
14 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Testa, A., Notarstefano, G. (2022). Generalized Assignment for Multirobot Systems via Distributed Branch-
and-Price. IEEE TRANSACTIONS ON ROBOTICS, 38(3), 1990-2001 [10.1109/TRO.2021.3120046].

Published Version:

Generalized Assignment for Multirobot Systems via Distributed Branch-and-Price

Published:
DOI: http://doi.org/10.1109/TRO.2021.3120046

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/905496 since: 2022-11-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TRO.2021.3120046
https://hdl.handle.net/11585/905496


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  
 
A. Testa and G. Notarstefano, "Generalized Assignment for Multi-Robot Systems via 
Distributed Branch-And-Price," in IEEE Transactions on Robotics, vol. 38, no. 3, pp. 
1990-2001, June 2022. 

The final published version is available online at: 

https://doi.org/10.1109/TRO.2021.3120046 

 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1109/TRO.2021.3120046


1

Generalized Assignment for Multi-Robot Systems
via Distributed Branch-And-Price

Andrea Testa, Member, IEEE and Giuseppe Notarstefano, Member, IEEE

Abstract—In this paper, we consider a network of agents
that has to self-assign a set of tasks while respecting resource
constraints. One possible formulation is the Generalized Assign-
ment Problem, where the goal is to find a maximum payoff
while satisfying capability constraints. We propose a purely
distributed branch-and-price algorithm to solve this problem in
a cooperative fashion. Inspired by classical (centralized) branch-
and-price schemes, in the proposed algorithm each agent locally
solves small linear programs, generates columns by solving simple
knapsack problems, and communicates to its neighbors a fixed
number of basic columns. We prove finite-time convergence of
the algorithm to an optimal solution of the problem. Then, we
apply the proposed scheme to a generalized assignment scenario
in which a team of robots has to serve a set of tasks. We
implement the proposed algorithm in a ROS testbed and provide
experiments for a team of heterogeneous robots solving the
assignment problem.

I. INTRODUCTION

The Generalized Assignment Problem (GAP) is a well
known combinatorial optimization problem with several appli-
cations as vehicle routing, facility location, resource schedul-
ing and supply chain, to name a few [1], [2], [3]. Even though
GAP is a NP-hard problem, several approaches have been
developed for solving this problem both for exact and approxi-
mate solutions. We refer the reader to [4] for a survey. Branch-
and-price algorithms [2], [5] are among the most investigated
algorithms allowing for both optimal and suboptimal solutions.

A. Related Work

Task assignment naturally arises in cooperative robotics,
where heterogeneous agents collaborate to fulfill a complex
task, see, e.g., [6] for an early reference. Specific applications
include persistent monitoring of locations [7], path planning
of mobile robots, e.g., UAVs [8], task scheduling for robots
working in the same space [9], vehicle routing [10] and
task assignment in urban environments [11]. All the previous
problems are solved by means of centralized approaches.

In order to deal with the computational complexity of
the problem, a branch of literature analyzes parallel and
decentralized approaches to the problem1. A well known

This result is part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 638992 - OPT4SMART).

A. Testa and G. Notarstefano are with the Department of Electrical,
Electronic and Information Engineering, University of Bologna, Bologna,
Italy, a.testa@unibo.it, giuseppe.notarstefano@unibo.it.

1We denote parallel the approaches based on master-slave architectures,
while we call decentralized the schemes with independent agents that do not
communicate among each other.

parallel approach is the auction based one, originally proposed
in [12]. A market-based approach is considered in [13] for the
coordination of human-robot teams. Authors in [14] propose
an algorithm, based on a sequential shortest augmenting path
scheme, to solve a dynamic multi-task allocation problem.
Agents propose assignments that are validated by a coordinat-
ing unit. As for decentralized schemes, authors in [15] solve a
dynamic task allocation problem for robots that can perform
local sensing operations and do not communicate among each
other. In [16], a task assignment problem is solved, in a
decentralized scheme, through the so called petal algorithm.
In [17], a dynamic task assignment problem in which the
cost vector changes in a bounded region is considered. A
central unit is initially required but robots are able to exploit
local communications to perform a reallocation if needed. An
area partitioning problem for multi-robot systems is proposed
in [18] and solved by a genetic algorithm. An area coverage
problem in marine environments is solved in [19] with heuris-
tics based on the traveling salesman problem.

As for distributed schemes, i.e., with processors in a peer-
to-peer network without a central coordinator, a distributed
version of the Hungarian method is proposed in [20]. A dis-
tributed simplex scheme for degenerate linear programs (LP)
is proposed in [21] in the context of multi-agent assignment
problems. A distributed subgradient is applied in [22] to a
task assignment problem, while in [23] a distributed column
generation scheme is proposed. A linear task assignment
problem with time-varying cost functions is considered in [24],
while an optimal role and position assignment problem is
addressed in [25] by iteratively solving a sequence of linear
assignment problems. In these approaches, authors neglect
integrality constraints on the decision variables, relying on
the unimodular structure of the problems. As for distributed,
suboptimal approaches for task assignment problems, in [26]
a large-scale distributed task/target assignment problem across
a fleet of autonomous UAVs is considered, but the communi-
cation graph is assumed to be complete. In the context of
wireless sensor networks, [27] proposes a distributed task
allocation in order to maximize the network life-time. A
distributed task assignment algorithm is used in conjunction
with a deterministic annealing in [28], in the context of
limited-range sensor coverage. In [29], a dynamic vehicle
routing problem is approached with a distributed protocol in
which agents iteratively solve graph partitioning problems. In
the works [30], [31] authors address Mixed-Integer Linear
Programs by means of a distributed cutting-plane algorithm
and apply it to a multi-agent multi-task assignment problem.
Distributed implementations of the auction-based algorithm



2

are often used to solve task assigment problems, see, e.g., [32]
for an early reference, and in particular GAPs [33], [34].
The auction-based approach allows for a suboptimal solution
with performance guarantees. In [35], this approach is applied
to a task allocation problem expressed as a combinatorial
optimization problem with matroid constraints. In the recent
works [36], [37], a dynamic task allocation scenario with
partial replanning is considered. The above references show
that the exact resolution of GAP is an open problem in a purely
distributed setting. Indeed, state-of-the-art solutions are usually
based on proper linear relaxations or suboptimal approaches.

B. Contributions

In this paper, we propose a purely distributed version of the
branch-and-price algorithm to solve the Generalized Assign-
ment Problem by means of a network of agents. Specifically,
each agent locally solves a linear programming relaxation
of the GAP, generates columns by solving a (simple) knap-
sack problem, and exchanges estimates of the solution with
neighboring agents. Due to the relaxation of the integrality
constraints, the solution of this problem may not be feasible.
Thus, new problems, based on the original one with suitable
additional constraints, have to be solved. The set of these
problems can be represented by a so called branching tree. By
leveraging on their communication capabilities, agents explore
their local trees until an optimal solution of the optimization
problem has been found. With respect to the aforementioned
works, and specifically [26], [32], [33], the proposed scheme
has the following distinctive new features. To the best of the
authors’ knowledge, this is the first attempt to solve GAP
to optimality in a purely distributed fashion. Remarkably, the
proposed scheme is shown to converge also under time-varying
and directed communication networks. Moreover, it is worth
noticing that the approaches in [30], [31] are not applicable
to the considered GAP scenario, which involves equality con-
straints. Finally, we apply the proposed algorithm to a dynamic
task assignment problem where tasks may arrive during time
and robots have to adapt the local plan according to the new
information. An experimental platform, based on ROS (Robot
Operating System), is proposed to run experiments in which a
team of aerial and ground robots cooperatively solve the GAP
relying on the proposed distributed branch-and-price scheme.

The paper unfolds as follows. In Section II we introduce
the distributed setup considered throughout the paper. Then,
we introduce the Generalized Assignment Problem and a
centralized scheme, called branch-and-price, to solve it. In
Section III we propose a purely distributed branch-and-price
algorithm. In Section IV we provide numerical simulations
for randomly generated GAPs and in Section V we show the
results of experiments on a swarm of heterogeneous robots.

Notation: We denote by e` the `-th vector of the canoni-
cal basis (e.g., e1 = [1 0 . . . 0]>) of proper dimension. Given
a vector v` ∈ Rd, we denote by v`m the m-th component of
v`. Also, we denote by 1r (0r) the vector in Rr with all its
entries equal to 1 (0).

II. DISTRIBUTED SETUP AND PRELIMINARIES

In this section, we introduce the distributed setup for the
Generalized Assignment Problem addressed in the paper. Also,
the (centralized) branch-and-price scheme is illustrated.

