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The aim of the present paper is to provide optimal allocations for comparative clinical trials with sur-
vival outcomes. The suggested targets are derived adopting a compound optimization strategy based on a
subjective weighting of the relative importance of inferential demands and ethical concerns. The ensuing
compound optimal targets are continuous functions of the treatment effects, so we provide the conditions
under which they can be approached by standard response-adaptive randomization procedures, also guaran-
teeing the applicability of the classical asymptotic inference. The operating characteristics of the suggested
methodology are verified both theoretically and by simulation, including the robustness to model misspeci-
fication. With respect to the other available proposals, our strategy always assigns more patients to the best
treatment without compromising inference, taking into account estimation efficiency and power as well. We
illustrate our procedure by redesigning two real oncological trials.

Key words: Censoring; Ethics; Hypothesis testing; Oncological trials; Response-Adaptive Ran-
domization.

1 Introduction

In the biomedical and pharmaceutical research for treatment comparisons, randomized trials are commonly
considered to be the gold standard. Indeed, a randomization component in the assignments tends to mitigate
several types of bias, including the accidental bias due to unknown covariates/confounders and the selection
bias induced by the investigators. Moreover, another important issue in clinical trials is the ethical conflict
between the care for the well-being of the subjects involved in the trial and the rigorous pursuit of further
knowledge (Royall, 1991).

The competing ethical and inferential goals can be analytically characterized into suitable optimization
problems allowing to derive target allocations which may act as a legitimate compromise (see, e.g., Rosen-
berger et al., 2001; Biswas et al., 2007; Biswas and Bhattacharya, 2009; Baldi Antognini and Giovagnoli,
2010). In general, they depend on the unknown model parameters and can be targeted by appropriate
Response-Adaptive Randomization (RAR) procedures (see, e.g., Hu and Rosenberger, 2006; Baldi An-
tognini and Giovagnoli, 2015), namely a class of sequential allocation rules which at each step change the
probabilities of the treatment assignments on the basis of the accumulating information, with the aim of
skewing allocations toward the superior treatment.

In oncological phase III comparative trials, the primary endpoint is usually to evaluate the efficacy of
an experimental treatment against a control one in terms of survival. These studies commonly rely on a
1:1 randomization without particular attention of patients’ care, i.e., characterized by a low ethical concern
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since any patient has the same probability of being assigned to each treatment despite the accumulating in-
formation. Furthermore, they have to span over a long period in order to observe the time-to-event response
variable which is by definition delayed (i.e., not instantaneously observable). Early theoretical attempts to
apply RAR procedures to time-to-event endpoints date back to the mid 1990s (Yao and Wei, 1996; Hall-
strom et al., 1996; Rosenberger and Seshaiyer, 1997). By the use of non-parametric test statistics, they
mapped the treatment effects to the unit interval in order to skew the allocation probabilities towards the
arm displaying longer survival. Their results highlighted increased ethics without compromising the sta-
tistical power. Unfortunately, the inferential properties of these early proposals were far from optimal.
More recently, Zhang and Rosenberger (2007) proposed a parametric approach to modelling the survival
allowing to analytically derive optimal targets to be attained by means of RAR procedures. Their results
highlighted a power increase with respect to the usual 1:1 randomization along with a higher proportion
of patients assigned to the better treatment. Biswas and Mandal (2004); Sverdlov et al. (2011) further
extended the range of practical applications, also by taking into account multiple arm trials; their extensive
simulation study shows results analogous to the two-arm’s ones.

The present work aims at deriving an optimal target able to increase the ethical gain in trials with time-
to-event responses. In particular, we propose a combined optimization approach that, by using either fixed
or flexible weights (governing the relative importance of ethics wrt inference), leads to an optimal target
allocation depending on the unknown treatment effects. The properties of the suggested target allocation
have been theoretically studied, also providing the conditions for the applicability of RAR methods as well
as of the standard asymptotic inference. Simulated results along with a redesign of two real clinical trials
have been employed to highlight the ethical gain induced by our proposal, which may help practitioners
in the planning phase. R software was used to obtain the numerical results and to carry out the simula-
tions; the source code to reproduce them is available as Supporting Information on the journal’s web page
(http://onlinelibrary.wiley.com/doi/xxx/suppinfo).

In Section 2 the notation and the model are introduced along with the optimal targets for both ethics and
inference. Section 3 contains the theoretical results on the compound optimal target, whereas Section 4
generalizes the previous results by taking into account right censoring. Section 5 illustrates the analytical
properties of our procedure, while the operating characteristics of the newly introduced target are investi-
gated by an extensive simulation study in Section 6, including type-I error control and robustness to model
misspecifications. In Section 7 our methodology is used to redesign two real oncological trials. Some
practical recommendations end the paper.

2 Notation and model

Let A and B be two competing treatments. Suppose that subjects enter the trial sequentially and at each
step only one treatment will be assigned according to a given randomization rule. At each step i ≥ 1, let
δi be the indicator managing the allocation of the ith subject, with δi = 1 if he/she is assigned to A and 0
otherwise. Given the treatment assignments, patient’s responses (i.e., survival times) Y s relative to either
treatment are assumed to be independent and identically distributed (iid) belonging to the exponential
distribution with pdf f(y; θj) = θ−1j exp(−y/θj), where θj ∈ R+ denotes the effect of treatment j (j =

A,B). In this setting, the treatment outcomes are stochastically ordered on the basis of their effects and
without loss of generality we assume that high responses are preferable for patient’s care. As is well-
known, the exponential distribution is one of the most commonly used model in the context of survival
analysis, since the hazard rates θ−1A and θ−1B are constant over time. Now we start our exposition with this
simple setup, that will be later generalized by taking into account censoring.

At the end of the trial with n subjects, let NAn =
∑n
i=1 δi and NBn = n−NAn be the assignments to

both treatments, so that ρ = n−1NAn is the allocation proportion to A (respectively, 1 − ρ to B). Then,
the MLEs of the treatment effects coincide with the sample means, namely θ̂An = N−1An

∑n
i=1 δiYi and

θ̂Bn = N−1Bn
∑n
i=1(1− δi)Yi.
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2.1 Optimal allocation for inference

Assuming that the inferential interest consists in estimating/testing the superiority of a given treatment
(say A) with respect to the gold standard (B), the parameter of interest is the difference θA − θB between
the treatment effects or, alternatively, their ratio γ = θA/θB , while θB is usually regarded as a nuisance.
When the aim consists in optimal estimation, typically the goal is to minimize the variance of the estimated
treatment difference

V (θ̂An − θ̂Bn | ρ) = n−1
{
θ2A
ρ

+
θ2B

1− ρ

}
. (1)

As is well-known, for every sample size n the variance in (1) is minimized by the Neyman allocation
ρN = θA/(θA + θB).

Remark 2.1 Notice that ρN = ρN (γ) = γ/(γ + 1) and thus ρN (γ) = 1 − ρN (γ−1) for every
γ ∈ R+. Namely, by expressing ρN in terms of the ratio γ between the treatment effects, it induces a
symmetric structure of the target around the point ρN (1) = 1/2. Therefore, contrary to the binary case,
under this setting the Neyman allocation is ethical, since it always assigns the majority of patients to the
best treatment.

