19]). Eventually, the route is 
validated by calling the same routine used in SABR Phase II. 
If validation is successful, the bundle is forwarded to the next 
node, as planned; otherwise, a new route is computed, by 
entering SABR, and the old route is replaced in the CGRR 
extension block. 

In accordance with [20], the current MSR version can 
optionally limit route validation to the first hops. A node is 
called “wise” if the control encompasses all hops, otherwise, 
“unwise”. In the latter case, the maximum number L of hops 
to validate is set by the user. Note that unwise nodes need not 
to know the destination node, while this knowledge is 
essential to SABR and wise nodes. Thus, unwise nodes could 
be provided with a contact plan limited to neighbors, which 
would limit the computational effort required by MSR routing 
to a minimum. In this way MSR could be used in spacecraft 
with limited computational power, such as in nano satellites 
[30]. 

V. TEST SCENARIO 

The test environment used in this paper is similar to that 
used in [19], but with different contacts. It was explicitly 
designed to be particularly challenging for CGR, but also to 
be as simple as possible to facilitate accurate analysis of 
results. Although this scenario does not pretend to be fully 
representative of any specific space environment, we have 
maintained application-oriented node-names, to stress the fact 
that the situations we are going to examine could happen in a 
real deployment. 

DTN topology 

The DTN topology of the test scenario is shown in Fig. 4. 
It consists of 5 nodes, a Mission Control Centre (MCC), two 
Ground Stations (GS1 and 2), one Orbiter and one Lander. 
Terrestrial nodes are connected by continuous links, 
(represented by continuous lines in the figure), while those 
between space and terrestrial nodes are scheduled intermittent 
(dotted and dashed lines). TCP is used at convergence layer 
on continuous links and LTP on the others.  

Orbiter
141

GS1
201

GS2
202

Lander
143

MCC
231

 
Fig. 4. The DTN Layout used in this paper. Terrestrial nodes, in grey, are 

connected by continuous lines that denote continuous terrestrial links (TCP). 

Space links (LTP) are denoted by dashed or dotted lines, depending on their 
level of connectivity, high or low, respectively. 
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A propagation delay of 1s is inserted between space and 
terrestrial nodes and all links are assumed error free, essential 
in order to have actual transfer rates close to the nominal 
speeds declared in the contact plan. Note that the symmetry of 
the layout considered and the presence of very good 
connectivity between the Orbiter and GSs (almost continuous) 
are instrumental to increasing the chances of loops (e.g. MCC-
>GS1->Orbiter->GS2->MCC, or vice versa), especially for 
uplink traffic, as bandwidth and thus contact volumes tend to 
reduce the further from earth. 

A. Contact plan 

The contact plan used in tests is shown in Table I. It differs 
from that used in [19], in three significant aspects: first, an 
additional contact between GS2 and the Space Asset has been 
inserted (#4), to make more complex tests possible; second, 
the first two contacts between GSs and Lander (#1 and #2) no 
longer overlap, to improve the reading of plots; last, contacts 
to/from orbiter (#6 and #7) are no longer continuous, but start 
at +25s, which helps to simplify analysis. We have also 
adopted a different contact numbering criterion, to focus 
attention on the most significant contacts, the first four, now 
happening in temporal order. Other notes: 

 Times are expressed differentially with respect to a 
reference time (ION startup). 

 Space contacts are often asymmetric in space, thus they 
must be declared as unidirectional contacts, as in Table 
I, which follows ION syntax. However, for the sake of 
simplicity, all contacts in Table I have a corresponding 
symmetrical contact. 

 The Intermittent contacts from GS to Lander have the 
same short length and the same low Tx rate, thus the 
same small volume.  

 In the absence of a specific notation in ION, continuous 
contacts between MCC and GSs are declared as very 
long contacts; they have the same high Tx rates and large 
contact volumes. 

 For the sake of simplicity, as they are totally 
uninfluential regarding loops, all nominal propagation 
delays (“ranges” in ION) are set to 1s and therefore not 
included in the table. 

TABLE I.  CONTACT PLAN (ION FORMAT). 

