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1. Introduction

1.1. A (very) brief history of Hardy’s inequality

Hardy’s inequality [40] states that
ˆ 1
0

�
1

x

ˆ x

0

f .y/dy

�p
dx � .p�/p

ˆ 1
0

f .x/pdx;

for every positive measurable function f and every p > 1, where p� WD p=.p � 1/,
and the constant .p�/p is optimal. Hardy himself, motivated by the goal of giving a
simpler proof of “Hilbert’s inequality for double series” [39], was actually primarily
interested in the discrete analogue of the above inequality,

(Hardy)
1X
nD1

�
a1 C � � � C an

n

�p
� .p�/p

1X
nD1

apn ;

where an are positive real numbers. Indeed, for p D 2, the discrete version was the first
one to be proved by Hardy in his earlier paper [38]. The discrete inequality for general
p can either be deduced by the corresponding continuous one or proved directly, as
communicated to Hardy by Landau [40]. Much more information in the fascinating
history of the development of Hardy’s original inequality can be found in the survey
paper [45].

Despite its original purpose, it soon became clear that Hardy’s inequality and its
extensions lie in the heart of the developments in the broad area of harmonic analysis
throughout the 20th century, up until modern days. From a general viewpoint the
reason is that Hardy’s inequality is the prototype of a (weighted) norm inequality for
an integration (averaging) operator between Lp spaces. Averaging operators together
with maximal and singular operators are the pillars of harmonic analysis. Under this
light, a vast number of theorems can be considered as Hardy-type inequalities. Hence,
it comes with no surprise that the original Hardy inequality was later generalized in
many different directions.

Tomaselli in [68] and Talenti in [66] made the first steps towards a weighted Hardy
inequality, i.e., an inequality of the form

(1.1)
ˆ 1
0

�ˆ x

0

f .y/dy

�p
U.x/dx � C.p;U; V /

ˆ 1
0

f .x/pV.x/dx;

in which V;U are positive measurable weights. Another way to state the same inequality
is to say that the Hardy operator, which maps f to its primitive, is bounded from
Lp.RC; V .x/dx/ to Lp.RC; U.x/dx/. The first to give a complete characterization
of the weights such that the weighted Hardy inequality holds was Muckenhoupt in [54].
It is worth taking a closer look to Muckenhoupt’s condition.
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Theorem 1 (Muckenhoupt). Let 1 � p �1. There exists a constant C such that (1.1)
is true if and only if

B WD sup
r>0

�ˆ 1
r

U.x/pdx

�� ˆ r

0

V.x/�p
�

dx

�p�1
<1:

Furthermore, if C is the smallest constant such that the inequality holds, then B �
C � p.p�/p�1B .

This theorem completes the picture of the weighted Hardy inequality on RC. In
the meanwhile, several other extensions of Hardy’s inequality to different spaces were
considered: to higher dimensions, to different metric spaces, to fractional integral
operators [55, 63, 65]. Also the weighted problem with different exponents, namely,
the boundedness of the Hardy operator from Lp.RC; V .x/dx/ to Lq.RC; U.x/dx/,
with p and q not necessarily coinciding, was extensively studied: we mention Bradley
[22] for the case 1 < p � q � 1, Maz’ya [50] and Sawyer [60] for the case p > q.

Let us mention that there exists also a different stream of research which is devoted
to finding weights which are optimal, in an appropriate sense, for weighted Hardy’s
inequalities, both in the continuous setting [18,34] and in the setting of graphs [19,43].

1.2. The two-weight Hardy inequality on trees

In the present paper, we focus on a generalized version of the discrete Hardy inequality
(Hardy), the two-weight Hardy inequality on trees. A particular case of this inequality
is the so-called two-weight dyadic Hardy inequality, presented in Section A. In that
section, we will also make clear the intuitive fact that the classical inequality (Hardy)
is a special case of the inequality on trees, and we will provide some examples of
application of the dyadic inequality in complex analysis. In the paper, however, we are
able to work in the generality of the two-weight Hardy inequality on trees presented in
this section. Before stating such an inequality, we need to introduce some pieces of
notation.

