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ABSTRACT
A simultaneous autoregressive score-driven model with autoregressive disturbances is developed for spatio-
temporal data that may exhibit heavy tails. The model specification rests on a signal plus noise decomposi-
tion of a spatially filtered process, where the signal can be approximated by a nonlinear function of the past
variables and a set of explanatory variables, while the noise follows a multivariate Student-t distribution. The
key feature of the model is that the dynamics of the space-time varying signal are driven by the score of the
conditional likelihood function. When the distribution is heavy-tailed, the score provides a robust update of
the space-time varying location. Consistency and asymptotic normality of maximum likelihood estimators
are derived along with the stochastic properties of the model. The motivating application of the proposed
model comes from brain scans recorded through functional magnetic resonance imaging when subjects are
at rest and not expected to react to any controlled stimulus. We identify spontaneous activations in brain
regions as extreme values of a possibly heavy-tailed distribution, by accounting for spatial and temporal
dependence.
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1. Introduction

Accounting for dependence across space and time represents
the key ingredient in analyzing spatially and temporally ref-
erenced data. We are concerned with spatio-temporal datasets
that are available in the form of areal or regional data, that
is, data recorded on a partition of the spatial domain of inter-
est. Examples of spatio-temporal data collected over discrete
domains arise in many research fields; see, for example, Waller
et al. (1997) on disease mapping, Gelfand et al. (1998) on
real estate, Vivar and Ferreira (2009) with an application to
crime data, Hooten and Wikle (2010) on epidemic studies,
Blasques et al. (2016) on financial systemic risk, Paci et al.
(2017) on remote sensing imaging. In settings where both
space and time are discrete, there is a rich literature on spatio-
temporal modeling based on a Gaussian Markov random field
(GMRF) structure (Rue and Held 2005), generally from a
Bayesian perspective. In this framework, spatial random effects
are usually defined through full conditional distributions in
the form of conditionally autoregressive (CAR) specifications
(Waller et al. 1997; Gelfand et al. 1998; Vivar and Ferreira
2009) that enable direct Markov chain Monte Carlo fitting.
Differently, they are assumed to be generated from a stochastic
partial differential equation spatial process (Lindgren, Rue, and
Lindström 2011), constructed as a discretization of a Matèrn
Gaussian field.

In this work, we take an alternative avenue and propose a
novel observation-driven approach to model discrete spatio-
temporal data. The model belongs to the class of score-driven
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models for time-varying parameters, introduced in the con-
text of volatility estimation and originally referred to as gen-
eralized autoregressive score models (GAS; Creal, Koopman,
and Lucas 2013) or dynamic conditional score models (DCS;
Harvey 2013). The key feature of score-driven models is that
the dynamics of time-varying parameters are driven by the
score of the conditional likelihood, taken with respect to the
parameters themselves. In our case, the distribution is Student-
t and the location is the space-time varying parameter. When
the distribution is heavy-tailed, the driving score provides a
more robust update of the space-time varying location since it
has thinner tails compared to the Normal case. In particular,
the smaller the degrees of freedom parameter the more robust
the filter is; conversely, when the degrees of freedom increase
to infinity, the score of the Student-t distribution converges to
that of a Gaussian distribution. With respect to the existing
score-driven models, the one developed in this article can be
interpreted as a spatial extension of the score-driven filter for
signal extraction introduced in the univariate case by Harvey
and Luati (2014) and considered by D’Innocenzo, Luati, and
Mazzocchi (2020) in a purely dynamic and low-dimensional
setting.

The spatial score-driven model developed in this article is
based on the family of spatial autoregressive (SAR) models. SAR
models serve as the workhorse of spatial regression modeling,
particularly in the spatial econometrics literature (Anselin 1988;
LeSage and Pace 2009; Robinson and Rossi 2015). Related to our
analysis, recent examples of SAR models include neuroimag-
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ing (Messé et al. 2015) and extremes of areal data (Fix, Coo-
ley, and Thibaud 2021). With respect to the GMRF approach,
SAR models are well suited to maximum likelihood estimation,
thus offering a natural setting for extending score-driven mod-
els to spatio-temporal data. In particular, we assume that the
score drives the evolution of the signal of a spatially filtered
multivariate dataset with spatially dependent errors. In other
words, we specify a model by using the first-order simulta-
neous autoregressive process with autoregressive disturbances,
in short SARAR(1, 1). The SARAR specification (Kelejian and
Prucha 2010; Lee and Yu 2010; Catania and Billé 2017) is fairly
general since it allows for spatial dependence in the response
variables, in the explanatory variables as well as in the distur-
bances. This makes our method different from the recent works
on score-driven models within the spatial regression setting,
such as Blasques et al. (2016) and Billé, Blasques, and Catania
(2019), who exploited the score-driven framework to update
time-varying weight matrices to account for dyamic volatility
in spatio-temporal models.

The motivating application of the proposed model is the
study of functional magnetic resonance imaging (fMRI) data.
Functional magnetic resonance imaging is a noninvasive tech-
nique that measures the increase in the oxygenation level at
some specific brain regions, as long as an increase in blood
flow occurs, due to some brain activity. The latent signal in the
observed fMRI data is referred to as the blood oxygenation level-
dependent (BOLD) signal, see Lindquist (2008) for a general
introduction to fMRI.

When analyzing fMRI data, major inferential challenges arise
due to their complexity (Guindani and Vannucci 2018). As
a matter of fact, fMRI are recorded as time series, observed
at different brain regions of interests or, on a finer scale, at
different voxels, across individuals. The crucial role of spatial
and temporal dependence in fMRI data is acknowledged by a
large stream of the literature so that spatio-temporal models
have been extensively investigated for the analysis of functional
connectivity in single- and multi-subject studies; see, among
others, Smith and Fahrmeir (2007), Kang et al. (2012), Zhu, Fan,
and Kong (2014), Zhang et al. (2016), and Mejia et al. (2020).

