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Abstract 

Dimetallic complexes are suitable platforms for the assembly of small molecular units, and the 

reactivity of bridging alkenyl ligands has been widely investigated to model C-C bond forming 

processes. Here, we report the unusual coupling of an alkenyl ligand, bridging coordinated on a 

diruthenium scaffold, with a series of alkynes, revealing two possible outcomes. The diruthenium 

complex [Ru2Cp2(Cl)(CO)(µ-CO){µ-η1:η2-C(Ph)=CH(Ph)}], 2, was prepared in two steps from 

[Ru2Cp2(CO)2(µ-CO){µ-η1:η2-C(Ph)=CH(Ph)}]BF4, [1]BF4, in 69% yield. Then, the reaction of 2 with 

C2(CO2Me)2, promoted by AgCF3SO3 in dichloromethane, afforded in 51% yield the complex 

[Ru2Cp2(CO)2{µ-η3:η2-C(Ph)CH(Ph)C(CO2Me)C(CO2Me)}]CF3SO3, [3]CF3SO3, containing a 

ruthenacyclopentene-based hydrocarbyl ligand. On the other hand, 2 reacted with other alkynes and 

AgX salts to give the butadienyl complexes [Ru2Cp2(CO)2{µ-η3:η2-C(R)CH(R′)C(Ph)C(Ph)}]X (R = 

R′ = H, [4]BF4; R = R′ = Me, [5]CF3SO3; R = R′ = Ph, [6]CF3SO3; R = Ph, R′ = H, [7]CF3SO3), in 42-

56% yields.All products were characterized by IR and NMR spectroscopy, and by single crystal X-ray 

diffraction in the cases of 2, [3]CF3SO3 and [6]BF4. DFT calculations highlighted the higher stability of 

[4-7]+-like structures with respect to the corresponding [3]+-like isomers. It is presumable that [3]+-like 

isomers initially form as kinetic intermediates, then undergoing H-migration which is disfavoured in 

the presence of carboxylato substituents on the alkyne. Such hypothesis was supported by the 

computational optimization of the transition states for H-migration in the cases of R = R′ = H and R = 

R′ = CO2Me. 

 

Keywords: organometallic synthesis; diruthenium complexes; µ-alkenyl ligand; C-C bond formation; 

alkyne insertion. 
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Introduction 

Dimetallic complexes, exploiting cooperative effects supplied by the two metal centres in close 

proximity, represent ideal scaffolds to study a multitude of reaction pathways otherwise hardly 

available on related mononuclear complexes.1,2,3 For instance, as two working hands compared to one 

single hand, dimetallic systems offer major opportunities to build and stabilize uncommon hydrocarbyl 

ligands via multisite bridging coordination.4,5,6,7,8,9,10 Alkynes are useful and versatile reagents in this 

setting, and in particular the {M2Cp2(CO)x} scaffold (M = Fe, Ru; Cp = η5-C5H5; x = 2, 3) is suitable to 

promote their coupling with a diversity of bridging coordinated carbon ligands, including carbonyl,11,12 

isocyanide,13 thiocarbonyl,14 alkylidyne10,15,16 and alkylidene ligands,17,18,19,20 usually via alkyne 

insertion into themetal-µ-carbon bond, but alternative modes are also possible.21The two metal 

coordination spheres are coordinatively and electronically saturated, therefore prior removal of one 2-

electron ligand (usually, a carbon monoxide ligand) is needed to guarantee the initial η2-coordination 

of the alkyne to one metal centre, that is a preliminary, fundamental step along the coupling process.22 

The CO displacement is preferentially performed by substitution with the labile acetonitrile ligand 

using the trimethylamine-N-oxide (TMNO) strategy, which is often reliable on cationic 

complexes;15,23,24,25,26when this strategy is not applicable, photolytic methods can be employed, 

although they might be featured by a low degree of selectivity.13,14,19 

Dimetallic complexes with a bridging alkenyl (vinyl) ligand, {-C(R)=C(R′)(R′′)}, have been widely 

investigated as simplified models for C-C coupling events, with a particular focus on the elucidation of 

the mechanism of the Fischer-Tropsch reaction (FT), wherein alkenyl units are involved in the growing 

of the linear hydrocarbon chain.9,27,28,29,30To the best of our knowledge, the coupling reaction between 

simple alkenyl ligands and external alkynes has been unexplored heretofore. On the other hand, the 
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coupling of alkynes with alkenyl molecules is of ultimate relevance in metal-mediated organic 

synthesis,31,32,33,34,35,36 and the alkyne insertion into metal-alkenyl bonds constitutes a key step of the 

important Dötz reaction.37,38,39 

We selected the diruthenium complex [Ru2Cp2(CO)2(µ-CO){µ-η1:η2-C(Ph)=CH(Ph)}]BF4, [1]BF4, as a 

convenient starting material to provide a chance for theµ-alkenyl-alkyne coupling; Knox and co-

workers previously demonstrated that complexes homologous to [1]BF4, bearing different alkenyl 

substituents, display a versatile chemistry.40 Compound[1]BF4 was prepared by HBF4 protonation of 

the dimetallacyclopentenone precursor [Ru2Cp2(CO)(µ-CO){µ-η1:η3-C2Ph2C(O)}],41 for which we 

recently optimized the synthetic procedure from commercial [Ru2Cp2(CO)4], Scheme 1.42 

The results of the present synthetic study highlight two possible outcomes for the alkenyl-alkyne 

coupling. 
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Scheme 1. Two-step synthesis of diruthenium complex with a µ:η1:η2-(bis-phenyl)alkenylligand. 