A tree T D .V;E/ is a simple connected graph with no cycles, where V is a finite
or countable set of vertices and E is the set of edges. The number of edges sharing
each vertex is assumed to be finite, but we do not require further restrictions. We will
consistently use Greek letters for edges and Latin letters for vertices and boundary
points, to be defined below. Henceforth, we will identify the tree T with its vertices V .
We fix arbitrarily a root vertex o and we assume that there exists a pre-root vertex o�

which is connected to o and to no other vertex. We denote by ! the edge connecting o
and o� and we call it the root edge.

A fundamental property of trees is that for any couple of vertices x; y 2 T there
exists a unique geodesic connecting the two, that is, a unique minimal sequence of
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pairwise connected vertices containing x and y. We write Œx; y�, or equivalently Œy; x�,
for the (unique) set of edges connecting pairs of points in the geodesic joining x and y.
The confluent of x and y is the vertex x ^ y such that Œo�; x ^ y� D Œo�; x� \ Œo�; y�.
The edge-counting distance on T is given by d.x;y/D ]Œx;y�. We use the same symbol
for the vertex-counting distance on E, defined in the obvious way, and abbreviate d.˛/
for d.˛; !/. If we assign to each edge a weight �.˛/ > 0, we can define the associated
distance d� by adding the weights on the edges of paths, instead of counting edges.
Due to the elementary topology of a tree, the new metric has the same geodesics.

If ˛ is an edge, we denote by b.˛/ its endpoint vertex which is closest to o� and
by e.˛/ the furthest. Observe that for any vertex x there exists a unique edge ˛ with
e.˛/ D x, while there are possibly many edges with b.˛/ D x. For each vertex x, we
define the predecessor of x as its unique neighbor vertex p.x/ which is closer than
x to o�, and we denote by s.x/ the set of the remaining neighbors, the children on x.
Predecessors and children may be defined also for edges in the very same way.

The choice of a root induces a partial order on T and E. For edges, we write ˛ � ˇ
if ˇ 2 Œo�; e.˛/�, and for vertices we write x � y if Œo�; y�� Œo�; x�. We will also write
x � ˛ � y, comparing vertices and edges, with the obvious meaning. The notation �
is a reminder that trees often come from dyadic decompositions of metric spaces (see
Section A).

The boundary of the rooted tree .T; !/, denoted by @T , is the set of the maximal
geodesics emanating from o�1.

In the infinite tree case, we always assume that all maximal geodesics starting at o�

are infinite, so that @T \ T D ;. We set xT WD T [ @T .
The most important geometric objects we deal with are the successor sets S.˛/ of

an edge ˛, S.˛/D ¹x 2 xT W Œo�; x� 3 ˛º. We also write S.x/ for S.˛/ when x D e.˛/.
We remark that xT is compact with respect to the topology generated by the family
¹S.˛/º˛2E of successor sets and singletons ¹xºx2T , from which xT is often referred to
as the standard compactification of T .

Figure 1 below should help the reader to visualize and summarize some of the
fundamental notation just introduced.

We are now ready to introduce our main object of study: the two-weight Hardy
inequality on trees. Define the Hardy operator 	 as the operator mapping a function
' W E ! RC to

	'.x/ D
X

˛2Œo�;x�

'.˛/; x 2 xT ;

(1) If a maximal geodesic is of finite length, i.e., it ends in a leaf vertex x, we identify such a
geodesic with x, which is then a boundary point for T .
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o� pre-root

o root

b.˛/ p.x/

e.˛/ x

! root edge

˛

S.˛/ D S.x/

@T
@S.˛/

Figure 1. The infinite rooted tree.

provided that the sum converges. Let � W E ! RC be some fixed edge weight, let
� � 0 be a Borel measure on xT , and write `p.�/D `p.E;�/ andLp.�/D Lp. xT ;�/.
The main problem which is discussed here is whether the following two-weight Hardy
inequality on T holds:

(H)
ˆ
xT

	'.x/pd�.x/ � Œ��
X
˛2E

'.˛/p�.˛/;

i.e., if 	 W `p.�/ ! Lp.�/ is bounded, and what can be said about the constant
Œ�� D k	k

p

`p.�/!Lp.�/
.