These approaches are mainly designed to deal with the anal-
ysis of task-based experiments, where the data are recorded in
response to some external stimulus and the goal is detecting
those regions that are activated in response to the stimulus.
On the other hand, in the recent years, the interest has been
concentrating toward resting state fMRI (R-fMRI) sessions,
that do not require subjects to perform any specific task. R-
fMRI signals have been shown to relate to the spontaneous
neural activity that refers to brain activity not attributed to
any experimental conditions, neither to other specific inputs,
that is, it represents the neuronal activity that is intrinsically
generated by the brain (Fox and Raichle 2007). This arti-
cle addresses the main challenge associated with the analysis
of R-fMRI data, that is the detection of brain spontaneous
activations.

In a seminal work on detecting activations in task-based
fMRI data, Worsley (2003) referred to an activation as “a local
increase in the effect of the task, with most of the brain unaf-
fected by the task” and observed that the problem of detecting
activations has much in common with outlier detection. The

author assumed temporally correlated Gaussian errors, fitted
a linear regression model separately for each brain region and
then performed spatial smoothing. Turning to R-fMRI data,
Wang et al. (2008) aimed at investigating the existence of spon-
taneous activity in the primary visual areas, yet based on the
assumption that the noise affecting the BOLD signal is Gaussian.
In both cases, spontaneous activations are identified as points
exceeding some threshold, typically twice the estimated stan-
dard deviation. Though often adequate to task-based experi-
ments, the Gaussian assumption may turn out to be restrictive
in R-fMRI data, where, ideally, no exogenous stimulus affects
the underlying signal and the noise dynamics reflect the human
brain resting activity (Fox and Raichle 2007). The results of the
extensive analysis presented by Eklund, Nichols, and Knutsson
(2016) questioned the validity of a large number of fMRI studies
and opened a debate in the field of neuroimaging. According to
the authors, the main cause of invalid results is that fMRI data
do not usually follow the assumed Gaussian shape. With this in
mind, a more flexible modeling framework, encompassing the
Gaussian case, is advocated.

In this article, we move a step forward and develop a
procedure for detecting spontaneous activations based on the
assumption that they correspond to extreme values of a possi-
bly heavy-tailed distribution. The spatio-temporal score-driven
model introduced in the article delivers robust estimates of the
underlying BOLD signal and leaves in the residuals, the one-
step-ahead spatial prediction errors, the information on sponta-
neous activations. A procedure for identifying brain activations
thus rests on the analysis of extreme quantiles in the residuals of
the estimated model.

Summarizing, the main contribution of the article is twofold.
The theoretical contribution consists in the specification of
a spatio-temporal model for analyzing several heavy-tailed
time series that are spatially correlated. The Student-t SAR
score-driven model with explanatory variables and SAR dis-
turbances developed in the article lends itself to a num-
ber of potential applications and nests several models com-
monly applied in the spatial and in the time series litera-
ture, including, among others, the Gaussian SARAR model
of Anselin (1988) and the nonlinear filter of Harvey and
Luati (2014). Likelihood-based theory is developed to pro-
vide model estimation by the method of maximum likeli-
hood. Consistency and asymptotic normality of maximum
likelihood estimators (MLE) are proved for large T (num-
ber of time series observations) and fixed R (number of spa-
tial regions). In a linear Gaussian framework, a similar set-
ting is considered by Yu, de Jong, and Lee (2008), Kornio-
tis (2010) and Gupta and Robinson (2015), where the prop-
erties of MLE and Quasi-MLE (QMLE) for spatial or panel
data are derived for large T and different assumptions on R,
encompassing the case when it is fixed. In contrast with the
aforementioned articles, in our setting, serial dependence is
captured by the space-time location that, due to the Student-
t score-driven updating mechanism, is a nonlinear function
of the past. The asymptotic theory developed in the article
thus extends to spatial models the recent results on maximum
likelihood estimation in nonlinear observation-driven models
derived by Blasques et al. (2020), in the univariate case, and
by D’Innocenzo, Luati, and Mazzocchi (2020), in the dynamic
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location case. A side contribution to large-T asymptotics in
likelihood theory for nonlinear dynamic spatial models is the
analytic expression of the conditional information matrix, avail-
able in closed-form and valid for the specifications nested in
the spatial score-driven model with fixed effects developed in
the article.

On the applied side, we build a model-based procedure for
detecting spontaneous activations in R-fMRI data based on a
robust spatio-temporal score-driven filter. Specifically, activa-
tions are identified as extreme values of (possibly) heavy-tailed
residuals obtained from a robust procedure for signal extraction.
A weighted anatomic distance between brain regions is also
designed to account for the spatial structure of the data. The
model is applied to study multi-subject brain imaging data com-
ing from a pilot study of the Enhanced Nathan Kline Institute-
Rockland Sample project.

The article is organized as follows. In Section 2 we introduce
the spatial score-driven model and discuss its properties. Model
estimation and asymptotic results are provided in Section 3,
together with a summary of an extensive simulation study.
Section 4 illustrates the results of the analysis performed on
the R-fMRI data, with emphasis on the specification of the spa-
tial weight matrix and the identification of brain spontaneous
activations. Section 5 concludes the article and supplementary
materials complement it.

2. Spatial Score-Driven Modeling

2.1. Model Developments

Let yt = (y1,t , . . . , yR,t)� be a R-dimensional vector of time
series observed at time t, t = 1, . . . , T, where T is the length
of each time series and R is the number of spatial regions. The
spatial score-driven model is based on the decomposition of
a spatial autoregressive signal adjusted for fixed effects plus a
spatial autoregressive noise, that is

yt = ρ1W1yt + Xtβ + μt + εt ,

εt = ρ2W2εt + ηt ,
(1)

where ρ1 and ρ2 are the spatial autocorrelation parameters, W1
and W2 are the R×R spatial weight matrices, Xt is an R×(p+1)

matrix containing p nonstochastic, exogenous, regressors and
an intercept, β is a (p + 1)-dimensional vector of unknown
coefficients, μt = (μ1,t , . . . , μR,t)� is the temporal signal, εt =
(ε1,t , . . . , εR,t)� is the vector of spatial (first-order) autoregres-
sive error terms and the noise ηt = (η1,t , . . . , ηR,t)� follows
a multivariate Student-t distribution with ν > 0 degrees of
freedom and diagonal shape matrix � = diag

(
e2λ1 , . . . , e2λR

)
,

that is, ηt
iid∼ tν (0, �).