 

Results and discussion 

Synthesis and characterization of complexes 

To promote the reaction of [1]BF4 with alkynes, first a dichloromethane solution of this complex was 

treated with TMNO in the presence of acetonitrile, to afford the acetonitrile adduct [1-

NCMe]BF4(Scheme 2); the formation of [1-NCMe]BF4was easily checked via solution IR 
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spectroscopy (see Experimental for details).The subsequent reactions of freshly prepared[1-

NCMe]BF4with a series of alkynes resulted in the formation of complicated mixtures of products. 

Therefore, [1-NCMe]BF4 was converted into the chloride derivative 2,upon treatment with lithium 

chloride in THF (Scheme 2). In fact, the abstraction of a chloride ligand by means of a silver salt, in 

several cases, has proved to bea clean alternative to generate a coordination vacancy on group 8 metal 

centres, enabling the subsequent coordination of organic reactants.10,15 
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Scheme 2. Two-step carbonyl-chloride substitution on diruthenium µ-alkenyl complex. 

 

The reaction leading to 2 was straightforward, and this product was isolated in 69% yield after 

chromatographic purification on alumina, and fully structurally characterized. The X-ray structure of 2 

consists of a [trans-Ru2Cp2(Cl)(CO)(µ-CO)] core bonded to a µ:η1:η2-(bis-phenyl)alkenyl ligand. 

(Figure 1). It must be remarked that the closely related alkenyl complex [Ru2Cp2(Cl)(CO)(µ-CO){µ-

η1:η2-C(H)=CH(CO2Et)}] shows a cis arrangement of the Cp ligands.43 Despite the different 

stereochemistry, the bonding parameters of 2 and [Ru2Cp2(Cl)(CO)(µ-CO){µ-η1:η2-

C(H)=CH(CO2Et)}] are similar. As usually observed for dinuclear µ-η1:η2-alkenyl complexes, the 

Ru(1)-C(1) [2.0806(19) Å] and Ru(2)-C(1) [2.1700(18) Å] distances are comparable,43 and the C(1)-

C(2) contact [1.413(3) Å] is elongated compared to a C=C double bond [1.34 Å] due to the 

coordination to Ru(2). 
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Figure 1. View of the molecular structure of 2. Displacement ellipsoids are at the 30% probability level. Selected 
bond lengths (Å) and angles (°): Ru(1)-Ru(2) 2.7433(2), Ru(1)-Cpav 2.256(4), Ru(2)-Cpav 2.207(4), Ru(1)-C(21) 
1.861(2), Ru(1)-C(22) 2.001(2), Ru(2)-C(22) 2.072(2), Ru(2)-Cl(1) 2.4345(5), Ru(1)-C(1) 2.0806(19), Ru(2)-C(1) 
2.1700(18), Ru(2)-C(2) 2.2480(19), C(1)-C(2) 1.413(3), C(1)-C(3) 1.489(3), C(2)-C(9) 1.482(3), C(21)-O(21) 
1.143(3), C(22)-O(22) 1.168(3), Ru(1)-C(21)-O(21) 175.3(2), Ru(1)-C(1)-Ru(2) 80.36(7), Ru(1)-C(22)-Ru(2) 
84.65(8), Ru(1)-C(1)-C(2) 115.28(13), C(1)-C(2)-C(9) 127.01(17), C(1)-C(2)-Ru(2) 68.37(11). 
 

The IR spectrum of 2(in CH2Cl2) exhibits two absorptions related to the terminal and bridging 

carbonyls, respectively (1977 and 1828 cm-1). The NMR spectra (in CDCl3) consist of one set of 

resonances, suggesting that 2 exists in solution in the same trans configuration as observed in the solid 

state; since [1]BF4 was previously ascertained to exist as a cis isomer,12 the carbonyl-chloride 

substitution is accompanied by a cis to trans rearrangement of the {Ru2Cp2} core. In the 13C spectrum, 

the alkenyl carbons resonate at 155.1 (Ru-C) and 83.7 ppm (=CH); in particular, the downfield 

resonance exhibited by the ruthenium-bound carbon indicates some bridging alkylidene character,8,44,45 

in alignment with the X-ray evidence that such carbon is nearly equidistant between the two ruthenium 

atoms. 
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The reactivity of 2 with a series of alkynes was investigated in dichloromethane solution using, in each 

case, an excess of the alkyne and silver triflate or silver tetrafluoroborate as chloride abstractor, 

Scheme 3. 
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Scheme 3. Alkenyl-alkyne coupling on a diruthenium scaffold. 

 

Thus, the reaction of 2with dimethyl acetylenedicarboxylate and silver trifluoromethanesulfonate 

resulted in the selective formation of [3]CF3SO3, which was isolated in 51% yield after work-up. The 

structure of [3]CF3SO3·CH2Cl2was ascertained by single crystal X-ray diffraction (Figure 2 and Table 

1). The cation, [3]+, is composed of the{trans-Ru2Cp2(CO)2} core to which is coordinated the 

unprecedented {µ-η2:η3-C(Ph)-CH(Ph)-C(CO2Me)=C(CO2Me)} ligand. The latter is bonded to the Ru 

centres through four carbon atoms, i.e. a bridging alkylidene, a η2-phenyl and a terminal σ-alkenyl 
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fragment. Indeed, the Ru(1)-C(3) [2.083(5) Å] and Ru(2)-C(3) [2.153(5) Å] contacts are typical for a 

bridging alkylidene (carbene) ligand,46,47,48,49 and the Ru(1)-C(6) distance [2.077(5) Å] is in keeping 

with a single bond involving a sp2 carbon atom. The C(5)-C(6) contact [1.336(7) Å] is essentially a 

double bond, whereas C(3)-C(4) [1.538(6) Å] and C(4)-C(5) [1.509(7) Å] are almost pure single bonds. 