Any � satisfying (H) (for some fixed � , p) with finite constant Œ�� will be called a
trace measure, and Œ�� is the Carleson measure norm, or trace norm, of �. We always
consider � as a fixed, geometric object so that Œ�� depends on � and p as well. Also,
the quantity Œ�� is chosen so to be sublinear functional of �:

Œt�� D t Œ�� if t � 0 and Œ�C �� � Œ��C Œ��:

The inequality (H) has a natural corresponding dual inequality, which we will be of
fundamental use in the sequel. For  W V ! R, we set

	�� .˛/ D 	�. d�/.˛/ WD

ˆ
S.˛/

 d� ˛ 2 E:
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By obvious duality,

h	'; iL2.�/ D
˝
';	�. d�/

˛
`2
:

Thus, (H) is equivalent to

(H�)
X
˛

�.˛/1�p
��

	�� .˛/
�p�
� Œ��p

��1

ˆ
xT

 p
�

d�;

which we will refer to as the dual Hardy inequality.
We reserve a specific symbol for a particular edge weight which will show up often

in the paper; we write j˛j for the unique edge weight satisfying the recursive formula

j˛j D
ˇ̌
p.˛/

ˇ̌
=q
�
e.˛/

�
;

normalized such that j!j D 1. On the homogeneous tree where each vertex has q C 1
neighbors, j˛j D q�d.˛/. Observe that, if the tree arises from a dyadic decomposition of
the unit interval (see Section A), then j˛j is the Lebesgue measure of the corresponding
subinterval in the decomposition. In full generality, we will then call Lebesgue measure
on the boundary of T the measure dx defined byˆ

@S.˛/

dx D j˛j; ˛ 2 E:

Characterizations of the triples .p; �; �/ for which (H) holds have been known
since more than twenty years [6, 10, 26, 60]. The main goal of this expository paper is
to survey old characterizations together with their proofs, provide some new proofs,
and also present some completely new characterizations. We point out that even the
known proofs are here adapted to work in our general framework, since they have all
been originally given for the dyadic homogeneous tree only.

Our motivations are manifold. First, it is interesting and instructive to see the diverse
machinery which can be employed in the solution of the problem. Second, we will see
that the many conditions characterizing �0s for which the Hardy inequality holds are
rather different one from the other, and their equivalence is a collection of interesting
mathematical facts by itself. Third, as research moves to uncharted territories, such as
multi-parameter dyadic Hardy inequalities, it is useful to have a place where different
techniques are surveyed in a unified framework. We will mention some more recent areas
of investigation, providing some results and mentioning a number of open problems.

1.3. Description of contents

We proceed now to a detailed description of the main theorems of this paper. The main
goal of Sections 2 and 3 is to prove the following theorem.
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Theorem 2. Let T be a locally finite connected tree, 1 < p <1, and � a nonnegative
weight on the edges. Then, for a positive Borel measure � on xT the following are
equivalent.

(i) The two-weight Hardy inequality (H) holds with best constant Œ�� <1.

(ii) The mass-energy condition holds:

(ME) sup
˛2E

�
�
S.˛/

��1X
ˇ�˛

�.ˇ/1�p
�

�
�
S.ˇ/

�p�
WD J�Kp

��1 <1:

(iii) The isocapacitary condition holds:

(ISO) sup
˛1;:::;˛n2E

Capp;�
� n[
iD1

S.˛i /
��1 nX

iD1

�
�
S.˛i /

�
WD J�Kc <1;

where the capacity Capp;� is the one defined in Section 2.1.

Furthermore, the following inequalities hold:

J�Kc � Œ�� � 2pJ�Kc ; J�K � Œ�� � pp
�

J�K:

As we will show later, it is easy to prove that (ME) and (ISO) imply (H); the main
issue in Theorem 2 is to prove the reverse implications. Section 2 is dedicated to
developing a potential theory on the tree and proving the isocapacitary characterization,
i.e., the equivalence of (i) and (iii) in Theorem 2. This equivalence was first proved
in [13], though in an indirect way, passing through the mass-energy condition. Here we
give a new direct proof that (iii) implies (i), which builds on ideas developed by Maz’ya
in the continuous setting. The main tool is a strong capacitary inequality [1,51], which
in tree language takes the form

(Cap)
C1X
kD�1

2pk Capp;�
�®
x W 	'.x/ > 2k

¯�
�

2p

2p � 1
k'k

p

`p.E;�/

and has an elementary proof.
In Section 3, we turn to the mass-energy condition introduced in [10]. We will give

three proofs of its equivalence with (H): one based on maximal functions (originally
proved for the homogeneous tree in [11]), one relying on a simple monotonicity argu-
ment, which is new and the simplest available at the moment, but only works for p D 2,
and a very recent one using a Bellman function argument (originally proved for the
homogeneous tree in [6, 26]).

