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On the solvability of a class of second order
degenerate operators

Serena Federico and Alberto Parmeggiani

Abstract In this paper we will be concerned with the problem of solvability of
second order degenerate operators that are not of principal type. We will describe
some recent results we have obtained about local solvability in the Sobolev spaces
of a class of degenerate operators which is an elaboration of the class considered by
Colombini-Cordaro-Pernazza (in turn, an elaboration of the adjoint of the Kannai
operator).
2010 Mathematics Subject Classification: Primary 35A01; Secondary 35B45,
35A30

Dedicated to Luigi Rodino
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1 Introduction

In this paper we will survey some results concerning the solvability (in L2-based
Sobolev spaces) of an interesting class of degenerate operators, whose symbol may
be complex valued with a real part which may change sign. Such a class is interesting
and natural, for it is built upon the operator

P = Dx2 x1Dx2 + iDx1, (x1, x2) ∈ R
2, D = −i∂, (1.1)
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which is the (formal) adjoint of the important example of Kannai [18]

K = P∗ = Dx2 x1Dx2 − iDx1,

of an operator which is hypoelliptic but not locally solvable at x1 = 0. The class of
operators of the kind (1.1)was then extended by the adjoints of the class considered by
Beals and Fefferman in [2] (in their study of hypoellipticity of degenerate operators)
and next by Colombini, Cordaro and Pernazza in [4] (in their study of the solvability
of operators of the form X(x,D)∗ f X(x,D) + iY (x,D) + a0, where iX, iY are real
vector-fields, f is real analytic and a0 is smooth). The class we consider contains
operators of the kind (1.1) but also operators whose formal adjoint is not hypoelliptic
(see [29]) so that the solvability is not a consequence of the hypoellipticity of the
adjoint.

The study of solvability of linear degenerate PDEs (even after Dencker’s resolu-
tion of the Nirenberg-Treves conjecture on condition (Ψ), see [16, 17]) is still largely
open and unsettled, especially for operators not of principal type. Many are the
examples, coming from several complex variables or linearization of nonlinear op-
erators involved in physical and geometrical problems, of degenerate operators that
are interesting to study. One may look at [20] for some history and basic problems
on local solvability and at [29] for some history, survey, bibliography and consider-
ations related to the solvability of degenerate operators along with some results (see
also [28]) related to the solvability of operators with multiple transversal symplectic
characteristics.

It is important to keep in mind that the hypoellipticity of an operator P implies
the local solvability of P∗ (or tP), thus the issue of local solvability is very much
related to that of hypoellipticity and hence also to that of propagation of singularities
(see, e.g., [7, 14, 16, 17, 21, 28, 29]). However, Kannai’s example shows that there
are operators that are locally solvable but not hypoelliptic, and that the operation of
taking adjoints may preserve local solvability but may also destroy hypoellipticity.

Interesting solvability results for degenerate operators of the form P1P2 + Q
(where P1,P2,Q are first order operators) with double characteristics are given in a
paper by Helffer [13] (in which he actually studies the problem of the hypoellipticity
with a loss of 1 derivative) and by Treves [33] (in which he studies the solvability
of an operator of the form X1(x,D)X2(x,D) + iY (x,D) + a0, where iX1, iX2, iY are
real vector fields, proving that under certain conditions one has solvability with a
loss of one derivative), and for operators of the form sums of squares

∑N
j=1 X∗j Xj by

Kohn [19], in which the vector fields involved are complex (see also Treves [34] for
the study of the solvability of vector fields with critical points). Furthermore, it is
important to mention the recent work due to Dencker [5, 6] concerned with necessary
conditions for the solvability of degenerate operators whose principal symbol may
be complex but with a non-radial involutive double-characteristic set (that is, the
characteristic points where the principal symbol and its differential vanish is a non-
radial manifold which is involutive), based on the behavior of limit bicharacteristics
and the so-called sub-Ψ condition that were introduced by Mendoza and Uhlmann
in [23] (see also [22]), and the work of Müller (see [24, 25]) for operators whose
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principal symbol is complexwith double characteristics, where in [25] the necessary
conditions for solvability are described in terms of “dissipative pairs” (a condition
related to the Hessian of the principal symbol only, at double characteristic points;
hence the condition does not “see” the information carried by the other invariants
one has at a double point) and in [24] he shows the sufficiency of such condition
in the important instance of left-invariant second order operators on the Heisenberg
group (thus having a particular algebraic structure on the lower-order terms). For
sums of squares of left-invariant vector fields on a Lie group, one has extensive
work by Müller, Ricci and Peloso (see for instance [26, 27, 31]), for operators with
double involutive characteristics one has an interesting result by Popivanov [32],
and for the semi-global solvability of operators with transversal multiple symplectic
characteristics one has the results by Parenti-Parmeggiani (see [28] and also [29]).

We next introduce the class of operators we shall be considering here. The class
is subdivided in three types, that will be described in the subsequent sections. The
first kind of operators, which is a direct generalization of the class considered by
Colombini, Cordaro and Pernazza, was introduced in [11] and studied also in [12].
Notice that an interesting andmeaningful variation of it, with non-smooth coefficients
and invariant under affine transformations, was studied by Federico in [8]. The other
two kinds have been introduced in [12] and in [10].

