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Abstract: Hepatitis E virus belonging to the Rocahepevirus ratti species, genotype HEV-C1, has been
extensively reported in rats in Europe, Asia and North America. Recently, human cases of hepatitis
associated with HEV-C1 infection have been reported, but the zoonotic nature of rat-HEV remains
controversial. The transmission route of rat-HEV is unidentified and requires further investigation.
The HEV strains of the Paslahepevirus balayani species, belonging to the same Hepeviridae family, and
including the zoonotic genotype HEV-3 usually found in pigs, have also sporadically been identified
in rats. We sampled 115 rats (liver, lung, feces) between 2020 and 2023 in Northeast Italy and the
HEV detection was carried out by using Reverse Transcription PCR. HEV RNA was detected in
3/115 (2.6%) rats who tested positive for HEV-C1 strains in paired lung, intestinal contents and
liver samples. Overall, none tested positive for the Paslahepevirus balayani strains. In conclusion, our
results confirm the presence of HEV-rat in Italy with a prevalence similar to previous studies but
show that there is a wide heterogeneity of strains in circulation. The detection of HEV-C1 genotype
of Rocahepevirus ratti species in some human cases of acute hepatitis suggests that HEV-C1 may be
an underestimated source of human infections. This finding, with the geographically widespread
detection of HEV-C1 in rats, raises questions about the role of rats as hosts for both HEV-C1 and
HEV-3 and the possibility of zoonotic transmission.
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1. Introduction

The hepatitis E virus (HEV), responsible for acute hepatitis in humans, is an RNA
virus belonging to the family Hepeviridae and the subfamily Orthohepevirinae, and can be
classified into four genera. The Paslahepevirus genus comprises the Paslahepevirus balayani
species, including the zoonotic HEV-3 and HEV-4 genotypes, causing sporadic cases in
high-income countries, with pigs and wild boars as the main reservoirs. The Rocahepevirus
genus includes two species: Rocahepevirus eothenomi reported in Chevrier’s Field Mouse
(Apodemus chevrieri) and Pere David’s Vole (Eothenomys melanogaster), and the Rocahepevirus
ratti (rat-HEV) species, which is divided in two genotypes (HEV-C1 and -C2). HEV-C1 has
been detected in rats (Rattus sp.; Bandicota indica) and eulipotyphlans (musk shrew, Suncus
murinus), while HEV-C2 has been detected in mustelids (ferret and mink) [1]. Initially
identified in Germany [2], HEV-C1 has been detected in Europe, Asia and North America in
several species of rats [3]. There is existing evidence of HEV-specific antibodies in multiple
rat species, including Rattus rattus (black rat) and Rattus norvegicus (brown rat) [2,4-9].
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The HEV-3 strains have been sporadically reported in brown and black rats, exclusively
in the intestines and feces, and never in the liver, suggesting ingestion and passive transport
of feces containing HEV-3 rather than an actual infection [10].

In addition to a passive transit of HEV-3 in the intestine, infection and a localized
digestive replication in rats could also occur, as suggested by a few studies. The isolation of
infectious HEV-3 in the spleen and intestines in rats without any sign of replication in the
liver, suggests that HEV could infect these organs and replicate in rats [11]. The hypothesis
that HEV-3 can replicate in the mucosal of intestine has also been confirmed in vitro on cell
cultures of HEV-1 and HEV-3 [12].

In recent years, HEV-C1 strains belonging to the Rocahepevirus ratti species (HEV-
C1), previously described as being exclusively hosted by rats, have been reported in
21 human patients with acute or chronic hepatitis. The 21 HEV-C1 infections have been
confirmed through RNA detection in human specimens in Hong Kong [13-15], Canada [16],
France [17] and Spain [18], while in Germany no rat- HEV infections were reported in
a retrospective study [19]. The presence of rat-HEV-RNA and IgG and IgM antibodies
against HEV-C1 in patients confirmed the infection [3]. Antibodies against HEV-C were
also detected in healthy forestry workers, suggesting a risk linked to their exposure to rat
excrements [20]. The reported studies evidence that HEV-C1 can infect humans, with rats
serving as source of infection, and suggest that an underestimation of the number of cases
could be possible [20,21]. However, the zoonotic transmission of the HEV-C1 genotype is
still controversial. The specific pathway of human infection transmission remains unclear;
however, various potential risk factors have been suggested, including exposure to polluted
environments, interaction with infected animals or the consumption of food or water that
may be contaminated [3].