Equation (1) can be written as

Z1yt = Xtβ + μt + εt ,

Z2εt = ηt ,

where Z1 = IR − ρ1W1 and Z2 = IR − ρ2W2 are spatial
filtering matrices and IR is the R × R identity matrix. Note
that matrices Z1 and Z2 depend on the unknown parameters ρ1

and ρ2, respectively, but they are static, as neither W1, W2 nor
ρ1, ρ2 depend on time. The spatial dependence parameter ρ1
captures the impact of the spatially weighted contemporaneous-
dependent variables W1yt on yt while ρ2 describes the impact of
spatially weighted disturbances W2εt on εt . When the matrices
Z1 and Z2 are invertible, Equation (1) can be written in reduced
form, that is,

yt = Z−1
1 Xtβ + Z−1

1 μt + Z−1
1 εt ,

εt = Z−1
2 ηt .

(2)

Here, we consider spatial weight matrices W1 and W2 that are
row-stochastic, that is,

∑R
j=1 w1,ij = ∑R

j=1 w2,ij = 1 and with
null diagonal elements, that is, w1,ii = w2,ii = 0 for i = 1, . . . , R,
by construction. As such, W1 and W2 are not symmetric but
with all the eigenvalues less than or equal to 1 in modulus.
As a consequence, Z1 and Z2 are nonsingular for all values of
|ρ1| < 1 and |ρ2| < 1, respectively; invertibility of Z1 and
Z2 guarantees the convergence of the von Neumann sum, that
is, the reduced form in Equation (2) is valid. Often, it is set
W1 = W2 = W, see Kelejian and Prucha (2010).

To facilitate the spatial interpretation, we can rewrite the
model by using the infinite series expansion as in LeSage and
Pace (2009), that is,

yt =
∞∑

k=0
(ρ1W1)

kXtβ +
∞∑

k=0
(ρ1W1)

kμt (3)

+
( ∞∑

k=0
(ρ1W1)

k
)( ∞∑

k=0
(ρ2W2)

k
)

ηt .

Equation (3) reveals the simultaneous nature of the spatial
autoregressive process that relates all the locations in the system,
producing the so called global spillover effect (Anselin 2003).
Specifically, if W1 and W2 correspond to first-order neighbors,
then their powers involve higher order neighbors, so that any
region is affected by all the others. However, the powers of the
autoregressive parameters (with |ρ1| < 1, |ρ2| < 1) ensure that
the spillover effect decreases with higher orders of neighbors so
that closer regions are more affected than far ones.

Conditionally on the past information set, Ft−1 =
σ {yt−1, yt−2, . . . }, that is the filtration of the process at time t−1,
we have that Z−1

1 Z−1
2 ηt = yt−Z−1

1 Xtβ−Z−1
1 μt is distributed as

a zero mean Student-t random vector with variance-covariance
matrix equal to � = ν/(ν − 2)Z−1

1 Z−1
2 �

(
Z−1

2
)� (

Z−1
1

)�, for
ν > 2. Assuming that the conditional mean of the data is Ft−1-
measurable, that is, E(yt | Ft−1) := Z−1

1 Xtβ + Z−1
1 μt|t−1, we

may write

yt | Ft−1 ∼ tν
(
Z−1

1 Xtβ + Z−1
1 μt|t−1, (4)

Z−1
1 Z−1

2 �
(
Z−1

2
)� (

Z−1
1

)�)
.

Without specifying any distributional assumption for μt , a
stochastic recurrence equation can be set up to approximate
the path of μt based on the past observations. The subscript
notation t | t − 1 is used to emphasize the fact that μt|t−1 =
E(μt | Ft−1) is an approximation of the dynamic location
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process at time t, which becomes predictable given the past. In
particular, we specify a score-driven filter as follows,

μt+1|t = φμt|t−1 + Kut , (5)

where φ is a temporal autoregressive parameter, K =
diag(κ1, . . . , κR) is a diagonal matrix of coefficients, and

ut = Z2Z1vt/αt , (6)

where vt = yt − Z−1
1 Xtβ − Z−1

1 μt|t−1 is the one-step-ahead
prediction error of the model written in reduced form and

αt = 1 + (
yt − Z−1

1 Xtβ − Z−1
1 μt|t−1

)� Z�
1 Z�

2 �−1Z2Z1(
yt − Z−1

1 Xtβ − Z−1
1 μt|t−1

)
/ν. (7)

The key feature of score-driven models is that the driving force
in the dynamic equation for the time-varying parameter, that is,
ut in Equation (6), is proportional to the score of the conditional
likelihood of the time-varying parameter of interest, that in our
case is the space-time varying signal, μt|t−1. As a matter of fact,

∂ ln f (yt | Ft−1)

∂μt|t−1

= ν + R
ν

Z�
2 �−1Z2Z1

(
yt − Z−1

1 Xtβ − Z−1
1 μt|t−1

)
/αt

= ν + R
ν

Z�
2 �−1 ut

where

f (yt | Ft−1) = �
(

ν+R
2

)
�

(
ν
2
)
(πν)R/2

∣∣∣Z−1
1 Z−1

2 �(Z−1
2 )�(Z−1

1 )�
∣∣∣−1/2

(
1 + (

yt − Z−1
1 Xtβ − Z−1

1 μt|t−1
)� Z�

1 Z�
2 �−1Z2Z1(

yt − Z−1
1 Xtβ − Z−1

1 μt|t−1
)
/ν

)− ν+R
2

(8)

is the density of the conditional Student-t distribution. The
rationale behind the recursion (5) is very intuitive. Analogously
to the Gauss–Newton algorithm, it improves the model fit by
pointing in the direction of the greatest increase of the like-
lihood. A detailed discussion on optimality of score-driven
updates is given by Blasques, Koopman, and Lucas (2015).