Let Ω ⊂ Rn be open and let N ≥ 1 be an integer. We consider the following
operators

(MT) P1 =

N∑
j=1

X∗j f Xj + XN+1 + iX0 + a0,

(ST) P2 =

N∑
j=1

X∗j fjXj + XN+1 + a0,

(MST) P3 =

N∑
j=1

X∗j fjXj + XN+1 + iX0 + a0,

where (MT) stands for “mixed type”, (ST) for “Schrödinger type” and (MST) for
“mixed Schrödinger type”, respectively. The above operators are constructed from
a given system (X0,X1, . . . ,XN+1) of first order homogeneous partial differential
operators Xj(x,D) (that we shall also call, somewhat improperly, “vector fields”; as
a matter of fact, the iXj are indeed vector fields). The symbols of XN+1 and X0 will
be always supposed to be real, whereas those of X1, . . . ,XN will be supposed to be
real in the (MT) and (MST) cases, respectively, and complex in the (ST) case. We
shall denote by Xj(x, ξ) = 〈αj(x), ξ〉 the symbols of the Xj , where αj ∈ C∞(Ω;Rn),
0 ≤ j ≤ N + 1, in the (MT) and (MST) cases, and αN+1 ∈ C∞(Ω;Rn) and αj ∈

C∞(Ω;Cn), 1 ≤ j ≤ N , in the (ST) case. The functions f , f1, . . . , fN ∈ C∞(Ω;R) are
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assumed to be smooth, andmay vanish and/or change sign somewhere onΩ, where in
particular for f we assume that f −1(0) , ∅ and df

��
f −1(0), 0. Finally a0 ∈ C∞(Ω;C).

Notice that a main difference among the operators P1, P2 and P3 is in the symbol of
the first order part (the subprincipal symbol sub(P)(x, ξ), that at points (x, ξ) such
that Xj(x, ξ) = 0 for all 1 ≤ j ≤ N is given by XN+1(x, ξ) + iX0(x, ξ)): in the (MT)
case sub(P1) is complex so that P1 is a sort of parabolic-Schrödinger operator, in the
(ST) case sub(P2) is real so that P2 is a sort of degenerate Schrödinger operator, and
in the (MST) case sub(P3) is again complex but with a degeneracy in the principal
part which may depend on the various functions fj and may be thought of as a blend
of the previous two types.

Our interest in these classes, that are invariantly defined, comes from the interplay
between the degeneracy due to the vanishing, and the (assumed or possible) change
of sign, of the various f and fj involved, and the characteristic set Σ of the system
of vector fields (X0,X1, . . . ,XN ), defined as

Σ =

N⋂
j=0
Σj ⊂ T∗Ω \ 0, Σj = {(x, ξ) ∈ T∗Ω \ 0; Xj(x, ξ) = 0}, 0 ≤ j ≤ N (1.2)

(recall thatT∗Ω\0 denotes the cotangent bundle ofΩwith the zero-section removed).
Note that in our setting Σ does not depend on the characteristics of XN+1. The reason
why this is the case will be made clear in the sequel.

In the first, second and third section, respectively, we will state the hypotheses on
the class of operators P1, P2 and P3, respectively, and state the related solvability
results, explaining the main solvability estimates that give, in some cases, “better”
solvability results (if compared to L2 to L2 local solvabiity, see Definition 2 below).
For each class of operators we shall also give a number of examples.

We remark oncemore that our classes of operators contain operatorswhose formal
adjoint is not hypoelliptic (see [29]; see also [1, 35] for the study of hypoellipticity
of degenerate operators whose coefficients may change sign) so that our solvability
results are not a consequence of the hypoellipticity of the adjoints.

We close the introduction by recalling the definition of local solvability and by
giving the definition of Hs to Hs′ local solvability we will be interested in, where
Hs = Hs(Rn) is the L2-based Sobolev space of order s ∈ R, whose norm will be
denoted by || · ||s .

Definition 1 (Local solvability) Let P be an mth-order partial differential operator
with smooth coefficients on an open set Ω ⊂ Rn. We say that P is locally solvable at
x0 ∈ Ω if there exists a neighborhood V ⊂ Ω of x0 such that for all v ∈ C∞(Ω) there
is u ∈ D ′(Ω) satisfying Pu = v in V .

Definition 2 (Hs to Hs′ local solvability) Let P be an mth-order partial differential
operator with smooth coefficients on an open setΩ ⊂ Rn. Given s, s′ ∈ R and x0 ∈ Ω
we say that P is Hs to Hs′ locally solvable near x0 if there is a compact K ⊂ Ω with
x0 ∈ K̊ (the interior of K) such that for all v ∈ Hs

loc(Ω) there exists u ∈ Hs′

loc(Ω) with
Pu = v in K̊ . We will call the number s − s′ the gain of smoothness (near x0) of the
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solution. We will say that P is Hs to Hs′ locally solvable near V ⊂ Ω if P is Hs to
Hs′ locally solvable near x0 for all x0 ∈ V . When one has Hs to Hs′ local solvability
for all s ∈ R where s′ = s + m − r, then one calls r the loss of derivatives.