Overall, the Ru(1)-C(3)-C(4)-C(5)-C(6) ring may be described as a ruthenacyclopentene comprising a 

bridging alkylidene carbon, whose bonding parameters are comparable to those reported in the 

literature for the unique example of analogous ruthenacycle.50 The ruthenacyclopentene ring is almost 

planar [mean deviation from the least square plane 0.037 Å] and both C(5) and C(6) are hybridized sp2 

[sum angles 360.0(8)° and 359.8(6)°, respectively]. The Ru(2)-C(17) [2.272(5) Å] and Ru(2)-C(22) 

[2.446(5) Å] distances are in the range reported for Ru bonded to a η2-phenyl ligand.51,52,53 

Coordination to Ru(2) via a single C-C edge results in a reduced delocalization within the phenyl ring, 

as indicated by the presence of alternated longer and shorter bonds, that is C(17)-C(18) [1.443(7) Å], 

C(18)-C(19) [1.361(7) Å], C(19)-C(20) [1.413(7) Å], C(20)-C(21) [1.354(7) Å], C(21)-C(22) [1.424(7) 

Å] and C(17)-C(22) [1.411(7) Å].  

The Ru(1)-C(1) contact [1.880(5) Å] is significantly shorter than Ru(2)-C(2) [1.925(5) Å],pointing out 

a greater π-back donation from Ru(1) to the terminal CO ligand compared to Ru(2). This is in keeping 

with the localization of the positive charge on Ru(2), which would formally reach 19 valence electrons 

in the absence of the positive charge. It must be remarked that both Ru(1)···C(2) [3.129(6) Å] and 

Ru(2)···C(1) [2.872(6) Å] are essentially non-bonding, in full accordance with terminal coordination of 

the carbonyls. 
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Figure 2. View of the molecular structure of [3]+. Displacement ellipsoids are at the 30% probability level. H-
atoms, except H(4) and H(18)-H(22), have been omitted for clarity.  
 

Table 1. Selected bond lengths (Å) and angles (°) for [3]+ 

Ru(1)-Ru(2) 2.8041(6) Ru(1)-C(1) 1.880(5) 

Ru(2)-C(2) 1.925(5) Ru(1)-C(3) 2.083(5) 

Ru(2)-C(3) 2.153(5) Ru(2)-C(17) 2.272(5) 

Ru(2)-C(22) 2.446(5) Ru(1)-C(6) 2.077(5) 

Ru(1)-Cpav 2.253(11) Ru(2)-Cpav, 2.206(11) 

C(3)-C(4) 1.538(6) C(4)-C(5) 1.509(7) 

C(5)-C(6) 1.336(7) C(6)-C(7) 1.493(7) 

C(3)-C(17) 1.457(7) C(4)-C(11) 1.522(6) 

C(5)-C(9) 1.482(7) C(17)-C(18) 1.443(7) 

C(18)-C(19) 1.361(7) C(19)-C(20) 1.413(7) 

C(20)-C(21) 1.354(7) C(21)-C(22) 1.424(7) 

C(17)-C(22) 1.411(7) C(9)-O(5) 1.208(6) 

C(9)-O(6) 1.337(7) C(7)-O(3) 1.194(7) 

C(7)-O(4) 1.339(7) C(1)-O(1) 1.139(6) 

C(2)-O(2) 1.127(6)   

Ru(1)-C(1)-O(1) 174.1(5) Ru(2)-C(2)-O(2) 173.7(5) 

Ru(1)-C(3)-Ru(2) 82.87(17) C(3)-C(4)-C(5) 108.0(4) 
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C(4)-C(5)-C(6) 117.3(4) C(4)-C(5)-C(9) 116.4(4) 

C(6)-C(5)-C(9) 126.3(5) C(5)-C(6)-C(7) 123.2(4) 

C(5)-C(6)-Ru(1) 119.5(4) C(7)-C(6)-Ru(1) 117.1(3) 

C(3)-C(17)-C(22) 120.6(4) C(3)-C(17)-C(18) 122.1(4) 

C(18)-C(17)-C(22) 116.2(4) C(17)-C(18)-C(19) 121.2(5) 

C(18)-C(19)-C(20) 121.1(5) C(19)-C(20)-C(21) 119.9(5) 

C(20)-C(21)-C(22) 120.2(5) C(21)-C(22)-C(17) 121.4(4) 

Sum at C(7) 359.8(8) Sum at C(9) 359.9(8) 

 

In the IR spectrum of [3]CF3SO3 in dichloromethane solution, two absorptions were detectedat2026 

and 2002 cm-1, in accordance with the terminal coordination fashion adopted by the two carbonyl 

ligands in the solid state; moreover, a strong infrared band at 1712 cm-1 accounts for the ester groups 

originally belonging to the alkyne. The NMR spectra (in acetone-d6 solution) display one set of 

resonances. In the 1H spectrum, the signals related to the phenyl moieties fall in the range 8.32-7.74 

ppm, including the proton bound to the carbon involved in metal coordination; in a variety of dinuclear 

compounds comprising a µ-η1:η3-phenyl-alkylidene, such proton has been reported to resonate in a 

wide range (7.3 - 1.1 ppm) of chemical shifts.54,55,56,57,58,59,60 

Salient 13C signals are those related to the terminal carbonyl ligands (216.2 and 203.0 ppm), the 

bridging alkylidene carbon (174.8 ppm) and the other members of the metallacyclopentene ring, which 

were found at 74.2 (CHPh), 105.0 and 126.2 ppm (C=C). 

The formation of [3]+ presumably proceeds with initial η2-coordination of the alkyne to the 

ruthenium,22 once the chloride ligand in 2 has been displaced by Ag+, followed by C-C bond coupling 

between the alkyne and the distal alkenyl carbon.  