We refer to the set of Equations (4)–(7) as the spatial score-
driven model in reduced form. This specification has the follow-
ing implications. The first implication is that ut is a martingale
difference sequence by construction, that is, E(ut|Ft−1) = 0,
which follows by the properties of the score. As such, it plays the
role of the driving force in observation-driven models, where
the dynamics of the time-varying parameters depend on a non-
linear function of past observations. The second implication is
that when ν → ∞, then ut converges to the spatial one-step-
ahead prediction error, Z2Z1vt = Z2Z1yt − Z2Xtβ − Z2μt|t−1,
and both ut and vt will have Gaussian distribution as well as
yt . Hence (i), a linear Gaussian (spatial autoregressive) model is
encompassed by our specification and (ii) when the data come
from a heavy-tailed distribution, then Equation (5) delivers a
robust filter in the sense of Calvet, Czellar, and Ronchetti (2015,
prop. 1). Indeed, the positive factors αt in Equation (6) are scalar
weights that involve the Mahalanobis distance. They possess the

role of downsizing large deviations from the mean incorporated
in the conditional Student-t prediction error vt . In turn, unless
ν → ∞, the driving force ut in Equation (6) has a thin tails
distribution, since it can be written as ut = Z2Z1vt(1−bt) where
bt = 1 − 1/αt is a Beta

(R
2 , ν

2
)

distributed random variable, as

bt = (Z2Z1vt)��−1(Z2Z1vt)/ν

1 + (Z2Z1vt)��−1(Z2Z1vt)/ν
, (9)

see Kotz and Nadarajah (2004, pp. 19) or Harvey (2013, prop.
39). In practice, ut is a winsorized version of Z2Z1vt . As such,
extremes are cut off from ut , and, consequently, from μt|t−1,
while vt conveys the information on extreme values or outliers
affecting the data. The smaller the degrees of freedom parameter
ν, the more robust the filter is, that is, the less sensitive the
space-time varying signal is to outliers, and, with a different
perspective, the more informative the prediction error is about
anomalous observations. The diagonal elements of the matrix K
in Equation (5), that is, the coefficients κr , further regulate the
impact of ut on the filtered signal μt+1|t .

In summary, when the data come from a heavy-tailed dis-
tribution, ut is less sensitive to extreme values than the score
of a Gaussian distribution. Conversely, if the data-generating
process is normal, or, in our setting, if ν → ∞, then the score
of the Student-t distribution converges to that of a Gaussian
distribution. Discarding the spatial components, that is, ρ1 =
ρ2 = 0, while keeping ν → ∞, gives a linear Gaussian signal
plus noise model. Ignoring the dynamics, spatial error models
(SEM) and SAR models with fixed effects are recovered when
ρ1 = 0 or ρ2 = 0, respectively.

2.2. Convergence to the Multivariate Gaussian
Distribution

A relevant issue when moving from the univariate Student-t
distribution to its multivariate counterpart is concerned with the
rate of convergence of the multivariate Student-t to the Gaussian
distribution, as long as the degrees of freedom increase toward
infinity. The following proposition shows that the convergence
rate depends on R, the spatial (or panel or cross section) dimen-
sion: the larger R, the slower the convergence to the Normal.

Proposition 1. The following asymptotic expansion is valid,
when ν → ∞, for f (yt), the R-variate Student-t density with
zero mean, unit scale and ν degrees of freedom,

f (yt) = φ(yt)

(
1 + (y′

tyt)
2 − 2Ry′

tyt + R(R − 2)

4ν
+ O

(
1
ν2

))

where φ(yt) is the multivariate standard normal density.

A related, practical, aspect regards determining, for any fixed
R, a finite value of ν0 such that for ν ≥ ν0 one can refer to the
Normal distribution. It is well known that, in the univariate case,
the value ν0 = 30 is taken as a bound for relying to the Normal
approximation (Fisher 1925). Note that, for R = 1, the above
term in ν−1 collapses to the first term in Fisher’s expansion,
where termwise integration is carried over to measure the size of
the approximation. The proof of the proposition, in Section S1,
shows that the term involving R2/ν comes from the integration
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constant, which actually requires ν ≥ ν0 where ν0 = 30R2 to
reliably approach the Gaussian integration constant. The latter
value encompasses the univariate case, when R = 1 and ν0 =
30. Note, however, that depending on yt , the actual value of
ν for approaching normality may be smaller than ν0, as the
density kernel expansion plays a role as well, see the discussion
in Section S1.1.

3. Maximum Likelihood Estimation

The model specified by Equations (4)–(7) depends on a set of
static parameters, that we collect in a vector θ ∈ �. To set up
the notation, let us sort the elements of the matrices � and K
in the vectors λ and κ = diag{K}, with generic elements λr and
κr , for r = 1, . . . R, respectively. The vector of static parameters
to be estimated is then θ = (

β�, ρ1, ρ2, ν, λ�, φ, κ�)�, with
θ ∈ � ⊂ R

2R+p+5, where β are the p+1 regression coefficients,
ρ1 and ρ2 are the spatial parameters, the pair (ν, λ�)� charac-
terizes the Student-t conditional distribution of yt given the past
and

(
φ, κ�)� are the parameters that determine the dynamic

evolution of the conditional location μt|t−1.
Estimation is carried out by the method of maximum like-

lihood. Once estimated the parameters and fixed an initial
condition for the stochastic recurrence Equation (5), the time-
varying signal of the spatially filtered data can be obtained by
a simple recursion. For inference to be valid asymptotically,
besides the usual regularity conditions typical of maximum
likelihood estimation, it is required that the process that has gen-
erated the observations yt has some stochastic properties such as
stationarity, ergodicity and bounded unconditional moments. It
is also required, for filtering purposes, that the initial conditions
selected for starting the recursion are asymptotically negligible,
that is, the filter is invertible, see Blasques et al. (2018) for
a discussion of invertibility in nonlinear models. In essence,
it is required that the recursion μ̂t|t−1 that corresponds to a
fixed initial value μ1|0 converges exponentially fast almost surely
(e.a.s.) to a unique stationary ergodic sequence {μt|t−1}t∈Z.
Propositions 2 and 3 state the conditions under which these
properties hold in the current setting. Theorems 3.1 and 3.2 then
establish consistency and asymptotic normality of the MLE of θ .
Proofs are reported in the Supplementary materials.

