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Abstract

The goal of this paper is to present an effective method for interpolating sequences of 3D-data by means
of C2 quintic Pythagorean-Hodograph (PH) B-spline curves. The strategy we propose works successfully
with both open and closed sequences of 3D-points. It relies on calculations that are mostly explicit thanks
to the fact that the interpolation conditions can explicitly be solved in dependence of the coefficients of
the pre-image PH B-spline curve. In order to select a more suitable interpolant a functional is minimized
in two remaining free coefficients of the pre-image PH B-spline curve and some angular parameters.

1 Introduction
The research activity on Pythagorean Hodograph (PH) curves has been especially focused on the quintic degree case (see,
e.g., [2–13,15–17]) and its generalization to the order-6 non-polynomial case (see, e.g., [14,18–20]) due to the fact that such
curves are known to offer flexible solutions to several types of interpolation problems. These range from the standard point
interpolation [2, 6, 11, 12], to the interpolation of Hermite data [4–6, 8–10, 13–15, 17–20] or the interpolation of prescribed
boundary points with the associated first derivatives and curvatures [3]. Several papers also dealt with interpolation subject to
arc-length constraints such as, e.g., [7,16]. Among the papers that considered the standard point interpolation problem, we here
mention only those that constructed a globally C2 PH interpolant, and do not dwell on those requiring the production of a curve
with a certain length since this constraint is not considered in our work.

The focus of our paper is indeed on the problem of interpolating sequences of 3D-data that may be either open or closed (i.e.
with the last point coinciding with the first). The type of PH quintic interpolants we aim at constructing is the spatial C2 quintic
PH B-spline curve that belongs to the general class of spatial Pythagorean-Hodograph B-Spline curves introduced in [2]. Since
these curves may be constructed on either a clamped or a periodic knot partition, we describe the interpolation method for both
the cases and point out its capability to efficiently single out an interpolant to both open and closed sequences of 3D-points.

Within the setting of C2 PH spline interpolation of sequences of 3D data, the main features of our approach are the following:

• a conceptually simple construction of the interpolating curve;

• an easy to compute solution where the calculations of the pre-image coefficients are all explicit except for those related to
the first two coefficients which require the minimization of a suitable functional.

Earlier papers which considered a similar context are [11], [12] and [13]. Compared to [11], in our work we consider two
initial conditions (related to the choice of the first two coefficients of the pre-image) rather than an initial and a final condition
as in [11]. In this way, by giving up the symmetry of the non-linear system with respect to the data, we obtain a non-linear
system for the coefficients of the pre-image which is easier to be solved than the quadratic non-linear system in all the quaternion
unknowns that is considered in [11]. More specifically, in our paper the first two coefficients of the pre-image are obtained by
minimizing a suitable functional, whereas all the remaining coefficients are successively obtained by means of explicit quaternion
formulas. Since the minimization of the functional not only depends on the first two coefficients of the pre-image, but also
on the PH B-spline angular variables, the interpolation curve is produced globally and does not have a fully explicit forward
local construction like in [13]. Finally, differently from [12], our approach does not rely on a reference curve to accomplish the
construction of a good PH interpolant.

Our paper is organized as follows. In Section 2 we recall the needed background by referring the reader to our previous works.
In Section 3 and Section 4 we formulate the interpolation problem by distinguishing between the clamped and the periodic case.
In Section 5 we summarize the proposed interpolation method in algorithmic form, and we explain how to deal with its effective
use by suggesting solutions to solve any practical concerns. Finally, in Section 6 we illustrate the performance of our interpolation
method by exhibiting a number of numerical examples. Conclusions are drawn in Section 7.

aEscuela de Matemáticas, Universidad Nacional de Colombia, Sede Medellín, Colombia (galbrecht@unal.edu.co)
bDipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Italy (carolina.beccari2@unibo.it)
cDipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Italy (lucia.romani@unibo.it)



Albrecht · Beccari · Romani 2

2 Notation and background material on our work
To keep the paper relatively short and avoid duplication of previously published material, we deliberately do not include details
on the recently introduced class of spatial Pythagorean-Hodograph B-Spline curves. For a concise review of the key properties
of non-uniform B-Spline basis functions (defined on both clamped and periodic partitions) and the resulting spline curves, the
interested reader is referred to [1]. Additionally, for a general overview of spatial Pythagorean-Hodograph B-Spline curves, the
reader can consult [2].

In the following, in order to have a common notation for describing our interpolation method in the case of a clamped as
well as periodic PH B-spline curve r, we will denote the underneath knot partition with ρ and the knots of ρ with either t j
or 〈t j〉n depending if they are simple or with multiplicity n > 1. Moreover, we will refer to the knot interval lengths specified
by the previously mentioned knots of ρ with d j . The control points of the PH B-spline curve r depend on the control points
of its hodograph r′(t) = p(t), which in turn depend on the quaternion coefficients Z i of the B-spline quaternion pre-image
curve Z(t) =

∑p
i=0 Zi N

2
i,µ(t) defined for t ∈ [0,1] and p ∈ {m, m+ 2}, where m (resp. m+ 2) is the number of 3D-points to

be interpolated by the clamped (resp. periodic) PH B-spline curve r(t). For further details on Z(t) and the nature of the knot
partition µ of the normalized B-spline functions therein we refer the reader to [1,2]. Our interpolation conditions will depend on
these quaternion coefficients Zi .