In Italy, HEV-C1 and HEV-3 were detected in black and brown rats [10,22] and in
wastewater samples collected in Central Italy [23]. In one of the studies, rats were sampled
from the area surrounding a farm housing HEV-3-infected pigs, suggesting the possible
ingestion of feces from HEV-infected pigs [10]. Interestingly, a recent study in Spain
reported the detection of rat-HEV strains in the rectal fecal samples of 44 pigs out of
387 investigated. This suggests that pigs could also have a role in the epidemiology of rat
HEV-C1 and vice versa [24].

In this study, our aim was to identify and characterize HEV strains circulating in rats
in Northeast Italy in urban and peri-urban areas not investigated before to assess the role
of this species in the epidemiology of HEV.

2. Materials and Methods
2.1. Samples Collection and RNA Extractions

During 2020-2023, 70 brown rats (Rattus norvegicus) and 45 black rats (Rattus rattus)
were collected from urban and peri-urban areas of Northeast Italy (area 4156 km?), as
part of pest control programs. Necropsy was performed with sterile instruments, and
depending on the condition of the carcasses, 79 livers, 92 lungs and 103 intestinal contents
were sampled. Fecal samples were stored at —20 °C and organs at —80 °C.

Total RNA was extracted from 200 pL of 10% fecal suspension (g/vol) obtained from
intestinal contents using the QIAamp Viral RNA Kit (Qiagen, Hilden, Germany) and from
livers and lungs (25 mg) using the RNeasy Mini Kit (Qiagen, Hilden, Germany) following
the manufacturer’s instructions. Positive control HEV-3-positive feces and a negative
control (water) were also included. The 25 mg were previously homogenized in lysis buffer
available in the kit, using the Tissue lyser (Qiagen, Hilden, Germany). The RNA extracted
was stored at —80 °C until use.

2.2. HEV RNA Detection by Real-Time and Conventional Reverse Transcription PCR

All RNAs were tested for the detection of the genotypes of Paslahepevirus balayani
species (including HEV-1 to HEV-4 genotypes) and HEV-C, as described below. The RNA
samples were tested for the detection of the former genotypes with broad-range real-time



Pathogens 2024, 13, 633

30f12

reverse transcription PCR (real-time RT-PCR) using the QuantiFast Pathogen RT-PCR +IC
Kit (Qiagen, Hilden, Germany) [25], the kit included the internal control (IC); a second test
was a conventional reverse transcription PCR (RT-PCR, QIAGEN OneStep RT-PCR Kit;
Qiagen, Hilden, Germany) followed by nested PCR (Go Taqg, Promega, Madison, WI, USA)
using the broad range HEV-1 -4 test amplifying a 400 bp region within the ORF2 [10]. A
second pan-Hepeviridae test, able to amplify Paslahepevirus balayani and the HEV-C, was
performed to amplify a 300 bp within the RNA-dependent RNA polymerase region (RdRp)
of the ORF1 [26]. Those samples positive for the latter RI-PCR were also subjected to
additional RT-PCRs using primer pairs specifically aligned to the HEV-C1 [27] to obtain
amplicons of nearly complete genomes (Supplementary Table S1). The internal control,
IC, included in the kit for the real-time RT-PCR was used to discard the presence of PCR
inhibitors in the RNA. A positive control in the form of HEV-3 genotype and negative
controls were included in all steps, from RNA extractions to PCRs [10]. PCRs were stored
at —20 °C until use or were immediately run using agarose gel electrophoresis (1.5%).