Cont. From To Start (s) End (s) Rate 
(byte/s) 

1 201 143 +30 +42 4000 

2 202 143 +48 +60 4000 

3 201 143 +70 +82 4000 

4 202 143 +88 +100 4000 

5-8 The same as 1-4 but in the opposite direction 

6 201 141 +25 +36000 125000 

7 202 141 +25 +36000 125000 

8-9 The same as 6-7 but in the opposite direction 

10 231 201 +0 +36000 1250000 

11 231 202 +0 +36000 1250000 

12-13 The same as 10-11 but in the opposite direction 

B. Emulation platforms 

We implemented the test scenario on two emulation 
platforms: CORE (Common Open Research Emulator) [30], 
based on Linux containers, and Virtualbricks [32], based on 
Virtual Machines (VM). In both cases we have one 

GNU/Linux virtual device for each DTN node of the test 
layout, plus one additional “Monitor” node, used to launch the 
test and collect status reports. The advantage of CORE is that 
it allows the user a faster switch between CGR variants, 
because the BP implementation that contains the CGR code 
must be recompiled only on the host machine (containers 
share the operating system and the application of the host). By 
contrast, with CORE it is almost impossible to use different 
CGR variants on different nodes (e.g. to test the “unwise” 
MSR feature), as there is only one ION implementation 
running, that on the host. To have the best of two worlds, we 
used both emulation platforms. 

Together with Unibo-CGR, we used the latest available 
release of ION (3.7.2); this allows the user the choice between 
BPv6 [4] or the still experimental BPv7 [5]; we opted for 
BPv6, but routing decisions are independent of the BP 
versions, thus all results presented here would be valid with 
BPv7. We did not insert any security feature, but is worth 
mentioning that in a real deployment with possible security 
concerns, the CGRR extension could be protected from 
tampering by the insertion of security blocks [6]. 

In our tests we compared 3 CGR variants, namely SABR, 
MSR and MSR-AL (MSR plus Anti-Loop options), all easily 
obtainable by changing Unibo-CGR settings. To generate 
bundles and collect bundle status reports we used several 
concurrent instances of the DTNperf_3 tool [33], launched on 
different nodes by means of a “do test” script file on the 
Monitor node. Status reports were complemented by Unibo-
CGR logs, essential for investigating not only which routing 
decisions were taken, but why. 

VI. NUMERICAL RESULTS 

We will start the analysis by considering the ideal case of 

a source that has perfect knowledge of the network when 

CGR is called the first time and later examine a more 

complex situation where this knowledge is only partial. 

Considerations on possible computational savings offered by 

MSR will close the section. 

In all tests, the focus is on the uplink flow generated by the 

MCC and destined to Lander, consisting of 5 bundles of 50 

kB each, generated at 1s interval, with lifetime 120s, i.e. 

longer than the expected duration of the experiment. 

A. Source with full knowledge of network state 

In this first test, there is only one source, the MCC, the 
network is unloaded, and all contacts happen as expected. The 
5 bundles are generated immediately after completion of ION 
startup and are processed by CGR one-by-one as soon as 
generated. They are represented by the “Generated 231” time 
series in Fig. 5, where the four contacts to Lander are also 
plotted. From test layout (Fig. 4) and contacts (Table I) it is 
evident that there are 4 obvious routes to get to Lander from 
MCC: 

 Route 1, via GS1 consisting of contacts 10 (continuous) 
and 1 (starting at +30s). 

 Route 2, via GS2, - contacts 11 (continuous) and 2 
(starting at +48s). 

 Route 3, the second via GS1, - contacts 13 (continuous) 
and 3 (starting at +70s). 

 Route 4, the second via GS2, - contacts 11 (continuous) 
and 4 (starting at +70s). 
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The four routes are in order of convenience, i.e. the first is 
the fastest. This, however, holds true only at the beginning of 
the experiment, when contact volumes are intact. In fact, we 
must recall that the volume of the four contacts to Lander can 
only contain two full bundles, considering bundle overheads. 
With this essential constraint in mind, we can presume that the 
first two bundles will follow Route1, the next two Route 2 and 
the last Route 3. We will see however that this prediction is 
not always confirmed. From now on, it is convenient to 
proceed by distinguishing between SABR and MSR (MSR-
AL is not considered in this first test, as results would coincide 
with MSR). 