The advantage of the isocapacitary condition (ISO) over the mass-energy condition
(ME) is that the measure � appears on the left-hand side only. It is obvious from it, for
instance, that if � � �, then J�Kc � J�Kc . On the other hand, the mass-energy condition
only has to be verified on single intervals, and not on arbitrary unions of them.
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In some simple and particularly common cases of weights and trees, some further
characterizations for trace measures can be proved to hold, lengthening the list of
equivalent conditions summed up in Theorem 2. Sections 4 and 5 are dedicated to two
different such additional characterizations.

More precisely, in Section 4, we restrict our attention to the case � D 1 and p D 2,
and prove that in this case the Hardy inequality is equivalent to a one-parameter family
of conditions. We prove the following theorem.

Theorem 3. The Hardy inequalityˆ
xT

	'.x/2d�.x/ � Œ��
X
˛2E

'.˛/2

is equivalent to

(s-Testing) sup
˛2E

 
S.˛/

� ˆ
S.˛/

d.x ^ y/d�.x/

�s
d�.y/ WD J�Ks <1;

for some (equivalently, for every) s � 1.

It can be readily verified that the s-testing condition is stronger than the mass-energy
condition. The aim of the section is to prove that in fact they are all equivalent to the
mass-energy condition which, in a sense, amounts to say that Carleson measures satisfy
a reverse Hölder inequality; see Theorem 10. The results in this section are new and
the techniques employed are partially inspired by the work of Tchoundja [67].

In Section 5, we provide another characterization of trace measures which holds
(for any p) for a family of edge weights (depending on p) on homogeneous trees, and
it can be generalized to trees having Ahlfors regular boundary [15, Section 3]. More
precisely, we prove the following.

Theorem 4. Let T be a homogeneous tree, 1 < p < 1, 0 < s < 1, and �.˛/ D

j˛j
1�p�s

1�p� . Then, the following conditions are both equivalent to the Hardy inequality
(H):

(i) sup˛2E �.S.˛//�1
´
@T˛
.
P
ˇ�x

�.S.ˇ//
jˇ js

/p
�

dx <1;

(ii) sup˛2E �.S.˛//�1
´
@T
.supˇ�x

�.S.ˇ//
jˇ js

/p
�

dx <1.

Such a characterization is an immediate consequence of the Muckenhoupt–Wheeden
inequality, which in this case reads as follows: for any 1 < p <1, 0 < s < 1 and for
any measure � on a homogeneous tree T ,

ˆ
@T

�X
˛�x

�
�
S.˛/

�
j˛js

�p�
dx �

X
˛

�
�
S.˛/

�p�
j˛jp

�s�1
�

ˆ
@T

�
sup
˛�x

�
�
S.˛/

�
j˛js

�p�
dx:
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Indeed, it is easy to recognize in the middle term the form that the sum appearing in
the mass-energy condition gets for the particular choice of

�.˛/ D j˛j
1�p�s

1�p� :

Hence, for this family of weights on homogeneous trees we have an alternative character-
ization of Carleson measures. The above choice of � is of particular interest because of
the connection with the theory of Bessel potentials in Rn; see Section B. The inequality
has also other interesting applications in potential theory; see for example [4].

Besides providing a different characterization of Carleson measures, the story of this
inequality is itself interesting. That the term on the left is comparable to that on the right
was proved in a non-dyadic language by Muckenhoupt and Wheeden in [55, Theorem
1]. They attribute the idea of the proof, which is a textbook example of a good lambda
inequality, to Coifman and Fefferman [33]. Unaware of it, Wolff gave a wholly different
proof [41, Theorem 1] that the term in the center is comparable to the term on the left.
Independently of this, the first author, Rochberg, and Sawyer gave a different proof that
the central term is bounded by the one on the right [10]. In this section, we will give a
new proof of the “Wolff inequality” based on a probabilistic argument. The new proof
has the advantage that it extends more easily to different settings. We will return on
that in future work.