Surprisingly, the reactions of 2 with other alkynes, in the presence of a silver salt, did not lead to 

products analogous to [3]+. As a matter of fact, ethyne, 2-butyne, diphenylacetylene and 

phenylacetylene were involved in an apparent insertion into the ruthenium-alkenyl bond to afford the 
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diruthenium µ-butadienyl cations [4-7]+. In order to collect X-ray quality crystals, the synthesis of [6]+ 

was repeated using AgBF4 as silver salt (see Supporting Information for details), then the structure of 

[6]BF4 was determined by single crystal X-ray diffraction (Figure 3 and Table 2). The cation 

[6]+consists of the{cis-Ru2Cp2(CO)(µ-CO)} core bonded to the{µ-η1:η4-C(Ph)=C(Ph)-C(Ph)=CH(Ph)} 

butadienyl ligand. In agreement with this, the C(3)-C(4) [1.427(4) Å] and C(5)-C(6) [1.421(4) Å] 

bonds are shorter than C(4)-C(5) [1.457(4) Å].The present example represents the first case of 

structurally characterized diruthenium bis-cyclopentadienyl complex with a butadienyl ligand 

coordinated through the µ-η1:η4-fashion. Knox and co-workers reported analogous µ-η2:η3-butadienyl 

compounds, obtained by the coupling of bridging methylene ligand with propargyl alcohols and 

subsequent H2O elimination.61 

 

Figure 3. View of the molecular structure of [6]+. Displacement ellipsoids are at the 30% probability level. H-
atoms, except H(6), have been omitted for clarity. 
 

Table 2. Selected bond lengths (Å) and angles (°) for [6]+ 

Ru(1)-Ru(2) 2.7698(3) Ru(1)-C(1) 1.882(3) 
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Ru(1)-C(2) 1.969(3) Ru(2)-C(2) 2.200(3) 

Ru(1)-C(3) 2.102(3) Ru(2)-C(3) 2.163(3) 

Ru(2)-C(4) 2.261(3) Ru(2)-C(5) 2.227(3) 

Ru(2)-C(6) 2.268(3) Ru(1)-Cpav 2.262(7) 

Ru(2)-Cpav 2.220(7) C(1)-O(1) 1.136(4) 

C(2)-O(2) 1.159(4) C(3)-C(4) 1.427(4) 

C(4)-C(5) 1.457(4) C(5)-C(6) 1.421(4) 

C(3)-C(17) 1.490(4) C(4)-C(11) 1.511(4) 

C(5)-C(19) 1.500(4) C(6)-C(25) 1.483(4) 

Ru(1)-C(1)-O(1) 172.7(3) Ru(1)-C(2)-Ru(2) 83.06(12) 

Ru(1)-C(3)-Ru(2) 80.97(10) Ru(1)-C(3)-C(4) 135.1(2) 

C(3)-C(4)-C(5) 125.5(3) C(4)-C(5)-C(6) 121.3(3) 

C(5)-C(6)-C(25) 125.2(3)   

 
 

The IR and NMR data obtained for the [4-7]+ salts agree with the X-ray data collected for [6]+. The IR 

spectra, in dichloromethane, clearly evidence the presence of one terminal (2006-2008 cm-1) and one 

bridging carbonyl (1859-1884 cm-1) ligands. The NMR spectra show two sets of resonances, which 

have been assigned to cis and trans isomers (with reference to the mutual orientation of the Cp 

ligands).This attribution relies on DFT calculations, pointing out the comparable stability of cis- and 

trans-structures (vide infra), and is based on a comparison with the NMR data available for other 

{Ru2Cp2(CO)2} cationic derivatives containing strictly related bridging hydrocarbyl ligands.41,42,61 For 

instance, in [4]BF4 the Cp ligands give rise to four 1H resonances at 6.22 and 5.48 ppm (cis) and 5.68 

and 5.59 ppm (trans).The cis isomer is the prevalent one in solution for [4]+ and [6]+, while the trans 

isomer prevails in [5]+ and is the only one recognized for [7]+. The bridging carbon, belonging to the 

butadienyl ligand and bound to both ruthenium centres, resonates in the range 165.2 – 192.6 ppm, 

reflecting its alkylidene nature. Accordingly, in the 1H NMR spectrum of [4]BF4, the {µ-CH} has been 

recognized in the typical downfield region (11.61 and 10.86 ppm for the cis and trans isomers, 
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respectively).12,62 The signals of the other carbon nuclei, going along the C4 chain, fall in the intervals 

99.1 – 111.9 ppm, 106.9 – 121.0 ppm and 74.4 – 87.8 ppm, respectively. 

The reaction leading to [7]CF3SO3 involves an unsymmetrical (terminal) alkyne, and takes place in a 

regiospecific manner, placing the alkyne substituent far from the alkenyl moiety; the 1H NMR 

spectrum of the alternative isomer would display a downfield resonance (compare with [4]BF4, see 

above) which has not been detected. The synthesis of [7]CF3SO3is accompanied by the formation of an 

unidentified, inseparable by-product (ca. 15% of the total), displaying Cp signals at 4.85 and 4.61 ppm. 

 

DFT calculations 

With the aim of elucidating the different outcomes of the coupling between the alkenyl ligand in 2 and 

alkynes, we carried out a DFT investigation focusing the attention on the potential isomers of [3]+, [4]+ 

and [6]+. Ruthenacycle structures such as that described for [3]CF3SO3, indicated with[3a]+, [4a]+ and 

[6a]+, were considered together with the corresponding butadienyl derivatives analogous to [6]BF4 and 

indicated with[3b]+, [4b]+ and [6b]+. Cis and trans isomers were evaluated for all the structures. The 

superimposition of experimental (X-ray) and computed structures (PBEh-3c method) for [3a
trans]+ and 

[6b
cis]+, respectively, is overall acceptable, with RMSD respectively of 0.222 and 0.294 Å. The RMSD 

values are 0.269 Å for [3a
trans]+ and 0.269 Å for [6b

cis]+ including the C-PCM solvation model (CH2Cl2 

as continuous medium). 