For the sake of shortness, we will also use the following abbreviations for denoting frequently encountered expressions of the
knot intervals, for which the exact index ranges will be specified later (see Section 3 and 4 respectively). Precisely, from here on,
for all j > 0 we assume

α1, j :=
1
6

d j d j+1

(d j−1 + d j) (d j + d j+1)
, α2, j :=

1
6

(d j)2

(d j−1 + d j)(d j + d j+1)
,

α3, j :=
2
3
+

1
3

d j−1 d j+1

(d j−1 + d j) (d j + d j+1)
, α4, j :=

1
6

d j−1 d j

(d j−1 + d j) (d j + d j+1)
,

(1)

and, for all j ≥ 0, we additionally define

β1, j :=
d j+1

d j + d j+1
, β2, j :=

1
2

d j

d j + d j+1
. (2)

3 Formulating the interpolation problem for open sequences of 3D-data
Given a sequence of m 3D-points ck, k = 2, . . . , m+1 (where m≥ 2), we want to compute a C2 clamped quintic PH B-spline curve

r : [0,1]→ R3

that satisfies the conditions
r(tk) = ck , k = 2, . . . , m+ 1 . (3)

The knots tk, k = 2, . . . , m+ 1 involved in the above interpolation constraints are chosen in accordance with the distribution of
the interpolation points ck, e.g., by either uniform, chordal or centripetal parametrization. This amounts to computing first

τ0 = 0, τi = τi−1 + ‖ci+2 − ci+1‖θ2 , i = 1, . . . , m− 1 with θ ∈
§

0,
1
2

, 1
ª

and then setting

tk :=
τk−2

τm−1
, k = 2, . . . , m+ 1.

Hence, the values of t2 ≡ 0, t3, . . . , tm, tm+1 ≡ 1 are used to construct the clamped knot partition

ρ :=
�

〈t2 ≡ 0〉6, {〈t i〉3}i=3,...,m, 〈tm+1 ≡ 1〉6
	

and the associated knot intervals

d0 = dm := 0, di := t i+2 − t i+1, i = 1, . . . , m− 1.

Since t2 ≡ 0 and tm+1 ≡ 1 are 6-fold knots in the partitionρ, we have that the normalized quintic B-splines N 5
i,ρ (t), i = 0, . . . , 3m−1

built upon ρ satisfy

N 5
i,ρ (0) =

§

1 , if i = 0
0 , otherwise and N 5

i,ρ (1) =
§

1 , if i = 3m− 1
0 , otherwise.

This property implies that the border control points of the C2 clamped quintic PH B-spline curve defined as (see [2, Section
3.2.1])

r(t) :=
3m−1
∑

i=0

ri N 5
i,ρ (t) , t ∈ [0,1] (4)

are interpolated, i.e.,
r0 = r(0) = r(t2) = c2 , r3m−1 = r(1) = r(tm+1) = cm+1 .
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As to the remaining control points of r(t), we assume them to satisfy the relations (see again [2, Section 3.2.1])

r1 = r0 +
d1

5
p0,

r2 = r1 +
d1

5
p1,

r3 j = r3 j−1 +
d j

5
p3 j−1, j = 1, . . . , m− 1 ,

r3 j+1 = r3 j +
d j + d j+1

5
p3 j , j = 1, . . . , m− 2 ,

r3 j+2 = r3 j+1 +
d j + d j+1

5
p3 j+1, j = 1, . . . , m− 2 ,

r3m−2 = r3m−3 +
dm−1

5
p3m−3,

r3m−1 = r3m−2 +
dm−1

5
p3m−2 ,

(5)

where r0 is an arbitrary 3D-point and

p3 j−1 = α1, j (Z j−1 iZ∗j +Z j iZ∗j−1) +α2, j (Z j−1 iZ∗j+1 +Z j+1 iZ∗j−1)

+α3, j (Z j iZ∗j ) +α4, j (Z j iZ∗j+1 +Z j+1 iZ∗j ) , j = 1, . . . , m− 1 ,

p3 j = β1, j (Z j iZ∗j ) + β2, j (Z j iZ∗j+1 +Z j+1 iZ∗j ) , j = 0, . . . , m− 1 ,

p3 j+1 =
1
2
β1, j (Z j iZ∗j+1 +Z j+1 iZ∗j ) + 2β2, j (Z j+1 iZ∗j+1) , j = 0, . . . , m− 1 ,

(6)

are the control points of the hodograph
p(t) := r′(t),

obtained by means of some quaternion coefficients Zi , i = 0, . . . , m and their conjugates Z∗i , and the real coefficients αl, j ,
l = 1, 2,3, 4, j = 1, . . . , m− 1 in (1) and βh, j , h= 1, 2, j = 0, . . . , m− 1 in (2).

Now, after introducing the abbreviations

(i) ∆ j := t3 − t2 , j = 0, . . . , 4 for the case m= 2,

(ii) ∆ j :=

(

t3 − t2 , j = 0,1, 2
t4 − t2 , j = 3,4
t4 − t3 , j = 5,6, 7

for the case m= 3,

(iii) ∆ j :=







t3+b j
3 c
− t2 , j = 0, . . . , 4

t3+b j
3 c
− t1+b j+1

3 c
, j = 5, . . . , 3m− 7

tm+1 − t1+b j+1
3 c

, j = 3m− 6, . . . , 3m− 2
for the case m≥ 4,

(where, for x ∈ R, bxc denotes the largest integer that is less than or equal to x), it is not difficult to observe that the control
points of r(t) can be rewritten in the compact form

ri = r0 +
1
5

i−1
∑

j=0

∆ jp j , i = 1, . . . , 3m− 1.