In Section 6, we discuss a conformally invariant version of (H) on the homogeneous
tree. The left-hand side in (H) evidently depends on the arbitrary choice of a root in
our tree. To remedy this, we propose the modified inequality

ˆ
xT

ˇ̌̌
	f .x/ �

1

�. xT /

ˆ
xT

fd�
ˇ̌̌2
d�.x/ � Œ��inv

X
˛

f .˛/2:

We prove that it is “invariant”; i.e., if‰ is a tree automorphism, then Œ‰���inv D Œ��inv,
and that it is surprisingly equivalent to (H). We also provide a sharp estimate of the
quantity Œ��inv in terms of capacity (Theorem 20). All results in this section appear
here for the first time.

In Section 7, we collect some miscellaneous results on the topic. They are all new.
First, we prove that a “vanishing” version of the mass-energy condition characterizes
the compactness of the Hardy operator (Theorem 23). With a similar reasoning, one
can obtain an equivalent isocapacitary-type vanishing condition (Theorem 24). We
then discuss another very natural and easily determined necessary condition for (H) to
hold, the simple box-type condition,

(SB) sup
˛2E

�
�
S.˛/

��X
ˇ�˛

�.ˇ/1�p
�
�p�1

WD J�Ksc < C1:
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In contrast to the mass-energy and the isocapacitary conditions, however, for the many
relevant weights and trees (SB) is not sufficient; see Example 25. We end the section
by providing two easy examples of trees where the potential theory degenerates in two
opposite ways.

In Section 8, we enlarge our horizon, including some dyadic structures variously
related to the Hardy operator or to its applications. Most of this territory is uncharted,
only a few results are known, investigation is still in its infancy, and there is a high
potential for applications to harmonic analysis, holomorphic function theory, and more.
This section is essentially a description of the few results that are known in the literature.
We omit most of the proofs. In Section 8.1, we introduce the viewpoint of reproducing
kernel Hilbert spaces, which provides a unified view of the preceding inequalities and
is instrumental to state the problem of Hardy-type inequalities for quotient structures
in Section 8.2. In Section 8.3, we briefly account on the topic of Hardy inequalities on
poly-trees. This is a new area of research where very little is known. Recently, it has
attracted a lot of interest because of the applications to function theory in the poly-disc.

We end the paper with an appendix, where we include the discussion on the model
case of the purely dyadic Hardy inequality (Section A) and a comparison of the potential
theory we use in the paper with that arising from Bessel’s potentials (Section B).

In the text, we mention a number of open problems that we think are interesting
and deserve further attention.

2. Potential theory on trees and the isocapacitary characterization

This section is dedicated to prove the equivalence of (i) and (iii) in Theorem 2. Section 2.1
introduces the potential theory which we need to define a p-capacity on the tree, while
the actual proof is given in Section 2.2.

2.1. Potential theory

We define a potential theory following Adams and Hedberg’s axiomatic approach [2].
Other approaches are also possible; see for example [62]. Consider the compact Haus-
dorff space xT and make E into a measure space by endowing it with the measure
associated to a weight � W E ! RC. We introduce the kernel k W xT �E ! RC, given
by the characteristic function k.x;˛/D �¹˛�xº.x;˛/. Observe that k.�;˛/ is continuous
on @T , since @S.˛/ is open.

Given a function' WE!RC, we define the potential of', 	�' W xT !RC [ ¹C1º,
by

	�'.x/ D
X
˛

k.x; ˛/'.˛/�.˛/ D
X

E3˛�x

'.˛/�.˛/:
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The co-potential of a function W xT !RC with respect to a positive Borel measure
� on xT is defined as the edge function

	�� .˛/ D

ˆ
xT

k.x; ˛/ .x/d�.x/ D

ˆ
S.˛/

 .x/d�.x/; ˛ 2 E:

The co-potential of� is intended to be 	��.˛/ WD 	��1.˛/D �.S.˛//. Observe that,
if  2 L1. xT ;�/, by Fubini’s theorem we have h	�'; iL2. xT ;�/ D h';	

�
� i`2.E;�/.