Recall that to obtain the Hs to Hs′ local solvability in the interior K̊ of a compact
K , by the Hahn-Banach Theorem one needs to establish the a priori estimate

∃C > 0 such that ||ϕ||−s ≤ C ||P∗ϕ||−s′, ∀ϕ ∈ C∞0 (K).

Throughout the paper {·, ·} denotes the Poisson bracket and π : T∗Ω\0 −→ Ω the
canonical projection. By (·, ·) we will denote the L2-scalar product. Finally, given
A,B ≥ 0 we will write A . B (or B & A) if there is C > 0 such that A ≤ CB.

2 The mixed-type case

In this section we introduce the following set of hypotheses on the operator

P1 =

N∑
j=1

X∗j f Xj + XN+1 + iX0 + a0

of the kind (MT), where f ∈ C∞(Ω;R), with f −1(0) , ∅ and df
��
f −1(0), 0. We

will write dXj = −idiv(αj) for the “divergence” of Xj . Notice that in this case the
principal symbol of P1 is real and changing sign across f −1(0).

Hypotheses (HM1) to (HM5):

(HM1) iX0 f
��
f −1(0)> 0;

(HM2) For all compact K ⊂ Ω there exists C > 0 such that for all j = 1, . . . ,N + 1

{Xj,X0}(x, ξ)2 ≤ C
N∑
k=0

Xk(x, ξ)2, ∀(x, ξ) ∈ K × Rn; (2.3)

(HM3) For all compact K ⊂ Ω there exists C > 0 such that

|(Im dX0 (x))XN+1(x, ξ)| ≤ C
( N∑
k=0

Xk(x, ξ)2
)1/2

, ∀(x, ξ) ∈ K × Rn; (2.4)

(HM4) For ρ ∈ Σ (see (1.2)) let

HXj (ρ) =

n∑
k=1

( ∂Xj

∂ξk
(ρ)

∂

∂xk
−
∂Xj

∂xk
(ρ)

∂

∂ξk

)
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be the Hamilton vector-field of Xj at ρ, let V(ρ) := Span{HX0 (ρ), . . . ,HXN (ρ)},
let J(ρ) ⊂ {0, . . . ,N} be a set of indices for which {HXj (ρ)}j∈J(ρ) is a basis of
V(ρ), and let M(ρ) = [{Xj,Xj′}(ρ)]j , j′∈J(ρ) be the r × r matrix of the Poisson
brackets of the corresponding symbols Xj,Xj′ , where r = card(J(ρ)).We say that
hypothesis (HM4) is fulfilled at x0 ∈ f −1(0) if π−1(x0) ∩ Σ , ∅ and

rank M(ρ) ≥ 2, ∀ρ ∈ π−1(x0) ∩ Σ; (2.5)

(HM5) Let

Lk(x) = SpanR{iX0, . . . , iXN and their commutators up to length k at x}

(recall that iXj has length 1 and [iXj, iXj′] has length 2, and so on). We say that
hypothesis (HM5) is fulfilled at x0 ∈ f −1(0) if π−1(x0) ∩ Σ , ∅ and there exists
k ≥ 1 such that

dim Lk(x0) = n. (2.6)

Remark 1 Note that if condition (2.5) holds at x0 then there is a neighborhood Vx0

of x0 such that the condition holds for all ρ ∈ π−1(Vx0 ) ∩ Σ. Since the subprincipal
symbol of

∑N
j=0 X∗j Xj is zero (here the symbols Xj are real) one has (see [11]) that

condition (2.5) amounts to Melin’s strong Tr+ condition (see [15])

sub
( N∑
j=0

X∗j Xj

)
(ρ) + Tr+F∑N

j=0 X
∗
jXj
(ρ) > 0, ∀ρ ∈ π−1(Vx0 ) ∩ Σ,

so that for all compact K ⊂ Vx0 one has the sharp Melin inequality [15]: There are
constants cK ,CK > 0 such that

(

N∑
j=0

X∗j Xj u,u) =
N∑
j=0
||Xju||20 ≥ cK ||u||21/2 − CK ||u||20, ∀u ∈ C∞0 (K). (2.7)

Remark 2 Condition (2.6) yields the Rothschild-Stein sharp subelliptic estimate in
a sufficiently small neighborhood Vx0 of x0, that is, for any given compact K ⊂ Vx0

there exist cK ,CK > 0 such that

(

N∑
j=0

X∗j Xj u,u) =
N∑
j=0
||Xju||20 ≥ cK ||u||21/k − CK ||u||20, ∀u ∈ C∞0 (K). (2.8)

One may prove that when hypothesis (HM4) is fulfilled then also hypothesis (HM5)
is fulfilled with k = 2 (see Federico [9]). However, it is still interesting to distinguish
the two cases, because of the fact that the subprincipal symbol and the positive trace
are symplectic invariants of an operator with double characteristics.
Notice also that having dim L1(x0) = n is equivalent to saying that the system
(X0,X1, . . . ,XN ) is elliptic near x0, that is, π−1(Vx0 ) ∩ Σ = ∅ for some neighborhood
Vx0 of x0, so that inequality (2.8) becomes the well-known Gårding inequality.
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For the class of operators (MT) we have the following solvability result (see [12])
near S := f −1(0) (which is the region of interest for us).