Moreover, by minimizing (1), ρN is also optimal for hypothesis testing, since it maximizes the power of
the usual t-test employed for testing H0 : θA = θB against H1 : θA > θB . Indeed, due to the asymptotic
normality of the classical Wald statistic

Wn =

√
n(θ̂An − θ̂Bn)√
θ̂2An
ρ +

θ̂2Bn
1−ρ

,

the power of the test of level α can be approximated by Φ

√n(θA−θB)√
θ2
A
ρ +

θ2
B

1−ρ

− z1−α

 for θA − θB ≥ 0, i.e.,

Φ

(√
n(γ − 1)

√
ρ(1− ρ)√

ρ(1− γ2) + γ2
− z1−α

)
, γ ≥ 1, (2)

where Φ denotes the cdf of the standard normal r.v. and zα is the α-percentile of Φ. For every n, ρN
maximizes power (2) and the same conclusion still holds even for the two-sided alternative H1 : θA 6= θB ,
where the power is an increasing function of the non-centrality parameter n(θA− θB)2/[θ2Aρ

−1 + θ2B(1−
ρ)−1] of a non-central chi-square distribution with 1 degree of freedom.

Since V (θ̂An − θ̂Bn | ρN ) = n−1(θA + θB)2 ≤ V (θ̂An − θ̂Bn | ρ), from now on we can use

CI(ρ) =
V (θ̂An − θ̂Bn | ρN )

V (θ̂An − θ̂Bn | ρ)
=

(θA + θB)2

θ2A
ρ +

θ2B
1−ρ

=
(γ + 1)2ρ(1− ρ)

ρ(1− γ2) + γ2
∈ [0; 1] (3)

as a criterion of inferential efficiency that should be maximized.

2.2 Ethically optimal target

Dealing with design criteria aimed at measuring the ethical cost of the clinical trial, one of the most popular
is the proportion of patients receiving the best treatment, namely

CE(ρ) = ρI{γ>1} + (1− ρ)I{γ<1} =

{
ρ, if γ > 1,

1− ρ, if γ < 1,
(4)

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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where IQ denotes the indicator function of the event Q. The ethical efficiency CE(ρ) ∈ [0; 1] is a linear
function of the allocation proportion ρ (increasing or decreasing on the basis of the superiority/inferiority of
A wrtB) and is clearly maximized by assigning all subjects to the best treatment, namely by ρE = I{γ>1},
under which CE achieves its optimum value equal to 1. Contrary to CI(ρ) in (3), criterion CE(ρ) depends
only on the sign of γ − 1, but it does not depend on the magnitude of γ. Moreover, if γ = 1 there is no
longer a best treatment and therefore every allocation could be considered as ethically equivalent.

Remark 2.2 Within this setting, another possible ethical measure to be maximized is the total expected
outcomes, i.e., C̃E(ρ) = ρθA + (1 − ρ)θB . However, provided that γ 6= 1, C̃E(ρ) is simply a re-scaled
version of CE(ρ), namely it provides the same information in the scale [min{θA, θB}; max{θA, θB}] =
θB [min{γ, 1}; max{γ, 1}] instead of [0; 1]. For these reasons, from now on CE(ρ) in (4) will be used as
the ethical criterion to be maximized.

3 Compound Optimality

Ideally, we would simultaneously maximize both the inferential efficiency and the ethical one. However, CI
competes directly with CE and the problem is how to achieve a good trade-off between inferential goals and
ethical demands. In this setting a natural solution consists in assuming a compound optimization approach,
namely by formalizing a compound criterion that combines the competing objectives with suitable weights.
Since CI and CE are efficiency measures (i.e., these criteria are non-negative functions, lying in [0;1], that
should be maximized), a natural compromise consists in taking the following combination

Cω(ρ) = ωCE(ρ) + (1− ω) CI(ρ), (5)

as the compromise criterion to be maximized, where ω ∈ [0; 1] represents the relative importance of ethics
wrt inference. Clearly, the ethical weight can be selected by the investigator according to the relative
importance of CE and CI in the actual clinical trial. The choice ω = 0 indicates complete concern about
inference (so the resulting optimal target coincides with ρN ), while a weight of ω = 1 indicates that ethics
is the only goal (leading to ρE). Besides a fixed constant, ω could also be chosen according to the values of
γ, due to the fact that more attention must be paid to ethics when the treatment effects differ significantly,
while inferential care could be crucial when θA is close to θB , since it is harder to discriminate between the
two treatments (in such a case the ethical cost is quite low). So, we shall assume ω = ω(γ) : R+ → [0; 1]
to be a continuous function such that:

i) ω(γ) = ω(γ−1) for every γ ∈ R+, in order to deal with the treatments symmetrically;

ii) ω(1) = 0 and ω increasing in γ for γ > 1 for ethical reasons.

For instance, by modifying the cdf of the standard log-normal distribution, we could assume

ωa(γ) =

{
2Φ(ln(γ−a))− 1, if 0 < γ < 1,

2Φ(ln(γa))− 1, if γ ≥ 1,
(6)

where a ≥ 1 is a tuning parameter managing the ethical skew. Weighting functions ωa in (6) are plotted in
Figure 1 for a = 1, 2, 3 and 4.

Remark 3.1 Clearly, additional weighting functions can be constructed by opportunely modifying the
cdf of any log-symmetric distribution (Seshadri, 1965; Jones, 2008). Moreover, since in the clinical prac-
tice small differences between the treatment effects are often assumed to be negligible up to a given thresh-
old, usually called the minimal clinically relevant effect, weight (6) could be extended accordingly.

Since Cω(ρ) is differentiable wrt ρ, the compound optimal target ρ∗ω = arg max Cω(ρ) can be easily
found by (5) via simple algebra.

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Figure 1 Log-Normal weighting function ωa(γ) as a varies.

Theorem 3.2 For any choice of the weight ω, the optimal compound target ρ∗ω ∈ [0; 1] is unique. If
ω ≥ [1+(1−max{ρN ; 1−ρN})2]−1, then ρ∗ω = ρE; otherwise, if ω < [1+(1−max{ρN ; 1−ρN})2]−1,

ρ∗ω =
ρ2Nβ + γ

√
1 + β(2ρN − 1)

1 + β(2ρN − 1) + γ
√

1 + β(2ρN − 1)
, (7)

where β = [ω/(1− ω)]sgn(γ − 1). Moreover,

P1: ρ∗ω always assigns more subjects to the best treatment wrt ρN ,

P2: by choosing ω < 4/5, then ρ∗ω ∈ (0; 1),

P3: ρ∗ω is monotonically increasing in ω,

P4: by choosing ω/(1− ω) < 4/
√

3 (i.e., ω < 0.698), then ρ∗ω is monotonically increasing in γ.

P r o o f. See the Appendix.

The suggested compound optimal target is a continuous function of the unknown model parameters and
therefore it is a priori unknown. However, from property P2, this allocation can be approached asymptot-
ically by using suitable RAR procedures - like, e.g., the Doubly-Adaptive Biased Coin Design (DBCD)
(see Hu and Zhang, 2004) - namely sequential allocation rules that change at each step the probabilities
of treatment assignments on the basis of the accrued information (i.e., the available responses and past
allocations), in order to converge to the chosen target. After a starting sample of subjects assigned to either
treatment, at each step the treatment effects are estimated by MLEs and therefore γ and ρ∗ω are estimated
accordingly. Thus, the next assignment is forced to approach the target increasingly as the distance between
the current allocation proportion and the estimated target grows.

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Remark 3.3 Although the optimal target in (7) is not twice-differentiable, which implies that the treat-
ment allocation proportion of the DBCD is not asymptotically normally distributed, ρ∗ω is a continuous
function of the unknown parameters, which guarantees - together with P2 - the applicability of standard
RAR methodology, as well as the classical likelihood-based asymptotic inference. Indeed, the treatment
allocation proportion converges almost surely to ρ∗ω and the consistency of the MLEs is guaranteed along
with their asymptotic normality (Baldi Antognini and Zagoraiou, 2015; Baldi Antognini and Giovagnoli,
2015). However, to preserve the asymptotic normality of the design, a smoothing transformation of the
optimal target could be applied, as described in Tymofyeyev et al. (2007).