Proposition 2. Let us consider the model specified by Equation
(1) with ||Xt|| < ∞, ηt

iid∼ tν (0, �), ν > 0, |ρ1| < 1,
|ρ2| < 1, and W1 and W2 row-stochastic. Let us assume
that μt+1 = φμt + Kηt/(1 + η�

t �−1ηt/ν), with |φ| < 1
and K positive definite. Then, the sequence {yt}t∈Z is strictly
stationary and ergodic. Moreover, if ||Xt||n < ∞, for n > 0 and
limT→∞ 1

T XT
t Xt exists and is non singular, then E(||yt||n) <

∞, ∀n ≥ ν.

Proposition 3. Let us assume that Proposition 2 holds and,
in addition, that the filter in Equation (5) is contrac-
tive, that is, E(log supθ∈� ‖∏j

k=1 X k−j+1‖) < 0, where
X t = ∂μt+1|t/∂μ�

t|t−1. Then, supθ∈� ‖μ̂t|t−1 − μt|t−1‖ e.a.s.−−→
0 as t → ∞. Furthermore, supt E(supθ∈� ‖μ̂t|t−1‖n) < ∞ and
E(supθ∈� ‖μt|t−1‖n) < ∞.

We now focus on the estimation of θ . Let us denote as �t(θ)

the contribution to the log-likelihood of the tth observation yt
based on the stationary solution μt|t−1, that is, the logarithm of
the conditional density in Equation (8) as a function of θ and,
for the whole sample, �T(θ) = ∑T

t=1 �t(θ). Let us define the
empirical likelihood �̂t(θ) as the logarithm of the conditional
density in Equation (8) evaluated at μ̂t|t−1 and, analogously,
�̂T(θ) = ∑T

t=1 �̂t(θ). The maximum likelihood estimator of θ

is then θ̂T = arg maxθ∈� �̂T(θ). Note that invertibility of the
filter (Proposition 3) ensures that no matter the specific value
of μ1|0, the likelihood �t(θ) is uniquely approximated by �̂t(θ).
We also assume that the model is correctly specified in that
μt|t−1 = μt|t−1(θ0) where θ0 is the true parameter value.

Theorem 3.1. Let us consider the model specified by Equations
(4)–(7) with W1 and W2 row-stochastic, |φ| < 1, |ρ1| < 1,
|ρ2| < 1, ν > 0, κr > 0, r = 1, . . . , R. Let Propositions 2 and
3 hold. In addition, let us assume that the true parameter vector
θ0 lies in the interior of the compact space � and that ∀θ ∈ �,
if θ �= θ0, then μt|t−1(θ) �= μt|t−1(θ0) almost surely ∀t ≥ 1.
Then θ̂T →a.s. θ0

Theorem 3.2. Let us assume that the conditions of Theorem 3.1
hold. In addition, let E[‖X t ⊗ X t‖] < 1. Then,

√
T(θ̂T −

θ0) ⇒ N (0,I(θ0)
−1), where I(θ0) = E[It(θ)] and It(θ) is

the conditional information matrix reported in Section S6.

Consistency (Theorem 3.1) and asymptotic normality (The-
orem 3.2) are proved for large T and fixed R, thus extending
to spatial models the recent results on maximum likelihood
estimation in nonlinear observation-driven models derived
by Blasques et al. (2020), in the univariate case, and by
D’Innocenzo, Luati, and Mazzocchi (2020), in the dynamic
location case (ρ1 = 0, ρ2 = 0 without fixed effects). In
non Gaussian dynamic models, the closed-form expression of
the Fisher information matrix is typically prohibitive, see, for
instance, Fiorentini, Sentana, and Calzolari (2003). Inference
on θ0 can be carried out based on the conditional informa-
tion matrix, available in analytic form (see Section S6 and the
discussion therein). On the other hand, in Gaussian models,
the conditional information matrix coincides with the Fisher
information matrix. Indeed, for ν → ∞, the recursions that
lead to the conditional information matrix of the spatial score-
driven model collapse to the formulae for the Fisher information
matrix derived by Anselin (1988, pp. 64–65) in the Gaussian
SARAR model (ν → ∞, φ = 0, K = 0).

In practice, we compute the maximum likelihood estimates
via numerical optimization techniques that are suitable for non-
linear functions. In particular, we use the R function nlminb.
The associated R code is also available as supplementary
materials.

3.1. Simulation Study

An extensive simulation study is carried out to assess (a) the
finite sample properties of the MLE, (b) the impact of different
exogenous variables, (c) the effects of potential misspecification.
All the details of the simulation design, composed of a total of



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1071

26 different scenarios, are deferred to Section S7, along with a
discussion of the results. In synthesis, we may summarize the
results as follows: (a) the true values of φ, ρ1, ρ2, and λ are always
very well recovered, while the degrees of freedom parameter
is typically slightly underestimated. Conversely, the estimates
of κ are sometimes moderately overestimated, with increasing
precision as ν increases; (b) adding exogenous variables does not
alter the estimation results, including the case when they mimic
external stimuli, typical of task-based fMRI analysis. Finally, (c)
if a misspecified Student-t spatial score-driven model is fitted to
Gaussian data, then the average estimated degrees of freedom
parameter results of the order of 105, with a median value ν̂ =
4, 834, in line with the results of Proposition 1.