A. Distributed Problem Setup

In the Generalized Assignment Problem, the objective is to
find a maximal profit assignment of M tasks to N agents such
that each task is assigned only to one agent. In this scenario,
the generic agent i has a reward pim ∈ R if it executes the
m-th task. It also has a limited capacity gi ∈ R and it uses
an amount wim ∈ R of capacity if it performs the m-th task.
Let xim be a binary variable indicating whether task m is
assigned to agent i (xim = 1) or not (xim = 0). We denote
constraints in the form xim ∈ {0, 1} as integer constraint.
Then, the standard integer programming formulation is

max
x11,...,xNM

N∑

i=1

M∑

m=1

pimxim

subj. to
N∑

i=1

xim = 1,m = 1, . . . ,M,

M∑

m=1

wimxim ≤ gi, i = 1, . . . , N,

xim ∈ {0, 1}, i = 1, . . . , N,m = 1, . . . ,M.

(1)

In order to streamline the notation, we now introduce a
formulation of the GAP better highlighting the structure of the
problem in a distributed scenario. Let zi = [xi1, . . . , xiM ]> ∈
RM ,∀i = 1, . . . , N . In the following we denote as z the stack
[z>1 , . . . , z

>
N ]>. Also, let ci = [pi1, . . . , piM ]> ∈ RM , Di =

[wi1, . . . , wiM ] ∈ RM and Pi = {zi ∈ {0, 1}M | Dizi ≤ gi},
for i = 1, . . . , N . Then, (1) can be recast as

max
z1,...,zN

N∑

i=1

c>i zi

subj. to
N∑

i=1

zi = 1M ,

zi ∈ Pi, i = 1, . . . , N.

(2)

This new formulation of (1) allows us to point out the
distributed nature of the problem. Namely, ci describes the
profits associated to assigning tasks to agent i,

∑N
i=1 zi = 1M

describes the assignment constraints (coupling constraints),
Pi describes the capacity restrictions on the agents (local
constraints). It is worth noting that the sets Pi are bounded
for i = 1, . . . , N .

The agents must solve (2) cooperatively in a distributed
fashion with limited communication and computation capa-
bilities, as well as limited memory. We consider the natural
scenario in which the i-th agent only knows the polyhedron
Pi and the cost vector ci, thus not having knowledge of
other agent data. In order to solve the problem, agents can
exchange information according to a time-varying commu-
nication network modeled as a time-varying digraph Gt =
({1, . . . , N}, Et), with t ∈ N being a universal slotted time



3

representing a temporal information on the graph evolution.
Notice that time t does not need to be known by the agents.
A digraph Gt models the communication in the sense that there
is an edge (i, j) ∈ Et if and only if agent i is able to send
information to agent j at time t. For each node i, the set of
in-neighbors of i at time t is denoted by N in

i,t and is the set of
j such that there exists an edge (j, i) ∈ Et. A static digraph is
said to be strongly connected if there exists a directed path for
each pair of agents i and j. Next, we require the following.

Assumption 2.1 (Graph Connectivity): The communication
graph is L-strongly connected, i.e., there exists an integer L ≥
1 such that, for all t ∈ N, the graph ({1, . . . , N},⋃t+L−1

τ=t Eτ )
is strongly connected. �
Notice that this is a standard, mild, assumption in the context
of distributed optimization that allows to model direct, time-
varying, asynchronous and possibly unreliable communication.

B. Centralized Branch-and-Price Method

We now introduce the main concepts regarding the branch-
and-price scheme. We refer the reader to [5] for a more
detailed dissertation. For the sake of clarity, we organize this
subsection in three parts.

Dantzig-Wolfe Decomposition for GAPs

An equivalent formulation of (2), which is exploited in our
distributed setup, can be obtained as follows. Such procedure,
originally introduced in [5], is strictly related to the Dantzig-
Wolfe Decomposition [38]. Points zi ∈ Pi can be represented
as the linear combination of a finite number of vectors vqi ,
with q ∈ {1, . . . , |Qi|}, i.e.,

zi =

|Qi|∑

q=1

vqi λ
q
i , (3)

where we denote with Qi the set of vectors vqi . The variables
λqi , ∀q = 1, . . . , |Qi|, also called combiners, have to satisfy

|Qi|∑

q=1

λqi = 1,

λqi ∈ {0, 1}.
(4)

It can be shown that, for GAPs, Qi coincides with the set
of extreme points of the convex hull conv(Pi) of Pi, [5].
Let Λ ∈ R

∑N
i=1 |Qi|, be the stack of all the combiners.

Substituting (3) and (4) in (2) leads to the following equivalent
Integer Programming Master Problem (IP-MP)

max
Λ

N∑

i=1

|Qi|∑

q=1

(c>i v
q
i )λ

q
i

subj. to
N∑

i=1

|Qi|∑

q=1

vqi λ
q
i = 1M ,

|Qi|∑

q=1

λqi = 1, i = 1, . . . , N,

λqi ∈ {0, 1}, q ∈ {1, . . . , |Qi|}, i = 1, . . . , N.

(5)

MP0

· · · MP`

· · ·

zik = 0

MP`+1

zik = 1

Fig. 1. Example of branching tree with problems generated according to
constraints on the sets Pi.

Notice that an optimal solution z? of (2) can be retrieved
from an optimal solution Λ? of (5) by substituting the entries
of Λ? in (3), [2].

Branching Tree
The presence of binary constraints makes (5) hard to solve.

In order to find an optimal solution to the problem, the branch-
and-price algorithm, [5], explores the set of feasible solutions
of GAP by iteratively generating and solving relaxed versions
of (5) including suitable, tightening constraints. That is, the
constraint λqi ∈ {0, 1} of all these problems is relaxed to
λqi ≥ 0 (λqi ≤ 1 can be omitted as it is implicit in the constraint∑|Qi|
q=1 λ

q
i = 1). These problems can be represented as nodes

of a so called branching tree, see, e.g., Figure 1. The `-th
node of the tree to be solved represents a problem, in the
form of (5), obtained by relaxing the integer constraints and
enforcing the constraints of the edges. We denote such problem
as MP`, by Λ?` its optimal solution and by z?` and J?` the
solution and cost in terms of the variables z. Branches (edges)
indicate the constraints that have to be added to generate
new problems. Instead of considering constraints on the Λ
variables, new problems are generated by including, to the
sets Pi, additional constraints in the form zik = 0, zik = 1 for
some zik(`) 6∈ {0, 1}. In the following, we assume there exists
an extraction strategy to determine the next node of the tree
to be solved and a rule to choose the index ik. Let P `i be the
sets obtained by including such additional constraints and let
Q`i be the sets of extreme points of conv(P `i ). Since Q`i ⊂ Qi,
this results in generating relaxed problems in the form of (5)
with less optimization variables. The algorithm keeps track of
a lowerbound, also called incumbent, J INC on the cost, and of
a candidate solution z INC. After solving the generic problem
MP`, one of the following operations is performed:
• Incumbent Update: If z?` ∈ {0, 1}NM and J?` ≥ J INC,

then J INC = J?` and z INC = z?`.
• Branching: If J?` > J INC and z?` 6∈ {0, 1}NM and J?` ≥
J INC, two new problems are added to the tree.

• Pruning: If J?` ≤ J INC or MP` is infeasible, nothing is
done.

Remark 2.2: Pruning prevents the algorithm from inspecting
problems that do not improve J INC. �
At the end of the algorithm J INC and z INC coincide with the
optimal cost J? and solution z? of (2).



4

Column Generation

Each problem MP` has a large number of optimization
variables. Thus, it can be approached by means of the so called
column generation algorithm (originally proposed in [39] in
the context of cutting stock problems). It consists in iteratively
performing the following three steps:

i) A Restricted Master Problem (RMP) is solved, made by
a small subset of the columns2 of MP` with sets Q̄`i ⊂ Q`i
and a smaller combiner vector Λ̃, i.e.,

max
Λ̃

N∑

i=1

|Q̄`
i |∑

q=1

(c>i v
q
i )λ̃

q
i

subj. to
N∑

i=1

|Q̄i|∑

q=1

vqi λ̃
q
i = 1M ,

|Q̄`
i |∑

q=1

λ̃qi = 1, i = 1, . . . , N,

λ̃qi ≥ 0, q ∈ {1, . . . , |Q̄`i |}, i = 1, . . . , N.