2.3. Sequencing and Phylogenetic Analyses

The positive PCR products were cleaned up with ExoSAP PCR Enzymatic Clean-
Up Kit (Euroclone, Pero, Italy). Amplicons of expected size were sequenced by Sanger
sequencing through a custom sequencing service (Eurofins Genomics, Ebersberg, Germany).
Sequences were uploaded to the GenBank NCBI database under the following accession
numbers: PP067025-PP067033 (RdRp), PP827493-PP827494 (methyltransferase), PP827495-
PP827496 (3'-ORF1 to 3-ORF2). The nucleotide sequences were edited and aligned using
the Aliview free software ver. 1.28 [28]. The related sequences were searched using the
BLASTn server on the NCBI GenBank database (http:/ /www.ncbi.nlm.nih.gov/genbank/
index.html, accessed on 2 May 2024) and the maximum likelihood (ML) trees were drawn
with IQTREE2 software ver. 2.0 [29] using the model suggested by the model test and
1000 bootstrap replicates.

2.4. Capsid Proteins Alignment

Analysis of the capsid protein amino acidic sequences and the prediction of its sec-
ondary structure was performed using SWISS-MODEL (https:/ /swissmodel.expasy.org,
accessed on 2 May 2024) based on default parameters. Secondary structure elements
were highlighted using the ESPript (http://espript.ibcp.fr, accessed on 2 May 2024) al-
gorithm [30] and compared to capsid protein from representative strains of HEV-3 and
HEV-C1 (subtype G1-G3).

3. Results

None of the samples tested positive for any of the Paslahepevirus balayani genotypes,
including the HEV-1 to HEV-4, in either the broad range real-time RT-PCR or the conven-
tional RT-PCR. However, the RNAs from three animals tested positive (3/115, 2.6%) by
the pan Hepeviridae nested RT-PCR, amplifying the RdRp fragment, in paired intestinal
contents (3/103, 2.9%), livers (3/79, 3.8%) and lungs (3/92, 3.3%). The positive rats, two
brown rats and one black rat, were adult females that were sampled in 2021 from two
municipalities. The sequences obtained from the feces, lungs and liver of each animal were
identical (100% nucleotide identity; nt.id.).

Sequence analyses of the RdRp fragments, which were identical across each rat, showed
that the RatHEV115IT21 sequences exhibited 98.1% nt.id. with RatHEV118IT21, while
RatHEV119IT21 showed an 80.0% nt.id. with RatHEV115IT21 and 82.0% with RatHEV118IT21.

Since the majority of rat HEV sequences submitted to the NCBI database were obtained
by amplifying the RdRp region within ORF1, a phylogenetic tree was first built based on this
region (Figure 1). The nine sequences obtained in this study from animal RatHEV115IT21,
RatHEV118IT21 and RatHEV119IT21 were classified as an HEV-C1 genotype within group
GI (Figure 1), which is one of the three (GI-GIII) groups of putative subtypes proposed
within the HEV-C1 strains based on phylogenetic analysis [31].
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Figure 1. Phylogenetic analysis based on the 270 nt fragment of the partial RdRp region within
ORF1 of the 9 sequences obtained in this study (entries highlighted in bold and indicated by black
dots), 124 HEV-C1 sequences obtained from NBCI database by BLASTn searches, and two HEV-C2
sequences used as an outgroup. The maximum likelihood tree was produced using the TIM2 model
(Transition model 2) with invariant sites and gamma distribution based on 1000 bootstrap replications
and bootstraps values >70 indicated at their respective nodes. Sequence entries are reported as
GenBank Accession Number, Country and Host species. On the right side, sequences belonging to
G1-G3 group of HEV-C1 are indicated.

Compared to other HEV-C1 strains detected worldwide, the three sequences in this
study formed distinct clusters (Figure 1), and in the sequence alignment, showed <89.0%
nt.id. with the other sequences. The nine sequences of RdRp, three of which were identical
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in each animal, from this study clustered together (Figure 1) with sequences detected in
sewage in Central Italy [23] in 2020 (Figure 1, entries named in the tree as “Italy Sewage”),
displaying an nt.id, in the RdRp sequences that ranged between 90.4% and 92.6%. The
two strains RatHEV115I1T21 and RatHEV118IT21 were closely related (98.1% nt.id.) to each
other, clustered together and were both identified in black rats captured in two provinces
60 km apart, while the RatHEV119IT21 sequence which was detected in a brown rat in
another area, clustered separately, as shown by the phylogenetic analyses (Figure 1).

