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Abstract
 Inflammatory bowel disease (IBD) is a group of chronic diseasesBackground:

related to inflammatory processes in the digestive tract generally associated
with an immune response to an altered gut microbiome in genetically
predisposed subjects. For years, both researchers and clinicians have been
reporting increased rates of anxiety and depression disorders in IBD, and these
disorders have also been linked to an altered microbiome. However, the
underlying pathophysiological mechanisms of comorbidity are poorly
understood at the gut microbiome level.

 Metagenomic and metatranscriptomic data were retrieved from theMethods:
Inflammatory Bowel Disease Multi-Omics Database. Samples from 70
individuals that had answered to a self-reported depression and anxiety
questionnaire were selected and classified by their IBD diagnosis and their
questionnaire results, creating six different groups. The cross-validation
random forest algorithm was used in 90% of the individuals (training set) to
retain the most important species involved in discriminating the samples
without losing predictive power. The validation set that represented the
remaining 10% of the samples equally distributed across the six groups was
used to train a random forest using only the species selected in order to
evaluate their predictive power.

 A total of 24 species were identified as the most informative inResults:
discriminating the 6 groups. Several of these species were frequently described
in dysbiosis cases, such as species from the genus   and Bacteroides

. Despite the different compositions among theFaecalibacterium prausnitzii
groups, no common patterns were found between samples classified as
depressed. However, distinct taxonomic profiles within patients of IBD
depending on their depression status were detected.

 The machine learning approach is a promising approach forConclusions:
investigating the role of microbiome in IBD and depression. Abundance and
functional changes in these species suggest that depression should be
considered as a factor in future research on IBD.
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Introduction
Increased depression rates have been frequently reported on 
patients with inflammatory bowel disease (IBD) (Graff et al., 
2009), which is a big concern from a clinical standpoint, since 
increased levels of stress and anxiety are major drivers of IBD 
relapse and severity (Mawdsley & Rampton, 2006). Both IBD 
and depression are heavily influenced by the gut microbi-
ome structure, which controls anti-inflammatory processes and  
permeability in the gut, and communicates with the brain by a 
complex and close relationship with the Autonomous Nervous 
System that is known as the brain-gut axis (Foster &  
McVey Neufeld, 2013; Luna & Foster, 2015).

Altered microbiomes can have big impacts on the health and 
development of both the gut and brain, and alterations in 
the ecology of this microbiome, a process known as dysbio-
sis, have been separately linked to both depression and IBD  
(Kaur et al., 2011; Rogers et al., 2016). However, little is known  
about the role of the microbiome in the two diseases.

The availability of the large amount of data derived from the 
recent explosion in metagenomics and metatranscriptomics 
provides unique opportunities for investigation. However, it is 
sometimes difficult to identify informative species. Recently, 
machine learning algorithms have been successfully applied 
because they allow the identification of patterns in situations  
where large, multi-dimensional and heterogeneous datasets are 
available.

Among the several machine learning approaches available,  
random forest is an algorithm used for classification and 
regression based on an ensemble that builds a population of  
decision tree classifiers, such that the result of a prediction 
from a given set of features is the most frequent result from the  
different trees of the “forest” (Breiman, 2001). This is an  
efficient and generalist algorithm that has already been applied in 
several metagenomic investigations in human diseases, such as  
IBS (Saulnier et al., 2011).

The aim of this work was to apply the random forest approach 
to identify the microbiome species that may be mostly involved 
in IBD and depression outcomes and that are responsible for 
the most relevant changes in the population structure between 
IBD, depression and patients comorbid for both conditions,  
and to provide insights on how the microbiome is involved in  
this comorbidity.