4 Survival trials with right censoring

Since a common feature of survival data is the presence of censoring, now we extend the exponential
model introduced in Section 2 by assuming that the patients are subject to an independent right censoring
scheme. In particular, for the ith individual let (Yi, Di) be the pair of outcomes that will be observed,
where Di is the indicator of not-censoring (namely the indicator of the event of interest, like death/failure)
that is assumed to be independent of Yi, so that (Yi, Di) = (y, 1) when the ith patient is not censored
(namely an event is observed) and y represents its survival time, while for (Yi, Di) = (y, 0) the patient is
censored and y is the censoring time. Within this setting, the MLE of the treatment effect θj (j = A,B)

is θ̂jn = SYjn/S
D
jn, where SYjn and SDjn denote the total observed survival time and the total number of

failures for group j, respectively, i.e., SYAn =
∑n
i=1 δiYi, S

Y
Bn =

∑n
i=1(1− δi)Yi, SDAn =

∑n
i=1 δiDi and

SDBn =
∑n
i=1(1− δi)Di.

Instead of (1), the variance of the estimated treatment difference becomes

V (θ̂An − θ̂Bn | ρ) = n−1
{
θ2A
ρpA

+
θ2B

(1− ρ)pB

}
, (8)

where, for any i = 1, . . . , n, pA = E[Di | δi = 1] = Pr(Di = 1 | δi = 1) and pB = E[Di | δi = 0] =
Pr(Di = 1 | δi = 0) are the probabilities that a failure occurs before censoring in the two groups, that are
assumed to be constant for each subject assigned to the same treatment (Wald statistic Wn as well as its
power (2) should be modified accordingly).

Clearly, pj depends on θj and the particular censoring scheme adopted in the trial (that involves the du-
ration of the experiment, the recruitment period, the chosen follow-up as well as some model assumptions
about the patient entries and the censoring time). For instance, one of the most general censoring schemes is
described in Lawless (2011) and Zhang and Rosenberger (2007). More specifically, suppose patients entry
times are staggered and iid uniformly distributed over the recruitment period R, X1, . . . , Xn

iid∼ U [0, R].
Since for practical reasons each patient may be observed for a maximum follow-up time S−R, where S is
the total study duration, individuals are subjected to independent censoring times iid uniformly distributed
over the duration of the trial, namely C1, . . . , Cn

iid∼ U [0, S], independently of X1, . . . , Xn. Thus,

p(θj) = 1− θj
S

+ exp

{
− S
θj

}
θj
SR

(
exp

{
R

θj

}
(2θj −R)− 2θj

)
, j = A,B. (9)

In general, since the censoring scheme is common to the two treatments, from now on we assume that
pj = p(θj), where p(·) : R+ → [0; 1] is a non-increasing function such that limx→0 p(x) = 1 and
limx→∞ p(x) = 0 (stressing that the probability of observing a failure should be decreasing in the expected
lifetime, regardless of the chosen censoring).

Remark 4.1 Notice that this is a simple model re-parameterization of (1) with θ̃j = θj/
√
p(θj) and

therefore γ̃ = θ̃A/θ̃B . It is straightforward to show that, for every sample size n, the variance in (8) as
well as the power are optimized by the Neyman allocation ρ̃N = θ̃A/(θ̃A + θ̃B), which is still ethical,

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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since it assigns the majority of patients to the best treatment (indeed, if θA > θB then θ̃A > θ̃B , due to the
decreasingness of p(·), and therefore ρ̃N > 1/2) (see also Sverdlov et al., 2011). Obviously, in the absence
of censoring Di = 1 for any i (i.e., p(x) = 1 ∀x), so that θ̃j = θj (j = A,B) and therefore ρ̃N = ρN .
Finally note that, in the presence of censoring, the form of the inferential criterion CI(ρ) is still the same
as in (3) with γ̃ instead of γ.

5 Numerical comparison among target allocations

This section is dedicated to a performance comparison between the new proposal, ρ∗ω , and other targets pro-
posed in the literature for survival trials. In particular, we compare the behavior of the Neyman allocation
ρ̃N , the target proposed by Zhang and Rosenberger (2007),

ρ̃ZR =

√
θ3A p(θB)√

θ3A p(θB) +
√
θ3B p(θA)

and the one suggested by Biswas and Mandal (2004)

ρ̃BM =
θA
√
p(θB) [1− exp (−c/θB)]

θA
√
p(θB) [1− exp (−c/θB)] + θB

√
p(θA) [1− exp (−c/θA)]

,

where the survival time is dichotomized and c represents the threshold above which the outcome is consid-
ered to be a success.

To assess the performance of the considered targets several criteria will be taken into account. More
specifically, from a statistical point of view we will consider the power of Wald test (the significance level
is always set equal to 5%) and the estimation efficiency CI(ρ), while CE(ρ) in (4) will be adopted as a
measure of ethics. In this section we study the analytical properties of the suggested optimal target by
assuming the parameter values as known. The operating characteristics of our target implemented via
DBCD will be discussed in Section 6 also showing its practical implications by redesigning the trial on
metastatic breast cancer in Jones et al. (2005) in Section 7.

Firstly, we consider the scenario without censoring, that is p(θj) = 1 for j = A,B. Table 1 sum-
marizes the ethical behavior of the considered targets as γ varies, with θA ∈ [10; 20] and θB = 10
months, respectively. For the optimal compound target, we take into account fixed ethical weights ω ∈
{0.3, 0.4, 0.5, 0.6, 0.69}, as well as the weighting function ωa in (6) with a = 1, 1.5 and 2, while for
ρBM we adopt the thresholds c = 9, 12. Clearly, from now on the weighting function ωa will be always
re-scaled via 4/(4 +

√
3), in order to satisfy property P4.

Table 2 shows the power of Wald test adopting the considered targets as γ varies with a sample size
n = 250, while Table 3 summarizes the results in terms of estimation efficiency CI(ρ) in (3).

The newly introduced target shows good performance from both ethical and inferential viewpoints. As
an example, with ω = 0.4, ρ∗ω induces a consistent ethical improvement if compared to the other targets
(up to 9% more patients are assigned to the best treatment wrt ρN , and up to 7% and 8% wrt ρZR and ρBM ,
respectively), guaranteeing substantially the same performances in terms of power and with a maximum
loss in estimation efficiency of 3%. Clearly, the ethical gain of ρ∗ω grows as ω increases; for instance, with
ω ∈ [0.5, 0.6], ρ∗ω assigns up to 18% more patients to the best treatment wrt the Neyman target and up to
16% and 17% for ρZR and ρBM , respectively. Note that this is particularly evident for low values of γ
making ρ∗ω a valid choice in oncological trials where ethics might play a crucial role.

While the behaviour of ρ∗ω changes considerably as ω varies, moving from an allocation close to ρN
for low values of ω to a much stronger ethical one for high values of ω, ρBM appears to be only slightly
dependent on the choice of the threshold c (this is also confirmed by other results, not showed here, obtained
with different values of c). Targets ρZR and ρBM show comparable performances in both statistical power
and estimation precision, with a more ethical assignment wrt ρN especially for high values of γ. Finally,

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



8 Baldi Antognini et al.: Optimal targets for survival outcomes

Table 1 Proportion of patients assigned to the best treatment as γ varies.