For a Hölder dual pair of exponents p; p�, we can further associate to the measure
� a nonlinear Wolff potential, V �;�p .x/ D 	� .	

�
�/
p��1.x/, x 2 xT . More explicitly,

one has

V �;�p .x/ D
X
˛

k.˛; x/�.˛/

�ˆ
xT

k.˛; y/d�.y/

�p��1
D

X
˛2Œo�;x�

�.˛/�
�
S.˛/

�p��1
:

In the linear case p D 2, the sum and the integral can be switched and the above
potential is expressed as

V
�;�
2 .x/ D

ˆ
xT

X
˛

k.˛; x ^ y/�.˛/d�.y/ D

ˆ
xT

X
˛�x^y

�.˛/d�.y/:

The p-energy of the charge distribution � is given by

E�p .�/ D

ˆ
xT

V �;�p .x/d�.x/:

If the energy is finite, by Fubini’s theorem it holds that

E�p .�/ D k	
�
�k
p�

`p
�
.E;�/

D

X
˛

�
�
S.˛/

�p�
�.˛/:

We define the capacity of a closed subset A � xT as

Cap�p .A/ D inf
®
k'k

p

`p.E;�/
W ' � 0; 	�'.x/ � 1 on A

¯
D sup

²
�.A/p

E�p .�/
p�1
W supp.�/ � A

³
:

The equality between the first and second line above is given by a classical theorem in
potential theory that can be found, for instance, in [2]. The .p; �/-equilibrium function
for A is the unique function ' satisfying 	�' D 1, Cap�p -quasi everywhere on A, and

Cap�p .A/ D k'k
p

`p.E;�/
:
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Similarly, one defines the .p; �/-equilibrium measure for A as the unique measure
probability measure such that Cap�p .A/ D �.A/. Two of the authors recently found a
characterization for equilibrium measures on trees [7].

Observe that the boundedness of 	� W `
p.�/! Lp.�/ is equivalent to that of the

Hardy operator
	 W `p.�/! Lp.�/;

under the correspondence �.˛/D �.˛/1�p . Following this paradigm, we can translate
the natural potential theoretic objects in the �-dictionary, which turns out to be more
adjusted to our scopes:

E�p .�/ D Ep;�.�/ WD
X
˛

�
�
S.˛/

�p�
�.˛/1�p

�

;

Cap�p .A/ D Capp;�.A/ D inf
®
k'k

p

`p.E;�/
W ' � 0; 	'.x/ � 1 on A

¯
:

2.2. Strong capacitary inequality and the isocapacitary characterization

We are ready to prove the isocapacitary characterization for trace measures, that is, the
equivalence of (i) and (iii) in Theorem 2. As it is common, we will prove it passing
through the so-called capacitary strong inequality. There are various versions of such
inequality. Here we naturally treat the case of a tree; a proof for a large class of kernels
in the continuous case can be found in [2, Theorem 7.1.1].

Theorem 5 (Capacitary strong inequality). Let 1 < p <1 and ' W E ! RC,

C1X
kD�1

2pk Capp;�
�®
x W 	'.x/ > 2k

¯�
�

2p

2p � 1
k'k

p

`p.E;�/
:

Proof. Set �k D ¹x 2 T W 	'.x/ > 2kº, @�k D ¹x 2 �k W 	'.p.x// � 2kº. For
given k, let 'k.˛/ D 2k�m.˛/'.˛/ if e.˛/ 2 @�k \ @�kC1, where m.˛/ D m is
the largest integer for which e.˛/ 2 @�mC1, and 'k.˛/ D '.˛/ � ��kn�kC1.e.˛//

otherwise. Let x 2 @�kC1 and y D Œo; x� \ @�k . Then, if x ¤ y, we have

	'k.x/ D 	'.x/ � 	'
�
p.y/

�
> 2kC1 � 2k D 2k;