In detail, the RatHEV115IT21 and RatHEV118IT21 strains showed 90.4-90.7% nt.id.,
respectively, with the 3785-20/CH/IT sequence detected in sewage (GenBank Accession
Number: 0Q930397.1), while RatHEV1191T21 showed a 92.6% nt.id. with both 4361-
21/CH/IT (0Q930427.1) and 3766-20/CH/IT (0Q930389.1) which were also detected in
sewage in Italy.

The HEV-C1 strain identified in 2015 in a Rattus rattus in Italy (Rat/ITA/4/ITA /2015,
KY938013.1) shared 86.2%, 86.1% and 84.4% nt.id. with RatHEV115IT21, RatHEV118IT21 and
RatHEV119IT21, respectively. Additionally, sequences from this study showed 82.5%, 82.8%
and 85.8% nt.id., respectively, with another Italian rat strain, RatHEV18IT16 (KX844624.1).
The rat-HEV, Rat/ITA /4/1TA /2015, was detected in a black rat (Rattus rattus) on a small
island [22] and RatHEV18IT16 was retrieved from a black rat captured in an area surround-
ing pig farms [10]. Nevertheless, a higher nucleotide identity of the three rat strains from
this study was observed with sequences retrieved by analyzing wastewater samples from
Central Italy (Abruzzo region) (OQ930397, 0Q930412, 0OQ930389, 0Q930427) [23] than
with the RatHEV18IT16 (KX844624.1) strain previously reported in a rat captured in the
same Italian region [10]. The lower correlation was confirmed in the phylogenetic tree
based on the RdRp fragment (Figure 1); the two strains previously identified in rats in
Italy (KY938013.1 and KX844624.1), clustered separately from the three strain sequences in
this study.

To deeply analyze the genome sequences of the Italian rat-HEV-C1 strains, additional
genome regions of interests were sequenced. Specifically, the methyltransferase within
ORF1, position 50-942 nt with respect to the reference with the RefSeq Accession number
NC_038504.1 (rat/R63/DEU/2009, GenBank Accession Number GU345042), and 3934 nt,
encompassing the 3/ terminal of the ORF1 to the 3’ terminal of the ORF2, (position 2890
6824 nt reference rat/R63/DEU/2009) were obtained from the feces of RatHEV115IT21 and
RatHEV119IT21.

Despite several attempts, we did not succeed in sequencing RatHEV118IT21, probably
due to the low amount of RNA, and the full genome was not obtained for any of the samples.
The phylogenetic analysis based on longer sequences (3934 nt encompassing the 3’ terminal
of ORF1 to 3’ terminal of the ORF2) confirmed the classification of both strains as HEV-C1
genotype within group GI, as previously observed by the analysis of short genome fragment
of the RdRp (position 41244352 nt reference rat/R63/DEU/2009) (Figure 1).

The group in which the rat strains identified in the present study cluster does not
include any strains that have been detected in humans.

The rat HEV-C1 strains identified have shown an approximately 84-85% shared nu-
cleotide identity within the short RARp genomic region with two human strains reported in
Spain (OK082152, OK082153). When comparing longer sequences, the closest match among
the RatHEV1151T21 and RatHEV119IT21 strains was a French strain (22072190255_HEV-C,
OP610066) with approximately the same identity as that of the shorter fragment with 84.7%
and 84.6% shared nucleotide identities, respectively.

Based on SWISS protein research, the protein displaying the more similar amino acid
(aa) identity to the HEV rat capsid proteins from this study was the partial capsid protein
from a HEV-3 strain (amino acids 112-608; PDB Accession Number: 2ZTN) since no crystals
of complete capsid protein from HEV-C1 strains are available online.