1) SABR (general analysis, from status reports) 
Examining SABR results in Fig. 5, we can observe that 

although all bundles are delivered in the first two contacts and 
a half, as expected, the last three bundles are delivered out of 
order. Moreover, bundle 3 performs a loop, which indicates 
severe routing problems. From GS1 and GS2 “received” 
status report ( “GS rcv” in figures), we can see that decisions 
of the source meet expectations (bundle 1 and 2 are sent to 
GS1, 2 and 3 to GS2, 5 again to GS1, in accordance with 
Routes 1, 2 and 3). The problem is that the expected routes are 
confirmed on intermediate nodes only for bundles 1 and 2, the 
only ones directly delivered as expected, i.e. on contact 1. 
Bundles 4 and 5 are redirected to the alternate station, via the 
orbiter, instead of being directly delivered on contact 2; 
finally, bundle 3 performs a loop, as said. This example clearly 
shows how SABR recomputation at intermediate nodes may 
lead to routing instabilities. A much more detailed analysis, 
for interested readers, is given in the Appendix. The same 
applies to all other tests considered in this section. 
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Fig. 5. Full knowledge of network state; SABR, one flow from MCC to 

Lander: time sequences of bundle generation, forwarding and delivery. Note 

the loop performed by bundle 3. 

2) MSR (general analysis, from status reports) 
By repeating the same experiment with MSR (Fig. 6) all 

bundles are now delivered in order, and what is more 
important, without any loops. As a general remark, we can 
state that MSR is effective at preventing the instabilities that 
may derive from route recomputation at each node, at least in 
this ideal case. 
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Fig. 6. Full knowledge of network state; MSR, one flow from MCC to 

Lander: time sequences of bundle generation, forwarding and delivery.  All 
bundles delivered in order, without loops, as expected. 

B. Source with partial knowledge of network state 

This second test differs from the previous one because of 
the presence of concurrent traffic. Now two bundles, still 
destined to Lander, are generated by GS1 (Generated 201 time 
series, Fig. 7) immediately before the MCC five, now 
renumbered as 3-7 (Generated 231). 

1) SABR (general analysis, from status reports) 
The introduction of concurrent traffic in other nodes, as 

here, means that the source can have only partial knowledge 
of the state of the network, resulting in inaccurate predictions. 
As MCC is unaware of the two bundles introduced in GS1, on 
MCC all locally generated bundles are processed as before. 
The first two (now 3 and 4) are consequently sent to GS1 
(Route 1), the other two (now 5 and 6) to GS2 (Route 2), and 
the last (now 7) to GS1 again (Route 3), as shown by GS1 and 
GS2 rcv markers, at around + 22s). Looking at Fig. 7 again, 
however, we can see that only one bundle (ironically the last, 
7) is enqueued to Lander for direct delivery (on contact 3), as 
planned by MCC. For the other 4 bundles (3-6) the 
recalculated route brings them to the opposite GS. Here, 3, 4 
and 5 are enqueued to Lander and later delivered on contact 2 
and 3 respectively (see 3, 4 and 5 Delivered markers on Fig. 
7). Unfortunately for bundle 6 the outcome is the worst: after 
looping twice, it is blocked on GS1 and never delivered. 
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Fig. 7. Partial knowledge; SABR, one flow from GS1 (201) and one from 

MCC (231) to Lander: time sequences of bundle generation, forwarding and 

delivery. Bundle 6 loops twice and is never delivered. 

2) MSR (general analysis, from status reports) 
The introduction of concurrent traffic from other nodes is 

also challenging to MSR, because this time decisions taken by 
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the source, which are the same as those of the ideal case, are 
no longer optimal, as shown by the looping of bundles 3 and 
4 (Fig. 8). In brief, by jeopardizing the routes planned by the 
source, concurrent traffic has exposed the inherent limits of 
MSR. However, in spite of the loops all bundles are delivered, 
which is an important point in favor of MSR.  
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Fig. 8. Partial knowledge; MSR, one flow from GS1 (201) and one from 

MCC (231) to Lander: time sequences of bundle generation, forwarding and 

delivery. Bundles 3 and 4 loops once before being delivered. 