Theorem 1 Supposing hypotheses (HM1), (HM2) and (HM3), one has:

(i) For all x0 ∈ S the operator P1 is L2 to L2 locally solvable at x0;
(ii) If x0 ∈ S is such that π−1(x0) ∩ Σ , ∅ and (HM4) holds at x0, then P1 is H−1/2 to

L2 locally solvable at x0;
(iii) If x0 ∈ S is such that π−1(x0) ∩ Σ , ∅ and (HM5) holds at x0 for some k ≥ 2,

then P1 is H−1/k to L2 locally solvable at x0;
(iv) If x0 ∈ S is such that π−1(x0) ∩Σ = ∅, then P1 is H−1 to L2 locally solvable at x0.

Remark 3 Notice that the operator given in (1.1) falls in case (iv) of the theorem.

Of course, we won’t be giving the proof of the theorem (which can be found in
[12]). Instead, to explain the role of the assumptions we next recall the main estimate
needed to prove the theorem, that is: For all sufficiently small compact K ⊂ Ω with
x0 ∈ K̊ there are constants cK ,CK > 0 such that

2 Re(P∗1u,−iX0u) ≥ cK
N∑
j=0
||Xju||20 +

3
2
||X0u||20 − CK ||u||20, ∀u ∈ C∞0 (K). (2.9)

A fundamental step to obtain the main estimate (2.9) is the use the Fefferman-Phong
inequality for the operator

P̂ε,γ :=
N∑
j=0

(
X∗j Xj −

ε

γ
[Xj,X0]

∗[Xj,X0]
)
+

1
γ

Y,

where
Y = −Re

(
(Im dX0 )XN+1

)
,

ε = || f ||L∞(K) → 0 when K ↘ {x0} and γ is an auxiliary parameter to be picked.
Hence, hypotheses (HM1), (HM2) and (HM3) and the fact that x0 ∈ S allow one
to choose K sufficiently small containing x0 (in its interior) so as to have, by then
picking γ, the Fefferman-Phong estimate, that is, the existence of CK > 0 such that

(P̂ε,γu,u) ≥ −CK ||u||20, ∀u ∈ C∞0 (K).

Such control allows one to bound from below Re(P∗1u,−iX0u), u ∈ C∞0 (K), by the
right-hand side of (2.9), provided K is sufficiently small about x0.

Once the main estimate is obtained (which, remark, holds under the assumptions
(HM1) to (HM3)), one gets, according to hypotheses (HM4), or (HM5), or π−1(x0)∩
Σ = ∅, by virtue of the Melin, or the Rothschild-Stein, or the Gårding estimates,
respectively, the control from below

||P∗1u||20 ≥ c0 ||X0u||20 + c1 ||u||2s − C2 ||u||20, ∀u ∈ C∞0 (K),

where c0, c1,C2 > 0 (depending on K) and where
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• s = 0 when only (HM1), (HM2) and (HM3) hold;
• s = 1/2 when, in addition to the first three hypotheses, (HM4) holds;
• s = 1/k when, in addition to the first three hypotheses, (HM5) holds for some

k ≥ 2;
• s = 1 when, in addition to the first three hypotheses, π−1(x0) ∩ Σ = ∅.

One finally gets rid of the L2-error terms by using the Poincaré inequality for
the term ||X0u||20 and by possibly shrinking further the compact K (keeping x0 in its
interior). At last, the solvability estimate

||P∗1u||20 ≥ CK (||u||2s + ||u||
2
0), ∀u ∈ C∞0 (K),

is obtained and an application of the Hahn-Banach Theorem gives the result.
We next give a few examples of operators P1 in the class (MT) for which we can

conclude local solvability near quite degenerate points.

2.1 Example.

Let x = (x1, x2) be coordinates in R2, let g(x2) = 1+ x2
2, f (x) = x1 −(x2 + x3

2/3). Let

A(x2) =

[
g(x2) 1

1 1/g(x2)

]
.

We have dim KerA(x2) = 1 for all x2. Consider

P1 =

2∑
j1 , j2=1

Dj1

(
f (x)aj1 j2 (x2)Dj2

)
+ X3 + iX0 + a0,

where
X3(x, ξ) = µ1(x)X(x, ξ) + µ2(x)X0(x, ξ),

with
X(x, ξ) = g(x2)ξ1 + ξ2, X0(x, ξ) = αξ1 +

1
g(x2)

ξ2,

where α > 1 is a constant and µ1, µ2 are smooth real-valued functions. Then, putting

X1(x, ξ) =
√
g(x2)

X(x, ξ)√
1 + g(x2)2

, X2(x, ξ) =
1√
g(x2)

X(x, ξ)√
1 + g(x2)2

,

gives that P1 may be written in the form

P1 =

2∑
j=1

X∗j f Xj + X3 + iX0 + a0,
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where conditions (HM1), (HM2) and (HM3) hold, but (HM4) and (HM5) (includ-
ing the case k = 1) do not, since X1(x, ξ),X2(x, ξ) and {X,X0}(x, ξ) are always
proportional to X(x, ξ). Therefore P1 is L2 to L2 locally solvable near f −1(0).