The relative Gibbs free energy values are summarized in Table 3 and plotted in Figure S13 together 

with the DFT-optimized structures. Thus,[3a
trans]+ is more stable than [3a

cis]+ by 4.5 kcal mol-1 (C-PCM 

calculations; 7.3 kcal mol-1 in gas phase), according to the X-ray findings and the observation of a 

single set of signals in the NMR spectra (see above). The cations [4b]+ and [6b]+ are more stable in the 

cis configuration rather than the trans one, with Gibbs energy differences comprised between 1.0 and 

3.1 kcal mol-1. This result is in keeping with the X-ray structure of [6]BF4 and justifies the existence in 
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solution of mixtures of cis and trans isomers for [4-7]+. An additional stereoisomer might be conceived 

for [6b
cis]+, with inverted orientations of Ph and H bound to C(6) carbon atom; it was computationally 

investigated (Figure S14) but resulted thermodynamically unfavourable by 11.3 kcal mol-1(C-PCM 

calculations; 10.3 kcal mol-1 in gas phase).  

 

Table 3. Relative Gibbs energy values (kcal mol-1) for the potential isomers of [3]+, [4]+ and [6]+ calculated with 

the PBEh-3c method in gas phase and with the C-PCM solvation model (CH2Cl2). 

 C-PCM GAS 
[3a

cis]+
 0 0 

[3a
trans]+ -4.5 -7.3 

[3b
cis]+ -23.8 -29.8 

[3b
trans]+ -25.0 -32.3 
   

[4a
cis]+ 0 0 

[4a
trans]+ -6.0 -7.4 

[4b
cis]+ -38.2 -38.4 

[4b
trans]+ -35.1 -35.7 
   

[6a
cis]+ 0 0 

[6a
trans]+ -5.4 -7.5 

[6b
cis]+ -27.2 -31.3 

[6b
trans]+ -25.8 -30.3 

 

In every cases, DFT calculations point out the higher stability of the butadienyl structures[3b]+, [4b]+ 

and [6b]+ with respect to the corresponding ruthenacycle isomers, with Gibbs energy differences in the 

20 to 30 kcal mol-1 range. Computational outcomes therefore suggest that the alkyne insertion process 

leading to µ-η1:η4-butadienyl complexes is strongly favoured from a thermodynamic point of view, and 

that the unique formation of [3]+ from 2 and dimethyl acetylenedicarboxylate should be ascribed to 

kinetic reasons related to the peculiar properties of the alkyne CO2Me substituents. 

We hypothesize that, following preliminary η2-coordination to the metal centre, the alkyne generally 

couples with the distal carbon of the alkenyl ligand, thus forming a ruthenacycle of type [3]+. The 

stable butadienyl products, [4-7]+,would be subsequently generated via hydrogen 1,2-migration, as 
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sketched in Scheme 4. The overall result is the observed pseudo-insertion reaction of alkynes into the 

Ru-alkenyl σ-bond shown in Scheme 3 (synthesis of [4-7]+). 

 

Scheme 4. Proposed formation of diruthenium butadienyl complexes (right) from H-migration in intermediate 

ruthenacycles (left). 
 

The transition state associated with such presumably fundamental step was calculated at the DFT EDF2 

level for the cations in trans configuration bearing R = R’ = CO2Me ([3TS
trans]+) and R = R’ = H 

([4TS
trans]+). In both cases, one imaginary frequency related to the proton shift was found, i885 cm-1 for 

[3TS
trans]+ and i836 cm-1 for [4TS

trans]+. The coherence of the localized transition states with the 1,2-

proton shift was further confirmed by means of IRC calculations starting from [4TS
trans]+.63 As depicted 

in Figure 4, the relative Gibbs energy of [3TS
trans]+ with respect to the [3a

trans]+ ground state geometry is 

33.6 kcal mol-1, meaningfully higher than the energy difference between [4TS
trans]+ and [4a

trans]+, that is 

27.4 kcal mol-1. It seems reasonable that the experimentally obtained product[3]CF3SO3 is a kinetic 

one ([3a
trans]+), which is isolated thanks to the quite high energy barrier involved in its isomerization to 

the butadienyl derivative ([3b
trans]+, see Figure S13).Hence, we assume that [4-7]CF3SO3 are produced 

via the intermediate formation of kinetic species (not observed) analogous to [3]CF3SO3.We attempted 

to promote the conversion of [3]CF3SO3 into its geometric isomer(s) analogous to [4-7]+ by heating a 

THF solution at reflux, but this thermal treatment activated decomposition pathways leading to 

mixtures of unidentified products. The divergent behaviour of dimethyl acetylenedicarboxylate, with 
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respect to a series of different alkynes, was previously observed in the reactivity towards the 

heterodinuclear complex [Fe(CO)3(µ-dppm)(µ-CO)Pt(PPh3)].64 

 

Figure 4. DFT-optimized structures of the cations [3a
trans]+, [4a

trans]+, [3TS
trans]+ and [4TS

trans]+, and Gibbs energy 

barriers associated to the H-migration affording butadienyl ligands (kcal mol-1, EDF2 calculations). Ru, green; O, 

red; C, white. Only the migrating hydrogen atom (white) is shown for clarity. 