(6)

ii) If possible, new columns are added to the RMP in
order to improve the current solution. Let [π> µ>]> be a
dual optimal solution of (6) at a generic iteration of the
algorithm. In particular, π ∈ RM is associated to the constraint∑N
i=1

∑
q∈Q̄`

i
vqi λ̃

q
i = 1M , while µ ∈ RN is associated to

the constraint
∑
q∈Q̄`

i
λ̃qi = 1. For each i = 1, . . . , N a new

column is found by solving the so called pricing problem:

v̄i ∈ argmax
zi

(ci − π)>zi

subj. to zi ∈ P `i .
(7)

Consider now the associated column in the form hi =
[c>i v̄i v̄>i e>i ]>. Then, hi allows for a cost improvement
if it has positive reduced cost, i.e., if (ci − π)v̄i − µi > 0.

iii) A pivoting operation is performed, that is, all columns
with positive reduced cost are included in the RMP, while
columns of the RMP that are not associated to basic variables
are dropped3. Then, the procedure is iterated until no more
columns with positive reduced cost can be found. Let Λ?` be
the final optimal solution of the relaxed version of (5) obtained
with this procedure. Let λ̄qi be the entry of Λ?` associated to
a vertex vqi ∈ Q`i . Then, the solution z?` of MP` can be
expressed as (c.f. (3))

zi(`) =

|Q`
i |∑

q=1

λ̄qi v
q
i , i = 1, . . . , N. (8)

Remark 2.3: When applying the Dantzig-Wolfe Decomposi-
tion, we follow the approach in [5] and do not relax the binary
constraints in (2). This results in local knapsack problems (7)
that can be efficiently solved through dynamic programming
schemes, [40]. �
We collect in Table I all the relevant symbols.

2We refer the reader to Appendix A for the definition of column for a linear
program. Informally, a column is a portion of the cost and constraint vectors
associated to a decision variable.

3We refer the reader to Appedix A for the definition of basic variables.

TABLE I
LIST OF THE MAIN SYMBOLS AND THEIR DEFINITIONS

Standard GAP Formulation
N ∈ N>0 Number of robots
M ∈ N>0 Number of tasks
xim ∈ {0, 1} 1 if robot i serves task, 0 otherwise
zi ∈ RM [xi1, . . . , xiM ]>

pim ∈ R≥0 Reward if robot i serves task m
ci ∈ RM [pi1, . . . , piM ]>

gi ∈ R≥0 Capacity of robot i
wim ∈ R≥0 Capacity consumption of task m for robot i
Di ∈ RM [wi1, . . . , wiM ]
Pi ⊆ {0, 1}M {zi ∈ {0, 1}M | Dizi ≤ gi}

Dantzig-Wolfe Reformulation
Qi set of extreme points of Pi
vqi ∈ {0, 1}M q-th extreme point of Pi
λqi ∈ {0, 1} Combiner associated to vqi
Λ ∈ R

∑N
i=1 |Qi| Stack of combiners

Branch-and-Price
MP` `-th node of the branching tree
z?`, J?` Optimal solution and cost of MP`
P `i Constraint set of robot i at node MP`
z INC, J INC = J?` Candidate GAP solution and cost

III. DISTRIBUTED BRANCH-AND-PRICE METHOD

In this section, we provide a purely distributed algorithm, in-
spired by the centralized branch-and-price scheme, to solve (2)
in a peer-to-peer network. We assume a solver for Linear Pro-
grams is available. In particular, we use the simplex algorithm
proposed in [41] to find the unique lexicographically minimal
optimal solution of a LP and the associated optimal basis.

In the proposed distributed algorithm, called Distributed
Branch-and-Price, each agent i maintains and updates, at the
generic time t, local optimal cost and solution candidates J ti
and zt[i], as well as a local tree T ti . Each agent also maintains
and updates a label Lti indicating which problem in T ti it is
solving. The candidate optimal solution of a generic problem
MP`i of T ti , for some `, is characterized in terms of a small,
representative set of columns called basis (c.f. Appendix A).
We denote as Bti the candidate optimal basis of agent i at
time t. At each communication round t, the generic agent i
constructs a local restricted master program RMPi in the form

max
Λ̃i

c̄>V,iΛ̃i

subj. to V̄iΛ̃i = 1M ,

(1N1>|Λ̃i|)Λ̃i = 1N ,

Λ̃i ≥ 0|Λ̃i|.

(9)

Notice that this problem has the same structure as (6) where
the columns are the ones of the bases Btj with j ∈ N in

i,t. To
streamline the notation, we denote by V̄i the stack of vertexes
vqi received by the agent, by c̄V,i the stack of related costs
c>i v

q
i and by Λ̃i the optimization variable. Agent i solves

its local RMPi, updates the candidate basis Bti , and recovers
the associated optimal dual variables [πti µti]. With the dual



5

solution of the local RMPi at hands, agent i solves a pricing
problem

max
zi

(ci − πti)>zi
subj. to zi ∈ P ti ,

(10)

which has the same structure as (7). As discussed in Section II,
this allows agents to generate a new column hi.4 If such
column improves the overall cost, i.e., it has positive reduced
cost, agent i substitutes one column of Bti with hi. This is
done according to a so called PIVOT operation.

Each time an agent detects convergence, or receives a label
Ltj > Lti from some neighbor j ∈ N in

i,t, it sets Lt+1
i = Lti + 1.

Then, it retrieves the local cost and solution JLP
i , zLP

[i] from
Bt+1
i through a EXTRACTSOL function. If JLP

i ≥ J ti and
zLP

[i] ∈ {0, 1}NM , it updates the local candidate optimal cost
and solution as J t+1

i = JLP
i , zt+1

[i] = zLP
[i] . Otherwise, it sets

J t+1
i = J ti , zt+1

[i] = zt[i]. If JLP
i ≥ J ti but zLP

[i] 6∈ {0, 1}NM
it performs a branching operation. We denote by BRANCH
the routine that updates T ti according to a branching on
zLP

[i] . Finally, the agent starts to solve a new problem, if
any, by updating, through an EXTRACTCONSTR function, the
local constraint set P t+1

i . From now on we assume that the
routines BRANCH and EXTRACTCONSTR are common to all
the agents. The whole procedure is summarized in Table 1
from the perspective of agent i.

The convergence properties of the Distributed Branch-and-
Price algorithm are stated in the next theorem.

Theorem 3.1: Let (2) be feasible and Assumption 2.1 hold.
Consider the sequences {J ti , zt[i]}t≥0, i ∈ {1, . . . , N} gener-
ated by the Distributed Branch-and-Price algorithm. Then, in
a finite number T ∈ N of communication rounds, agents agree
on a common optimal solution z? with optimal cost value J?

of (2), i.e., J ti = J? and zt[i] = z?, ∀i ∈ {1, . . . , N} and
∀t ≥ T . �
We refer the reader to Appendix B for the proof of Theo-
rem 3.1.

We discuss some interesting features of the proposed dis-
tributed scheme. First, agents do not need to know the uni-
versal slotted time t. That is, agents can run the steps of the
distributed algorithm according to their own local clock. If
an agent is performing its computation it is assumed not to
have outgoing edges on the communication graph and the
steps are performed accordingly to the available in-neighbor
bases. This implies that the proposed distributed scheme works
under asynchronous communication networks. Second, as it
will be shown in the analysis, the i-th agent can detect that
convergence to an optimal basis has occurred if its basis Bti
does not change for 2LN + 1 communication rounds. In
this way, it can halt the steps in CASE 1 of Algorithm 1.
Third, during the first iterations an agent i may not have
enough information to solve the RMPi (9). Thus, it plugs
into the local problem a set of artificial variables, eventually
discarded during the evolution of the algorithm, with high cost.

4Here, P t
i = {zi ∈ {0, 1}M | zi ∈ Pi, zi ∈ ∆`

i}, with ∆`
i being the set

of branching binary constraints associated to the problem MP`
i that agent i

is solving at iteration t.

Algorithm 1 Distributed Branch-and-Price Algorithm
Initialization: B0

i = BHM
obtained via big-M , incumbent

cost J0
i = −∞

Evolution: for all t = 1, 2, . . .

Receive Btj ,Ltj from j ∈ N in
i,t

CASE 1: For each j ∈ N in
i,t, Ltj ≤ Lti

Set
[
c̄>V,i
V̄i

]
=

⋃

j∈N in
i,t

⋃{i}B
t
j .

Find optimal basis Bt+1
i and dual solution [πti µ

t
i] of

max
Λ̃i

c̄>V,iΛ̃i

subj. to V̄iΛ̃i = 1M ,

(1N1>|Λ̃i|)Λ̃i = 1N ,

Λ̃i ≥ 0|Λ̃i|.