To predict the possible secondary elements, we analyzed the alignment of the capsid
protein amino acid sequences between the rat HEV-C1 strains and other HEV strains
(Figure 2). The RatHEV119IT21 and RatHEV115IT21 strains shared 95.5% aa.id. with



Pathogens 2024, 13, 633

6 of 12

2ZTN

2ZTN

RatHEV1191T21
RatHEV1151T21
GU345042 HEV-C1 G1
JX120573 HEV-C1 G2
AB847309 HEV-C1 G3
AF082843 HEV-3 3a
AB197673 HEV-4 4a

2ZTN

RatHEV1191T21
RatHEV1151T21
GU345042 HEV-C1 G1
JX120573 HEV-C1 G2
AB847309 HEV-C1 G3
AF082843 HEV-3 3a
AB197673 HEV-4 4a

2ZTN

RatHEV1191T21
RatHEV1151T21
GU345042 HEV-C1 G1
JX120573 HEV-C1 G2
AB847309 HEV-C1 G3
AF082843 HEV-3 3a
AB197673 HEV-4 4a

2ZTN

RatHEV1191T21
RatHEV1151T21
GU345042 HEV-C1 G1
JX120573 HEV-C1 G2
AB847309 HEV-C1 G3
AF082843 HEV-3 3a
AB197673 HEV-4 4a

2ZTN

RatHEV1191T21
RatHEV1151T21
GU345042 HEV-C1 G1
JX120573 HEV-C1 G2
AB847309 HEV-C1 G3
AF082843 HEV-3 3a
AB197673 HEV-4 4a

2ZTN

RatHEV1191T21
RatHEV1151T21
GU345042 HEV-C1 G1
JX120573 HEV-C1 G2
AB847309 HEV-C1 G3
AF082843 HEV-3 3a
AB197673 HEV-4 4a

RatHEV1191T21
RatHEV1151T21
GU345042 HEV-C1 G1
JX120573 HEV-C1 G2
AB847309 HEV-C1 G3
AF082843 HEV-3 3a
AB197673 HEV-4 4a

Figure 2. Cont.

VLVLLL
VLVLLL|
VLVLLL
VLVLLL
VLVLLL
LLLLFV|
MNNMFFCSLHGDATMRSRALLFLLLL

CGRRNG
RGRRGG

DATVPHPAQPPSQRINWLISPTNPFAAEL
DIGAV|SHPAQPPPQRTNWL[SPTNPFAAEL
DIGTV|S|QPAQPPPQRTNWL[SPTNPFAAEL
DAALISHPAPPPTQLTNWL[SPTNPFAAKL

PLGSAW
PLGTAG]
PLGTAW,
PLGSAW,

DAAL[SHPTHPPTQHVNWLISPTNPFAAEL PLGSAW,
D. . .[slQPFAL[P. . . .. [YIHPTNPFAADV PLGSAW
D. . .[SQEFALP. . ... YIHPTNPFASDI PLGSAW

TAPVPDVDSR[¢]S M3 XoR's b A3k
TAPVPDVDSR[ES RS AoRg pfE-Rig=p-iy
MTAPVPDVDSR{E]S MR oh s prf-Rg-R-hry
AR RORARRSRNG ST LRROQYNLSTSPLT
TAPVPDVDSR ILRRQYNLSTSPLT
TAPVPDVDSR ILRRQYNLSTSPLTH
TAPVPDVDSR ILRROQYNLSTSPLTH

RINRVAVVPDAG|Q|
RIRR[STSVPDAG|Q|
RIRRAAPLPDAG|Q!
RIRR[SA . . . PAG]A
RRRISA . . . PAGA|

MmN nnn
@0 nhonn

RIN[RVTVVPDAG|Q!
RINRVAVVPDAG|Q!

B3 al B4 5 B6
— T = 000000 =— T ——
30 49 50 60

YAAPRLNPLLPLODGINTHIMATEASNYAQYRIAINT iISR4R P L. V P N/
YAANLNPLLPLODGEINTHIMATEASNYAQYRMO)NNT IM33RPLVPNS
YAANLNPLLPLODGEINTHIMATEASNYAQYR\/O)NGT IMBARP LVP NS
YAASLNPLLPLODGEINTHIMATEASNYAQYR\ORNGT IM:=83RP L. VP N
YAASLNPLLPLODGEINTHIMATEASNYAQYRORVNT IM3RP LV PN
YAARLNPLLPLQDGEINTHIMATEASNYAQVYRORNNT ISR PLVPNS
YAARLNPLLPLOQDGIWNTHIMATEASNYAQVYRWANNT IN4R P LV P NI
YAAPRLEPLLPLODGUINTHIMATEASNYAQYRWIAUNT IS 34R P L VP N/