In addition, exploiting the local support of the normalized quintic B–Splines N 5
i,ρ (t), i = 0, . . . , 3m− 1, we can easily verify that

for all k = 3, . . . , m,

N 5
i,ρ (tk)

§

6= 0 , if i = 3k− 6,3k− 5, 3k− 4
= 0 , otherwise and N 5

3k−6,ρ (tk) + N 5
3k−5,ρ (tk) + N 5

3k−4,ρ (tk) = 1 .

Thanks to the last properties fulfilled by the control points and the basis functions of r(t), we can rewrite the equation system (3)
as

3k−5
∑

j=0

Γ j,k p j = ck − c2, k = 2, . . . , m+ 1 (7)

where
Γ j,2 := 0, j = 0, 1

Γ j,m+1 :=
∆ j

5
, j = 0, . . . , 3m− 2,
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and, for k = 3, . . . , m,

Γ j,k :=



























∆ j

5
, j = 0, . . . , 3k− 7

∆ j

5

�

N 5
3k−5,ρ (tk) + N 5

3k−4,ρ (tk)
�

, j = 3k− 6

∆ j

5
N 5

3k−4,ρ (tk) , j = 3k− 5.

As a consequence, starting from (7) we can easily write the m− 1 equations

3k−2
∑

j=0

Γ j,k+1 p j −
3k−5
∑

j=0

Γ j,k p j = ck+1 − ck, k = 2, . . . , m,

and, exploiting the properties of Γ j,k, obtain from the latter the equivalent m− 1 conditions

3k−5
∑

j=3k−6

(Γ j,k+1 − Γ j,k)p j +
3k−2
∑

j=3k−4

Γ j,k+1p j = ck+1 − ck , k = 2, . . . , m. (8)

The conditions in (8) provide a non-linear system made of m− 1 vector valued equations in the m+ 1 quaternion unknowns Zi ,
i = 0, . . . , m.
In the next subsection we introduce a computational approach that allows us to solve the interpolation problem described by
the m− 1 constraints in (8) by means of explicit formulas for computing Z2, . . . ,Zm in terms of the quaternions Z0, Z1 and the
angular parameters φ2, . . . ,φm ∈ [−π,π) paired with Z2, . . . ,Zm, according to the relation later introduced in (11).

3.1 Towards explicit formulas solving the interpolation problem with C2 clamped quintic PH B-spline curves

Due to the special dependency of the hodograph control points p0, . . . ,p3m−2 in (6) on the unknown quaternions Zi , i = 0, . . . , m,
the equation system (8) allows an explicit solution. Indeed, by using (6), the equations in (8) may equivalently be rewritten as

A iA∗ = Ωk(Zk−2,Zk−1) , k = 2, . . . , m (9)

where

A= Zk +
Gk(Zk−2,Zk−1)
2β2,k−1Γ3k−2,k+1

,

Ωk(Zk−2,Zk−1) =
Gk(Zk−2,Zk−1) iGk(Zk−2,Zk−1)∗

(2β2,k−1Γ3k−2,k+1)2
+
Ω̃k(Zk−2,Zk−1)
2β2,k−1Γ3k−2,k+1

,

and

Gk(Zk−2,Zk−1) = Γ3k−4,k+1 α2,k−1Zk−2 +
�

Γ3k−4,k+1 α4,k−1 + Γ3k−3,k+1 β2,k−1 + Γ3k−2,k+1
β1,k−1

2

�

Zk−1 ,

with

Ω̃k(Zk−2,Zk−1) = ck+1 − ck − (Γ3k−6,k+1 − Γ3k−6,k)
�

β1,k−2 (Zk−2 iZ∗k−2) + β2,k−2 (Zk−2 iZ∗k−1 +Zk−1 iZ∗k−2)
�

−(Γ3k−5,k+1 − Γ3k−5,k)
�

β1,k−2
2 (Zk−2 iZ∗k−1 +Zk−1 iZ∗k−2) + 2β2,k−2 (Zk−1 iZ∗k−1)

�

−Γ3k−4,k+1

�

α1,k−1 (Zk−2 iZ∗k−1 +Zk−1 iZ∗k−2) +α3,k−1 (Zk−1 iZ∗k−1)
�

− Γ3k−3,k+1 β1,k−1 Zk−1 iZ∗k−1 ,

and αr,l , r = 1, 2,3, 4, l = 1, . . . , m− 1 as in (1) and βh,l , h= 1,2, l = 0, . . . , m− 1 as in (2).

We now introduce the following auxiliary result, previously given in many other papers (see, e.g., [2, Lemma 4.1], [8, Section
3.2] or [10, Section 2.1]), that allows us to solve (9) explicitly.

Lemma 3.1. Let c be a given pure vector quaternion. All the solutions of the equation

A iA∗ = c (10)

form a one-parameter family
A(c,φ) =Ap(c)Qφ ,

where Qφ = cos(φ) + i sin(φ) with φ ∈ [−π,π), and

Ap(c) =















Æ

|c|
c
|c| + i
�

�

�

c
|c| + i

�

�

�

, i f c
|c| 6= − i

p

|c|k , i f c
|c| = − i

is a particular solution of (10).
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Indeed, by applying Lemma 3.1 to equation (9), we obtain for the quaternion Zk the explicit expression

Zk = −
Gk(Zk−2,Zk−1)
2β2,k−1Γ3k−2,k+1

+A(Ωk(Zk−2,Zk−1),φk) , k = 2, . . . , m (11)

with φk ∈ [−π,π) denoting the angular parameter that allows us to incorporate all possible solutions to equation (9).