ρBM ρ∗ω as ω varies ρ∗ωa
γ ρN ρZR c = 9 c = 12 0.3 0.4 0.5 0.6 0.69 a = 1 a = 1.5 a = 2
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1.1 0.52 0.54 0.53 0.53 0.58 0.61 0.64 0.70 0.78 0.53 0.53 0.54
1.2 0.55 0.57 0.56 0.56 0.60 0.62 0.66 0.71 0.79 0.56 0.57 0.58
1.3 0.57 0.60 0.59 0.58 0.62 0.64 0.68 0.73 0.79 0.59 0.60 0.61
1.4 0.58 0.62 0.61 0.61 0.63 0.66 0.69 0.74 0.80 0.61 0.63 0.64
1.5 0.60 0.65 0.63 0.63 0.65 0.67 0.70 0.75 0.80 0.63 0.65 0.67
1.6 0.62 0.67 0.65 0.65 0.66 0.69 0.72 0.76 0.81 0.65 0.68 0.70
1.7 0.63 0.69 0.67 0.67 0.68 0.70 0.73 0.77 0.81 0.67 0.70 0.73
1.8 0.64 0.71 0.69 0.68 0.69 0.71 0.74 0.77 0.82 0.69 0.72 0.75
1.9 0.66 0.72 0.70 0.70 0.70 0.72 0.75 0.78 0.82 0.71 0.74 0.77

2 0.67 0.74 0.72 0.71 0.71 0.74 0.76 0.79 0.83 0.72 0.75 0.78

Table 2 Approximated power of Wald test as γ varies.

ρBM ρ∗ω as ω varies ρ∗ωa
γ ρN ρZR c = 9 c = 12 0.3 0.4 0.5 0.6 0.69 a = 1 a = 1.5 a = 2
1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1.1 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.17 0.16 0.19 0.19 0.19
1.2 0.42 0.42 0.42 0.42 0.41 0.41 0.40 0.38 0.34 0.42 0.42 0.42
1.3 0.66 0.66 0.66 0.66 0.66 0.66 0.64 0.62 0.56 0.66 0.66 0.66
1.4 0.84 0.84 0.84 0.84 0.84 0.83 0.82 0.80 0.75 0.84 0.84 0.83
1.5 0.94 0.93 0.93 0.93 0.94 0.93 0.92 0.91 0.88 0.93 0.93 0.93
1.6 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.95 0.98 0.98 0.97
1.7 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3 Estimation efficiency as γ varies.

ρBM ρ∗ω as ω varies ρ∗ωa
γ ρZR c = 9 c = 12 0.3 0.4 0.5 0.6 0.69 a = 1 a = 1.5 a = 2
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.2 1.00 1.00 1.00 0.99 0.97 0.94 0.88 0.75 1.00 1.00 1.00
1.4 0.99 1.00 1.00 0.99 0.98 0.95 0.89 0.78 1.00 0.99 0.98
1.6 0.99 0.99 1.00 0.99 0.98 0.95 0.90 0.81 0.99 0.98 0.97
1.8 0.98 0.99 0.99 0.99 0.98 0.96 0.91 0.83 0.99 0.97 0.94

2 0.97 0.99 0.99 0.99 0.98 0.96 0.92 0.84 0.99 0.96 0.93

as far as the estimation efficiency is concerned, all targets perform well; for ω ≤ 0.4 the maximum loss
in efficiency is about 3%, with a substantial equivalence to ρN for ω ≤ 0.3. Although for ω ≥ 0.6 the
estimation efficiency induced by ρ∗ω is slightly lower wrt ρN , this choice of ω corresponds to the highest
ethical improvement.

As regards the weighting function ωa, the ethical component of the target increases as a grows. In
particular, for low values of γ (i.e., γ ≤ 1.2) ρ∗ωa tends to be only slightly dependent on the choice of a,
whereas for γ ≥ 1.3 the ethical improvement of the target strongly increases as a varies. The behaviour
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of ρ∗ω1
is quite similar to the one of ρBM , while for a > 1 the ethical gain is greater wrt the other targets.

For instance, ρ∗ω1.5
increases the number of patients assigned to the superior treatment up to 8%, 4% and

2% wrt ρN , ρBM and ρZR, respectively. While the power is substantially equivalent to that of the other
competitors, only a small loss in estimation precision is observed (lower than 4% wrt Neyman allocation,
3% wrt ρBM and 1% wrt ρZR).

Taking now into account the censoring scheme in (9), we consider the same previous set up with the
recruiting period R = 48 months and the total duration S = 120 months. Tables 4-6 show the proportion
of patients assigned to treatment A, the power of Wald test and the behaviour of the estimation efficiency
for the considered targets as γ̃ varies.

Table 4 Proportion of patients assigned to the best treatment as γ̃ varies.

ρ̃BM ρ̃∗ω as ω varies ρ̃∗ωa
γ̃ ρ̃N ρ̃ZR c = 9 c = 12 0.3 0.4 0.5 0.6 0.69 a = 1 a = 1.5 a = 2
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1.1 0.52 0.54 0.53 0.53 0.58 0.61 0.65 0.70 0.78 0.53 0.54 0.54
1.2 0.55 0.57 0.56 0.56 0.60 0.63 0.66 0.72 0.79 0.56 0.57 0.58
1.3 0.57 0.60 0.59 0.59 0.62 0.65 0.68 0.73 0.79 0.59 0.60 0.61
1.4 0.59 0.63 0.61 0.61 0.64 0.66 0.70 0.74 0.80 0.61 0.63 0.65
1.5 0.61 0.65 0.64 0.63 0.65 0.68 0.71 0.75 0.80 0.64 0.66 0.68
1.6 0.62 0.68 0.66 0.65 0.67 0.69 0.72 0.76 0.81 0.66 0.68 0.71
1.8 0.64 0.70 0.68 0.67 0.68 0.71 0.73 0.77 0.82 0.68 0.71 0.73
1.9 0.65 0.72 0.70 0.69 0.70 0.72 0.74 0.78 0.82 0.70 0.73 0.75

2 0.66 0.73 0.71 0.71 0.71 0.73 0.75 0.79 0.83 0.71 0.74 0.77
2.1 0.68 0.75 0.73 0.72 0.72 0.74 0.76 0.80 0.83 0.73 0.76 0.79

Table 5 Approximated power of Wald test as γ̃ varies.

ρ̃BM ρ̃∗ω as ω varies ρ̃∗ωa
γ̃ ρ̃N ρ̃ZR c = 9 c = 12 0.3 0.4 0.5 0.6 0.69 a = 1 a = 1.5 a = 2
1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1.1 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.16 0.15 0.18 0.18 0.18
1.2 0.39 0.39 0.39 0.39 0.39 0.38 0.38 0.36 0.32 0.39 0.39 0.39
1.3 0.62 0.62 0.62 0.62 0.62 0.61 0.60 0.58 0.53 0.62 0.62 0.62
1.4 0.80 0.80 0.80 0.80 0.80 0.79 0.78 0.76 0.71 0.80 0.80 0.80
1.5 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.88 0.85 0.91 0.91 0.90
1.6 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.93 0.96 0.96 0.96
1.8 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.99 0.98 0.98
1.9 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
2.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



10 Baldi Antognini et al.: Optimal targets for survival outcomes

Table 6 Estimation efficiency as γ̃ varies.