2.2 Example.

The next example deals with a situation in which one has better (than L2 to L2) local
solvability. Let x = (x1, x2, x3) ∈ R

3 and let k ≥ 0 be an integer. Take f (x) = x2, and
the following system of vector fields

X1 = Dx1, X2 = xk1 Dx3, X3 = β(x)Dx1, X0 = Dx2,

where β ∈ C∞(R3;R). Let

P1 =

2∑
j=1

X∗j f Xj + X3 + iX0 + a0.

Then it is readily seen that dX0 ≡ 0, that {Xj,X0} = 0 for j = 1,2 and that
|{X0,X3}(x, ξ)|2 . X1(x, ξ)2 for all (x, ξ) (locally for x in compact sets), so that
hypotheses (HM1), (HM2) and (HM3) are fulfilled. We therefore have that P is
H−1/(k+1) to L2 locally solvable near x2 = 0 with k + 1 given by

• k + 1 = 1, that is in the case Σ = ∅ (whence π−1(x0) ∩ Σ = ∅ for all x0 ∈ f −1(0));
• k + 1 = 2, that is in the case in which (HM4) is fulfilled;
• k + 1 ≥ 2, that is in the case in which (HM5) is fulfilled.

2.3 Example.

In this example, we show that condition (HM4) might not always be satisfied at
f −1(0) so that the gain of derivatives may vary depending on the position of π−1(x0),
x0 ∈ f −1(0), with respect to Σ. Let x = (x1, x2, x3) ∈ R

3 and let Ω ⊂ R3 be an
open set such that Ω ∩ {x; x1 = −1} , ∅. Let Ω± := {x ∈ Ω; x1 ≷ −1} and
f (x) = x2 + x3

2/3 − x1x3. Introduce the following system of vector fields

X1(x, ξ) = ξ1 − x3ξ3, X2(x, ξ) = (1 + x1)ξ3, X0(x, ξ) = ξ2 − x1ξ3,

X3(x, ξ) =
2∑
j=0

(
βj(x)Xj(x, ξ) + γ(x){X0,Xj}(x, ξ)

)
,

where βj, γ ∈ C∞(Ω;R). Let
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P1 =

2∑
j=1

X∗j f Xj + X3 + iX0 + a0.

Since dX0 = 0 and

{X1,X0} = −X2, {X1,X2} = (2 + x1)ξ3, {X2,X0} = 0,

one has that hypotheses (HM1), (HM2) and (HM3) are satisfied. Therefore P1 is
always L2 to L2 locally solvable near f −1(0). However, since

Σ = {(x, ξ); ξ1 = x3ξ3, (1 + x1)ξ3 = 0, ξ2 = x1ξ3, ξ , 0},

so that ξ3 , 0 and therefore also x1 = −1 when (x, ξ) ∈ Σ, it follows that

Σ = {(x, ξ); x1 = −1, ξ2 + ξ3 = 0, ξ1 = x3ξ3, ξ3 , 0}.

At any given ρ = (x, ξ) ∈ Σ we have

HX0 (ρ) =



0
1
1
ξ3
0
0


, HX1 (ρ) =



1
0
−x3

0
0
ξ3


, HX2 (ρ) =



0
0
0
−ξ3
0
0


,

whence dim V(ρ) = 3 (here J(ρ) = {0,1,2}),

M(ρ) :=
[
{Xj,Xj′}(ρ)

]
0≤ j , j′≤2 =


0 X2(x, ξ) 0

−X2(x, ξ) 0 (2 + x1)ξ3
0 −(2 + x1)ξ3 0

 =


0 0 0
0 0 ξ3
0 −ξ3 0

 ,
has rank 2 for all ρ ∈ Σ and condition (HM4) is fulfilled at x0 = π(ρ) (when
π(ρ) ∈ f −1(0)). Equivalently, condition (HM5) with k = 2 is fulfilled, for one has at
x0 = (−1, x0

2, x
0
3) = π(ρ), ρ ∈ Σ,

L2(x0) = SpanR{iX0(x0,D), iX1(x0,D), [iX1, iX2](x0,D)}

= SpanR
{ ∂

∂x2
+

∂

∂x3
,
∂

∂x1
− x0

3
∂

∂x3
,
∂

∂x3

}
= R3.