3) MSR-AL (general analysis form staus reports) 
Unibo-CGR has an experimental feature to counteract 

loops, which comes in two variants, reactive and proactive 
[21]. They are both based on a second experimental bundle 
extension, called RGR (Record Geographical Route), which 
records the nodes already visited by the bundle. By inspecting 
it, the proactive variant controls whether a candidate route 
contains a visited node. If so, the route is marked as “closing-
loop”, because it would result in a loop. In Phase III, closing-
loop routes are only selected in the absence of any alternative. 
This way, it is possible to avoid loops by influencing the 
decision process of CGR. Conversely, the reactive variant 
intervenes only a posteriori, after a loop has happened. This 
variant too is based on the RGR extension: if a loop is detected 
(the current node appears in the RGR list), the node visited 
after the current one should be avoided not to repeat the same 
geographical loop. To this end, the candidate route starting 
with this node are selected in Phase III only as a last resort, as 
before. The difference is that the reactive variant cannot avoid 
the first loop and thus is generally less performant. 

To see if it is possible to eliminate the loops in the MSR 
test, we repeated the current test with both MSR and AL 
features enabled. From Fig. 9 we can see that this time all 
bundles are delivered without entering in any loop, thus 
proving the effectiveness of MSR when associated to the anti-
loop features. 

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100 110

n
. B

u
n

d
le

Time elapsed (s)

MSR-AL Generated 201

Generated 231

GS1 rcv

GS2 rcv

Orbiter rcv

MCC (loop)

Delivered

201->143

202->143

 
Fig. 9. Partial situation awareness; MSR-AL, one flow from GS1 (201) and 

one from MCC (231): time sequences of bundle generation, forwarding and 

delivery. 

C. Computation time analysis 

Source routing presumably leads to a significant reduction 
in the processing time. To assess this theoretical advantage in 
practical terms, we have “instrumented” Unibo-CGR to 
produce time-logs and then repeated all our experiments. 
Overall corresponding computation times are presented in Fig. 
10. The relative values (absolute values are of little 
significance, as they depend on the hardware) confirm the 
presumed advantage of MSR, with a reduction of about 60% 
in both cases. This reduction depends on two factors. First, by 
reducing instabilities, MSR also reduces the times a bundle is 
processed by CGR. The actual number of total CGR calls can 
be obtained approximately by summing up the number of 
markers in previous figures, except those of delivered series. 
We have 13 calls for SABR versus only 5 for MSR in the full 
knowledge case, (Fig. 5 and Fig. 6); 21 for SABR, 15 for MSR 
and 9 for MSR-AL in the partial knowledge one (Fig. 7, Fig. 
8 and Fig. 9). The second factor is that every time the saved 
route is validated, instead of recomputed, we have an 
additional gain, contributing to the overall reduction of Fig. 
10. The amount of this second gain, however, is particularly 
significant only in cases when SABR would have performed 
Phase I, as Dijkstra’s computation time dominates validation 
times. 

The results presented here are preliminary, and do not 
pretend to be general. In this regard, we think that a general 
quantitative evaluation of MSR’s impact on real deployments 
is actually almost impossible, because of the heavy 
dependence on the specific characteristics of the scenarios 
considered, in terms of layout, contact plan and traffic flows. 
With this caveat in mind, we can however observe that as 
SABR and MSR perform the same on source nodes, in more 
complex layouts, with longer paths, the MSR advantage might 
be greater than that found in this paper, where the layout is 
challenging in terms of stability, but the best path from source 
to destination consists of only two hops. 
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Fig. 10. Comparison of CGR variants computation times. The values are 
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full length of the experiment. The values presented are the mean on four 
launches, to average off oscillation due to operating system scheduler. Error 

bars are also plotted. 