 

 

Conclusions 

Dimetallic scaffolds offer much opportunity for the assembly of molecular units, exploiting the 

cooperative effects provided by two adjacent metal centres, and the coupling of bridging alkenyl 
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ligands with a variety of small organic fragments was widely investigated in the past to gain insight 

into the mechanism of related solid-state reactions. In this setting, despite the relevance of the alkenyl-

alkyne coupling in organic synthesis, the latter process was unexplored on di- or polymetallic 

frameworks. Here, we report a rare coupling event between a series of alkynes and an alkenyl ligand 

bridging coordinated on the {Ru2Cp2(CO)2} scaffold, involving the distal alkenyl carbon and 

confirming the versatility of such diruthenium framework to explore new modes of C-C bond 

formation. Two types of novel hydrocarbyl ligands stabilized by multisite coordination are selectively 

isolated, depending on the alkyne substituents. DFT calculations pointed out a plausible correlation 

between the two structures based on the 1,2-migration of a hydrogen atom, while alkyne insertion into 

Ru-C bond, otherwise frequently observed on similar systems, appears unlikely. 
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Experimental 

Materials and methods. Reactants and solvents were purchased from Alfa Aesar, Merck, Strem or TCI 

Chemicals, and were of the highest purity available. Complex [1]BF4was prepared according to the 

literature.41,42 Reactions were conducted under dinitrogen atmosphere using standard Schlenk 

techniques. Products were stored in air once isolated. Dichloromethane and tetrahydrofuran were dried 

with the solvent purification system mBraun MB SPS5, while acetonitrile was distilled from CaH2. IR 

spectra of solutions were recorded using a CaF2 liquid transmission cell (2300-1500 cm-1) on a Perkin 

Elmer Spectrum 100 FT-IR spectrometer. IR spectra were processed with Spectragryph software.651H 

and13C spectra were recorded at 298 Kon a Jeol JNM-ECZ400S instrument equipped with a Royal 

Broadband probe. Chemical shifts (expressed in parts per million) are referenced to the residual solvent 

peaks.66 NMR spectra were assigned with the assistance of 1H-13C (gs-HSQC and gs-HMBC) 

correlation experiments.67NMR signals due to secondary isomeric forms (where it is possible to assign 

them) are italicized. Elemental analyses were performed on a Vario MICRO cube instrument 

(Elementar). 

 

Synthesis of [Ru2Cp2Cl(CO)(µ-CO){µ-η1:η2-C(Ph)=CH(Ph)}],2 (Figure 5). 

Figure 5.Structure of 2. 

Ru Ru
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Cl
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Complex [1]BF4 (150 mg, 0.220 mmol) was dissolved in CH2Cl2 (30 mL) and this solution was treated 

with a solution of Me3NO (1.0 eq.) in MeCN (0.10 M). The mixture was stirred for 15 minutes, and the 

formation of [1-NCMe]BF4 was checked by IR spectroscopy [IR (CH2Cl2): ῦ/cm-1 = 1999vs (CO), 

1848s (µ-CO)]. Volatiles were removed under vacuum to give an orange residue, which was dissolved 

in THF (30 mL), thenlithium chloride (105 mg, 2.48 mmol) was added to this solution. The resulting 

mixture was stirred for 3 hours at room temperature, then the volatiles were removed under reduced 

pressure. The residue was charged on an alumina column as Et2O/CH2Cl2 (5:1 v/v) solution. Elution 

with CH2Cl2 allowed to separate impurities, then the fraction corresponding to the title compound was 

eluted using neat THF. The solvent was removed under reduced pressure and the residue was 

suspended in hexane (50 mL) for 2 h. A red powder was recovered by filtration and dried under 

vacuum. Yield 92 mg (69%). Anal. calcd. for C26H21ClO2Ru2: C, 51.66; H, 3.50. Found: C, 51.50; H, 

3.54.IR (CH2Cl2): ῦ/cm-1 = 1977vs (CO), 1828s (µ-CO). 1H NMR (CDCl3): δ/ppm = 7.29, 7.18, 7.09, 

6.99 (m, 10 H, Ph); 5.34, 4.82 (s, 10 H, Cp); 5.14 (s, 1 H, =CH). 13C{1H} NMR (CDCl3): δ/ppm = 

229.0, 198.7 (CO); 176.6 (ipso-Ph); 155.1 (Ru-C); 144.6 (ipso-Ph); 128.7, 128.4, 128.4, 127.8, 126.5, 

125.9 (Ph); 92.5, 91.0 (Cp); 83.7 (=CH). Crystals of 2suitable for X-ray analysis were collected by 

slow diffusion of pentane into a dichloromethane solution of the complex at −30°C. 

 

Synthesis and characterization of complexes [3-7]+. 

General procedure. A solution of [Ru2Cp2Cl(CO)2{µ-η1:η2-C(Ph)CH(Ph)}] (2, ca. 0.06 mmol) in 

CH2Cl2 (25 mL) was treated with silver salt (1.1 eq.) and with the selected alkyne (> 5 eq.). The 

reaction mixture was stirred at room temperature in the dark, and the consumption of 2 was checked by 

IR spectroscopy. Then, the mixture was filtered over a celite pad and volatiles were evaporated from 
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the filtrated solution under reduced pressure. The obtained residue was washed with Et2O (3 x 20 mL) 

and finally dried under vacuum. 

 

[Ru2Cp2(CO)2{µ-η3:η2-C(Ph)CH(Ph)C(CO2Me)C(CO2Me)}]CF3SO3, [3]CF3SO3 (Figure 6). 