Methods
Database generation
The datasets used for the analyses were retrieved from the  
Inflammatory Bowel Disease Multi-Omics Database (IBDMDB) 
(Schirmer et al., 2018), which is part of the Integrative Human  
Microbiome Project (NIH HMP Working Group et al., 2009).  
The IBDMDB database contains a wide array of omics data 
(e.g., 16S and shotgun metagenomic, metatranscriptomic, pro-
teomic and host genomes) of 132 individuals classified by IBD  
diagnostic in ulcerative colitis,  Crohn’s disease and controls.  
Participants provided bi-weekly stool samples at five hospitals in 

the United States. Metagenomic and metatranscriptomic data was 
processed as described in Schirmer et al., 2018 (Abubucker et al., 
2012; Truong et al., 2015)

Subject selection
From this dataset, the 70 unique participants who answered 
an additional self-reported depression and anxiety question-
naire during registration (the answers to which are listed in the 
HMP2 metadata, column EC to EL) were selected. As the ques-
tionnaire model was not specified, only individuals with raw 
scores over 6 on this test was considered as showing “signs  
of depression”. To calculate the raw scores, a severity scale was 
generated, with the following scores: 0, never; 1, rarely; 2, some-
times; 3, often; 4, always. The scores were then summed to 
give a final total. In the case of individuals undergoing multiple  
tests, the lower score was used. We selected a low threshold 
in order to be able to identify putative dysbiotic individuals  
that were not experiencing severe depression symptoms.  
All the others were classified as “no sign of depression”. The 
combination between the test and the IBD diagnosis divided 
the dataset in six groups: Crohn’s disease with no detectable 
sign of depression (CD; n=15), Crohn’s disease with signs  
of depression (CDD; n=20), ulcerative colitis with no sign of 
depression (UC; n=4), ulcerative colitis with signs of depres-
sion (UCD, n=11), signs of depression but no inflammation 
(nonIBDD; n=7) and the control group: no inflammation/no  
depression (nonIBD; n=13).

Data analysis
For each of the six groups, abundance matrices of the metagen-
omic data, metatranscriptomic data, and the combination of 
metagenomics and metatranscriptomics were used for random 
forest classification. Each of the datasets was divided  
randomly into a training set (90% of the individuals) and a vali-
dation set (10% of the individuals). Random forest analysis were  
performed using the library Scikit-learn 0.19.1 (Pedregosa 
et al., 2011) on the training sets to identify the most impor-
tant species involved in discriminating the samples with-
out losing predicting power. A 1000-fold cross-validation  
for the combined dataset, and 500-fold for metagenomic 
and metatranscriptomic data, considering one model for 
each iteration was performed and only the most important  
species in the construction of this model was retained. Only  
models with a precision classification >80% were considered, and  
among the considered models, only species that appeared 
more than once were selected. Afterwards, the validation 
sets were run with the selected species only to measure the  
possible loss of predictive capability and computed the area  
under the receiver operating characteristic (auROC) curve for the 
prediction of the validation set classes as a performance metric.

Statistical analysis
In order to assess the significance of the differences between 
the abundances of the selected species, we performed a  
one-way ANOVA (Scipy 1.0.0, Jones et al., 2001) with a  
Tukey’s honest significant difference (HSD) post-hoc test. 
This test makes pair-wise comparisons between the different 
means to see which classes are different. For clarity, confidence  
intervals for Tukey’s HSD test can be found in Supplementary 
Materials (Supplementary Figure 1 and Supplementary Figure 2).
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The functional activity of the selected species was retrieved from 
the HUMAnN metatranscriptomic analyses described above. 
Only the pathways in which the selected species are involved 
and those that were different between the groups from the 
ANOVA test were selected and the correlation between these  
species was calculated using Spearman’s correlation coefficient.  
A significance level of 0.05 was applied for all statistical tests.

Results and discussion
Species selection and model validation
The random forest cross-validation selection of the most informa-
tive species showed a combined list of 24 species, as can be seen 
in Figure 1. The validation models for DNA, RNA and the com-
bined dataset shows micro-averaged auROC values of 0.96, 0.91  
and 0.99, respectively (Supplementary Figure 3–Supplementary 
Figure 5). This metrics highlight the performance of the 
model that, even with a reduced subset of species, has not lost  
predictive power.