To summarize, the interpolation method for open sequences of 3D-data consists in arbitrarily choosing Z0,Z1,φ2, . . . ,φm
(which correspond to m+ 7 scalar free parameters) and determining the remaining unknowns Z2, . . . ,Zm from them by using
(11). In practice, since there are m+ 7 scalar free parameters, we can construct more than one interpolant for each considered
data set ck, k = 2, . . . , m+ 1. The resulting C2 quintic PH interpolants will be different because, even if they share the same
degree 5 and the same knot partition ρ, they differ in the arrangement of the control points r0, . . . , r3m−1 which depend on the
free parameters Z0,Z1,φ2, . . . ,φm, thus providing different shapes. In Section 5.1 we will describe the proposed interpolation
method in algorithmic form, pointing out a possible strategy to select the free parameters.

4 Formulating the interpolation problem for closed sequences of 3D-data
For a given sequence of m+2 3D-points ck, k = 2, . . . , m+3 where m≥ 2 and cm+3 = c2, the problem we would like to investigate
consists in designing a numerical procedure to determine a C2 periodic quintic PH B-spline curve

r : [0,1]→ R3

that satisfies the closure conditions
r(0) = r(1), r′(0) = r′(1), r′′(0) = r′′(1) (12)

and the interpolation conditions
r(tk) = ck , k = 2, . . . , m+ 3. (13)

As in the previous section, the knots tk, k = 2, . . . , m+ 3 can be computed by standard parametrization techniques, with the only
precaution of enforcing the periodicity of the knot partition that is required to achieve a C2 closure of the PH B-spline curve. This
means that, after computing

τ0 = 0, τi = τi−1 + ‖ci+2 − ci+1‖θ2 , i = 1, . . . , m+ 1 with θ ∈
§

0,
1
2

, 1
ª

,

we shall set

tk :=
τk−2

τm+1
, k = 2, . . . , m+ 3 and assume t1 := t2 − (tm+3 − tm+2), tm+4 := tm+3 + (t3 − t2). (14)

The definition of the periodic knot partition ρ of r(t) must then be completed by introducing the additional knots t−1, t0 and
tm+5, tm+6 that may assume any arbitrary location complying with the ascending ordering of the resulting knot vector

ρ :=
�

t−1, {〈tk〉3}k=0,...,m+5, tm+6

	

.

The knot intervals associated with ρ are defined as

di := t i − t i−1, i = 1, . . . , m+ 5

and fulfill the periodicity constraints
dm+3 = d2 and dm+4 = d3 (15)

implied by (14). As to the control points of the C2 periodic quintic PH B-spline curve

r(t) =
3m+13
∑

i=0

ri N
5
i,ρ (t) , t ∈ [0, 1], (16)

recalling the results in [2, Section 3.2.2] we assume them to satisfy the relations

r2 = r1 = r0,

r3 = r2 +
d1

5
Z0 iZ∗0 ,

r3 j+1 = r3 j +
d j+1

5
p3 j , j = 1, . . . , m+ 3 ,

r3 j+2 = r3 j+1 +
d j+1 + d j+2

5
p3 j+1 , j = 1, . . . , m+ 2 ,

r3 j+3 = r3 j+2 +
d j+1 + d j+2

5
p3 j+2 , j = 1, . . . , m+ 2 ,

r3m+11 = r3m+10 +
dm+5

5
Zm+2 iZ∗m+2,

r3m+13 = r3m+12 = r3m+11 ,

(17)
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where r0 is an arbitrary 3D-point and

p3 j−3 = α1, j (Z j−3 iZ∗j−2 +Z j−2 iZ∗j−3) +α2, j (Z j−3 iZ∗j−1 +Z j−1 iZ∗j−3)

+α3, j (Z j−2 iZ∗j−2) +α4, j (Z j−2 iZ∗j−1 +Z j−1 iZ∗j−2) , j = 1, . . . , m+ 5 ,

p3 j−2 = β1, j (Z j−2 iZ∗j−2) + β2, j (Z j−2 iZ∗j−1 +Z j−1 iZ∗j−2) , j = 1, . . . , m+ 4 ,

p3 j−1 =
β1, j

2
(Z j−2 iZ∗j−1 +Z j−1 iZ∗j−2) + 2β2, j (Z j−1 iZ∗j−1) , j = 1, . . . , m+ 4 ,

(18)

are the control points of the hodograph
p(t) := r′(t),

obtained by means of the quaternion coefficients Z−2 = Z−1 = Zm+3 = Zm+4 = 0, some unknown quaternion coefficients
Zi , i = 0, . . . , m+2 and their conjugates, as well as the real coefficients αl, j , l = 1, 2, 3, 4, j = 1, . . . , m+5 in (1) and βh, j , h = 1, 2,
j = 1, . . . , m+ 4 in (2). Note that, in practice, it is not needed to know the coefficients αl,1, l = 1,2,3,4 explicitly since the
expressions they multiply are all zero pure vector quaternions.