o2 B7 B8 o3 nt g9 o4
—_— —_—> 00000 000= TT QQ0Q0Q -
99 109 llq 129 130, 14q

TTIPTSVDMNSITSTDVRIIMMOPGIASELVIPSIERLHYRNQGWRSVET
TTYPTSVDMNSITSTDVRIWENQPGMAINELVIYPIMERLHYRNQGWRSVET] P Q

TTYPTSVDMNSITSTDVRIWNOPGMAINELVYPIHERLHYRNQGWRSVET
TTYPTSVDMNSITSTDVRIWNOPGMAINELVIYPIHERLHYRNQGWRSVET
TT\YPTSVDMNSITSTDVRIWNOPGMAINELVHPIdERLHYRNQGWRSVET
TTYPTSVDMNSITSTDVRIWNQPGHAINELVISPISERLHYRNQGWRSVET
TTIPTSVDMNSITSTDVRIIMMOPGISARIELVISPSIERLHYRNQGWRSVET
TTUPTSVDMNSITSTDVRIIMYQPGIASIELVISPSIERLHYRNQGWRSVET

bl
0
W nnnn

10 11 12
— = TTT ———- T
159 16(') 17(.'!

NYMIIC THGEPWNSMT NS Y TGALGLLDIJALINNEIIRNLTPGNTNT RV SR M4y
M CIHGE PN S TNE/AYTGALGLLDMALOUEMRNLTPGNTNTRYV|
I M C THGE\PIN ST NEAY TGALGLLDSALOYEMRNLTPGNTNTR V|

MM C THGE\PIIN ST NBI\Y TGALGLLDSALOYENMRNLTPGNTNTR VI
MM C THGE\PIN S| T NN Y TGALGLLDSALOIYEMRNLTPGNTNTR V|
MM C THGE\PIN S| T NJW\Y TGALGLLDSALOYEMRNLTPGNTNTR VI
AYMIFC THGE]PWUN SMTNKINY TGALGLLDJALIYMEIJRNLTPGNTNTRV SR j4iy
AUMIIC THGEPNMNSMTNEEY TGALGLLDIFALINMEIRRNLTPGNTNTR VSR M43

B14 oS n2 B15 o6 o7
T — 00000 0000 TT — 0000 -

210 220 230 240 250 260

DG T AR T WA R F MIND Il H 2N G N G V[EFTAYGIIG I NN FNWADTLLGGL[3
D G T A[GIINTESSIA YR F MO]D\YH NG (EIN G V|[eIsRNG NG I WeAYT. FNISADTLLGG L 3

DG T A[GIYINTENSIA YR F MO]D\YHIFRIG (€N G V{EsRNGING I WeAYT. FNISADTLLGGL |3
DG TA[GIYINTENSA YR F MO]D\YHIFUNG(EIN G V{EBNGING I WeAYL. FNISADT LLGG L 3
DG TA[GMSTENIA YR F MO]D\WHIPAGININ G V{EsBNGING I WeAYL FNISADT LLGG LM
DG T A[GIYINTENIA YR F MO]D\YHIFUNGININ G V{EsBNGING I WeAYL FNISADT LLGG L |
DG T APNRENT §WNA YR F MIND I H )WY G YN G V{EFUGING I NIMNL. FNIMADT LLGG L |3
DG T AJNMENT IW:NA YR F MISD I HZUNGUYN G V{EFRYGING T NIMNL FNIJADT L LG G L |3

each other. The RatHEV119IT21 capsid protein had a 95.5% aa.id. with reference strains
belonging to the rat HEV-C1 group G1 (GU345042; from Rattus norvegicus), 93.1% with G2
(AB847309; from Rattus rattus) and 92.8% with G3 (JX120573, from Rattus tanezumi).
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Figure 2. Alignment of amino acid sequences and secondary structure elements of HEV capsid
proteins. The first line indicates the PDB number (2ZTN) of the capsid protein from the HEV-3 strain
along with its secondary structure elements. On the left, the names of strains analyzed in the capsid
proteins are indicated with accession numbers, genotypes, and subtypes. The capsid protein of the
strains sequenced in this study are indicated by the names RatHEV119IT21 and RatHEV115IT21.
Spiral lines indicate helices, while arrows represent (3 strands. White characters in red boxes represent
strictly conserved residues and red characters represent stereochemically identical residues.