In general
π−1(Ω±) ∩ Σ = ∅,

and when x0 = (−1, x0
2, x

0
3) then

π−1(x0) ∩ Σ , ∅,

so that we have the following different cases:
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• when x0 ∈ f −1(0) ∩ Ω± then P1 is H−1 to L2 locally solvable near x0 (in fact, in
this case we have π−1(x0) ∩ Σ = ∅);

• when x0 = (−1, x0
2, x

0
3) ∈ f −1(0) ∩ Ω then π−1(x0) ∩ Σ , ∅ and (HM4) holds

(equivalently, (HM5) with k = 2 holds), whence P1 is H−1/2 to L2 locally
solvable near x0.

2.4 Example: A mildly complex case.

We conclude the section by briefly discussing an example involving a complex
operator of mixed type. In [11] we considered

P =
N∑
j=1

Z∗j f Z j + iZ0 + a0,

where Z1, . . . , ZN have a complex symbol and Z0 has a real symbol. For it, under
suitable assumptions, similar in nature to (HM1) through (HM5), we could give a
H−1/k to L2 local solvability result near f −1(0). We consider it a mildly complex
case, because the subprincipal parts of

∑N
j=1 Z∗j Z j and of

∑N
j=1[Z j, Z0]

∗[Z j, Z0] are
in addition assumed (see [11]) to be controlled by

∑N
k=0 |Zk |

2 (and hence to vanish
on

⋂N
j=0 Z−1

j (0)).
For instance, an example of operator that can be considered is given by

P = Z∗1 f Z1 + Z∗2 f Z2 + iZ0 + a0,

where, for x = (x1, x2, x3, x4) ∈ R
4,

Z1(x, ξ) = ξ1 + ixk2 ξ3, Z2(x, ξ) = eig(x1 ,x2)ξ2, Z0(x, ξ) = ξ4,

with g ∈ C∞(R2
x1 ,x2 ;R) is such that ∂g/∂x2 , 0 and f (x) = x4 + f̃ (x1, x2, x3). Then

P is H−1/(k+1) to L2 locally solvable near f −1(0).

3 The Schrödinger-type case

We next turn our attention to the Schrödinger-type case (ST). Recall that in this case

P2 =

N∑
j=1

X∗j fjXj + XN+1 + a0,

where f1, . . . , fN ∈ C∞(Ω;R) (notice that X0 ≡ 0). Notice that also in this case the
principal symbol of P2 is real and may change sign. Here we make the following
assumptions.
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Hypotheses (HS1) and (HS2):

(HS1) The operators X1, . . . ,XN have complex coefficients;
(HS2) For all x0 ∈ Ω there exists a connected neighborhood Vx0 ⊂ Ω of x0 and g ∈

C∞(Vx0 ;R) such that

(i) Xjg = 0 on Vx0 , for all 1 ≤ j ≤ N;
(ii) XN+1g , 0 on Vx0 .

Remark 4 Note that, since we are interested in a degenerate setting where the van-
ishing of the functions fj has an interplay with the degeneracies of the operators
X1, ...,XN appearing in the second order part of P2, we do not assume any nondegen-
eracy conditions on the Xj for 1 ≤ j ≤ N (in the sense that iXj may have a critical
point at some x, i.e. αj(x) = 0). At the same time, since we prove solvability by a
priori estimates, we need to put a nondegeneracy condition somewhere on P2, which
is indeed placed on the first order part XN+1 (condition (HS2-(ii)).
We also remark that, since the sets f −1

j (0) may be disjoint, the local solvability of
P2 is studied at each point of Ω and not near any particular zero-set f −1

j (0).

In this case we have the following result (see [12]).

Theorem 2 In the above hypotheses the operator P2 is L2 to L2 locally solvable at
any given x0 ∈ Ω.

Note that now theway the functions fj may degenerate inΩ is no longer important,
neither does the characteristic set of the system (X0 = 0,X1, . . . ,XN ) play any role.
The point now is to estimate, given x0 ∈ Vx0 ⊂ Ω and a compact K ⊂ Vx0 containing
x0, the quantity

Im(eλgP∗u, eλgu)

for λ ≥ 1 large and u ∈ C∞0 (K). By the hypotheses, this is indeed possible. It
is worth mentioning that the estimate follows from a general framework. In fact,
let B : C∞0 (Vx0 ) −→ C∞0 (Vx0 ) be a 0th-order properly supported ψdo, such that
B∗ = B + R,where R is a smoothing operator. Then

Im(P∗ϕ,Bϕ) =
N∑
j=1

Im(Xjϕ, fj[Xj,B]ϕ) +
1
2

N∑
j=1

Im(Xjϕ, [ fj,B]Xjϕ)

(3.10)
+Im(ϕ, [XN+1,B]ϕ) +O(||ϕ||20), ∀ϕ ∈ C∞0 (Vx0 ),

where in O(||ϕ||20) we gathered the contributions of [R,Xj]ϕ, [R,XN+1]ϕ and of
[B,dXN+1 ]ϕ. The first two terms on the right-hand side of (3.10) are delicate, in that
we cannot control terms like ||Xjϕ||0 and are able to control only the third term, and
this is where we make use of assumption (HS2)-(ii), a reasonable choice of B being
eλg. Then one obtains the estimate (c0 > 0)

Im(eλgP∗u, eλgu) ≥
(
λc0 −

||dXN+1 ||L∞(K)

2
− ||a0 ||L∞(K)

)
||eλgu||20, ∀u ∈ C∞0 (K),
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whence by picking λ > 0 sufficiently large and by using the Cauchy-Schwarz in-
equality, one obtains the L2 solvability estimate ||P∗u||0 & ||u||0, for all u ∈ C∞0 (K).