As in the clamped case, we then proceed by introducing the abbreviations

∆i := tb i+5
3 c
− tb i

3 c
, i = 0, . . . , 3m+ 12

that allow us to rewrite the control points of r(t) in the compact form

ri = r0 +
1
5

i−1
∑

j=0

∆ jp j , i = 1, . . . , 3m+ 13.

In addition, exploiting the local support of the normalized quintic B–Splines N 5
i,ρ(t), i = 0, . . . , 3m+ 13 we observe that, for

k = 2, . . . , m+ 3,

N 5
i,ρ (tk)

§

6= 0 , if i = 3k− 2, 3k− 1,3k
= 0 , otherwise and N 5

3k−2,ρ (tk) + N 5
3k−1,ρ (tk) + N 5

3k,ρ (tk) = 1.

The equation system (13) can thus be equivalently rewritten as

3k−1
∑

j=0

Γ j,kp j = ck − r0, k = 2, . . . , m+ 3 (19)

with

Γ j,k =



























∆ j

5
, j = 0, . . . , 3k− 3

∆ j

5

�

N 5
3k−1,ρ (tk) + N 5

3k,ρ (tk)
�

, j = 3k− 2

∆ j

5
N 5

3k,ρ (tk) , j = 3k− 1.

Starting from (19) we can thus rewrite the equation system yielding the interpolation constraints in the equivalent form


















5
∑

j=0

Γ j,2p j = c2 − r0 ,

3k−1
∑

j=3k−2

(Γ j,k+1 − Γ j,k)p j +
3k+2
∑

j=3k

Γ j,k+1p j = ck+1 − ck , k = 2, . . . , m+ 2.

(20)

Note that, the equation system (20) amounts to m+ 2 vector valued equations. Since the next three additional conditions

3m+8
∑

j=6

∆ j p j =
3m+7
∑

j=5

∆ j p j =
3m+6
∑

j=4

∆ j p j = 0 (21)

must be taken into account to guarantee the closure of the curve r(t) as specified in (12), all together (20) and (21) provide
m+5 vector valued equations for m+3 quaternion unknowns Zi , i = 0, . . . , m+2, which amount to m−3 scalar free parameters.
Moreover, three additional degrees of freedom are provided by the 3D coordinates of the arbitrary point r0. Therefore the overall
number of degrees of freedom turns out to be m. In the following subsection we introduce a computational approach that allows
us: (i) to solve the last m+ 1 vector valued equations in (20) by means of explicit formulas for computing Z2, . . . ,Zm+2 in terms
of the quaternions Z0,Z1 and the angular parameters φ2, . . . ,φm+2; (ii) to obtain from the first equation in (20) the expression of
r0 in terms of the quaternions Z0, Z1 and their conjugates. Since the conditions in (21) are made of 9 scalar equations in the
previous unknowns (i.e., Z0, Z1, φ2, . . . ,φm+2), the degrees of freedom decrease from m+ 9 to m scalars.
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4.1 Towards explicit formulas solving the interpolation problem with C2 periodic quintic PH B-spline curves

We start from observing that the first equation in (20) is equivalent to

r0 = c2 − (2β2,1Γ2,2 +α3,2Γ3,2 + β1,2Γ4,2)(Z0 iZ∗0)−
�

α4,2Γ3,2 + β2,2Γ4,2 +
β1,2

2
Γ5,2

�

(Z0 iZ∗1 +Z1 iZ∗0)− 2β2,2Γ5,2(Z1 iZ∗1) , (22)

whereas the remaining equations can be rewritten as

A iA∗ = Ωk(Zk−2,Zk−1) , k = 2, . . . , m+ 2 , (23)

where

A= Zk +
1

2β2,k+1 Γ3k+2,k+1
Gk(Zk−2,Zk−1) ,

Ωk(Zk−2,Zk−1) =
Gk(Zk−2,Zk−1) iGk(Zk−2,Zk−1)∗

(2β2,k+1 Γ3k+2,k+1)2
+
Ω̃k(Zk−2,Zk−1)
2β2,k+1 Γ3k+2,k+1

,

Gk(Zk−2,Zk−1) = Γ3k,k+1 α2,k+1Zk−2 +

�

Γ3k,k+1 α4,k+1 + Γ3k+1,k+1 β2,k+1 + Γ3k+2,k+1

β1,k+1

2

�

Zk−1 ,

with

Ω̃k(Zk−2,Zk−1) = ck+1 − ck − (Γ3k−2,k+1 − Γ3k−2,k)
�

β1,k (Zk−2 iZ∗k−2) + β2,k (Zk−2 iZ∗k−1 +Zk−1 iZ∗k−2)
�

−(Γ3k−1,k+1 − Γ3k−1,k)
�

β1,k
2 (Zk−2 iZ∗k−1 +Zk−1 iZ∗k−2) + 2β2,k (Zk−1 iZ∗k−1)

�

−Γ3k,k+1

�

α1,k+1 (Zk−2 iZ∗k−1 +Zk−1 iZ∗k−2) +α3,k+1 (Zk−1 iZ∗k−1)
�

− Γ3k+1,k+1 β1,k+1 (Zk−1 iZ∗k−1) ,

and αh,l , βh,l as in (1), (2) respectively.
By applying Lemma 3.1, equation (23) can be solved so obtaining the explicit solution

Zk = −
Gk(Zk−2,Zk−1)
2β2,k+1 Γ3k+2,k+1

+ A
�

Ωk(Zk−2,Zk−1),φk

�

, k = 2, . . . , m+ 2 , (24)

with φk ∈ [−π,π) denoting the angular parameter that allows us to incorporate all possible solutions to (23).