VII. CONCLUSIONS 

In this paper the possible advantages, but also the limits, 
of Source Routing in space DTN networks are investigated, 
using the MSR variant of CGR, recently implemented by 
some of the authors. Tests were carried out on an emulated 
environment, with GNU/Linux machines running the latest 
version of ION with Unibo-CGR added, and this in turn 
includes MSR. The results show that MSR can offer ideal 
performance in terms of ordered and fast delivery, when the 
source has perfect knowledge of the network. In particular, 
MSR can prevent the loops that affect SABR in the 
challenging test scenario considered in the paper. However, if 
knowledge of the source is partial, MSR can no longer prevent 
loops, although it continues to offer better performance than 
original SABR. Loops are eventually eliminated by the joint 
use of MSR and the anti-loop mechanism offered by Unibo-
CGR. Preventing routing instabilities, however, it is not the 
sole possible advantage of source routing, it can also lead to a 
significant reduction in the processing time, as quantified in 
the paper. As a final remark, however, we must stress that 
given the complexity of the routing problem in intermittent 
scheduled networks, source routing cannot be considered 
optimal per se, but only a promising alternative/complement 
to SABR. MSR implementation of source routing is 
compatible with standard SABR in ION, which would 
facilitate gradual or partial deployment. 

APPENDIX  
The inspection of status reports, carried out in the 

Numerical Results section, describes what happens, but 
cannot explain why. In other words, we can see routing 
decisions, but not the internal process that leads to these 
decisions. The comprehensive analysis that follows, based on 
the very informative Unibo-CGR logs, fills this gap. However, 
this analysis is only destined to those readers who are really 
interested to know all SABR details, being necessarily quite 
long and intricate. For the reader’s convenience, we will adopt 
the same structure already used in the Numerical Results 
section. 

A. Source with full knowledge of network state 

1) SABR (detailed analysis from logs) 
When the first bundle is processed on MCC, CGR 

performs route computation to Lander using Dijkstra’s 
algorithm (Phase I), in which neither bundle characteristics 

nor available contact volumes are considered. It finds that 
Route 1 is the fastest and inserts it in the set of “computed” 
routes, until now empty. Then, Route 1 is validated in Phase 
II, where a long list of checks is performed, the most important 
of which is the control of MTV counters, to be sure that there 
is enough volume for the current bundle in all contacts of the 
route. Route 1 passes all checks, so becoming a “candidate” 
route and is then obviously selected, being the sole one, in 
Phase III. The bundle is put in the queue to GS1 where it is 
immediately sent and received (see “GS1 rcv” time series in 
Fig. 5). 

The same holds true for bundle 2, with the notable 
exception that Phase I is now skipped, as Route 1 is already 
among the computed routes. When bundle 3 is processed, 
Phase I is temporarily skipped, but this time Route 1 is barred 
in Phase II, because its MTV counters indicates that there is 
not enough residual volume on contact 1 to accommodate a 
third bundle. After this failure, Phase I is re-entered and Route 
2 is added to computed routes. Route 2 is then found valid in 
Phase II, selected (it is actually the sole one) in Phase III, and 
the bundle is accordingly sent to GS2 (“GS2 rcv” time series 
in Fig. 5). As before for bundle 4, except that Phase I is 
skipped. At this point, on MCC the MTVs of contacts 1 and 2 
are almost depleted and Phase I must be re-entered for bundle 
5. Route 3 is thus added to computed routes, validated and 
selected, and bundle 5 is immediately sent to GS1, as were 
bundles 1 and 2. To make a long story short, everything 
happens on the source as expected, but this detailed 
explanation was necessary to understand why now, on GS1 
and GS2 things are not going to happen as predicted by the 
source. 

