

Supplementary Material for "Protonation of apolar species: from Cl₂H⁺ to (E)-NCCHCHCNH⁺ through computational investigations"

1 SPECTROSCOPIC CHARACTERIZATION AND GEOMETRICAL PARAMETERS

Table S1. Rotational spectroscopic parameters (MHz, if not otherwise stated) of N_2H^+ and HCO⁺ (Watson's S reduction, I^r representation).

Parameter	N ₂ H ⁺		HCO ⁺	
	Theory	Exp. ^b	Theory	Exp. ^b
B_e	46832.71	-	44804.11	-
B_0	46590.46	46586.87549(18)	44565.21	44594.42895(27)
$D_J imes 10^3$	85.4	87.9655(44)	81.1	82.8412(60)
χ (outer)	-5.667	-5.6903(15)	-	-
χ (inner)	-1.336	-1.3582(29)	-	-
μ / D	3.38	-	3.94	-

^a Equilibrium rotational constants from the "CBS+CV+fT+fQ" approach. Dipole moment components and NQCCs, computed on top of the CBS+CV+fT+fQ reference geometry, at the ae-CCSD(T)/aug-cc-pwCVQZ level. Vibrational corrections to the previous quantities and quartic centrifugal distortion constants at the ae-CCSD(T)/cc-pwCVQZ level of theory. ^b Taken from Cazzoli et al. (2012).

Table S2. Harmonic and anharmonic vibrational frequencies (cm^{-1}) for N₂H⁺, and HCO⁺. Anharmonic intensities in km·mol⁻¹. All quantities are at the ae-CCSD(T)/cc-pwCVQZ level of theory. Experimental vibrational frequencies are also reported.

Mode ^a	Harm. Freq.	Frequency	Intensity		
		N_2H^+			
	Harm. Freq.	Frequency	Intensity	Exp. Freq. ^b	
$ u_1 \Sigma $	3415.31	3242.08	811.6	3233.96085	
$ u_2 \Sigma$	2303.32	2265.94	13.1	2257.8667(13)	
$\nu_3 \Pi$	700.94	691.67	231.6	698.6353(14)	
	HCO ⁺				
	Harm. Freq.	Frequency	Intensity	Exp. Freq. ^b	
$ u_1 \Sigma $	3228.24	3090.31	361.6	3088.7951(31)	
$ u_2 \Sigma$	2217.56	2187.67	13.0	2183.9496(6)	
$\nu_3 \Pi$	844.02	830.05	75.1	828.2305(9)	

^a The symmetry of the normal mode is given in parentheses. ^b ν_1 taken from Nakanaga et al. (1990), ν_2 taken from Foster and McKellar (1984), and ν_3 from Owrutsky et al. (1986). ^c ν_1 taken from Amano (1983), ν_2 from Kawaguchi et al. (1985), and ν_3 from Foster and McKellar (1984).

Table S3.	Vibration-rotation interaction constants	(MHz) for N_2H^+ , HO	CO^+ , Cl_2H^+ , HI	P_2^+ , and HSi_2^+	computed at the ae-CCSD(T)/cc-pwCV	QZ level of
theory.						

Cl ₂ H ⁺					
Mode	A	В	С		
ν_1	-9704.7429	5.5352	1.0061		
ν_2	-121.4252	-45.1464	-44.4238		
ν_3	6552.4115	-19.1654	-30.6937		
	P_2 I	H ⁺			
Mode	A	В	C		
ν_1	-1655.6601	-24.2191	-18.1311		
ν_2	1157.0096	-41.9908	-41.3612		
ν_3	-15920.7967	-1.8832	-38.5507		
	Si ₂	H^+			
Mode	A	В	C		
ν_1	2139.1561	-42.4692	-31.6731		
ν_2	3150.3941	-54.6221	-52.7126		
ν_3	-20058.4973	11.6651	-21.4729		
	N_2	H^+			
Mode		В			
ν_1	-,	375.6718			
ν_2		322.9260			
ν_3	216.0976				
	HCO ⁺				
Mode	В				
ν_1	-359.8351				
ν_2	-292.0304				
ν_3	2	223.1506			

N ₂ H ⁺					
Parameter	fc-CCSD(T)/	ae-CCSD(T)	CBS+CV+fT+fQ		
1 drameter	jun-cc-PVTZ	cc-pwCVQZ			
R(NN)	1.09919	1.09333	1.09301		
R(NH)	1.03466	1.03304	1.03288		
	H	ICO ⁺			
Parameter	fc-CCSD(T)/	ae-CCSD(T)	CBS+CV+fT+fQ		
	jun-cc-PVTZ	cc-pwCVQZ			
R(CO)	1.11281	1.10614	1.10609		
R(HC)	1.09173	1.09230	1.09214		
	(Cl_2H^+			
Parameter	fc-CCSD(T)/	ae-CCSD(T)	CBS+CV+fT+fQ		
	jun-cc-PVTZ	cc-pwCVQZ			
R(Cl1Cl2)	2.0116	1.99337	1.98573		
R(Cl2H)	1.30619	1.30456	1.30561		
A(Cl1Cl2H)	98.83	98.98	99.05		
HP ₂ ⁺					
Parameter	fc-CCSD(T)/	ae-CCSD(T)	CBS+CV+fT+fQ		
	jun-cc-PVTZ	cc-pwCVQZ			
R (PH)	1.60318	1.59573	1.59639		
A (PPH)	75.24	74.89	74.77		
HSi2 ⁺					
Dorometer	fc-CCSD(T)/	ae-CCSD(T)	CBS+CV+fT+fQ		
	jun-cc-PVTZ	cc-pwCVQZ			
R(SiH)	1.70495	1.69525	1.69583		
A(SiSiH)	83.22	82.82	84.89		

Table S4. Geometrical parameters of N_2H^+ , HCO^+ , Cl_2H^+ , HP_2^+ , and HSi_2^+ at different levels of theory. Atom labeling according to fig. 1 of the main text. Bond lengths in Angstrom, angles in degrees.