ρ̃BM ρ̃∗ω as ω varies ρ̃∗ωa
γ̃ ρ̃ZR c = 9 c = 12 0.3 0.4 0.5 0.6 0.69 a = 1 a = 1.5 a = 2
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.1 1.00 1.00 1.00 0.99 0.97 0.94 0.87 0.72 1.00 1.00 1.00
1.2 1.00 1.00 1.00 0.99 0.97 0.94 0.88 0.75 1.00 1.00 1.00
1.3 1.00 1.00 1.00 0.99 0.98 0.95 0.89 0.77 1.00 1.00 0.99
1.4 0.99 1.00 1.00 0.99 0.98 0.95 0.89 0.79 1.00 0.99 0.98
1.5 0.99 1.00 1.00 0.99 0.98 0.95 0.90 0.80 1.00 0.99 0.98
1.6 0.99 0.99 1.00 0.99 0.98 0.95 0.90 0.81 0.99 0.98 0.97
1.8 0.98 0.99 0.99 0.99 0.98 0.95 0.91 0.82 0.99 0.98 0.96
1.9 0.98 0.99 0.99 0.99 0.98 0.96 0.91 0.83 0.99 0.97 0.95

2 0.98 0.99 0.99 0.99 0.98 0.96 0.92 0.84 0.99 0.97 0.94
2.1 0.97 0.99 0.99 0.99 0.98 0.96 0.92 0.85 0.99 0.96 0.93

The results obtained considering the right censoring scheme substantially reflect those just described,
confirming the ethical gain of the newly introduced target wrt the other competitors. In this more realistic
scenario, adopting 0.3 ≤ ω ≤ 0.4, ρ̃∗ω always exhibits the highest assignment proportion to the best
treatment, with a maximum loss in power less than 1% wrt the other targets. The same considerations
apply to the estimation precision in Table 6: ρ̃∗ω shows good inferential performances with only a slight
loss wrt ρN for high values of ω. Note that, from the previous tables, the weighting function ωa with
a ∈ (1; 2) guarantees a good compromise between ethical and inferential concerns, as the induced ethical
gains are not obtained at the expense of poor inferential performance.

6 Sensitivity analysis and robustness of our methodology

In this section we investigate the operating characteristics of our proposal in terms of type-I error con-
trol/power of the test, convergence of the allocation proportion to the target, and robustness of the suggested
methodology to model misspecification. In what follows, we take into account the censoring scheme pre-
viously described with R = 48 and S = 120 months; each trial was replicated 30000 times and the DBCD
(with randomization parameter 2) has been adopted with a starting block randomization until at least one
event is observed in each arm.

6.1 Type-I error control

Table 7 summarizes the results of the sensitivity analysis for type-I error control of both Wald and LR tests
for several values of n as the common treatment effect θA = θB = θ varies.

In general, an inflation of the type-I error up to 1− 1.5% could be present, especially for lower sample
sizes and for fixed weights ω = 0.4 and 0.5, which provide a strong ethical skew even for small differences
in the treatment effects. On the other hand, log-normal weights seems to preserve the type-I errors in
particular for n ≥ 400 and for a ≤ 1.5. Moreover, as n increases, Wald and LR tests tend to preserve the
type-I error with log-normal weights, whereas they do not share this property in the case of fixed weights
with the exception of ω = 0.3. For these reasons, in what follows we will focus on ω = 0.3 and the
adaptive weights ωa.

Other simulation results not shown here for brevity highlight that for sample sizes n < 150 the conver-
gence of the allocation proportion to the target consistently deteriorates and its standard deviation grows,
which tend to induce inflated type-I errors. We wish to stress that, for survival trials, the evolution of the
RAR procedure, its convergence as well as the inferential performances are strictly related to the number of
events observed during the experiment (which clearly depends on a complex combination of the magnitude
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Table 7 Simulated type-I errors of Wald and Log-Rank (LR) tests with DBCD adopting ρ∗ω and ρ∗ωa as
θA = θB = θ and n vary.

ρ∗ω ρ∗ωa
ω = 0.3 ω = 0.4 ω = 0.5 a = 1 a = 1.5 a = 2

θ n Wald LR Wald LR Wald LR Wald LR Wald LR Wald LR
200 .058 .060 .061 .061 .062 .062 .055 .060 .059 .062 .059 .064
300 .058 .057 .060 .059 .060 .061 .055 .057 .055 .055 .060 .058

1 400 .055 .058 .055 .058 .059 .060 .053 .054 .054 .056 .054 .057
500 .055 .055 .056 .057 .059 .059 .054 .054 .055 .054 .051 .054
200 .058 .058 .060 .059 .062 .063 .056 .057 .057 .061 .061 .063
300 .057 .058 .060 .060 .062 .061 .055 .055 .056 .058 .058 .059

5 400 .053 .056 .056 .059 .058 .060 .053 .054 .055 .055 .053 .055
500 .054 .057 .057 .058 .058 .059 .054 .055 .052 .052 .053 .055
200 .057 .060 .061 .059 .062 .061 .057 .059 .058 .061 .062 .065
300 .055 .057 .059 .061 .061 .063 .054 .055 .055 .058 .058 .059

10 400 .055 .058 .057 .059 .058 .059 .052 .053 .054 .055 .055 .056
500 .055 .056 .056 .057 .060 .059 .053 .055 .055 .055 .054 .055

of the treatment effects, the total number of enrolled patients, the recruitment period and the duration of
the trial).

6.2 Comparisons among competitors

Table 8 collects the simulated operating characteristics of targets ρ̃∗ω (ω = 0.3), ρ̃∗ωa (a = 1, 1.5 and
2), ρ̃BM (with c = 11 in the upper part of the Table and c = 13 in the lower one), ρ̃N and ρ̃ZR, im-
plemented via DBCD (with randomization parameter 2) under different alternative treatment effects, i.e.,
(θA, θB) = (12, 10) and (15, 10), in which the right censoring scheme of Section 4 has been considered.
As a benchmark, we also take into account the Completely Randomized (CR) design aimed at targeting
the balanced allocation ρ∗CR = 1/2; clearly, CR is not affected by the censoring scheme. The considered
operating characteristics are i) the observed allocation proportion ρ to A and its standard deviation (sd)
within brackets, ii) the power of Wald and LR tests and iii) the total observed ST. The sample size n is set
to be equal to 300, 400 and 500.

From the upper part of Table 8 - namely for (θA, θB) = (12, 10) - it can be seen that all the considered
targets show similar power performances with a slight gain wrt CR (i.e., 1%-2%): this is more apparent for
lower sample sizes and when Wald test is adopted. Furthermore, the ethical gain induced by the adoption of
RAR procedures is quite substantial. Indeed, between 6% to 10% more patients are assigned to the better
treatment when the compound target is used; in general, ρ̃BM and ρ̃N skew slightly less the assignments
wrt our proposal, while ρ̃ZR lies between the cases ρ̃∗ω1

and ρ̃∗ω1.5
. Longer STs are especially appreciable

for the compound targets and further highlight the increased ethics induced by our proposal; clearly, as the
sample size increases, STs increase as well. Lastly, the decreasing standard deviation (sd) of ρ as n grows
shows the improvement in the convergence of the RAR procedure. The same conclusions still hold also for
(θA, θB) = (15, 10), since the higher difference in the treatment effects makes the ethical skew induced by
the adoption of the suggested methodology even more pronounced (STs highlight even more the increased
ethics in the trial). For what concerns the estimation efficiency - not shown here for brevity - the compound
optimal target exhibits good performance, with a maximum loss up to 2%, confirming the previous results
of Section 5.
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Table 8 Simulated operating characteristics of the considered targets with θB = 10 and θA = 12, 15.