All species exhibited differences in at least one group in a  
one-way ANOVA (alpha=0.05, Supplementary Table 1), and 
no significant differences were found between DNA and RNA  
abundances for these species (Supplementary Table 2). 

The non-dysbiotic microbiome
The analyses showed an increase in the number of species 
from the genus Bacteroides in dysbiotic groups compared 
with the control (nonIBD) (Figure 2), as has been reported in 
other dysbiotic samples (Bloom et al., 2011), with the excep-
tion of Bacteroides dorei, which is more abundant in non-
IBD than in any other group. Aside from Bacteroides dorei,  

nonIBD samples had a higher abundance of Alistipes shahii and  
Ruminococcus bromii, while a typical species associated with  
nonIBD, Faecalibacterium prausnitzii, was significantly decreased  
in nonIBDD and CD.

Crohn’s disease abundance changes in depression
Both of the Crohn’s disease-related groups (CD and CDD) 
showed higher abundances of Bacteroides ovatus and Bacteroides 
uniformis. However, CD samples exhibited higher abundances 
for several specific species, including Bacteroides xylanisolvens, 
Parasutterella excrementihominis and Bacteroides fragilis,  
compared with CDD, but decreased abundance of Faecalibacte-
rium prausnitzii, which did not differ significantly in abundance  
between nonIBD and CDD groups.

Ulcerative colitis changes in depression
Ulcerative colitis samples had the most distinctive micro-
biome profile. Several species, including Burkholderiales  
bacterium 1_1_47, Bacteroides eggerthii and Bacteroides  
finegoldii were characteristic of this group, and absent in the  
others, except for B. finegoldii, which was also present in a lower 
abundance in nonIBD samples. Only UCD samples exhibited an  
increased abundance of Bacteroides fragilis, Bacteroides  
vulgatus and Haemophilus pittmaniae, this last species being  
almost exclusive to the UCD group.

Non-IBD changes in depression
The nonIBDD was the group with the highest number of 
changes in microbiome diversity when compared with its 
non-depressed counterpart (Table 1). However, most of those  
changes followed a similar pattern in other dysbiotic groups.

Figure 1. Venn diagram for the species selected for each dataset.
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Figure 2. DNA (A) and RNA (B) taxonomic abundances for the selected species. Abundances were quantified by the relative abundances of 
their sequences, and for each level they should sum to 1 (including unclassified sequences).
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A notable change was observed in Faecalibacterium praus-
nitzii, which was present in almost the same abundances in 
nonIBD, UCD and CDD samples, and a high variability in 
UC while being significantly lower in CD and nonIBDD  
(Supplementary Table 3 and Supplementary Table 4). This is  
particularly interesting, since this species is considered to have 
anti-inflammatory activity. It seems counterintuitive to find a 
depleted population of one of the species most associated in 
the literature with a healthy microbiome compared to an IBD 
one in a group that doesn’t show any inflammatory process. 
However, Parabacteroides goldsteinii was increased in non-
IBDD and was depleted in all IBD groups in comparison with  
control samples. The Parabacteroides genre have been associ-
ated previously with anti-inflammatory activity (Neff et al., 
2016; Schirmer et al., 2016), so the increase in abundance of 
this bacteria may explain why the nonIBDD microbiome is  
not associated with inflammation in the gut.

Other than Parabacteroides goldsteinii, nonIBDD samples 
did not contain other characteristic groups, and, more notably, 
none of the selected species was specific for depressed or non- 
depressed phenotypes.