The capsid of RatHEV115IT21 had a 97.3% aa.id. with HEV-C1 G1 (GU345042), ghich
was higher than with the RatHEV119IT21 (95.5%), and approximately 96% with HEV-C1
G2 and G3 (AB847309, ]X120573). Both Italian rat-HEV strains showed a significantly lower
aa.id. of 62-63.2% with the HEV-3 and HEV-4 strains (AF082843, AB197673).

Comparing the aa within the three domains of the capsid protein, the shell (S) (aa
129-319), the middle (M) (aa 320-455) and the protruding (P) domains (aa 456-606), the
rat HEV-C1 strains displayed more similar amino acid identities in the S and M domains
with the HEV-3 and HEV-4 strains, while the shared identity significantly decreased to 46%
aa.id. in the P domain.

The alignment of the RatHEV119IT21 and RatHEV115IT21 capsid proteins with the
HEV-3, HEV-4 and HEV-C1 strains (Figure 2) revealed that nine out of the thirty-nine
secondary elements had identical amino acids (comprising five beta sheets and four alpha
helices). Additionally, seven elements (four beta sheets and three alpha helices) showed
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only one amino acid difference between the HEV-C1 strains and HEV-3/4 strains. In one
element (Beta3), the substituted amino acid had similar chemical properties (e.g., serine in
HEV-3/4 strains and threonine in HEV-C1 strains).

At the 5’ of the ORF1, which partially overlapped with the region coding for methyl-
transferases both strains showed the presence of the hypothetical ORF coding for the
protein ORF4 (position 50-578 with respect to reference rat/R63/DEU /2009, NC_038504.1).
The ORF4 of both HEV-C strains of this study shared an 83.9% aa.id. Both Italian strains
had the highest aa.id. with two HEV-C1 strains reported in Korea from Rattus norvegicus:
RatHEV119IT21 had an 85.1% aa.id. with the Rn19-14 strain (OR500096) and RatHEV115IT21
had 83.9% aa.id. with Rn16-10 (OR500095).

4. Discussion

Overall, our data showed a 2.6% positivity for HEV-C1 RNA in the rat population
analyzed, confirming its presence in various rat species. The circulation of HEV-C1 in rats
has previously been reported in Germany (2.9%) [5], Romania (17.4%) [9], China (1.7%) [32],
Japan (1.2%) [8] and Korea (4.4%) [33]. In a survey conducted in 11 countries in Europe,
rat-HEV was detected with a prevalence ranging from 4.0 to 41.3% in both rural and
urban rats [22]. The results are difficult to compare, but the prevalence revealed in this
study may be considered low when compared to Romania (17.4%) [9] but comparable to
Germany (2.9%) [5] and to previous findings in black rats from Italy (2.1%) [10]. In this
study, compared to the previous studies on rats in Italy [10], the animals investigated were
from urban and peri-urban areas, in locations closer to human environments, including its
wastewater and garbage, which highlights risks for humans associated with the HEV-C1.

The results of a comparison with other Italian HEV-C1 sequences available online
at the NCBI showed a high diversity of rat-HEV strains circulating in Italy, consistent
with findings from sequences obtained in 14 wastewater plants in one region that shared
82.5-95.8% nt.id. with each other [23]. The sequence comparison was limited to the RdRp
fragment, since other rat HEV-C1 strains detected in Italy were only sequenced in this
short region. By comparing the longer sequence stretch (3934 nt, 3’-ORF1 and the whole
ORF2)) with the NCBI database and constructing a phylogenetic tree, we confirmed the
classification within the HEV-C1 group GI. The results showed that the RdRp sequence
analysis closely resembles that obtained with the longer stretch. Only a limited number
of HEV-C1 sequences are available at the NCBI, aside from the RdRp fragment, which
limits further analysis. However, the phylogenetic analysis confirmed that HEV-C1 in this
study clustered with other Italian sequences retrieved from the wastewater samples, even
displaying a limited shared nucleotide identity with them [23].