Generate column hi solving

max
zi

(ci − πti)>zi

subj. to zi ∈ P ti .

Update Bt+1
i = PIVOT(Bt+1

i , hi)

J t+1
i =J ti , z

t+1
[i] =zt[i], P

t+1
i =P ti ,Lt+1

i =Lti, T t+1
i =T ti

If Bt+1
i has not changed for 2NL+ 1 rounds

GOTO CASE 2

CASE 2: There exists j ∈ N in
i,t s.t. Ltj > Lti

Lt+1
i = Lti + 1

zLP
[i] , J

LP
i = EXTRACTSOL(Bt+1

i )

CASE 2.1: zLP
[i] ∈ {0, 1}NM , JLP

i ≥ J ti
J t+1
i = JLP

i , zt+1
[i] = zLP

[i]

CASE 2.2: zLP
[i] 6∈ {0, 1}NM , JLP

i ≥ J ti
T t+1
i = BRANCH(T ti , zLP

[i] )

If T t+1
i is empty

HALT

P t+1
i = EXTRACTCONSTR(T t+1

i )

This method, also called Big-M method, allows the agents to
always find a solution to the RMPi. As for the communication
overhead, at each communication round each robot sends to
its neighbors a matrix of size (N +M + 1)× (N +M). Each
column of this matrix is in the form hi = [c>i v̄i v̄>i e>i ]>.
Here, c>i v̄i is a real number specifying the cost to execute an
allocation v̄i ∈ {0, 1}M . The vector e>i ∈ {0, 1}N specifies
which robot generated that allocation. It is worth noting that
the vector v̄i can be encoded as an array of M bits while e>i
can be encoded as an integer number. Finally, we underline
that the assumption that (2) is feasible can be relaxed to
include unfeasible GAPs, but this assumption allows us to
lighten the discussion.



6

Remark 3.2: As a possible variation, agents may harness
the communication with a Cloud node to speed-up the con-
vergence time, and reduce the local memory and computing
requirements. In this architecture the cloud unity is only
involved in the storage of the branching tree (and not in the
column generation steps). Thereby, agents do not construct
local branching trees. Also, agent data remain private and
the number of messages exchanged at each communication
round does not increase. When an agent i, at time t̄`, detects
that convergence to an optimal solution of a problem MP`
has occurred, it sends the basis B t̄`i to the Cloud. At this
point, the cloud extracts the optimal cost and solution J?`

and z?` and analyzes them according to the steps in CASE 2
of Algorithm 1. Finally, if the tree is not empty, it extracts
a new problem MP`+1 from the tree according to the ex-
traction strategy, and broadcasts to each agent i the additional
constraints to build-up P `+1

i . The proof of the cloud-based
version follows similar arguments as the one of Theorem 3.1
and is omitted. �

IV. NUMERICAL COMPUTATIONS

In order to assess the performance and highlight the main
features of our distributed algorithm, we provide a set of
numerical computations. Simulations have been implemented
on the DISROPT [42] toolbox and carried out on a laptop
equipped with a 2.5 GHz dual core processor and 16 GB of
RAM. In the following, we generate new problems, during
the branching procedure, by adding constraints in the form
zik = 0 and zik = 1, where zik is the first non-integer
entry of the vector z. Regarding the order in which problems
are extracted and solved, we adopt the widely used depth
first selection procedure, [40]. In this approach, the generated
problems are stored in a stack, thereby the extraction procedure
follows a LIFO approach. Each time a branching occurs, the
new problems are placed on the top of the stack. In our
implementation, we insert in the first position the problem
in which zik = 0 is added at last.

We perform Monte Carlo simulations on random GAP in-
stances. We generate such instances according to four different
random models, usually referred to as Model A, B, C and
D, of increasing difficulty. We refer the reader to [2] for a
survey on such models. Let U(a, b) denote the discrete uniform
distribution on the interval [a, b]. The data are generated as
follows.

• Model A: wA`m ∈ U(10, 25), pA`m ∈ U(5, 25) and
gA` = 9(M/N) + 0.4 max1≤`≤N

∑
m∈J ?

`
w`m, with

J ?` := {m | ` = argminr prm}.
• Model B: wB`m = wA`m, pB`m = pA`m and gB` = 0.7gA` .
• Model C: wC`m = wA`m, pC`m = pA`m and gC` =∑

1≤m≤M w`m/m.
• Model D: wD`m ∈ U(1, 100), pD`m = 100−w`m + k, with
k ∈ U(1, 21) and gD` = gC` .

We consider different scenarios by varying the number of
agents and tasks, thus considering problems with different size
and task-over-agents ratio. As for the number of agents, N =
5, 10, 15, while, for the number of tasks, M = 20, 30.

We generate 50 random instances for each scenario and for
each model. We are interested in both time and memory per-
formance of the distributed algorithm. Thus, we show the time
that is needed to terminate the algorithm, expressed in terms
of the number of communication rounds, and the maximum
number of tree nodes stored by the agents. We also show the
equivalent time, in seconds, needed for each simulation. Since
DISROPT exploits the MPI protocol to simulate the agents, the
computation time per-agent is evaluated as Tag = TelNco/N
where Tel is the total elapsed time and Nco is the number
of cores. As the problem size increases, the solution of these
problems requires the exploration of thousands of tree nodes,
see, e.g., [2]. However, in practical scenarios where assignment
problems have to be solved almost in realtime, it is useful to
consider a feasible sub-optimal solution to the problem instead
of an optimal one. Thereby, even though our algorithm is able
to find an optimal solution, in the proposed simulations agents
interrupt the distributed algorithm when they find a feasible
(sub-optimal) solution. For this reason, we also provide the
relative error, in terms of cost value, between the exact solution
(evaluated through a centralized solver) and the solution found
by the agents. As for the connectivity among agents, we
consider a static network modeled by a cyclic digraph. We
underline that our algorithm adapts to more complex graph
models. However, the choice of such digraph is interesting
for simulation purposes due to the fact that it is the static
digraph with largest diameter. Thus, the expected number of
communication rounds to completion is expected to be higher
with respect to graphs with smaller diameter.

The mean value and the standard deviation (evaluated over
the number of trials) for each simulation scenario are shown in
Table II. We highlight that, in all the simulations, the average
relative error is always below 5%. The time to convergence
increases with the task-to-agent ratio (M/N ). As an example,
see Table II, Model A with N = 15 and M = 30 requires
less communication rounds than Model A with N = 5 and
M = 30, even though the overall number of optimization
variable is larger. This behavior of the Distributed Branch-
and-Price algorithm appears to be consistent with the one
reported in the literature for centralized methods. Similarly,
Model D is far more difficult to be solved than Model
A and requires more communication rounds (see, e.g, the
communication rounds needed to solve Model A and Model
D with N = 5,M = 20). We underline that the number of
communication rounds strictly depends on the graph diameter.
Since we run the algorithm on a cyclic digraph, whose
diameter is N − 1, the results provided in Table II are the
ones expected in case of loose connectivity. The maximum
number of stored nodes exhibits a similar behavior. That is,
as the task-to-agent ratio increases and more difficult models
are considered, the distributed algorithm has to explore more
branches. To conclude, we propose a numerical simulation in
which robots communicate in a network subject to packet
loss. We consider a scenario with N = 5 and M = 20.
Problem data are generated according to Model A. We con-
sider the cases with loss probability 0% (no packet loss),
10%, 30%, 50%, 70%, 90%. Specifically, at each iteration, the
i-th robot discards the message from the j-th robot according



7

0 100 200 300

10−5

10−2

101

104

Communication Rounds

A
v
g
( J

(B
t i
)
−
J
?
)

0%

10%

30%

50%

70%

90%

Fig. 2. Cost error during the evolution of the algorithm with different
percentages of packet loss.

to the given probability. Results are given in Figure 2. We
show the mean error between the cost J(Bti ) associated to the
basis Bti and the optimal solution J?.