Table S5. Geometrical parameters of NCCH⁺ and CNNCH⁺ at different levels of theory. Atom labeling according to fig. 1 of the main text. Bond lengths in Angstrom, angles in degrees.

Parameter	fc-CCSD(T)/	ae-CCSD(T)	CBS+CV		
1 urunieter	jun-cc-PVTZ	cc-pwCVTZ	CDDTCT		
	NCC	NH+			
R(C1N1)	1.16957	1.16557	1.16283		
R(C1C2)	1.37978	1.37650	1.37401		
R(C2N2)	1.14621	1.14275	1.14064		
R(N2H1)	1.01555	1.01425	1.01350		
CNNCH+					
R(C2N2)	1.20434	1.19975	1.19716		
R(N2N1)	1.26527	1.26203	1.25967		
R(N1C1)	1.14763	1.14425	1.14177		
R(C1H1)	1.08129	1.07968	1.07887		

Parameter	CCSD(T)/	rDSD/	CBS+CV
i didilletei	jun-cc-PVTZ	jun-cc-pVTZ	CDDTCV
R(C1C2)	1.35432	1.35102	1.34733
R(C1H1)	1.08369	1.08429	1.08158
A(H1C1C2)	124.26	123.90	124.12
R(C2H2)	1.08518	1.08561	1.08294
A(H2C2C1)	121.89	121.74	121.89
R(C1C3)	1.42062	1.41188	1.41314
A(C3C1C2)	119.11	119.61	119.14
R(C3N1)	1.14986	1.14816	1.14371
R(N1H3)	1.00991	1.00956	1.00755
R(C2C4)	1.42807	1.42124	1.42130
A(C4C2C1)	120.84	121.18	120.85
R(C4N2)	1.16592	1.16409	1.15857

Table S6. Geometrical parameters of NCCHCHCNH⁺ at different levels of theory. Atom labeling according to fig. 1 of the main text. Bond lengths in Angstrom, angles in degrees.

2 FORMATION ROUTE

Table S7.	Relative energies (with respect to reactants) of the stationary points involved in the formation routes of Cl ₂ H ⁺ , HP ₂ ⁺ , and CNNCH ⁺ .	The level of
theory con	nsidered are: revDSD+ZPE, junChS+ZPE and junChS.	

	$Cl_2 + H_3^+$	$\rightarrow Cl_2H^+ + H_2$	
Point	revDSD + ZPE	junChS + ZPE	junChS
reac (Ha)	-921.08070	-921.44588	-921.46742
reac	0.00	0.00	0.00
MIN1	-146.23	-143.18	-146.14
TS1	-89.80	-85.72	-91.60
Prod	-129.55	-129.49	-124.38
	$P_2 + H_3^+$	$\rightarrow P_2 H^+ + H_2$	
Point	revDSD + ZPE	junChS + ZPE	junChS
reac (Ha)	-683.45241	-683.75986	-683.78187
reac	0.00	0.00	0.00
MIN1	-237.71	-237.74	-233.59
TS2	-165.34	-191.80	-184.26
MIN2	-196.15	-192.42	-187.96
TS1	-46.49	-64.52	-66.25
Prod1	-236.03	-236.13	-226.76
	$CNNC + H_3^+$	\rightarrow CNNCH ⁺ + H	2
Point	revDSD + ZPE	junChS + ZPE	junChS
reac (Ha)	-186.58339	-186.58339	-186.86554
reac	0.00	0.00	0.00
MIN1	-305.45	-301.23	-309.51
TS1	-5.44	-3.58	-7.20
MIN2	-301.80	-298.88	-305.57
TS2	-32.68	-46.37	-43.52
MIN3	-50.66	-60.62	-65.44
TS3	-301.94	-299.03	-305.58
Prod1	-299.24	-296.02	-298.59
Prod2	-34.50	-47.38	-45.16

REFERENCES

- Amano, T. (1983). The ν_1 fundamental band of HCO⁺ by difference frequency laser spectroscopy. *J. Chem. Phys.* 79, 3595–3595
- Cazzoli, G., Cludi, L., Buffa, G., and Puzzarini, C. (2012). Precise thz measurements of HCO⁺, N₂H⁺, and CF⁺ for astrophysical observations. *Astrophys. J. Suppl. Ser.* 203, 11
- Foster, S. and McKellar, A. (1984). The ν_3 fundamental bands of HN₂⁺, DN₂⁺, and DCO+. J. Chem. Phys. 81, 3424–3428
- Kawaguchi, K., Yamada, C., Saito, S., and Hirota, E. (1985). Magnetic field modulated infrared laser spectroscopy of molecular ions: The ν_2 band of HCO⁺. J. Chem. Phys. 82, 1750–1755
- Nakanaga, T., Ito, F., Sugawara, K., Takeo, H., and Matsumura, C. (1990). Observation of infrared absorption spectra of molecular ions, H₃⁺ and HN₂⁺, by FTIR spectroscopy. *Chem. Phys. Lett.* 169, 269–273
- Owrutsky, J., Gudeman, C., Martner, C., Tack, L., Rosenbaum, N., and Saykally, R. (1986). Determination of the equilibrium structure of protonated nitrogen by high resolution infrared laser spectroscopy. *J. Chem. Phys.* 84, 605–617