n = 300 n = 400 n = 500
(θA, θB) = (12, 10) ρ (sd) Wald LR ST ρ (sd) Wald LR ST ρ (sd) Wald LR ST
ρ̃∗0.3 = 0.60 0.59 (.06) 0.45 0.32 3035 0.59 (.06) 0.54 0.41 4048 0.59 (.05) 0.62 0.49 5062
ρ̃∗ω1

= 0.56 0.56 (.06) 0.45 0.33 3025 0.56 (.05) 0.54 0.41 4032 0.56 (.04) 0.62 0.49 5040
ρ̃∗ω1.5

= 0.57 0.57 (.06) 0.45 0.32 3029 0.57 (.06) 0.54 0.41 4038 0.57 (.05) 0.62 0.49 5047
ρ̃∗ω2

= 0.58 0.58 (.07) 0.45 0.32 3034 0.58 (.06) 0.54 0.41 4044 0.58 (.06) 0.62 0.49 5055
ρ̃BM = 0.56 0.56 (.05) 0.45 0.32 3024 0.56 (.05) 0.54 0.41 4031 0.56 (.04) 0.62 0.49 5039
ρ̃N = 0.55 0.55 (.04) 0.45 0.33 3017 0.55 (.04) 0.54 0.41 4022 0.55 (.03) 0.62 0.49 5028
ρ̃ZR = 0.57 0.57 (.06) 0.45 0.32 3028 0.57 (.05) 0.55 0.41 4037 0.57 (.05) 0.62 0.49 5047
ρ∗CR = 0.50 0.50 (.04) 0.43 0.32 2993 0.50 (.03) 0.53 0.40 3992 0.50 (.03) 0.61 0.48 4989
(θA, θB) = (15, 10) ρ (sd) Wald LR ST ρ (sd) Wald LR ST ρ (sd) Wald LR ST
ρ̃∗0.3 = 0.65 0.65 (.05) 0.95 0.90 3517 0.65 (.05) 0.98 0.96 4690 0.65 (.04) 1.00 0.99 5864
ρ̃∗ω1

= 0.64 0.64 (.06) 0.95 0.91 3502 0.64 (.06) 0.99 0.97 4669 0.64 (.05) 1.00 0.99 5836
ρ̃∗ω1.5

= 0.66 0.66 (.06) 0.95 0.90 3526 0.66 (.06) 0.99 0.96 4701 0.66 (.06) 1.00 0.99 5877
ρ̃∗ω2

= 0.68 0.68 (.07) 0.95 0.90 3550 0.68 (.07) 0.98 0.96 4733 0.68 (.06) 1.00 0.99 5917
ρ̃BM = 0.63 0.63 (.05) 0.95 0.91 3494 0.63 (.05) 0.99 0.97 4659 0.63 (.05) 1.00 0.99 5824
ρ̃N = 0.61 0.61 (.04) 0.96 0.91 3464 0.61 (.04) 0.99 0.97 4617 0.61 (.04) 1.00 0.99 5771
ρ̃ZR = 0.65 0.65 (.06) 0.95 0.91 3520 0.65 (.06) 0.99 0.96 4692 0.65 (.05) 1.00 0.99 5865
ρ∗CR = 0.50 0.50 (.03) 0.95 0.91 3338 0.50 (.03) 0.98 0.97 4452 0.50 (.03) 1.00 0.99 5564

6.3 Robustness to model misspecification

Albeit the proposed targets have been derived for exponential responses, in practical applications this
assumption may not hold, so the purpose of this section is to investigate the robustness of our proposals
to model misspecification. We considered three alternative distributions for the generation of the survival
times: Weibull, log-logistic and log-normal. For each distribution, we consider two different values for the
shape parameter h modelling the behavior of the hazard function. In particular, we set h = 0.8 and 1.5 for
the Weibull model (corresponding to monotone decreasing/increasing hazard, respectively), h = 0.4 and
1 for the log-logistic (encompassing both non-monotone and decreasing hazard), while h = 0.8 and 1.2
for the log-normal distribution (having non-monotone hazards). Table 9 summarizes the performance - in
terms of simulated type-I error/power and total observed survival time - of ρ̃∗ω (ω = 0.3), ρ̃∗ωa (a = 1, 1.5
and 2) implemented via DBCD (with randomization parameter 2) compared to CR design with n = 400.
As is well-known (Sverdlov et al., 2011), since the model misspecification strongly affects both the power
and type-I error of Wald test, compromising its reliability, we focus only on LR test.

For ρ̃∗ω1
and ρ̃∗ω1.5

, type-I error is generally preserved, while a slight inflation may be observed for ρ̃∗0.3
and ρ̃∗ω2

(nevertheless it is always lower or at most equal to 6%). As is well-known, this behaviour is quite
typical of RAR rules, especially if combined with delayed responses and targets with strong ethical skew
(Sverdlov et al., 2011; Rosenberger and Lachin, 2015; Baldi Antognini et al., 2016, 2018).

In general, for a given statistical model, the power induced by CR design coincides substantially with
that of DBCD, regardless of the chosen target, while the ethical skew of the optimal compound target (see
Table 8) translates into an increase in the observed total ST wrt CR. As to be expected, the performances
of the suggested methodology are strongly affected by model misspecifications. If the statistical model
is characterized by a monotone decreasing (increasing, respectively) hazard, then this translates into an
increased (decreased) total ST combined with a loss (gain) of power. For instance, taking into account the
scenario (θA, θB) = (12, 10), ρ̃∗ω1.5

assigns 57% of patients to the best treatment and, under exponential
outcomes, the power is 0.41 with a total observed ST of 4038 months. With Weibull responses instead,
for h = 1.5 the consistent gain of power (+0.33 wrt the exponential model) is balanced with a loss of
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Table 9 Simulated power of LR test and total observed ST.

Power ST
(θA, θB) = (10, 10) ρ̃∗0.3 ρ̃∗ω1

ρ̃∗ω1.5
ρ̃∗ω2

ρ∗CR ρ̃∗0.3 ρ̃∗ω1
ρ̃∗ω1.5

ρ̃∗ω2
ρ∗CR

Exponential 0.06 0.05 0.05 0.06 0.05 3666 3666 3666 3666 3666
Weibull, h = 0.8 0.06 0.05 0.06 0.06 0.05 3964 3964 3964 3964 3964
Weibull, h = 1.5 0.06 0.05 0.05 0.05 0.05 3412 3412 3412 3412 3412
Log-logistic, h = 0.4 0.06 0.05 0.05 0.05 0.05 4684 4684 4684 4684 4683
Log-logistic, h = 1 0.06 0.06 0.06 0.06 0.05 6717 6717 6717 6717 6718
Log-normal, h = 0.8 0.05 0.05 0.05 0.06 0.05 4900 4900 4900 4900 4899
Log-normal, h = 1.2 0.06 0.06 0.05 0.06 0.05 5858 5858 5858 5858 5861
(θA, θB) = (12, 10) ρ̃∗0.3 ρ̃∗ω1

ρ̃∗ω1.5
ρ̃∗ω2

ρ∗CR ρ̃∗0.3 ρ̃∗ω1
ρ̃∗ω1.5

ρ̃∗ω2
ρ∗CR

Exponential 0.41 0.41 0.41 0.41 0.40 4048 4032 4038 4044 3992
Weibull, h = 0.8 0.28 0.28 0.28 0.28 0.28 4338 4325 4330 4336 4289
Weibull, h = 1.5 0.73 0.74 0.74 0.74 0.74 3795 3775 3781 3788 3730
Log-logistic, h = 0.4 0.61 0.62 0.62 0.61 0.62 5170 5147 5155 5163 5087
Log-logistic, h = 1 0.17 0.16 0.17 0.17 0.16 7100 7090 7094 7099 7056
Log-normal, h = 0.8 0.51 0.52 0.52 0.51 0.52 5398 5375 5383 5392 5315
Log-normal, h = 1.2 0.27 0.28 0.27 0.27 0.27 6321 6305 6311 6319 6257
(θA, θB) = (15, 10) ρ̃∗0.3 ρ̃∗ω1