Remark 4.1: Other distributed approaches suitable for the
GAP solution are the ones in [32], [33]. As for the one in [32],
authors consider the case in which wim ∈ {0, 1} for each
i ∈ {1, . . . , N} and for each m ∈ {1, . . . ,M} (cf. (1)).
When the cost function is linear, as in the GAP scenario,
the constraint matrix is said to be totally unimodular and
the problem can be solved as a linear problem instead of
a mixed-integer problem. Thereby, the first solution found
by our algorithm, which is also tailored for general GAPs
with non-unimodular structure, is always the optimal one.
The one found by the scheme in [32] is guaranteed to be
at most 50% suboptimal. Moreover, our algorithm allows for
directed communication graphs, while the one in [32] assumes
undirected communications. Finally, agents in [32] exchange,
at each communication round, two real vectors of size N and
M respectively and a vector of size M representing which
agent is performing each task. As for the distributed approach
in [33], each agent has to flood its local variables to all
the other agents. This results in multi-hop communications at
each iteration. Moreover, the scheme in [33] is based on the
assumption of static, undirected graphs. Each agent in [33]
sends to its neighbors a real vector of size M and three
integers. Similarly to our approach, it considers the solution
of a knapsack problem at each iteration. Finally, as [32], it
guarantees at most 50% sub-optimality of the solution found.
We perform a comparison between the proposed approach and
the one in [33] for the scenario with N = 15,M = 30. The
results are in Table III. We took for both the schemes the
same underlying communication graph. Since the algorithm
in [33] needs agents to flood their information to all the other
agents at each communication round, we multiply the total
number of iterations of the algorithm by Nd, with d diameter
of the graph. Besides the problems generated via Model D,
our algorithm is able to find in less iterations a solution with
a smaller relative error with respect to the one found by the
algorithm in [33]. �

V. EXPERIMENTS ON GAPS
FOR A TEAM OF GROUND AND AERIAL ROBOTS

In the following, we provide experimental results on a
generalized assignment scenario where a team of heteroge-

neous (ground and aerial) mobile robots has to accomplish a
set of tasks that may not be completely known in advance.
We start by describing how we implemented the proposed
distributed scheme into the ROS framework. Then, we propose
the Distributed Dynamic Assignment and Servicing Strategy,
a resolution methodology for this assignment scenario, and
provide experiments on a real fleet of ground and aerial robots.

A. Experimental ROS Architecture

In the proposed architecture, robots are “smart” cyber-
physical agents endowed with communication, computation
and actuation capabilities. Each cyber-physical agent consists
of three ROS nodes, namely Optimization, Planner and Con-
troller ROS nodes, see Figure 3. It is worth noticing that,
in general, each agent has a dedicated machine on which
these processes run, so that there is no need for a central
computing unit handling the agents. The Optimization node
handles the steps of the distributed optimization algorithm
of the associated cyber-physical agent. It communicates with
the Optimization nodes of the other robots through the ROS
publisher-subscriber communication protocol according to a
fixed communication graph, and exchanges messages con-
taining the local candidate bases. Note that the communica-
tion among processes in ROS is completely asynchronous.
As shown in the theory this is handled by our distributed
algorithm. Each time such process receives a message from
a neighbor, a callback function stores the received basis. Each
node performs an iteration of the Distributed Branch-and-Price
algorithm within a loop of 5 ms. At the beginning of this loop,
the node performs one step of the column generation algorithm
with the received bases. Then, it sends the updated basis
to its neighbors and stays idle until the next loop iteration.
The Optimization nodes characterize the Optimization Layer
(c.f. Figure 3) of the proposed architecture. The Control and
Planner ROS nodes constitute instead the Control Layer of the
proposed software. More in detail, the Planner node generates,
through polynomial splines, a sufficiently smooth trajectory
steering a robot over its designated tasks. The Controller
implements a trajectory tracking strategy. It receives the pose
of the vehicle by a Vicon motion capture system and sends
the control inputs to the robot actuators (Physical Layer in
Figure 3).

B. Distributed Dynamic Assignemnt: Scenario and Strategy

The scenario evolves as follows. We consider a team of
ground and aerial mobile robots moving in a three-dimensional
environment parametrized by a frame {x, y, z}. A set of tasks,
parametrized by a position on the {x, y} plane, are scattered in
the environment. Some of the tasks can be accomplished only
by ground robots, other are accessible only to aerial robots
and there are tasks that can be performed by all the robots.
For a task to be accomplished, a robot has to visit the task
location, stand still for a certain random time T H and go back
to a given depot (e.g., to recharge batteries). As in practical
applications, the information about the problem instance is
not known in advance and new data arrive while the agents



8

TABLE II
NUMERICAL RESULTS

Model N M Communication Rounds (Avg–Std) Relative Error (Avg–Std) Stored Nodes (Avg–Std) Time (Avg–Std)

A

5 20 83.30–25.36 0.00%–0.00% 1.10–0.36 1.94–0.60
5 30 329.38–151.87 0.01%–0.08% 1.44–0.64 12.85–5.89
10 20 75.34–43.86 0.00%–0.00% 1.30–0.78 3.34–1.86
10 30 107.92–87.52 0.01%–0.07% 1.30–1.06 10.29–7.88
15 20 76.60–26.23 0.01%–0.05% 1.12–0.38 5.09–2.01
15 30 95.86–33.27 0.00%–0.00% 1.08–0.34 14.59–4.80

B

5 20 192.04–205.30 1.06%–2.10% 3.50–3.79 4.67–5.03
5 30 774.50–680.58 0.57%–0.91% 5.04–4.40 33.68–29.46
10 20 161.36–222.29 0.25%–0.80% 3.14–4.38 6.56–9.13
10 30 236.36–324.55 0.20%–0.53% 3.24–4.53 23.42–31.24
15 20 90.02–42.64 0.02%–0.15% 1.36–0.66 5.16–2.43
15 30 178.40–174.70 0.04%–0.10% 2.16–2.13 27.32–26.81

C

5 20 158.24–149.94 0.63%–1.25% 3.00–3.03 3.95–3.74
5 30 652.32–741.28 0.48%–1.20% 4.48–5.59 27.98–31.95
10 20 155.06–230.47 0.47%–1.58% 3.24–4.93 5.81–8.44
10 30 375.52–431.19 0.59%–1.03% 5.50–6.41 35.37–40.32
15 20 107.08–133.53 0.14%–0.57% 1.80–2.26 4.85–6.16
15 30 294.02–306.51 0.24%–0.42% 3.94–4.15 38.92–39.99

D

5 20 1072.76–601.48 4.31%–3.88% 20.10–11.23 33.47–18.10
5 30 4805.44–2525.97 4.91%–3.65% 36.80–18.05 201.56–101.85
10 20 933.76–979.26 2.77%–4.12% 18.44–20.06 36.20–36.08
10 30 5959.95–3596.71 4.96%–4.26% 63.55–38.69 560.14–338.02
15 20 187.88–164.20 0.22%–0.44% 2.84–2.52 9.38–8.19
15 30 6171.65–4015 3.37%–2.81% 56.15–37.02 740.5–481.8

TABLE III
PERFORMANCE COMPARISON

Model M N Distributed Branch-and-Price [33]
Comm. Rounds (Avg–Std) Rel. Error (Avg–Std) Comm. Rounds (Avg–Std) Rel. Error (Avg–Std)

A 15 30 95.86–33.27 0.00%–0.00% 411.6–62.44 0.56%–0.37%
B 15 30 178.40–174.70 0.04%–0.10% 447.3–65.77 1.91%–1.13%
C 15 30 294.02–306.51 0.24%–0.42% 453.6–107.9 3.45%–1.74%
D 15 30 6171.65–4015 3.37%–2.81% 302.4–34.12 0.0%–0.0%

ROS

Planner
ROS Node

Planner
ROS Node

Controller
ROS Node

Controller
ROS Node

Optimization
ROS Node

Optimization
ROS Node

· · ·

· · ·

· · ·

Control
Layer

Optimization
Layer

Physical
Layer

C
y
b
e
r
-P

h
y
s
ic

a
l
A
g
e
n
t

C
y
b
e
r
-P

h
y
s
ic

a
l
A
g
e
n
t

Fig. 3. Distributed Dynamic Assignment and Servicing Strategy architecture.
Blue rectangles represent the smart cyber-physical agents endowed with
computation, communication and actuation capabilities.

are fulfilling other tasks. To adapt the Distributed Branch-and-
Price algorithm to such dynamic scenario, we combine it with
the methodology proposed in [26] into an optimization and
task-fulfilling approach which we call Distributed Dynamic

Assignment and Servicing Strategy. Such procedure combines
a distributed optimization phase with a planning and control
scheme to steer the robots over the assigned tasks. More in
detail, the experiment starts with the cyber-physical agents
running the Distributed Branch-and-Price Algorithm on a set
of tasks known in advance. Inspired by [32], we pick pim
in (1) as a time-discounted reward, i.e., pim = λ