4. Analysis of Resting State fMRI Data

4.1. Data Description

The motivating dataset we analyze comes from a pilot study
of the Enhanced Nathan Kline Institute-Rockland Sample
project. This project aims at providing a large scale sample
of publicly available multimodal neuroimaging data and psy-
chological information to support researchers in the goal of
understanding the mechanisms underlying the complex brain
system; a detailed description of the project can be found
at http://fcon_1000.projects.nitrc.org/indi/enhanced/. Our study
comprises brain imaging data and subject-specific covariates
for 16 subjects. Data are collected at 70 brain regions defined
according to the anatomical parcellation based on the Desikan
atlas (Desikan et al. 2006). For each region of interest (ROI), we
have information on the 3D coordinates of its centroids, whether
it belongs to the left or right hemisphere, and its anatomical lobe
membership.

The dynamic functional activity is expressed as the noisy
BOLD signal obtained during R-fMRI sessions. The data are
recorded when the subject is not performing an explicit task
during the imaging session while he/she is simply asked to stay
awake with eyes open. The raw R-fMRI scans are preprocessed
to derive the time series data for each brain region using the
C-PAC software (https://fcp-indi.github.io/). Thus, for each sub-
ject, data are collected at 70 ROIs over 404 equally spaced time
steps.

For each subject, the structural brain network made by white
matter fibers connecting each pair of ROIs is also available.
The white matter fibers are derived by diffusion tensor imag-
ing (DTI) that maps the diffusion of water molecules across
the biological brain tissues. The available structural network is
obtained as the output of the pipeline ndmg described at http://
m2g.io and consists of a 70 × 70 symmetric adjacency matrix
measuring the total number of white matter fibers connecting
each pair of brain regions in each subject. Such matrix is usually
employed as an index of structural connectivity (Messé et al.
2015), that refers to how different brain regions are indeed
physically connected.

Finally, personal information such as psychological disor-
der diagnosis, age, gender, and handedness are also collected
for each subject. We take subject 6 and subject 13 as illus-
trative examples. Both subjects are under 25 years old and

right-handed, but subject 6 suffers from major depressive dis-
order and abuse of cannabis, while subject 13 is healthy.

4.2. Weighted Anatomic Distance Matrix

A key ingredient required by our spatio-temporal model is
the definition of a neighborhood structure among the brain
regions. In the neuroimaging literature, specifying a spatial dis-
tance is not straightforward. Bowman (2007) discussed different
measures of distance in the brain. One natural metric is the
geometric or Euclidean distance, that measures the physical
separation between two brain regions. Decreasing similarity
between ROIs is expected with increasing geometric distance,
that is, brain regions located close to each other tend to be
functionally connected (Alexander-Bloch et al. 2013). However,
as pointed out by Bowman (2007), the geometric distance fails
to account for high correlations that may exist between far
apart ROIs. Rather, long range interactions may depend on the
number of structural connections of the brain regions (Tewarie
et al. 2014). Thus, the second metric is provided by the anatomic
distance, quantifying anatomic links connecting different brain
locations. White matter bundles link cortical areas within the
same hemisphere and areas in separate hemispheres, as well as
areas in the cerebral cortex to various subcortical structures.
Hence, white matter connections directly link brain structures
that result to be anatomically close, even though geometrically
distant.

In this work, the spatial neighborhood structure, assumed
to be the same for the variables and the disturbances, that is,
W1 = W2 = W (see Section 2), is built by taking into account
both the geometric distance between pairs of ROIs and their
anatomic distance based on white matter count. Specifically, let
D be the symmetric matrix based on 3D Euclidean distance
between the centroids of the ROIs, whose generic element is
denoted as dij, for i, j = 1, . . . , R. Let F be the matrix containing
the white matter fiber counts between ROIs i and j based on
DTI, whose generic element is fij. We define spatial weights that
are directly proportional to the number of white fibers fij and
inversely proportional to the Euclidean distance dij, that is

wij ∝ fijd−1
ij∑R

i,j=1 fijd−1
ij

. (10)

Although F and D have different scales, the corresponding W is
a scale free matrix by construction and as a by-product of the
fact that it is row-stochastic.

To visualize how the spatial weight matrix W in Equation
(10) keeps into account the geometric and anatomic distance,
Figure 1 reports the matrices F, D, W for one of the subjects ana-
lyzed, labeled as subject 6. The left panel reports the fiber count
matrix F, the central panel shows the Euclidean distances matrix
D while, in the right panel, the spatial matrix W is represented.
We observe that the weight matrix is sparse. Such sparsity is
mainly inherited from the white fiber matrix F. Indeed, for
subject 6, we record 61% null connections, that is, white fiber
count equal to zero.

We also note that higher weights are associated with ROIs
belonging to the same hemisphere (the two main blocks of the
matrix). However, since the matrix F is not symmetric with

http://fcon_1000.projects.nitrc.org/ indi/enhanced/
https://fcp-indi.github.io/
http://m2g.io
http://m2g.io
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Figure 1. Left panel: representation of fiber count matrix (F) for subject 6. Middle panel: Euclidean distance among ROIs matrix (D), equal for all subjects. Right panel: spatial
matrix (W) for subject 6 given as a weighted combination of F and D.