As soon as the first bundle arrives at GS1, CGR is called, 
and the route recomputed from scratch, as prescribed by 
SABR. The obvious decision is in favor of the direct route 
consisting of the sole contact 1, therefore the bundle is 
enqueued to Lander to be successfully delivered after contact 
1 starts (marker 1, Delivered series). The same holds true for 
bundle 2, but not for bundle 5, because contact 1 is now full. 
Route 2, selected by the source for bundle 5, indicates the use 
of contact 3 (i.e. to stay here, waiting for contact 3 to start), 
but GS1 has a different opinion. After failure of Route 1, the 
Alternate Route 2 via Orbiter and GS2 (contacts 6, 9, 2) is 
preferred by Dijkstra to contact 3, because it offers a shorter 
arrival time. The Alternate Route 2 is then validated in Phase 
II, selected in Phase III and the bundle is enqueued to Orbiter, 
waiting for the opening of contact 6 (at +25s). The origin of 
different routing decisions, with respect of what was planned 
by the source, lies in the fact that GS1 is unaware of not locally 
processed traffic, thus its MTV counters for contact 2 are not 
depleted by bundles 3 and 4, as those of the source were. This 
is why Alternate Route 2 is not barred in Phase II. 

After this key observation, we can move on to GS2, where 
the situation is almost specular to bundle 5 processing. At the 
arrival of bundle 3 Dijkstra prefers the local Alternate Route 
1 (7, 8, 1) to contact 2 because it is seen as faster, thus is 
validated and eventually selected, and the same happens for 
bundle 4. When contacts to Orbiter open (6 and 7), bundles 3 
and 4 from GS2 to GS1, and bundle 5, in the opposite 
direction, cross on board the orbiter at about the same time, 
(“Orbiter rcv” markers, at around +28s), which clearly proves 
that the decisions taken on GS1 and GS2 are far from optimal. 
Here, on Orbiter, CGR must confirm the direction of 
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movement for all bundles, as the SABR anti ping-pong 
mechanism prevents CGR from sending back any bundle. 

Let us continue from bundle 5, re-processed by CGR on 
arrival at GS2. This time, the MTV for contact 1 appears 
depleted (by bundles 3 and 4, just processed), which forces 
CGR to re-enter Phase I, add the direct route consisting of 
contact 2, validate and select it. Bundle 5 is therefore 
enqueued to Lander and eventually delivered after contact 2 
starts (marker 3 of the Delivered time series), in third position. 

In the meantime, bundles 3 and 4 have arrived at GS1. 
When bundle 4 is processed, the local MTVs of contact 1 are 
full (depleted by bundles 1 and 2), while there is still room for 
one bundle on contact 2, departing, however, from the other 
GS. Therefore, the selected route for bundle 3 is Looping 
Route 2 (contacts 12, 11, 2). Markers on the figure show that 
bundle 3 passes first through the MCC, thus completing the 
loop, and then it reaches GS2 again, to be eventually delivered 
after bundle 5, on contact 2 (marker 3, Delivered time series). 
The decision taken by GS1 for bundle 3 depletes the MTV of 
contact 2, thus for bundle 4 the Looping Route 2 is no longer 
viable and the decision is to wait for contact 3, during which 
the bundle is actually delivered (marker 4, Delivered time 
series). 

2) MSR (Detailed analysis, from logs) 
The MSR story is, luckily, much shorter than the previous 

one. Source decisions are the same as before, but this time the 
original route is saved in the CGRR extension. Next nodes 
check the saved route by directly calling the SABR Phase II 
routine. All checks are passed and thus all bundles follow the 
original route planned by the source (Fig. 6). 

B. Source with partial knowledge of network state 

1) SABR Detailed analysis, from logs 
The bundles generated by GS1 are immediately enqueued 