ρ̃∗ω1.5
ρ̃∗ω2

ρ∗CR ρ̃∗0.3 ρ̃∗ω1
ρ̃∗ω1.5

ρ̃∗ω2
ρ∗CR

Exponential 0.96 0.97 0.96 0.96 0.97 4690 4669 4701 4733 4452
Weibull, h = 0.8 0.85 0.85 0.85 0.85 0.85 4944 4919 4945 4973 4732
Weibull, h = 1.5 1.00 1.00 1.00 1.00 1.00 4456 4442 4478 4516 4191
Log-logistic, h = 0.4 1.00 1.00 1.00 1.00 1.00 6008 5992 6038 6084 5656
Log-logistic, h = 1 0.55 0.56 0.56 0.55 0.57 7690 7664 7687 7710 7491
Log-normal, h = 0.8 0.99 0.99 0.99 0.99 0.99 6241 6223 6268 6313 5893
Log-normal, h = 1.2 0.83 0.84 0.83 0.83 0.84 7054 7027 7061 7096 6780

257 months in ST, while for h = 0.8 a loss of power (−0.13) along with an ethical gain of +292 months
of ST is observed. The log-logistic distribution with h = 1 exhibits the maximum power loss (−0.24)
matched with the maximum ethical improvement (+3056 months) in ST. Interestingly, in the case of non-
monotone hazard, an improvement in terms of both ethics and power can be observed. For instance, under
the log-logistic distribution with h = 0.4 the power induced by ρ̃∗ω1.5

grows (+0.21) and, at the same time,
there is an improvement of 1117 months in the total observed ST (the same behaviour still holds under the
log-normal model with h = 0.8 and for the case (θA, θB) = (15, 10)).

7 Case Studies

In this section, we apply our proposed methodology to redesign two phase III randomized clinical trials.
The first one is the ITACa trial: this study was a first-line phase III randomized clinical multicenter trial
on metastatic colorectal cancer, promoted and supervised by Istituto Scientifico Romagnolo per lo Studio
e la Cura dei Tumori (IRST) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS). It aimed at
evaluating the effectiveness of adding bevacizumab (arm A) to standard first-line chemotherapy (arm B).
Between November 2007 and March 2012 (R = 52), 370 patients were randomized (176 to treatment A
and 194 to B) and after a 24 month follow-up (S = 76), the estimated median progression free survival
times (times from randomization to objective disease progression, or death from any cause, whichever
occurs first) were 9.6 and 8.4 months for arm A and B, respectively (i.e. θ̂A = 13.8 and θ̂B = 12.1)
(Passardi et al., 2015).
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The adoption of the proposed compound optimal target may have still induced a consistent ethical gain,
also improving the inferential precision. Indeed, by taking into account the right censoring scheme of
Section 4, ρ̃∗ω with fixed weight ω = 0.3 would have allocated 219 patients to armA (ρ̃∗0.3 = 0.59), namely
43 more patients to the treatment showing a higher benefit. Greater values of fixed weight would have
accentuated the ethical skew even more, reaching the value of 289 patients assigned to A for ρ̃∗0.69 = 0.78.
The adoption of log-normal weighting function (6) would have mitigated the ethical skew: for a between
1 to 4, from 55% to 59% patients would have been assigned to A, instead of 48% actually used, that also
induces a gain in terms of inferential precision since the compound optimal target tends to be close to the
Neyman’s one.

The second case study is a trial on metastatic breast cancer reported by Jones et al. (2005) where 225
patients had been randomized to docetaxel (arm A) and 224 to paclitaxel (arm B). The recruitment period
(R) lasted 84 months for a total study duration (S) of 102 months: the follow-up time was 18 months. In
the intention-to-treat population, the estimated overall median survival times (times from randomization to
death by any cause) were 16.1 months for armA (i.e., θ̂A = 23.2) and 12.7 months forB (i.e., θ̂B = 18.3).

Assuming exponential distributions for the survival times, we redesigned the trial incorporating the cen-
soring scheme. Along with the compound optimal target ρ̃∗ω with fixed weight, the log-normal weighting
function with a = 1, 1.5 and 2 are provided. We investigate the operating characteristics ensuing by the
adoption of ρ̃N , ρ̃ZR and ρ̃BM (with threshold c = 20). As a sequential analogue of the 1 : 1 randomiza-
tion considered in Jones et al. (2005), we also take into account the Completely Randomized (CR) design
aimed at targeting the balanced allocation ρ∗CR = 1/2.

For each choice of the target, 30000 trials were replicated by adopting the DBCD (with randomization
parameter 2). As a new patient enters the trial, the target is estimated on the basis of the information
accrued up to that time and the allocation probabilities are skewed toward the better performing treatment.
Results by Hu et al. (2008) and Zhang and Rosenberger (2007) ensure that the DBCD is not affected by
the intrinsic delay induced by exponentially distributed time-to-event responses subject to the independent
right censoring. In the simulations, in order to derive non trivial estimates of the treatment effects, patients
are assigned with block randomization up until at least one event is observed in both arms, then the DBCD
procedure starts. In addition to Wald test, we also take into account the Log-Rank (LR) test, namely a
common nonparametric procedure aimed to compare the survival functions among treatment groups.

Table 10 collects the values of the chosen targets and the simulated operating characteristics of the
redesigned trial: observed allocation proportion to A (ρ) and its standard deviation (sd(ρ)), power of Wald
and LR tests, total observed Survival Time (ST) and estimation efficiency CI .

Table 10 Redesigning Jones et al. (2005) trial: targets (ρ̃), observed allocation proportions to arm A (ρ)
and their standard deviation (sd) within brackets, power of Wald and LR tests, ST and CI .

ρ (sd) Wald LR ST CI
ρ̃N = 0.57 0.57 (.04) 0.68 0.45 5005 1.00
ρ̃ZR = 0.60 0.60 (.06) 0.68 0.45 5018 1.00
ρ̃BM = 0.59 0.59 (.06) 0.67 0.45 5015 1.00
ρ̃∗0.3 = 0.62 0.61 (.06) 0.67 0.44 5023 0.99
ρ̃∗0.4 = 0.65 0.63 (.07) 0.67 0.44 5032 0.98
ρ̃∗0.5 = 0.68 0.65 (.08) 0.67 0.43 5043 0.95
ρ̃∗ω1

= 0.59 0.59 (.06) 0.67 0.45 5015 1.00
ρ̃∗ω1.5

= 0.60 0.60 (.07) 0.67 0.45 5018 1.00
ρ̃∗ω2

= 0.61 0.61 (.07) 0.67 0.45 5024 0.99
ρ∗CR = 0.50 0.50 (.02) 0.67 0.45 4976 0.98

Regardless of the choice of the weights, the compound optimal target tends to improve ethics wrt to the
other competitors, clearly even more wrt the balanced allocation adopted by Jones et al. (2005). Due to the
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moderate difference between the treatment effects, this aspect becomes more apparent for higher values of
the fixed weight ω instead of the log-normal weights. In general, a more pronounced ethical component in
the compound optimal target seems to slow the convergence of the simulated allocation proportion to the
target, as also confirmed by a slight increase of the corresponding standard deviation. This is likely due to
i) the sensitivity of the ethical skew of the targets to even slight differences in the survival estimates and ii)
the effect of delayed responses (as already stressed by (Zhang and Rosenberger, 2007; Hu et al., 2008)).
Indeed, simulation results not shown here for the sake of brevity highlight that for a higher sample size
the convergence of the allocation proportion to the target consistently improves and its standard deviation
decreases (see also Section 6).