Table 1. Estimates of the scalar static parameters of the model for all subjects. Asymptotic standard errors are reported in brackets.

subjects

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

φ̂ 0.815 0.701 0.699 0.738 0.810 0.828 0.789 0.799 0.787 0.743 0.852 0.709 0.803 0.849 0.650 0.786
(0.006) (0.006) (0.008) (0.005) (0.004) (0.004) (0.005) (0.004) (0.004) (0.006) (0.003) (0.005) (0.004) (0.006) (0.006) (0.004)

ρ̂1 0.710 0.753 0.658 0.784 0.765 0.731 0.797 0.772 0.779 0.783 0.826 0.772 0.661 0.672 0.785 0.784
(0.009) (0.004) (0.006) (0.007) (0.003) (0.003) (0.004) (0.004) (0.005) (0.005) (0.005) (0.003) (0.004) (0.008) (0.003) (0.004)

β̂0 0.006 0.006 0.004 0.023 0.017 −0.013 0.011 0.013 −0.002 0.013 −0.054 0.012 −0.002 0.009 −0.001 0.009
(0.110) (0.067) (0.075) (0.089) (0.114) (0.116) (0.101) (0.110) (0.104) (0.101) (0.170) (0.117) (0.154) (0.094) (0.108) (0.111)

ν̂ 82.216 142.204 292.837 41.782 69.645 36.485 149.722 60.648 56.911 62.087 15.874 93.069 108.711 176.853 195.265 46.044
(17.650) (14.940) (69.336) (6.888) (6.668) (3.081) (16.234) (4.533) (5.647) (7.394) (2.196) (6.760) (8.565) (49.160) (18.418) (4.994)

respect to the left and right hemisphere, the spatial matrix W
may assign different weights to the same pair of regions located
in opposite hemispheres; as an instance, for subject 6, the nor-
malized weight associated with pair ROIs precentral and
postcentral located in the left hemisphere is 0.116, while
the weight corresponding to these two regions located in the
right hemisphere is 0.102. Same considerations also hold for
weights associated with cross-hemisphere regions.

Finally, for each subject, we employ an individual network
of the entire brain, that is, the weight matrix W is subject-
specific. This potentially allows us to compare individuals or
groups, such as healthy subjects versus subjects with clinical
conditions. For instance, we record different distributions of the
non null connections between subjects 6 and 13, with mean
white fiber count equal to 3375 (IQR 4101) and 2250.7 (IQR
3043.25), respectively. We account for such differences by the
subject-specific matrix W.

4.3. Estimation Results

As a preliminary step, we tested the null hypothesis of multivari-
ate normality on each subject. The results of the tests and addi-
tional exploratory analysis, reported and discussed in Section
S8.1, lead us to conclude that the assumption of multinormality
would not be appropriate for the data at hand.

Our analysis proceeds with the estimation of model parame-
ters. We illustrate the results on subjects 6 and 13, for which the
estimates of the spatial parameter ρ2 were significant at the level
of 5% and equal to −0.1. A more parsimonious specification
without the spatial autoregressive disturbance component has

also been fitted (SAR score-driven model), which gave equiva-
lent results in terms of estimated parameter values, likelihood
and information criteria. For these reasons, the SAR score-
driven specification has been preferred. The model comes with
no fixed effects.

The estimates of scalar parameters are reported in Table 1 for
all subjects, with asymptotic standard errors computed based on
the analytic conditional information matrix reported in Section
S6. We note that all subjects show high temporal persistence,
with all φ̂’s around 0.8, as well as high spatial dependence, with
ρ̂1’s ranging from 0.66 to 0.84. The intercept β̂0 is basically zero
for all subjects, as expected. In Section 2.2 we argued that the
convergence of the multivariate Student-t distribution to the
Normal distribution depends on the size of the multivariate
space R; here, with R = 70, Table 1 confirms that a multi-
variate Normal assumption would be not appropriate for all
subjects. The estimates of the vector parameters exp{λ} and κ

are reported for subjects 6 and 13 in Figure 2 and Figure 3,
respectively; the estimates are displayed for each ROI, according
to the Desikan atlas. The brain maps of the corresponding
standard errors are reported in the Supplementary materials
along with diagnostics checks and further discussions.

4.4. Detecting Spontaneous Activations

A procedure for detecting spontaneous activations is developed,
based on the assumption that they correspond to extreme values
of a possibly heavy-tailed distribution, as follows. Let Ẑ1v̂t be
the spatial prediction error estimate from the SAR score-driven
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Figure 2. Estimates of vector exp{λ} for subject 6 (left panel) and subject 13 (right panel).

Figure 3. Estimates of vector κ for subject 6 (left panel) and subject 13 (right panel).

Figure 4. Left panel: R-fMRI times series and spontaneous activations (dots) detected in ROIlh-parahippocampal (left hemisphere, parahippocampal). Right panel:
corresponding residuals and outliers (dots). Top panels: subject 6. Bottom panels: subject 13.
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Figure 5. Spontaneous activations detected for subject 6 (top) and 13 (bottom) over time (x-axis) for all ROIs (y-axis); above the black line we record the ROI in the right
hemisphere, while below the black line we record the ROIs in the left hemisphere.

model and ût be its winsorized version. If the data were actually
generated by a Gaussian distribution, then Z1vt = ut (both
Gaussian), with ht = Z1vt −ut being the null vector. One would
then identify spontaneous activations like in Wang et al. (2008),
as extreme quantiles of the Gaussian residuals Ẑ1v̂t . If, on the
other hand, the data are generated by a heavy-tailed Student-
t distribution, then Z1vt �= ut (heavy-tailed and thin-tailed,
respectively, see Section 2) and ht = Z1vt − ut = btZ1vt ,
where bt ∈ (0, 1) is defined in Equation (9). Recall that ut is
a winsorized version of Z1vt , tuned by the value of the degrees
of freedom parameter (if ν → ∞ then ut = Z1vt). The diagonal
matrix K further regulates the range of ut and, consequently,
the distance between Z1vt and ut , as well as the robustness of

the resulting filtered signal, yet ensuring that the each estimated
residual Ẑ1v̂t is an upper bound for the corresponding scores
K̂ût .