We next wish to give a few examples of operators in the class (ST) of the P2.

3.1 Example.

In Rt × Rnx × Rmy we may consider the operators

P2 = −∆x ± ∆y + Dt, or P2 = f1(t)∆x + f2(t)∆y + Dt,

where f1, f2 are smooth, real-valued (and not identically zero). In all cases, P2 is L2

to L2 locally solvable.

3.2 Example.

This example is related to the so-called Mizohata structures. Let Ω0 ⊂ R
n
x × Ry be

open. ThenΩ := Rt ×Ω0 ⊂ Rt ×R
n
x ×Ry is open. Take Q = Q(x) to be a real-valued

quadratic form and let

Xj = Dx j − i
∂Q
∂xj
(x)Dy, 1 ≤ j ≤ n.

Let Y = Y (x, y,Dx,Dy) be a first order homogeneous operator with real symbol and
let XN+1 = Dt +Y .One immediately has that g = g(t) = t satisfies hypotheses (HS1)
and (HS2) whence

P2 =

n∑
j=1

X∗j fjXj + XN+1 + a0

is L2 to L2 locally solvable near any given point of Ω, regardless the choice of the
(non indentically zero) functions fj ∈ C∞(Ω;R) (and, of course, of a0 ∈ C∞(Ω;C)).

3.3 Example.

Another example is the following. Let x = (x1, x2, x3, x4) ∈ R
4 and let Ω ⊂ R4 be

open. Let

X1 = Dx1 − i
x2
2

Dx3, X2 = Dx2 + i
x1
2

Dx3, X3 = Dx4 + α(x)Dx3,

where α ∈ C∞(Ω;R). We then choose g = g(x) = x4 and have that, whatever the
(non indentically zero) functions f1, f2 ∈ C∞(Ω;R) (and of course a0 ∈ C∞(Ω;C))
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the operator
P2 = X∗1 f1X1 + X∗2 f2X2 + X3 + a0

is L2 to L2 locally solvable near any given point of Ω.

Remark 5 It may be interesting to think of the operators P2 appearing in Examples
3.2 and 3.3 as evolution operators in the direction iXN+1 associated with the invo-
lutive/hypoanalytic structure (see [3]) on the leaves g−1(c), spanned by the system
(iX1, . . . , iXN ) tangential to g−1(c) (c near some regular value of g).

4 The mixed-Schrödinger-type case

We finally consider the case (MST), that is, recall, an operator of the kind

P3 =

N∑
j=1

Xj fjXj + XN+1 + iX0 + a0,

where the novelty with respect to the class (MT), where we had only one f and had
the presence of X0, and with respect to the class (ST), where we had many smooth
real-valued fj but no X0, lies in the fact that we may now allow the presence of many
fj and a non-zero X0. Notice that also in this case the principal symbol of P3 is real
and may change sign. The hypotheses to deal with such a case are the following.

Hypotheses (HMS1), (HMS2) and (HMS3):

(HMS1) X0 , 0 throughout Ω (i.e. iX0 has no critical points), and iX0 fj ≥ 0 on Ω,
1 ≤ j ≤ N;

(HMS2) {X0,Xj}(x, ξ) = 0 for all (x, ξ) ∈ T∗Ω and all j = 1, . . . ,N;
(HMS3) For all x0 ∈ Ω there exists a compact K ⊂ Ω with non-empty interior containing

x0, and a positive constant CK such that for all (x, ξ) ∈ T∗K

|{X0,XN+1}(x, ξ)|2 ≤ CK

( N∑
j=1
(iX0 fj(x))Xj(x, ξ)2 + X0(x, ξ)2

)
.

Remark 6 In this case, as well as in the (ST) case above, the presence of several
possibly vanishing functions fj (which may have nonintersecting zeros) in Ω moti-
vates the study of the local solvability of P3 at any point of Ω. This explains why
our conditions are given on Ω and, especially, why the nondegeneracy condition
(HMS1) is required on Ω (and not on any particular f −1

j (0)). In this regard, note that
in the present (MST) case we assume iX0 fj ≥ 0 on Ω for all 1 ≤ j ≤ N and not
iX0 f | f −1 {0} > 0 as in the (MT) case.

In this case we have the following result (see [10]).
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Theorem 3 Suppose hypotheses (HMS1) to (HMS3) hold. Then P3 is L2 to L2 locally
solvable near any given x0 ∈ Ω.

The main point, as before, is to estimate from below the quantity

Re
(
P∗u,−iX0u

)
, u ∈ C∞0 (K).