Replacing the previously calculated quaternions Z2, . . . ,Zm+2 into the expressions of the p j control points that appear in the
three vector valued equations (21) yields a nonlinear system of 9 scalar equations in the m+ 9 unknowns Z0, Z1, φ2, . . . ,φm+2
that, to be satisfied, reduces the degrees of freedom to m scalars. An algorithmic formulation of the proposed interpolation
method is given in Section 5.2.

5 The interpolation method in algorithmic form
To facilitate reproduction of the interpolation method proposed in this paper, we here describe the numerical procedure that can
be used to construct either a C2 clamped quintic PH B-spline curve that interpolates an open dataset {ck, k = 2, . . . , m+ 1}, or a
C2 periodic quintic PH B-spline curve that interpolates a closed dataset {ck, k = 2, . . . , m+ 3} with cm+3 = c2.

5.1 Numerical procedure to interpolate an open dataset

Input: the sequence of 3D-points {ck, k = 2, . . . , m+ 1};
the value of θ ∈

�

0, 1
2 , 1

	

to be used to compute the knots {tk, k = 2, . . . , m+ 1};
suitable initial angles φp

2 , . . . ,φp
m ∈ [−π,π) and initial quaternions Z p

0 , Z p
1 .

The interpolation algorithm (for open datasets):

O1. Construct the C2 clamped quintic PH B-spline curve r(t), t ∈ [0, 1] whose control points r0, . . . , r3m−1 (depending on Z0,Z1,
φ2, . . . ,φm) are such that the energy measure

Ê1(Z0,Z1,φ2, . . . ,φm) = G(Z0,Z1,φ2, . . . ,φm) E1(Z0,Z1,φ2, . . . ,φm) (25)

with

G(Z0,Z1,φ2, . . . ,φm) =

∫ 1

0

|r′(t)| d t ,

E1(Z0,Z1,φ2, . . . ,φm) =

∫ 1

0

κ2(t) |r′(t)| d t

and κ(t) the curvature of r(t), is minimized. Here the functional Ê1 is a scale-invariant version of the curvature-based
energy functional E1 (see [2] and references therein).
Performing this minimization with Matlab standard solver fmincon relying on the interior-point algorithm, starting at
Z p

0 ,Z p
1 , φp

2 , . . . ,φp
m and setting lower bounds −π and upper bounds π on the angular values, yields new values φ f

2 , . . . ,φ f
m

(that fulfill the required constraints −π≤ φ f
j < π, for all j = 2, . . . , m) and new quaternions Z f

0 ,Z f
1 .
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O2. Exploit the quaternions Z f
0 ,Z f

1 and the angular values φ f
2 , . . . ,φ f

m obtained in step [O1.] to compute the quaternions
Z f

2 , . . . ,Z f
m from (11).

O3. Determine the control points r1, . . . , r3m−1 of r(t) from r0 = c2 and the above Z f
j , j = 0, . . . , m by means of (5) and (6).

Output: r(t) in (4) that satisfies (3).

5.2 Numerical procedure to interpolate a closed dataset

Input: the sequence of 3D-points {ck, k = 2, . . . , m+ 3} with cm+3 = c2;
the value of θ ∈

�

0, 1
2 , 1

	

to be used to compute the knots {tk, k = 2, . . . , m+ 3};
suitable initial angles φp

2 , . . . ,φp
m+2 ∈ [−π,π) and initial quaternions Z p

0 , Z p
1 .

The interpolation algorithm (for closed datasets):

C1. Construct the C2 periodic quintic PH B-spline curve r(t), t ∈ [0, 1] whose control points r0, . . . , r3m+13 (depending on Z0,Z1,
φ2, . . . ,φm+2) are such that the scale-invariant energy measure Ê1(Z0,Z1,φ2, . . . ,φm+2) =

�

∫ 1

0
|r′(t)| d t

��

∫ 1

0
κ2(t) |r′(t)| d t

�

is minimized and, at the same time, the conditions in (21) are satisfied. Performing this constrained minimization with
Matlab standard solver fmincon relying on the interior-point algorithm, starting at Z p

0 ,Z p
1 , φp

2 , . . . ,φp
m+2 and setting

suitable lower and upper bounds on the angular values, yields new values φ f
2 , . . . ,φ f

m+2 (that fulfill the required constraints)
and new quaternions Z f

0 ,Z f
1 .

C2. Exploit the quaternions Z f
0 ,Z f

1 and the angular values φ f
2 , . . . ,φ f

m+2 obtained in step [C1.] to compute the quaternions
Z f

2 , . . . ,Z f
m+2 from (24).

C3. Compute the control point r0 through (22).

C4. Determine the control points r1, . . . , r3m+13 of r(t) from r0 and the above Z f
j , j = 0, . . . , m+ 2 by means of (17) and (18).

Output: r(t) in (16) that satisfies (13).

6 Numerical examples
In the following we provide examples of open and closed C2 quintic PH B-spline interpolants obtained through the proposed
numerical procedures by choosing θ = 1 in the construction of the knot partition. For both open and closed curves, such
procedures rely on minimization algorithms that need to start from a suitable initial guess (consisting of the angular values and
the two quaternions required as input by the numerical procedures) in order to converge to a good curve.