τm
i
m where

λm ∈ (0, 1) is a scoring value for task m and τmi is the
time needed by agent i to reach task m. The time τmi is
evaluated as the robot-task distance (on the {x, y} plane)
scaled by the robot maximum speed (1 m/s for the UAVs
and 0.22 m/s for the ground vehicles). The fact that a task
m is not accessible to a certain robot i is modeled by taking
wim > gi in (1). In the following, we assume that the sets Pi,
generated randomly according to Model A in Section IV, are
fixed throughout the scenario evolution. As soon as a robot
reaches the designed task, it stands still on the location for a
random time T H between 3 and 5 seconds. In the proposed
experiment, we consider a dynamic scenario in which the
number of tasks appearing during the evolution is always
smaller than the number of served tasks. For the sake of
simplicity, we suppose that one new task is made available to
robots each time a task has been fulfilled. In this way, the size
of the optimization problem is constant. We point out that the
strategy can be applied to more general cases where more tasks



9

are revealed. Moreover, while in the current set-up we consider
the immediate strategy in which we re-optimize the entire
problem, one could think of implementing tailored schemes
leveraging the dynamic structure of the problem. As soon as
new tasks appear, the cyber-physical agents run the Distributed
Branch-and-Price algorithm on a problem including the new
tasks and discarding the visited ones. Specifically, the cost
vector entries change according to the new task positions.
Meanwhile, each robot keeps performing tasks according to its
latest allocation. An example of the evolution of this strategy
is in Figure 4. A snapshot from an experiment with 2 Crazyflie
nano-quadrotors and 3 Turtlebot3 Burger is in Figure 5. Here
robots have terminated the distributed optimization procedure
and one of the allocations is shown. A video is available as
supplementary material to the paper5.

Remark 5.1: As discussed, e.g., in [3], GAPs can be also
used to find approximate solutions of vehicle routing problems
(VRPs). In general, VRPs penalize the order of execution of
the tasks, and involve a larger number of variables with respect
to GAPs. The idea in [3] is to construct a GAP instance based
on the VRP problem data. As soon as a GAP solution has
been found, robots perform their associated task in an order
that minimizes, e.g., the total travelled distance. This can be
done, e.g., by solving a Shortest Hamiltonian Path Problem
(SHPP). The proposed Distributed Dynamic Assignment and
Servicing Strategy could be thus modified in order to address
such scenarios. Specifically, robots start solving the GAP with
the available tasks and, once an optimal solution has been
found, construct robot-to-tasks paths by solving SHPPs. When
a new task arrives, robot re-solve the optimization problem
and adjust the path according to the new problem data. We
performed an experiment with 3 Crazyflie nano-quadrotors and
2 Turtlebot3 Burger with the cloud-based approach. A video
is available as supplementary material to the manuscript.6 �

VI. CONCLUSION

In this paper, we proposed a purely distributed branch-and-
price approach to solve the Generalized Assignment Problem
in a network of agents, endowed with computation and com-
munication capabilities, that are aware of only a small part
of the global optimization problem data. Agents cooperatively
solve a relaxations of the GAP by means of a distributed col-
umn generation algorithm, targeted for this particular scenario
involving binary optimization variables. Since the solution of
this relaxation may not be feasible for the GAP, agents cooper-
atively generate and solve new optimization problems, consid-
ering each time additional constraints. Finally, we considered
an assignment scenario where tasks may appear dynamically
during time. We implemented the proposed algorithms in a
ROS based testbed and showed results from experiments on a
team of ground and aerial vehicles executing the generalized
assignment. Future investigations may include the solution
of dynamic instances of the GAP with tailored distributed
approaches that do not need to re-optimize the entire problem
when new data arrive.

5The video is also available at https://youtu.be/Sl_3ZmJvvbU.
6The video is also available at https://youtu.be/vBSJsduFYKQ.

ACKNOWLEDGMENT

The authors would like to thank Alessandro Rucco for the
fruitful discussions and Nicola Mimmo for the support during
the experiments.

APPENDIX A
LINEAR PROGRAMS

An LP in standard form is a problem in the form

min
x

c>x

subj. to Ax = b,

x ≥ 0.

(11)

where c ∈ Rd, A ∈ Rr×d and b ∈ Rr are the problem
data and x ∈ Rd is the optimization variable. All the
problem constraints are expressed as equality constraints and
the variables must be non-negative. A column for the problem
in (11) is a vector in the form [c` A>` ] ∈ Rr+1 where A>`
is the `-th column of A. A basis B is a set of r independent
columns of the LP. We denote by cB (AB) the sub-vector
(sub-matrix) of c (A) constructed from the columns in B.
Assume that a solution x? to (11) exists. Then, it can be shown
that x? can be decomposed into two sub-vectors x?B 6= 0 of
basic variables and x?N = 0 of non-basic variables. A basis
represents a minimal representation of a linear program, i.e.,
it is a subset of the problem data representing the problem
solution. It can be shown that there exists a basis B such that
x?B is the solution of:

min
x

c>Bx

subj. to ABx = b,

x ≥ 0.

APPENDIX B
PROOF OF THEOREM 3.1

A. Preliminary Lemmas for the Proof of Theorem 3.1

Before proceeding with the proof of Theorem 3.1, we
provide two lemmas which are useful for the analysis.

Lemma B.1: Let Assumption 2.1 hold. Consider a network
of N agents running the steps in CASE 1 of Algorithm 1
to solve a node MP` of the tree. Then, in a finite number
of iterations, agents reach consensus to an optimal basis B`

associated with the optimal cost J?` of MP`.
Proof: The proof mimics the one proposed in [23]. We

refer the reader to this work for additional details. First, we
show that MP` can be obtained by applying the Dantzig-
Wolfe decomposition to the following Linear Program:

max
z1,...,zN

N∑

i=1

c>i zi

subj. to
N∑

i=1

zi = 1M ,

zi ∈ conv(P `i ), i = 1, . . . , N.

(12)

Indeed, we recall that, for GAPs, the vertexes of conv(P `i )
coincide with the points vqi , q ∈ Q`i , [5]. Thus, points



10

Cyber-Physical Agent i

t

Optimal
Allocation

Agent-Tasks
Path

Optimal
Allocation

Agent-Tasks
Path

Optimal
Allocation

Agent-Tasks
Path

stop

•Start •New
Task

•New
Task

•New
Task

Initialize Update Update Update
Optimization

Planning

Actuation

Fig. 4. An example of the Distributed Dynamic Assignment and Servicing Strategy evolution from the perspective of the generic cyber-physical agent. Each
time a new task appears, the robot updates the local problem data and re-starts the optimization. If a new task arrives during the re-optimization, this latter
is halted (red rectangle) and a new one starts. When robot-to-task paths are evaluated, robot actuation changes accordingly.

Fig. 5. Snapshot from an experiment. The figure depicts the optimal
assignment for one of the robots.

zi ∈ conv(P `i ) can be represented as zi =
∑|Q`

i |
q=1 v

q
i λ

q
i with

∑|Q`
i |

q=1 λ
q
i = 1 and λqi ≥ 0. Let Λ be the stack of the variables

λqi . By substituting these equations in (12) one obtains a
problem in the form

max
Λ

N∑

i=1

|Q`
i |∑

q=1

(c>i v
q
i )λ

q
i

subj. to
N∑

i=1

|Q`
i |∑

q=1

vqi λ
q
i = 1M ,

|Q`
i |∑

q=1

λqi = 1, i = 1, . . . , N,

λqi ≥ 0, q ∈ {1, . . . , |Q`i |}, i = 1, . . . , N,

which is problem MP`. Notice that the resulting pricing
problem for each agent i is

max (ci − π)>zi

subj. to zi ∈ conv(P `i ).
(13)

By definition of convex hull and linearity of the cost func-
tion, (13) shares the same optimal vertexes of (7). Thereby,
the steps of CASE 1 in Algorithm 1 can be seen as applied
to LP (12). At this point, we note that, during the algorithmic
evolution, agent i can update its local candidate basis Bti by

considering new columns in the local linear program. It is
worth noting that, starting from any basis Bti , there exists
a finite number of pivoting operations to the optimal basis
B`. These columns can be found in two ways: (i) by the
local column generation routine and the subsequent pivoting
and (ii) when collecting all the in-neighbors matrices Btj with
j ∈ N in

i,t. If J ti < J?`, there always exists an agent j able to
generate a column improving the cost J ti after a pivoting. Since
the network is connected if that column is fundamental for
the evolution of the algorithm, e.g., it belongs to the optimal
basis, then agent j will generate it (and include it) in its basis
within a finite number of communication rounds. Thus, as
soon as J ti < J?`, there always exists a finite time TD such
that J ti < J t+TD

I . Since there exists only a finite number of
columns, in a finite number of communication rounds Tf it
stands that JTf

i = J?` for each i. If a lexicographic solver
is considered, then it stands that Bti = B` for each i. This
concludes the proof.