Microbial functional activity
Regarding the functional activity of these species, seven path-
ways that were more abundant in dysbiotic groups than in  
nonIBD were identified (Supplementary Figure 1) and were  
correlated between each other and inversely correlated with 
most of the others (Supplementary Figure 2 and Supplementary  
Table 5). Those pathways are folate transformations II,  
N10-formyl-tetrahydrofolate biosynthesis, de novo L-ornithine  
biosynthesis, superpathway of pyridoxal 5’phosphate biosyn-
thesis and salvage, phosphopantothenate biosynthesis I, preQ0 
biosynthesis and queuosine biosynthesis. Folate (vitamin B9)  
and pyroxidal 5’-phosphate (vitamin B6) deficiencies have 
been linked both to depression (Coppen & Bolander-Gouaille,  
2005; Hvas et al., 2004; Mitchell et al., 2014), as they 
are key for the synthesis of several neurotransmitters, and 
IBD (Pan et al., 2017; Yakut et al., 2010), although this  
association is not well understood and does not seem to be  
evidence of causation. Increased levels of L-ornithine deriva-
tives have also been linked to depression (Zheng et al., 2010). 
However, even if nonIBDD have the highest activity for almost 
all of these pathways, CD and UC were also significantly 
increased, while functional activity in CDD was generally lower  

Table 1. Changes between Crohn’s disease (CD), ulcerative colitis 
(UC) and control (nonIBD) in depressed compared with non-
depressed subjects. Increases/decreases shown are statistically 
significant.

Species CD UC nonIBD

Alistipes shahii - - Increase

Bacteroides ovatus - - Increase

Subdunigranulum sp. - Decrease -

Bacteroides xylanisolvens Decrease - Increase

Parasutterella excrementihominis Decrease - -

Burkholderiales bacterium 1_1_47 - Decrease -

Alistipes putredinis - Decrease Decrease

Bacteroides stercoris - - Increase

Faecalibacterium prausnitzii Increase - Decrease

Bacteroides uniformis Decrease - Increase

Bacteroides fragilis Decrease Increase -

Lachnospiraceae bacterium 7_1_58 Increase - -

Bacteroides dorei - - Decrease

Bacteroides vulugatus - Increase Increase

Ruminoccocus bromii - - Decrease

Bacteroides finegoldii Decrease Decrease -

Bacteroides eggerthii - Decrease Increase

Parabacteroides goldsteinii - - Increase

Haemophilus pittmaniae - Increase -
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and non-significant in some pathways. Moreover, UCD did not  
differ from nonIBD in any of them.

This difference in functional activity again highlights the lack 
of a concrete pattern of gut microbiome abundance between  
depressed groups.

Conclusions
The random forest approach was able to successfully identify 
informative changes in abundance at the species level, revealing 
specific patterns for the depressed and non-depressed groups 
without losing predictive power. This work provided, to 
our knowledge for the first time, an overview about the  
difference in the bacterial communities of patients with signs of  
depression and the combination with depression and inflamma-
tory bowel disease. Our findings suggest a complex landscape 
of microbiome interactions, both at population structure and 
functional activity levels. However, the results showed that 
there are distinct taxonomic profiles within patients of IBD 
depending on their depression status, providing further input  
for future investigations.

Data availability
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Supplementary material
Supplementary Figure 1. Relative abundances of the pathways that showed significant differences between groups (alpha= 0.05).

Click here to access the data.

Supplementary Figure 2. Correlation between the different pathways contributed by the selected species. Color gradient shows posi-
tive (red) or negative (blue) correlation.

Click here to access the data.

Supplementary Figure 3. Receiver operating characteristic curves for the validation model with combined metagenomic and metat-
ranscriptomic data.

Click here to access the data.

Supplementary Figure 4. Receiver operating characteristic curves for the validation model with metagenomic data.

Click here to access the data.

Supplementary Figure 5. Receiver operating characteristic curves for the validation model with metatranscriptomic data.

Click here to access the data.

Supplementary Table 1. ANOVA results for each of the selected species in metagenomic and metatranscriptomic data sets.

Click here to access the data.

Supplementary Table 2. A t-test was used to assess the difference between DNA and RNA abundances per species and a nested 
column per group.

Click here to access the data.

Supplementary Table 3. Tukey’s honest significant difference test for the metagenomic data. Results are organized by species with two 
nested columns, confidence intervals at 0.95 and the decision. Each row represents a pair-wise comparison.

Click here to access the data.
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