Figure 6. Structure of [3]+. 
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From 2 (30 mg, 0.050 mmol), AgCF3SO3 (13 mg, 0.051 mmol) and dimethyl acetylenedicarboxylate 

(0.050 mL, 0.42 mmol). Reaction time: 1h. Brown solid. Yield 22 mg (51%). Anal. calcd. for 

C33H27F3O9Ru2S: C, 46.05; H, 3.16; S, 3.72. Found: C, 45.92; H, 3.23; S, 3.66.IR (CH2Cl2): ῦ/cm-1 = 

2026vs (CO), 2002m (CO), 1712s (CO2Me). 1H NMR (acetone-d6): δ/ppm = 8.32, 7.74, 7.55-7.49, 

7.31, 7.21, 7.07-7.03 (m, 10 H, Ph); 6.26 (s, 1 H, CβH); 5.77, 5.36 (s, 10 H, Cp); 3.80, 3.58 (s, 6 H, 

Me). 13C{1H} NMR (acetone-d6): δ/ppm = 216.2, 203.0 (CO); 174.8 (Cα); 163.5, 161.4 (OCO); 145.5, 

142.8 (ipso-Ph); 134.2, 133.4, 130.8, 129.4, 129.4, 128.0 (Ph); 126.2 (Cδ); 105.0 (Cγ); 93.8, 93.7 (Cp); 

74.2 (Cβ); 51.7, 51.6 (Me). Crystals of [3]CF3SO3suitable for X-ray analysis were collected by slow 

diffusion of diethyl ether into a dichloromethane solution of the complex at room temperature. 

 

[Ru2Cp2(CO)2{µ-η1:η4-CHCHC(Ph)CH(Ph)}]BF4, [4]BF4 (Figure 7). 

Figure 7. Structure of [4]+. 
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From 2 (30 mg, 0.050 mmol), AgBF4 (11 mg, 0.060 mmol) and acetylene (not quantified large excess) 

bubbled into the solution. Reaction time: 4 h. Yellow solid. Yield 17 mg (49%). Anal. calcd. for 

C28H23BF4O2Ru2: C, 49.27; H, 3.40. Found: C, 49.15; H, 3.36.IR (CH2Cl2): ῦ/cm-1 = 2007vs (CO), 

1859s (µ-CO). 1H NMR (acetone-d6): δ/ppm = 11.61, 10.86 (d, 3JHH = 8.1 Hz, 1 H, CδH); 7.60, 7.49-

7.43, 7.25-7.19, 7.02, 6.95 (m, 10 H, Ph); 7.38, 6.80 (d, 3JHH = 7.8 Hz, 1 H, CγH); 6.22, 5.68, 5.59, 5.48 

(s, 10 H, Cp); 2.13, 1.37 (s, 1 H, CβH). 13C{1H} NMR (acetone-d6): δ/ppm = 226.0, 223.5 (µ-CO); 

199.1, 194.0 (CO); 166.9, 165.2 (Cδ); 158.6, 138.6 (ipso-Ph); 131.8, 130.9, 130.6, 130.2, 129.8, 129.6, 

129.1, 128.5, 127.8, 127.2 (Ph); 109.9 (Cα); 99.6, 99.1 (Cγ); 96.8, 95.2, 90.8, 90.6 (Cp); 86.0, 80.9 (Cβ). 

Isomer ratio (cis/trans) = 3.3. 

 

[Ru2Cp2(CO)2{µ-η1:η4-C(Me)C(Me)C(Ph)CH(Ph)}]CF3SO3, [5]CF3SO3 (Figure 8). 

Figure 8. Structure of [5]+. 
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From 2 (33 mg, 0.055 mmol), AgCF3SO3 (15 mg, 0.060 mmol) and 2-butyne (0.10 mL, 1.3 mmol). 

Rection time: 12 h. Brown solid. Yield 24 mg (56%). Anal. calcd. for C31H27F3O5Ru2S: C, 48.19; H, 

3.52; S, 4.15. Found: C, 48.05; H, 3.61; S, 4.12.IR (CH2Cl2): ῦ/cm-1 = 2008vs (CO), 1884s (µ-CO). 1H 

NMR (acetone-d6): δ/ppm = 7.55, 7.46, 7.42, 7.19, 7.14-7.05, 6.88 (m, 10 H, Ph); 6.22, 5.84, 5.61, 5.41 

(s, 10 H, Cp); 3.67, 3.66, 2.44, 2.35 (s, 6 H, Me); 2.76, 2.60 (s, 1 H, CβH). 13C{1H} NMR (acetone-d6): 

δ/ppm = 219.1 (µ-CO); 195.5 (CO); 180.9 (Cδ); 140.4, 138.9 (ipso-Ph); 133.7, 132.9, 130.9, 129.8, 

129.4, 129.1, 128.8, 127.7 (Ph); 119.4 (Cα); 111.9 (Cγ); 93.8, 91.6 (Cp); 74.4 (Cβ); 47.2, 23.5 (Me). 

Isomer ratio (trans/cis) = 5. 

 

[Ru2Cp2(CO)2{µ-η1:η4-C(Ph)C(Ph)C(Ph)CH(Ph)}]CF3SO3, [6]CF3SO3 (Figure 9). 

Figure 9. Structure of [6]+. 
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From 2 (35 mg, 0.058 mmol), AgCF3SO3 (15 mg, 0.060 mmol) and diphenylacetylene (178 mg, 0.999 

mmol). Rection time: 12 h. Orange solid. Yield 18 mg (42%). Anal. calcd. for C41H31F3O5Ru2S: C, 

54.91; H, 3.49; S, 3.57. Found: C, 55.03; H, 3.42; S, 3.62.IR (CH2Cl2): ῦ/cm-1 = 2006vs (CO), 1867s 

(µ-CO). 1H NMR (acetone-d6): δ/ppm = 7.37, 7.17, 6.98-6.92, 6.89-6.77, 6.69 (m, 20 H, Ph); 6.00, 

5.81, 5.76, 5.65 (s, 10 H, Cp); 3.45, 1.68 (s, 1 H, CβH). 13C{1H} NMR (acetone-d6): δ/ppm = 220.9 (µ-

CO); 199.6 (CO); 188.4 (Cδ); 157.8, 138.4, 138.3, 138.1 (ipso-Ph); 134.7-125.4 (Ph); 121.0 (Cα); 107.7 

(Cγ); 97.8, 96.0, 91.7, 91.5 (Cp); 87.8 (Cβ). Isomer ratio (cis/trans) = 5. 
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We failed to collect X-ray quality crystals of [6]CF3SO3; thus, we performed the synthesis of [6]BF4 

from 2 and AgBF4, similarly to what described for [6]CF3SO3 (33% yield). The spectroscopic 

characterization of [6]BF4 is reported in the Supporting Information.Then, crystals of [6]BF4 suitable 

for X-ray analysis were collected by slow diffusion of diethyl ether into a dichloromethane solution of 

the complex at room temperature. 