Thus, the procedure for identifying brain activations in R-
fMRI data rests on the comparison between the estimated
residuals Ẑ1v̂t and K̂ût . We choose to identify, as spontaneous
activations, those values of Ẑ1v̂t that exceed the

(
1 − α

2R
)
%

quantile of K̃ût , where κ̃r = max{κ̂r , 1}, r = 1, . . . , R, which
reduces to the analysis of the quantile of Ẑ1v̂t in the Gaussian
case. The Bonferroni correction is applied to control the false-
positive rate of R multiple comparisons at each time t. The
conservative choice of max{κ̂r , 1} mitigates the effect of the
degrees of freedom parameter; indeed, Figure 3 shows that the
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Figure 6. Dice similarity index computed across activations recorded over time for subject 6 (left panel) and subject 13 (right panel).

estimated values of κ for subject 6 (left panel) are much higher
than those for subject 13 (right panel), opposite to the estimated
degrees of freedom parameters, equal to ν̂ = 36.49 and ν̂ =
108.71, respectively. Note that, in principle, one can decide how
to choose and correct the quantile of the robust or nonrobust
residuals; the relevant point is to fit the most appropriate model
to the data at hand.

Figure 4 illustrates an example of spontaneous activations
detected for ROI lh-parahippocampal for the two sub-
jects at α = 0.05. The left panels show the original R-fMRI
time series with potential anomalies highlighted with dots. Such
values are identified as the residuals Ẑ1v̂t , displayed in the right
panels, that exceed the quantile-based threshold. The figure
shows how the strategy for detecting spontaneous activations
based on the residuals of the fitted model applies in practice:
the detected anomalies could not have been identified from the
raw time series. In the top row of the figure, we display subject
6, while in the bottom we focus on subject 13. We note that, at
the fixed ROI, the estimated spatial prediction error Ẑ1v̂t (black
line) and its winsorized version K̂ût (green line) are closer in
subject 13 than in subject 6. Indeed, we recall that the estimates
of ν are 36.49 and 108.71 for subjects 6 and 13, respectively (see
Section 4.3).

Spontaneous activations detected for all ROIs are summa-
rized in Figure 5 for subjects 6 (top panel) and 13 (bottom
panel). The solid black lines distinguish the ROIs of the left
and right hemispheres, that is, spontaneous activations of ROIs
in the right hemisphere are above the line, while the ones in
the left hemisphere are below the line. Overall, we see that less
activations are recorded for the healthy subject 13. Moreover, the
figure shows that, at given time steps, spontaneous activations
are detected for most of the ROIs (see for instance at time 350
in the bottom panel). With a different viewpoint, we note that
few ROIs keep being activated during the observational time
frame (see for example ROI lh-frontalpole). In order
to facilitate the interpretation, videos that provide a dynamic
spatial view of the activations are included as supplementary
materials.

To conclude, we compute the Dice index (Dice 1945) among
the detected spontaneous activations. The index is a measure of
similarity between binary elements, that is, it provides an empir-
ical measure of spontaneous co-activations between ROIs (Liu
et al. 2018). The index ranges between 0 and 1; the higher the
index between two activations series (two rows of the matrices
represented in Figure 5), the more similar the two ROIs with
respect to the spontaneous activations are. We report the Dice
index computed for subjects 6 and 13 in Figure 6. We observe
that the index is low in general for both subjects, as it is on
average 0.14 (sd 0.10) for subject 6 and 0.05 (sd 0.09) for subject
13. The computation of the Dice index was also exploited by
Gasperoni and Luati (2018) after having fitted a robust time
series model, independently at each ROI. It is interesting to
highlight that the average Dice index for a specific subject is
slightly lower in the spatio-temporal framework with respect to
the univariate setting (mean Dice index equal to 0.16 (sd 0.12)
for subject 6 and 0.07 (sd 0.12) for subject 13). This change is
expected since the current model adjusts for the spatial structure
of BOLD signals. Figure 6 also reveals that higher values of the
index are associated with the same pair of ROIs belonging to
opposite hemispheres, represented by the darker diagonals in
the top-left and bottom-right blocks of the matrices.

5. Discussion

A robust spatio-temporal model has been developed to analyze
areal data collected over time and coming from a possibly heavy-
tailed distribution. The basic assumption was that of a condi-
tional Student-t distribution for the data generating process,
that relaxed the widely adopted, yet questioned, assumption of
normality. One point of strength of the model consists in its flex-
ibility, as the multivariate normal distribution is encompassed
as a special case when the degrees of freedom parameter tends
to infinity. We observed that convergence to the multivariate
normal distribution may become slower as long as the number
of analyzed time series increases. In practice, for R = 70, fitting
a misspecified Student-t model on Gaussian data resulted in an
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average value of the estimated degrees of freedom parameter
of the order of 105 (median nearly at R2), thus dispelling the
possibility of carrying over misspecified inference based on the
Student-t spatial score-driven model.

On a theoretical viewpoint, the stochastic properties of the
model, such as stationarity and invertibility, and the inferen-
tial properties of maximum likelihood estimators, that is, con-
sistency and asymptotic normality, have been derived, for a
fixed spatial and a diverging temporal dimension. The analytic
expression of the conditional information matrix is also pro-
vided. The main technical difficulties, also in view of possible
extensions to spatial asymptotic theory, as in Yu, de Jong, and
Lee (2008), Lee and Yu (2010) and Robinson and Rossi (2015),
are related to the nonlinearity of the model, coming from the
score, and eventually implying the robustness of the resulting
filter.

On the applied side, besides going beyond the normality
assumption, the novelty brought by the multimodal model in
the R-fMRI literature concerned (i) the construction of a spatial
weight matrix based on the combination of different metrics
and (ii) the detection of spontaneous activations based on the
residuals of a robust signal extraction. As far as (i) is con-
cerned, by including information from DTI data (white fiber
counts) in the definition of the weight matrix has allowed us
to exploit a subject-specific measure of structural connectivity.
More sophisticated measures of structural connectivity can be
further exploited, for instance by accounting for geometric fea-
tures of fiber curves (Zhang, Descoteaux, and Dunson 2019).
Regarding (ii), the flexible model-based approach developed in
the article opens the way to a different paradigm for detecting
spontaneous activations in R-fMRI data. In addition, the inclu-
sion of explanatory variables makes the model fully applicable
also to fMRI data recorded in task-based experiments.
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