As to open curves, the initial guess consists of the angles φp
2 , . . . ,φp

m and the quaternions Z p
0 , Z p

1 , and it may be easily obtained
through the following preprocessing strategy.

Open curves preprocessing phase: Choose values φ i
2, . . . ,φ i

m randomly in (0, 1) ⊂ [−π,π), as well as quaternions Z i
0, Z i

1 with
all entries randomly selected in (0,1). Then construct the C2 clamped quintic PH B-spline curve r(t), t ∈ [0,1] whose control
points r0, . . . , r3m−1 (depending on Z0,Z1, φ2, . . . ,φm) are such that its total arc length

G(Z0,Z1,φ2, . . . ,φm) =

∫ 1

0

|r′(t)| d t

is minimized. Performing this minimization with Matlab standard solver fmincon relying on the interior-point algorithm, starting
at Z i

0,Z i
1, φ i

2, . . . ,φ i
m and setting lower bounds −π and upper bounds π on the angular values, yields new values φp

2 , . . . ,φp
m

(that fulfill the required constraints −π≤ φp
j < π, for all j = 2, . . . , m) and new quaternions Z p

0 ,Z p
1 . All together, the obtained

values φp
2 , . . . ,φp

m and the quaternions Z p
0 ,Z p

1 identify the additional input data required by the procedure in Subsection 5.1.

The first example in Figure 1 (first row) is a C2 clamped quintic PH B-spline curve with m = 5, which interpolates 5 points on
the parametric curve (u3 − 3u, u4 − 4u2, 1

5 u5 − 2u), that are sampled at equispaced values u ∈ [−2, 2]. For this curve, the initial
parameters computed randomly (that we passed to the preprocessing strategy), are

φ i
2 = 0.6538, φ i

3 = 0.4942, φ i
4 = 0.7791, φ i

5 = 0.7150,

Z i
0 = (0.9037, 0.8909,0.3342, 0.6987)T , Z i

1 = (0.1978, 0.0305, 0.7441,0.5000)T .

The input values of the procedure in Subsection 5.1, obtained as output of the preprocessing phase, are

φ
p
2 = 1.3382, φ

p
3 = −2.3761, φ

p
4 = 2.2953, φ

p
5 = −0.0383,

Z p
0 = (1.9196,8.5237,−3.3949,4.1183)T , Z p

1 = (−6.5680,0.1124, 2.6756,−1.6032)T ,

and the final ones (obtained at the end of step [O1.]) are

φ
f
2 = −0.7801, φ

f
3 = −2.1033, φ

f
4 = 2.4824, φ

f
5 = 1.1088,

Z f
0 = (−1.9230, 5.5580,−3.8992,1.8171)T , Z f

1 = (3.3575, 4.4659,−1.5323,0.4319)T .
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The second example in Figure 1 (second row) is a C2 clamped quintic PH B-spline curve with m= 6, which interpolates the 6
3D-points

c2 = (0,0, 0)T , c3 = (−5, 5,2)T , c4 = (0, 10,−2)T ,
c5 = (8, 12,5)T , c6 = (15, 2,3)T , c7 = (2, 0,7)T ,

suggested in [13, page 18]. For this curve, the initial parameters computed randomly (that we passed to the preprocessing
strategy), are

φ i
2 = 0.4854, φ i

3 = 0.8003, φ i
4 = 0.1419, φ i

5 = 0.4218, φ i
6 = 0.9157,

Z i
0 = (0.7922, 0.9595,0.6557, 0.0357)T , Z i

1 = (0.8491, 0.9340, 0.6787,0.7577)T .

The input values of the procedure in Subsection 5.1, obtained as output of the preprocessing phase, are

φ
p
2 = 0.2933, φ

p
3 = 1.0874, φ

p
4 = 1.0447, φ

p
5 = 1.3115, φ

p
6 = 0.2528,

Z p
0 = (−1.3329,−0.4972,9.4586, 6.7601)T , Z p

1 = (1.2997,6.4714, 6.8938,0.6817)T ,

and the final ones (obtained at the end of step [O1.]) are

φ
f
2 = 0.1263, φ

f
3 = 0.8417, φ

f
4 = 0.2402, φ

f
5 = −0.2202, φ

f
6 = −0.0106,

Z f
0 = (−0.6005, 6.2744,11.5077, 4.9314)T , Z f

1 = (3.0989,−0.7824,2.3348, 4.6042)T .

Finally, the third example in Figure 1 (third row) is a C2 clamped quintic PH B-spline curve with m= 7, which interpolates 7
points on the parametric curve (sin(u2), u+ 1, u2), that are sampled at equispaced values u ∈ [−π/2,π/2]. For this curve, the
initial parameters computed randomly (that we passed to the preprocessing strategy), are

φ i
2 = 0.7303, φ i

3 = 0.4886, φ i
4 = 0.5785, φ i

5 = 0.2373, φ i
6 = 0.4588, φ i

7 = 0.9631,

Z i
0 = (0.5468, 0.5211,0.2316, 0.4889)T , Z i

1 = (0.6241, 0.6791, 0.3955,0.3674)T .