to Lander associated to contact 1, making it unavailable to 
other bundles. As MCC is unaware of that, all its bundles are 
processed as before and then forwarded either to GS1 (bundles 
3, 4, 7), or GS2 (bundles 5 and 6), see Fig. 7. By contrast to 
the full knowledge case, the first two bundles (4 and 5) are 
now redirected to GS2, as local MTV counters for contact 1 
are depleted (by bundles 1 and 2). Bundles sent to GS2 (now 
5 and 6) are redirected to GS1 as in the previous SABR test, 
as GS2 MTV for contact 1 is intact. The last bundle (now 7), 
when received by GS1, finds local MTVs of both contact 1 
and 2 depleted (by bundles 1, 2, 3 and 4) and directly routed 
to Lander on contact 3, as planned by the source. After the 
contacts to Orbiter start, four bundles cross in opposite 
directions (Orbiter rcv markers, around 30s), a clear symptom 
of routing problems. When bundles 3 and 4 arrive at GS2 
(about +30s), they are directly routed to contact 2, as the local 
MTV counter of contact 1 is now depleted (by bundles 5 and 
6, which arrived at about +22s). At this point the only bundles 
not yet enqueued are 5 and 6. When they arrive at GS1 from 
the Orbiter, local MTVs of contacts 1 and 2 are depleted (by 
bundles 1, 2, 3 and 4) and there is only room for one bundle 
on contact 3 (partially used by bundle 7). Bundle 5 takes the 
residual volume first and it is enqueued to Lander and 
delivered (marker 5, Delivered time series). From now on 
(from about +31s), we can focus on bundle 6, the only one not 
yet enqueued to Lander. It is waiting to be routed by GS1, 
where local MTVs of contacts 1, 2, and 3 are depleted, while 
the MTV of contact 4 is intact. This is correct, as contacts 1-3 
are already been fully allocated to the other 6 bundles. In the 

absence of any alternative, the route chosen for bundle 6 is the 
counterclockwise Looping Route 4 (contacts 12, 11, 4), which 
brings it to GS2, for the second time, after two hops (marker 
6 of GS2 rcv time series, at about 32s). What appears to GS2, 
however, is wrong: although local MTVs of contact 1 and 2 
are depleted, the contact 3 appears empty but is not. Therefore, 
Alternate Route 3 (contacts 7, 8, 3) is preferred to contact 4. 
The counterclockwise loop thus continues; when bundle 6 
arrives at GS1 for the second time, local MTVs of contacts 1-
3 are all depleted as before, the only difference is that contact 
4 MTV is no longer intact (because of previous redirection of 
bundle 6 itself). The story repeats itself, as Looping Route 4 is 
chosen again, and bundle 6 reaches GS2 for the third time and 
is sent to GS1 on Alternate Route 3, as in the previous loop. 
When bundle 6 arrives at GS1 for the third time, all four 
MTVs are now depleted (ironically, that of contact 4 as a 
result of bundle 6’s two loops, but GS2 is unaware of that). 
Consequently, bundle 6 is put in “limbo”, re-processed by 
CGR every 4 s, and eventually deleted at lifetime expiration.  

2) MSR Detailed analysis, from logs 
When the first two bundles generated by MCC (now 3 and 

4) arrive at GS1, Route 1 is extracted from the CGRR 
extension and the remaining part, consisting only of contact 1 
is checked, by calling the Phase II routine. The check however 
fails, as contact 1 is not available, thus CGR is called to find a 
new route from scratch, as with SABR. Bundles 3 and 4 are 
thus sent to Lander via GS2, after selection of Alternate Route 
2 (contacts 6, 9 and 2), see Fig. 8.. This route is saved in the 
CGRR extension, then validated by the Orbiter but not by 
GS2, because bundles 5 and 6 have arrived in the meantime 
(“GS2 rcv” time series) and been routed to contact 2, as 
planned by MCC. After this second failure, the route is 
recomputed for both bundles 3 and 4 and the clockwise 
Looping Route 3 (13, 10, 3) is the only one possible. It is 
validated on all nodes, for both bundles, until they arrive at 
GS2. Here it is confirmed for bundle 3 but not for bundle 4, as 
on local MTV for contact 3 there is space for one bundle only 
(bundle 7 had arrived in the meantime and forwarded on it). 
Consequently, the route is recomputed for the third time for 
bundle 4 and Alternate Route 4 (contacts 6, 9 and 4) is 
selected. It is confirmed everywhere, and bundle 4 too can be 
eventually be delivered, last of all, on contact 4.  

3) MSR-AL Detailed analysis, from logs 
Let us focus on bundles 3 and 4, the only ones for which 

the original route is recalculated (see Fig. 9). In GS1 (“GS1 
rcv” markers 3 and 4) the candidate route has no loops, and 
the same decisions are taken as before. Vice versa, in GS2 
(“GS2 rcv” markers 3 and 4) this time Looping Route 3 is 
discarded, in favor of contact 4, although the latter is less 
appealing in terms of projected bundle arrival time.  
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