 

[Ru2Cp2(CO)2{µ-η1:η4-C(Ph)C(H)C(Ph)CH(Ph)}]CF3SO3, [7]CF3SO3. (Figure 10). 

Figure 10. Structure of [7]+. 
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From 2 (35 mg, 0.058 mmol), AgCF3SO3 (16 mg, 0.064 mmol) and phenylacetylene (0.1 mL, 0.911 

mmol). Reaction time: 12h. Brown solid. Yield 20 mg (42%). Anal. calcd. for C35H27F3O5Ru2S: C, 

51.22; H, 3.32; S, 3.90. Found: C, 51.12; H, 3.35; S, 3.80.IR (CH2Cl2): ῦ/cm-1 = 2006vs (CO), 1860s 

(µ-CO). 1H NMR (acetone-d6): δ/ppm = 7.48-7.43, 7.37, 7.34-7.29, 7.10-7.07 (m, 15 H, Ph); 6.80 (s, 1 

H, CγH); 5.76, 5.74(s, 10 H, Cp); 1.66 (s, 1 H, CβH). 13C{1H} NMR (acetone-d6): δ/ppm = 223.0 (µ-

CO); 199.0 (CO); 192.6 (Cδ); 158.9, 138.6, 137.7 (ipso-Ph); 132.0-125.7 (Ph); 106.9 (Cα); 103.3 (Cγ); 

97.1, 95.0, 92.3, 92.1(Cp); 83.8 (Cβ). 

 

X-ray crystallography 
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Crystal data and collection details for 2, [3]CF3SO3·CH2Cl2 and [6]BF4 are reported in Table 4. Data 

were recorded on a Bruker APEX II diffractometer equipped with a PHOTON2 detector using Mo–Kα 

radiation. The structures were solved by direct methods and refined by full-matrix least-squares based 

on all data using F2.68 Hydrogen atoms were fixed at calculated positions and refined using a riding 

model. 

 

Table 4. Crystal data and measurement details for 2, [3]CF3SO3·CH2Cl2 and [6]BF4.  

 2 [3]CF3SO3·CH2Cl2 [6]BF4 
Formula C26H21ClO2Ru2 C34H29Cl2F3O9Ru2S C40H31BF4O2Ru2 
FW 603.02 943.67 832.60 
T, K 100(2) 100(2) 100(2) 
λ,  Å 0.71073 0.71073 0.71073 
Crystal system Monoclinic Triclinic Monoclinic 
Space group P21/n P1� C2/c 
a, Å 9.4345(4) 8.3190(7) 27.3698(8) 
b, Å 14.0906(5) 13.7514(12) 18.0419(5) 
c, Å 16.9952(6) 15.7743(13) 16.5162(5) 
α,° 90 86.749(3) 90 
β,° 104.7350(10) 77.108(3) 124.7910(10) 

 
 81.442(3) 90 

Cell Volume, Å3 2185.00(14) 1739.0(3) 6697.8(3) 
Z 4 2 8 
Dc, g∙cm-3 1.823 1.802 1.651 
µ, mm−1 1.526 1.153 0.960 
F(000) 1192 940 3328 
Crystal size, mm 0.24×0.20×0.16 0.16×0.13×0.09 0.18×0.14×0.13 
θ limits,° 1.904-26.999 1.975-25.098 1.672-26.999 
Reflections collected 32458 19181 50921 

Independent reflections 
4749 [Rint = 

0.0261] 
6136 [Rint = 

0.0452] 
7307 [Rint = 

0.0538] 
Data / restraints /parameters 4749 / 30 / 280 6136 / 119 / 490 7307 / 0 / 442 
Goodness on fit on F2 1.173 1.137 1.061 
R1 (I > 2σ(I)) 0.0201 0.0459 0.0345 
wR2 (all data) 0.0456 0.1049 0.0901 
Largest diff. peak and hole, e Å-3 0.599 / –0.763 1.195 / –0.882 1.545 / –0.484 
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DFT calculations 

Geometry optimizations were performed using the PBEh-3c method, which is a reparametrized version 

of PBE0 69 (with 42 % HF exchange) that uses a split-valence double-zeta basis set (def2-mSVP) with 

relativistic ECPs for Ru 70,71,72 and adds three corrections that consider dispersion, basis set 

superposition and other basis set incompleteness effects.73,74,75 The C-PCM implicit solvation model 

was added to PBEh-3c calculations, considering dichloromethane as continuous medium.76,77 

Further ground- and transition-state geometry optimizations for selected complexes were carried out by 

using the hybrid-GGA EDF2 functional78in combination with the 6-31G(d,p)/LANL2DZ basis set.79,80 

The localization of the transition states was confirmed by investigating the unique imaginary frequency 

in the simulated IR spectra and by IRC calculations.63All the IR simulations were carried out using the 

harmonic approximation, from which zero-point vibrational energies and thermal corrections (T = 

298.15 K) were obtained.The software used for PBEh-3c calculations was ORCA version 5.0.3,81 while 

EDF2 calculations were performed with Spartan‘16 (Wavefunction Inc.), build 2.0.3.82,83 
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