Lemma B.2: Let Assumption 2.1 hold. Then, a processor
has computed its final basis and can halt the execution of the
steps in CASE 1 of Algorithm 1 as soon as the value of Bti
has not changed after L(2N − 1) communication rounds.

Proof: Assume that a certain node i satisfies Bti =
B?, J ti = J? for all t ∈ {t0, . . . , t0+2L(N−1)}, and pick any
other node j. Without loss of generality, consider t0 = 0. By
L-strong connectivity, after at most L communication rounds,
agent i has been able to spread its basis at least to another
agent. We now define the set N̄0 of agents k ∈ {1, . . . N}
such that there exists an increasing sequence of time instants
τ0, . . . , τm comprised between 0 and L (i.e., with 0 ≤ τ0 and
τm ≤ L), such that the edges (i, `1), . . . , (`m, k) belong to
the digraph at times τ0, . . . , τm. This set is not empty, since
the union graph is strongly connected in [0, L]. Then it stands
JLk ≥ J ti , ∀k ∈ N̄0. Consider now the interval [L, 2L], for
which we define a set similar to N̄0, but with paths originating
from the agents in N̄0 ∪ {i}. Formally, consider the set N̄1

of agents k ∈ {1, . . . N} such that there exists an increasing
sequence of time instants τ0, . . . , τm comprised between L
and 2L (i.e., with L ≤ τ0 and τm ≤ 2L), such that the edges
(h, `1), . . . , (`m, k) belong to the digraph at times τ0, . . . , τm,
for some h ∈ N̄0 ∪ {i}. Notice that N̄0 ⊂ N̄1, so that N̄1 has
a larger cardinality than N̄0. Otherwise, the graph would not



11

be strongly connected in [L, 2L]. Then it stands J2L
k ≥ J ti ,

∀k ∈ N̄1. Iterating at most N − 1 times, we see that the sets
N̄0 . . . , N̄N−2 become larger and larger, so that j ∈ N̄N−2.
Thus, it stands that J (N−1)L

k ≥ J ti . That is, after (N − 1)L
communication rounds, all the agents have at least the same
cost agent i had at time 0. By repeating the same arguments
for the converse path, we conclude that J2(N−1)L

i ≥ J (N−1)L
k .

But, by assumption, J2(N−1)L
i = J?, so that we conclude

J? ≤ J
(N−1)L
j ≤ J?, i.e., J (N−1)L

j = J?. Thus, if Bti does
not change for L(2N − 1) time instants, then its value will
never change afterwards because all bases Btj , j ∈ {1, . . . , N},
have cost equal to J? at least as early as time equals LN .

B. Proof of Theorem 3.1

In order to prove the statement, we show that there exists
a monotonically increasing time sequence {t̄`}`∈{0,...,`end}, for
some `end ∈ N, such that, at each t̄`:

i) For all i, j ∈ {1, . . . , N}, T t̄`i = T t̄`j , MP`i =

MP`j = MP`, Lt̄`i = Lt̄`j = ` and there exists some
i ∈ {1, . . . , N} such that Lt̄`−1

i 6= `;
ii) in a finite number of communication rounds, at a time

t̄`+1 ≤ t̄`+Q`, Q` ∈ N, eitherMP`+1
i =MP`+1

j (with
T t̄`+1

i = T t̄`+1

j and Lt̄`+1

i = Lt̄`+1

j , ∀i, j ∈ {1, . . . , N})
or agents halt the distributed algorithm, i.e., ` = `end, with
J
t̄`+1

i = J? and z
t̄`+1

[i] = z? optimal cost and solution
of (2) for all i ∈ {1, . . . , N}.

First notice that i) holds trivially at t0 = 0, since all the
agents start solving the relaxed version of (5), namely MP0,
and each agent initializes L0

i = 0. Now, we assume that i)
holds for some ` and prove that ii) holds. Then, by applying
the arguments in Lemma B.1 agents reach consensus, in a
finite number of communication rounds Q̄`, on a basis B`

corresponding to an optimal solution Λ?` of MP`. More-
over, by Lemma B.2 each agent i can halt, at some time
Q̄` ≤ ti,` ≤ t̄` + Q̄` + 2LN + 1, the steps of CASE 1 if
its basis Bti has not changed for 2LN + 1 communication
rounds (c.f. Algorithm 1). At these times, each agent obtains
the same cost J?` and solution z?` of MP` (retrieved from
Λ?` by applying (3)) and sets Lti,`+1

i = ` + 1. If CASE
2.1 in Algorithm 1 occurs, then each agent i ∈ {1, . . . , N}
sets J ti,`+1

i = J?` and z
ti,`+1

[i] = z?`. Instead, if CASE 2.2

occurs, each agent expands the local tree T ti,`+1
i . Notice

that agents run the BRANCH routine on the same data (T t̄`i
and z?`), so they update the same tree with the same new
problems. Finally, if there are still problems to be solved in
T ti,`+1
i , each agent extracts a new problemMP`+1

i . Since the
routine EXTRACTCONSTR is common to all the agents and the
constructed trees are identical, MP`+1

i = MP`+1 for all i.
Otherwise, if T ti,`+1

i is empty, each agent halts the Distributed
Branch-and-Price Algorithm. Let Q` = Q̄` + 2LN + 2
and let t̄`+1 = maxi{ti,`} + 1. From the above arguments,
t̄` ≤ t̄`+1 ≤ t̄` +Q`.

Now we show that, if agents halt the distributed algorithm,
i.e., ` = `end, then J

t̄`+1

i = J? and z
t̄`+1

[i] = z? for all i ∈
{1, . . . , N}, with J? and z? optimal cost and solution of (2).

First, notice that J t̄`+1

i and z
t̄`+1

[i] are the optimal cost value
and solution of some problem MP` such that J?` ≥ J ti for
each t ≤ t̄`+1 and z?` ∈ {0, 1}NM . Since (2) is feasible,
and in the branch-and-price algorithm all the nodes of the tree
are explored (except the ones discarded during the pruning
operation) then each agent has run at least one time the steps
in CASE 2.1. Thereby, J t̄`+1

i must be equal to the optimal
cost value J? of (2) and, similarly, zt̄`+1

[i] = z? optimal solution
to (2). To conclude, we underline that agents can generate only
a finite number of problems. Indeed, the number of additional
constraints (zik = 0 and zik = 1) they can add is at most
2NM . Thus, there exists a time T = t̄`end +Q`end in which all
the agents must halt the distributed scheme. This concludes
the proof.

REFERENCES

[1] T. Öncan, “A survey of the generalized assignment problem and its
applications,” INFOR: Information Systems and Operational Research,
vol. 45, no. 3, pp. 123–141, 2007.

[2] M. Savelsbergh, “A branch-and-price algorithm for the generalized
assignment problem,” Oper. research, vol. 45, no. 6, pp. 831–841, 1997.

[3] M. L. Fisher and R. Jaikumar, “A generalized assignment heuristic for
vehicle routing,” Networks, vol. 11, no. 2, pp. 109–124, 1981.

[4] S. Martello and P. Toth, “Generalized assignment problems,” in Intern.
Symp. on Algorithms and Computation. Springer, 1992, pp. 351–369.

[5] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and
P. H. Vance, “Branch-and-price: Column generation for solving huge
integer programs,” Oper. research, vol. 46, no. 3, pp. 316–329, 1998.

[6] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[7] E. Hartuv, N. Agmon, and S. Kraus, “Scheduling spare drones for
persistent task performance under energy constraints,” in Proc. of the
17th Intern. Conf. on Auton. Agents and MultiAgent Systems. Intern.
Found. for Auton. Agents and Multiagent Systems, 2018, pp. 532–540.

[8] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-task
allocation and path planning for cooperating UAVs,” in Cooperative
control: models, applications and algo. Springer, 2003, pp. 23–41.

[9] M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of
robot teams performing tasks with temporospatial constraints,” IEEE
Transactions on Robotics, vol. 34, no. 1, pp. 220–239, 2018.

[10] M. Turpin, N. Michael, and V. Kumar, “An approximation algorithm
for time optimal multi-robot routing,” in Algorithmic Foundations of
Robotics XI. Springer, 2015, pp. 627–640.