Even if ρ̃N optimizes inference, all the considered targets lead to simulated powers and estimation
efficiencies which are substantially the same as Neyman’s. Moreover, when the weighting function ωa is
adopted, the convergence of the simulated allocation proportion to the target is guaranteed along with a
moderate gain in terms of overall survival time wrt CR, regardless of the choice of a. As expected, under
the assumption of exponential outcomes, the power of Wald test is higher wrt that of LR test, which instead
is more appropriate in the presence of model misspecification (see Section 6.3).

8 Discussion

The present paper deals with the problem of finding optimal allocations for comparative clinical trials with
survival endpoints. In order to obtain an appropriate trade-off among ethical demands and inferential pre-
cision, a compound optimization approach is proposed. The ensuing compound optimal target guarantees
very good performances in terms of both ethical gain and statistical efficiency: our results show that in the
case of a fixed weight, a value of ω < 0.4 can be used in order to obtain a good trade-off between those
objectives. A greater value of ω, although further emphasizing the ethical gain, may induce inflated type-I
errors, especially for low sample sizes.

To further improve the flexibility of the proposed approach, a weighting function depending on the
unknown treatment effects can be adopted: this will allow for the possibility to adaptively adjust the
weights during the trial. This flexibility, along with the peculiarity of ωa to improve ethics even for small
treatment differences, makes the implementation of ρ̃∗ωa via RAR procedures preferable to the one based
on possible best guesses carried out in the planning phase. Based on our extensive simulation study, a value
of a ∈ [1; 2) is suggested to obtain a good compromise between ethics and inference, which also preserves
the type-I errors.

The ethical improvement induced by the proposed target makes it a valid candidate especially for on-
cological trials, where the ethical concern represents a crucial aspect. Indeed, the results here obtained
underline that the adoption of an ethical allocation implemented with DBCD can provide a consistent ethi-
cal improvement wrt the balanced allocation, without compromising inference. Clearly, in trials where the
ethical concern plays a less important role, CR design could still represent a good choice as it guarantees
the control of type-I error with smaller sample sizes.

The analytical properties of the newly introduced targets are compared to those of the already existing
allocations proposed in the literature, showing a strong ethical gain with at worst only a slight loss in
inferential performances. The procedure is also illustrated by redesigning two real oncological trials:
in both cases the adoption of our proposal has induced a considerable ethical benefit without adversely
affecting neither power nor estimation precision.

Although the present methodology is derived for exponentially distributed outcomes, where Wald statis-
tics is used to test the equality of treatment effects, our results highlight that the adoption of RAR proce-
dures with the compound optimal target could be suitably matched with LR test, especially in the case of
possible model misspecification. Indeed, an extensive simulation study has been carried out in order to
investigate the operating characteristics of the new proposal, taking also into account its robustness and
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type-I error control. In this regard, our proposal turned out to be quite similar to CR in terms of power,
while the improvement in ST is remarkable.

To extend the applicability of our methodology, one of the fundamental directions is the inclusion of the
covariates. For example, the approach proposed by Sverdlov et al. (2013) could be a possible starting point:
by linking the expected survival times of the treatments with a linear function of important covariates,
the optimal compound target would incorporate their effects as well. However, this natural approach
has not yet a formal mathematical justification and therefore optimal properties of targets accounting for
covariates/prognostic factors should be explored. Another interesting future research consists in combining
RAR procedures with group sequential methods, in order to improve both individual and collective ethics
by allowing early stopping of the trial for futility/efficacy and, at the same time, skewing more patients to
the best performing treatment.
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Appendix (Proof of Theorem 3.2)

Firstly note that the compound criterion Cω is strictly concave in ρ, since CE is linear and CI is concave;
indeed, from (3),

C′′I (ρ) =
−2γ2(γ + 1)2

{ρ(1− γ2) + γ2}3
< 0,

since γ ∈ R+ and ρ(1 − γ2) + γ2 = ρ + (1 − ρ)γ2 > 0. Moreover, by differentiating (5), we obtain the
following equation(

ω

1− ω

)
sgn(γ − 1) =

(γ + 1)2(x2 − γ2)

[x+ γ2]2
, (10)

where x = ρ/(1 − ρ) ∈ R+. Letting f(x, γ) = (γ + 1)2(x2 − γ2)[x + γ2]−2, then f is monotonically
increasing in x with limx→0 f(x, γ) = −[(γ + 1)/γ]2, limx→∞ f(x, γ) = (γ + 1)2 and f(x, γ) = 0 iff
x = γ (i.e., ρ = ρN ). If γ > 1, when ω/(1− ω) ≥ (γ + 1)2 = (1− ρN )−2, i.e. ω ≥ [1 + (1− ρN )2]−1,
then ρ∗ω = 1. Analogously for γ < 1, when ω/(1− ω) ≥ (γ + 1)2/γ2 = ρ−2N , i.e., ω ≥ (1 + ρ2N )−1, then
ρ∗ω = 0. Therefore, (7) follows after simple algebra by observing that, when γ > 1, max{ρN ; 1− ρN} =
ρN > 1/2, while for γ < 1, max{ρN ; 1 − ρN} = 1 − ρN > 1/2, so that ω/(1 − ω) < 4 implies that
ω < [1 + (1 − max{ρN ; 1 − ρN})2]−1. Thus, ρ∗ω ≥ ρN for γ ≥ 1 and ρ∗ω < ρN for γ < 1, since f is
monotonically increasing in x with f(γ, γ) = f(ρN/(1− ρN ), γ) = 0.

From now on we take into account the case γ ≥ 1 (the other scenario could be derived analogously).
Property P2 follows immediately by the fact that 4/5 ≤ [1 + (1 − ρN )2]−1, since ρN ≥ 1/2. As regards
P3, it is sufficient to notice that the LHS of (10) is monotonically increasing in ω.

Finally, for the proof of P4, let

f̃(x, γ) =

{
f(x, γ), x ≥ γ;

0, 1 ≤ x < γ,
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The derivative of f̃ wrt to γ is, for x ≥ γ

2(γ + 1)

γ2 + x

[
(x− γ2 − 2γ)(x2 − γ2)

γ2 + x
− γ(γ + 1)

γ2 + x

]
and 0 otherwise. Firstly, note that for every x ∈ [1; 2 +

√
3] the function f̃ is decreasing in γ, since

(x− γ)2(x+ γ) ≤ γ(γ + 1)x(x+ 1) ∀γ ≥ 1. (11)

Moreover, since f is monotonically increasing in x, for every γ ≥ 1

f̃(x, γ) ≤ f̃(2 +
√

3, γ) ≤ f̃(2 +
√

3, 1) = 4/
√

3, ∀x ∈ [1; 2 +
√

3]. (12)

Thus, from (10), by choosing the weight ω such that ω/(1 − ω) < 4/
√

3, i.e. ω < 0.698, guarantees that
the optimal compound target is monotonically increasing in γ. Notice that this proof encompasses also the
case ω = ω(γ) since the LHS of (10) does not depend on x, namely it is still a constant wrt to x.
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