One obtains the main estimate, with cK ,CK > 0,

2Re(P∗u,−iX0u) ≥ (P0u,u) + cK ||X0u||20 − CK ||u||20, u ∈ C∞0 (K),

where

P0 =

N∑
j=1
[iX0,X∗j fjXj] + X2

0 − ε[X0,XN+1]
∗[X0,XN+1] (4.11)

(ε > 0 is small depending on a compact K0 containing K), which then satisfies the
Fefferman-Phong inequality (by virtue of hypotheses (HMS1) to (HMS3)), so that
one gets the inequality (c,C > 0)

||P∗u||20 ≥ c ||X0u||20 − C ||u||20, u ∈ C∞0 (K).

Then using, as in the (MT) case, the Poincaré inequality for the term ||X0u||20 makes it
possible to get rid of the term −C ||u||20 (it is here that one exploits hypothesis (HMS1)
and has possibly to shrink the compact set K keeping x0 in its interior, process that
does not change the above constants c,C > 0), whence the L2 to L2 local solvability
estimate

||P∗u||20 & ||u||
2
0, ∀u ∈ C∞0 (K).

Notice that requiring stronger assumptions on the vector fields yields stronger
properties of P0, whence the possibility of exploiting the Gårding inequality, or the
Melin inequality, or the Rothschild-Stein inequality to obtain improved solvability
results (i.e. with a better gain of derivatives).

4.1 Example.

Consider in Rn, n ≥ 3, the operator

P3 = x1(D2
1 − D2

2) + i(D1 + D2) + X3(x,D) = D1x1D1 − D2x1D2 + iD2 + X3(x,D),

with

X3(x,D) = g1(x)D1 + g2(x)D2 +

n∑
j=3

gj(x)Dj,

where the gj , 1 ≤ j ≤ n, are smooth real-valued, and where g1 and gj , 3 ≤ j ≤ n,
are independent of x2. In this case
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X0 = D2, X1 = D1, X2 = D2 f1(x) = f2(x) = x1.

Since we then have

{X0,X3}(x, ξ) = −i
∂g2
∂x2
(x)X0(x, ξ), {X0,X1} = {X0,X2} = 0,

for such an operator conditions (HMS1) to (HMS3) are satisfied and P is L2 to L2

locally solvable in Rn.

4.2 Example.

Consider next the operator in Rnx × Rt

P3 =

M∑
j=1

Dj x
m1
j Dj ±

n∑
k=M+1

Dk xm2
k

Dk + ig(t)Dt +

n∑
h=1

gh(x)Dh,

where 1 ≤ M ≤ n − 1, m1,m2 ≥ 1, and g and the gh, 1 ≤ h ≤ n, are smooth
real-valued functions, with g nowhere vanishing. Once more, since in this case (here
N = n)

X0 = g(t)Dt, XN+1 =

n∑
h=1

gh(x)Dh,

conditions (HMS1) to (HMS3) are satisfied and P is L2 to L2 locally solvable in
Rn × R.

4.3 Example.

In this final example one sees that there are cases in which an operator of the kind
(MST) can be locally solvable with a better gain of derivatives. Consider in fact in
R2 the operator

P3 = D1x1D1 − D2x2D2 + i(D1 − D2) + x2D1 = x1D2
1 − x2D2

2 + x2D1,

in which case

X1 = D1, X2 = D2, X0 = D1 − D2, X3 = x2D1, f1(x) = x1, f2(x) = −x2.

In this case the associated operator P0 (see (4.11)) is

P0 = D2
1 + D2

2 + (D1 − D2)
2 − εD2

1,
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whence for 0 < ε < 1 the operator P0 is elliptic and one can use the Gårding
inequality in place of the Fefferman-Phong inequality, thus obtaining an H−1 to L2

local solvability result near any given point of R2.

5 Concluding remarks

There is a number of problems raised by the study of this class of degenerate
operators. Among them, we wish to mention the following two.

Problems:

1. For the operators considered here one should study whether given any s ∈ R one
has Hs to Hs+2−r local solvability, where r is the loss of derivatives. Of course,
this problem is very difficult because the operator is very degenerate and even
microlocalization gives lower order terms that may be too big to control. It might
very well be the case that the Sobolev regularity s cannot range freely in R but
that there might be thresholds due to the kernel of P∗.

2. One should study semi-global solvability (see [16]) for these operators, and for
that one needs to understand the propagation of singularities. One should ex-
pect that things abruptly change, depending on the different classes (mixed-
type, Schrödinger-type, mixed-Schrödinger-type, respectively), depending on the
behavior of the bicharacteristics of

∑N
j=0 X∗j Xj when hitting the sets f −1(0),

f −1
1 (0), . . . , f −1

N (0). In addition, as we saw in Example 2.3 of Section 2, the
gain of regularity may wildly change depending on the position of π−1(S)with re-
spect to Σ (recall that S = f −1(0)), whence an approach based on the propagation
of Sobolev microlocal regularity along the bicharacteristics (of P or

∑N
j=0 X∗j Xj)

might be the appropriate one. A first important step in this direction was taken by
Parenti and Rodino in [30], where they studied the hypoellipticity and microlocal
hypoellipticity of a class of anisotropic operator in terms of the Lascar anisotropic
wave-front set.
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