[11] T. Shima, S. Rasmussen, and D. Gross, “Assigning micro UAVs to
task tours in an urban terrain,” IEEE Transactions on Control Systems
Technology, vol. 15, no. 4, pp. 601–612, 2007.

[12] D. P. Bertsekas, “The auction algorithm: A distributed relaxation method
for the assignment problem,” Annals of operations research, vol. 14,
no. 1, pp. 105–123, 1988.

[13] M. B. Dias, B. Kannan, B. Browning, E. Jones, B. Argall, M. F. Dias,
M. Zinck, M. Veloso, and A. Stentz, “Sliding autonomy for peer-to-peer
human-robot teams,” in Proceedings of the international conference on
intelligent autonomous systems, 2008, pp. 332–341.

[14] D. A. Castanón and C. Wu, “Distributed algorithms for dynamic
reassignment,” in IEEE Conference on Decision and Control (CDC),
vol. 1, 2003, pp. 13–18.

[15] K. Lerman, C. Jones, A. Galstyan, and M. J. Matarić, “Analysis of
dynamic task allocation in multi-robot systems,” The International
Journal of Robotics Research, vol. 25, no. 3, pp. 225–241, 2006.

[16] M. Alighanbari and J. P. How, “Decentralized task assignment for
unmanned aerial vehicles,” in IEEE Conference on Decision and Control
(CDC), 2005, pp. 5668–5673.

[17] C. Nam and D. A. Shell, “Robots in the huddle: Upfront computation to
reduce global communication at run time in multirobot task allocation,”
IEEE Transactions on Robotics, 2019.

[18] M. Hassan, D. Liu, S. Huang, and G. Dissanayake, “Task oriented area
partitioning and allocation for optimal operation of multiple industrial
robots in unstructured environments,” in 13th Intern. Conf. on Control
Autom. Robotics & Vision (ICARCV). IEEE, 2014, pp. 1184–1189.



12

[19] N. Karapetyan, J. Moulton, J. S. Lewis, A. Q. Li, J. M. O’Kane, and
I. Rekleitis, “Multi-robot dubins coverage with autonomous surface
vehicles,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 2373–2379.

[20] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, “A distributed
version of the hungarian method for multirobot assignment,” IEEE
Transactions on Robotics, vol. 33, no. 4, pp. 932–947, 2017.

[21] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, “A distributed
simplex algorithm for degenerate linear programs and multi-agent as-
signments,” Automatica, vol. 48, no. 9, pp. 2298–2304, 2012.

[22] A. Settimi and L. Pallottino, “A subgradient based algorithm for dis-
tributed task assignment for heterogeneous mobile robots,” in IEEE
Conference on Decision and Control (CDC), 2013, pp. 3665–3670.

[23] M. Bürger, G. Notarstefano, and F. Allgöwer, “Locally constrained
decision making via two-stage distributed simplex,” in IEEE Conferece
on Decision and Control and European Control Conference (CDC-
ECC), 2011, pp. 5911–5916.

[24] E. Montijano, D. Tardioli, and A. R. Mosteo, “Distributed dynamic
sensor assignment of multiple mobile targets,” in 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE,
2019, pp. 4921–4926.

[25] A. R. Mosteo, E. Montijano, and D. Tardioli, “Optimal role and position
assignment in multi-robot freely reachable formations,” Automatica,
vol. 81, pp. 305–313, 2017.

[26] S. Karaman and G. Inalhan, “Large-scale task/target assignment for UAV
fleets using a distributed branch and price optimization scheme,” IFAC
Proceedings Volumes, vol. 41, no. 2, pp. 13 310–13 317, 2008.

[27] V. Pilloni, M. Franceschelli, L. Atzori, and A. Giua, “Deployment of
applications in wireless sensor networks: a gossip-based lifetime maxi-
mization approach,” IEEE Transactions on Control Systems Technology,
vol. 24, no. 5, pp. 1828–1836, 2016.

[28] A. Kwok and S. Martinez, “A distributed deterministic annealing algo-
rithm for limited-range sensor coverage,” IEEE Transactions on Control
Systems Technology, vol. 19, no. 4, pp. 792–804, 2011.

[29] L. Abbatecola, M. P. Fanti, G. Pedroncelli, and W. Ukovich, “A
distributed cluster-based approach for pick-up services,” IEEE Trans.
on Automation Science and Engin., vol. 16, no. 2, pp. 960–971, 2018.

[30] A. Testa, A. Rucco, and G. Notarstefano, “A finite-time cutting plane
algorithm for distributed mixed integer linear programming,” in Confer-
ence on Decision and Control (CDC). IEEE, 2017, pp. 3847–3852.

[31] ——, “Distributed mixed-integer linear programming via cut generation
and constraint exchange,” IEEE Transactions on Automatic Control,
vol. 65, no. 4, pp. 1456–1467, 2019.

[32] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[33] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithm design for
multi-robot generalized task assignment problem,” in IEEE/RSJ Intern.
Conf. on Intelligent Robots and Systems. IEEE, 2013, pp. 4765–4771.

[34] ——, “Distributed algorithms for multirobot task assignment with task
deadline constraints,” IEEE Transactions on Automation Science and
Engineering, vol. 12, no. 3, pp. 876–888, 2015.

[35] R. K. Williams, A. Gasparri, and G. Ulivi, “Decentralized matroid op-
timization for topology constraints in multi-robot allocation problems,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 293–300.

[36] N. Buckman, H.-L. Choi, and J. P. How, “Partial replanning for decen-
tralized dynamic task allocation,” in AIAA Scit. Forum, 2019, p. 0915.

[37] Z. Talebpour and A. Martinoli, “Adaptive risk-based replanning for
human-aware multi-robot task allocation with local perception,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3790–3797, 2019.

[38] F. Vanderbeck, “On Dantzig-Wolfe decomposition in integer program-
ming and ways to perform branching in a branch-and-price algorithm,”
Operations Research, vol. 48, no. 1, pp. 111–128, 2000.

[39] P. C. Gilmore and R. E. Gomory, “A linear programming approach to
the cutting-stock problem,” Op. res., vol. 9, no. 6, pp. 849–859, 1961.

[40] S. Martello, “Knapsack problems: algorithms and computer implemen-
tations,” Wiley-Interscience series in discrete math. and optim., 1990.

[41] C. N. Jones, E. C. Kerrigan, and J. M. Maciejowski, “Lexicographic
perturbation for multiparametric linear programming with applications
to control,” Automatica, vol. 43, no. 10, pp. 1808–1816, 2007.

[42] F. Farina, A. Camisa, A. Testa, I. Notarnicola, and G. Notarstefano,
“Disropt: a python framework for distributed optimization,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 2666–2671, 2020.

Andrea Testa received the Laurea degree “summa
cum laude” in Computer Engineering rom the Uni-
versità del Salento, Lecce, Italy in 2016 and the
Ph.D degree “summa cum laude” in Engineering of
Complex Systems from the same university in 2020.

He is a Research Fellow at Alma Mater Studiorum
Università di Bologna, Bologna, Italy. He was a
visiting scholar at LAAS-CNRS, Toulouse, (July to
September 2015 and February 2016) and at Alma
Mater Studiorum Università di Bologna (October
2018 to June 2019). His research interests include

control of UAVs and distributed optimization.

Giuseppe Notarstefano received the Laurea degree
summa cum laude in electronics engineering from
the Università di Pisa, Pisa, Italy, in 2003 and the
Ph.D. degree in automation and operation research
from the Università di Padova, Padua, Italy, in 2007.

He is a Professor with the Department of Elec-
trical, Electronic, and Information Engineering G.
Marconi, Alma Mater Studiorum Università di
Bologna, Bologna, Italy. He was Associate Professor
(from June 2016 to June 2018) and previously As-
sistant Professor, Ricercatore (from February 2007),

with the Università del Salento, Lecce, Italy. He has been Visiting Scholar
at the University of Stuttgart, University of California Santa Barbara, Santa
Barbara, CA, USA and University of Colorado Boulder, Boulder, CO, USA.
His research interests include distributed optimization, cooperative control in
complex networks, applied nonlinear optimal control, and trajectory optimiza-
tion and maneuvering of aerial and car vehicles.

Dr. Notarstefano serves as an Associate Editor for IEEE Transactions on
Automatic Control, IEEE Transactions on Control Systems Technology, and
IEEE Control Systems Letters. He has been also part of the Conference
Editorial Board of IEEE Control Systems Society and EUCA. He is recipient
of an ERC Starting Grant 2014.


	generalized assignement copertina
	main_distributed_branch