The input values of the procedure in Subsection 5.1, obtained as output of the preprocessing phase, are

φ
p
2 = −0.3958, φ

p
3 = −0.9118, φ

p
4 = −0.1919, φ

p
5 = 0.8736, φ

p
6 = 0.8584, φ

p
7 = −0.0012,

Z p
0 = (1.9676,2.3627, 2.4951,−1.3092)T , Z p

1 = (0.0338, 1.6733,−0.3173,−1.0902)T ,

and the final ones (obtained at the end of step [O1.]) are

φ
f
2 = −0.5630, φ

f
3 = −0.6304, φ

f
4 = −0.5852, φ

f
5 = −0.0587, φ

f
6 = 0.5789, φ

f
7 = 0.3649,

Z f
0 = (1.1923, 1.5263,1.0841,−0.7014)T , Z f

1 = (1.3455, 2.0061,1.2491,−0.9463)T .

For all the open curve examples we have tested, we have observed that, if the polygon connecting the interpolation points
presents any symmetries, then such symmetries are preserved in the interpolating PH curve. This symmetry-preservation property
is illustrated in the first and last row of Figure 1 and can be appreciated both looking at the curves shape and at their curvature
plots.

We finally emphasize that the preprocessing phase is sensible to the choice of the initial guess for the numerical solver of the
arc length minimization problem. In other words, different initial guesses may result in different outputs of the preprocessing
phase. What matters to our purposes is that, according to our experiments, any such output eventually generates an acceptable
curve when fed to the successive energy minimization phase.

On the other hand, to generate the closed curve examples in the following, we did not apply any preprocessing technique, but
we simply selected φp

2 = · · ·= φ
p
m+2 = 0 and Z p

0 = Z p
1 = 0 as input values to be passed to the numerical procedure proposed in

Subsection 5.2. Indeed, a preprocessing technique analogous to the one used in the open curve case does not yield apparent
benefits on the shape of the resulting interpolant, and a different preprocessing method capable of generating a good initial guess
for all possible datasets is not easily developable.

The two examples in Figure 2 show periodic quintic PH B-spline curves with m= 9, which interpolate 11 points on a given
parametric curve. The parametric curve of the first example is (cos2(u), cos(u) sin(u), sin(u)), and the one of the second example
is (5/2 cos(u) + cos(3u), 5/2 sin(u)− sin(3u), sin(2u)). In both cases the 11 interpolation points are sampled at equally spaced
values u ∈ [0, 2π].

Since in the closed curve case symmetry is not automatically preserved, as a future work one may devise a strategy to select
more suitable angular values φp

2 , . . ., φp
m+2 and quaternions Z p

0 , Z p
1 that could bring such an additional property to the output

curve.
A simple and effective strategy to compute appropriate angular parameters and quaternions Z p

0 , Z p
1 , directly from the input

3D-data, could be beneficial also to the numerical procedure of the open curve case since it would eliminate the computational
cost of the preprocessing phase we are currently using.

interpolants differently. minimization process (i.e., the minimization of the curvature-based functional Ê1), gives a visually-
pleasing curve. Without such a proper initial point, the bending energy minimization algorithm could stumble into a local
minimum, not producing a curve with an optimal shape. second step. However, this is superfluous because, as we can see in the
next section, it is still possible to obtain a good result even if we skip the curve length minimization step.
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Figure 1: Examples of clamped quintic PH B-spline curves generated by our algorithm for open datasets with m = 5, 6, 7. In each row we display,
from left to right, the curve obtained after the preprocessing phase, the final C2 clamped quintic PH B-spline curve, its B-spline control polygon
and its curvature plot.

(a) (b) (c) (d)

Figure 2: Examples of periodic quintic PH B-spline curves generated by our algorithm for closed datasets with m = 9. For each example we
display from left to right the resulting C2 periodic quintic PH B-spline curve and its B-spline control polygon.

7 Conclusion
In this paper we have investigated how to solve the C2 interpolation problem of both open and closed spatial datasets by means
of PH quintic B-spline curves. The proposed solution method offers the advantage of relying on explicit calculations, and avoids
solving minimization problems subject to several nonlinear equality constraints as previously done in [2]. The leading idea
is in fact to consider two initial conditions (related to the choice of Z0 and Z1) rather than an initial and a final condition as
in [11], in order to give up the symmetry of the non-linear system with respect to the data and obtain a non-linear system for the
coefficients of the pre-image which is easier to be solved than the quadratic non-linear system in all the quaternion unknowns
that is considered in [11]. In our paper the interpolation conditions are indeed rewritten in such a way that the minimization of
a functional and the successive usage of explicit quaternion formulas are enough to get the desired PH interpolant. Moreover,
in our construction, the control polygon of the clamped quintic PH interpolant is made of 3m control points only, instead of
5m− 4 as the piecewise quintic Bézier representation used in [11] entails, and is capable of producing outputs that preserve the
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symmetry of the data (see, e.g., Figure 1(d) and (l)). With respect to the clamped quintic PH interpolant proposed in [13], we can
also obtain spatial curves with an improved curvature behaviour (compare Figure 1(h) with Figure 7 (right) in [13]). However,
differently from the approach in [13], our method is not suited for stream interpolation since it requires the minimization of a
functional depending on Z0 and Z1 but also on φ2, ...,φm, which implies that the interpolation curve is produced globally and
does not have a fully explicit forward local construction. Also, currently the proposed interpolation method does not guarantee
that the same curve is obtained when data are reversed. One could, however, use the available free parameters to enforce this
property and how to do so is a topic for future investigation.

Acknowledgements: The second and third author are members of INdAM - GNCS, which partially supported this work, as well
as members of the Alma Mater Research Center on Applied Mathematics (AM2). The research of the third author has been done
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