The detection of the same rat-HEV strain in paired intestinal contents, livers and lungs
suggests active HEV replication and excretion. The detection of HEV-RNA in the lungs of
animals with positive findings in the liver and feces was reported in two studies [34,35].
The authors retrieved rat-HEV RNA from the lungs, kidneys and hearts of rats that tested
positive for rat-HEV RNA in the liver and blood. Other studies also reported rat-HEV in
feces, liver and sera [36,37]. The lung is one of the most important vascularized organs in
rats [38], suggesting that the presence of HEV-RNA could be associated with viremia, but
replication in the lungs cannot be excluded and deserves further investigation. Extrahepatic
manifestations of the disease associated with the lungs in humans have not been described
and further studies could be performed to investigate other organs involved in the repli-
cation of the HEV [39] in rats as well as other animal hosts. In this study, HEV-3 was not
identified. Conversely, in our previous study, the intestine contents of a rat captured in
an area surrounding pig farm were HEV-3 positive [10]. The presence of this genome in
rats could be considered either accidental and probably linked to ingestion of pig feces
contaminated with HEV-3, or due to replication in the intestine which could also occur [11].
This hypothesis needs to be investigated if the replication of HEV-3 or HEV-C strains in the
rat intestine is confirmed as it could serve as a major route for virus dissemination in the
environment.
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The analysis of the amino acid alignments of the capsid proteins showed the Italian
rat strains had highly similar amino acids identities with the HEV-C1 strain subtype
G1, confirming the results obtained from the nucleotide identity tests. Furthermore, the
results revealed higher conservation in the S and M domains between HEV-C and HEV-3,
suggesting that they are key structural elements in viral particles, potentially indicating a
conserved assembly process for HEV.

The low similarity in the amino acid identity between rat HEV-C strains and Paslahep-
evirus balayani species strains in the P domain confirms previous findings [2] suggesting
that divergence in the protruding parts of the outer capsid surface, containing the neutral-
ization epitopes, may reflect differences in HEV recognition and host—cell entry among
species [40,41].

The role of epitopes mapped to the P-domain is confirmed by several studies, mono-
clonal antibodies (mAbs) directed against rat-HEV mapping the P-domain did not show
cross-reactivity with human HEV ORF2 (genotypes 1, 3 and 4) and mAbs, which is able
to neutralize human HEV (genotypes HEV-1, HEV-3, and HEV-4) [42], did not exhibit
cross-reactivity with rat HEV.

Nevertheless, the stretch of aa “ADTLLGGLPTELISSA” within the P-domain, identi-
fied as a potential polysaccharide-binding site that may function in cell-receptor binding,
is strictly conserved among all HEV1-4 genotypes [40], was previously identified in rat
HEV-C1 strains [36] and in the strains investigated in this study.

In this study, the presence of ORF4 within the ORF1 in HEV-C1 strains has been
confirmed, as previously reported in HEV-C strains from rats [2,27,43,44]. The function
of ORF4 is unknown [45]. The ORF4 protein was not detected in the liver tissue of HEV-
infected rats and the protein is not necessary for viral replication [46].

The number of studies reporting rat HEV-C1 in humans has been increasing but the
role of rats as possible reservoirs of zoonotic strains remains unknown. Rats pose a notable
potential reservoir for HEV strains with the potential to infect humans, as confirmed by
the detection of human cases linked to rat HEV-C1 and by the presence of similar capsid
structures between rat-HEV and host-specific human HEV. Although rats are not a regular
part of the human diet, and under appropriate hygiene conditions they should ideally
be kept separate from humans, their population is increasing significantly in cities and
they show a high anti-HEV seroprevalence [47]. Their potentially contaminated feces can
accumulate in wastewater and be released into the environment. Furthermore, despite pest
control efforts, rats may come into contact with naturally virus-hosting animals such as
pigs or wild boar. We are not fully aware of the consequences of HEV-C1 being released in
the environment and contaminating food products like vegetables if they are consumed
without proper washing. All of these points together with detection of HEV-C1 human
infections underscore the importance of understanding potential health risks and suggest
that further investigations are crucial to evaluate the role of rats as zoonotic hosts of HEV
and clarify the epidemiology of circulating strains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens13080633/s1, Table S1: List of primers used to amplify
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