while if x D y and ˛ is the unique edge such that x D e.˛/, we have

'.˛/ D 	'.x/ � 	'
�
p.x/

�
> 2mC1 � 2m

and, therefore,
	'k.x/ D 'k.˛/ D 2

k�m'.˛/ > 2k :
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Hence, 2�k'k is a testing function for Capp;�.x W 	'.x/ > 2k/. Summing and using
that the supports of the '0

k
s can meet only at points belonging to multiple boundaries,X

k2Z

2pkCapp;�.�k/

�

X
k2Z

2pk
X
˛

2�pk
ˇ̌
'k.˛/

ˇ̌p
�.˛/

D

X
k2Z

� X
e.˛/2�kn�kC1

ˇ̌
'.˛/

ˇ̌p
�.˛/C

X
e.˛/2@�k\@�kC1

ˇ̌
'.˛/

ˇ̌p
�.˛/

2p.m.˛/�k/

�
D

X
˛

�.˛/
ˇ̌
'.˛/

ˇ̌p
C

X
˛

�.˛/
ˇ̌
'.˛/

ˇ̌p X
k<m.˛/

�@�k\@�kC1
�
e.˛/

�
2p.m.˛/�k/

�
2p

2p � 1
k'k

p

`p.E;�/
:

Proof of the equivalence of (i) and (iii) in Theorem 2. Suppose that as always
' is a positive function defined on the edges of the tree, then using the distribution
function we writeˆ

xT

	'pd� D

ˆ 1
0

�
�®
x 2 xT W 	'.x/ > �

¯�
d�p

� .2p � 1/

C1X
kD�1

2kp�
�
x 2 xT W 	'.x/ > 2k

�
� .2p � 1/J�Kpc

C1X
kD�1

2kp Capp;�
�®
x 2 @T W 	'.x/ > 2k

¯�
� 2pJ�Kpc k'k

p

`p.�/
:

This concludes the proof of sufficiency.
To prove necessity, let ˛1; : : : ; ˛n 2 E and denote by ' the equilibrium function

associated to the set
Sn
iD1 S.˛i /. Then, I' � 1, Capp;� -quasi everywhere and in

particular �-a.e. on
Sn
iD1 S.˛i /. It follows that

Œ��p Capp;�

� n[
iD1

S.˛i /

�
D Œ��p

X
˛

'.˛/p�.˛/ �

ˆ
xT

.	'/pd�

�

nX
iD1

ˆ
S.˛i /

.	'/pd� �

nX
iD1

�
�
S.˛i /

�
:

Problem 1. Find the best constant in the inequality Œ�� � 2pJ�Kc of Theorem 2.
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3. Mass-energy characterization: three different proofs

In this section, we will prove the mass-energy characterization for trace measures, that
is, the equivalence of (i) and (ii) in Theorem 2. We will give three different proofs,
based on different techniques. The easiest proof only works for p D 2, while the other
two work for any 1 < p <1.

We recall that

J�Kp
��1
D sup
˛2E

P
ˇ�˛ �.ˇ/

1�p��
�
S.ˇ/

�p�
�
�
S.˛/

� ;

and we call it the energy-mass ratio.

3.1. Maximal function

This simple proof can be found, for instance, in [16]. It relies on the Lp inequality for a
suitable maximal function. If �;� � 0 are measures on xT and f a function on xT , then

M�.fd�/.x/ WD max
˛2Œo�;x�

1

�
�
S.˛/

� ˆ
S.˛/

jf jd�:

We simplify the notation by setting M�f DM�.fd�/. We have the following weak-
.1; 1/ estimate.

Theorem 6. Suppose that �;� � 0 are measures on xT and  a positive function on xT .
Then,

(a) ��.x WM� .x/ > �/ �
´
xT
 M�.d�/d�,

(b) for 1 < p <1,
´
xT
.M� /

pd� � .p�/p
´
xT
 pM�.d�/d�.

Proof. First we prove (a). Fix � > 0 and set E.�/ D ¹x 2 xT W M� .x/ > �º D

tjS. j̨ /, where
ffl
S. j̨ /

 d� > � and
ffl
S.ˇ/

 d� � � if ˇ � j̨ . Then,

�
�
E.�/

�
D

X
j

�
�
S. j̨ /

�
D

X
j

�
�
S. j̨ /

�
�
�
S. j̨ /

���S. j̨ /�
�
1

�

X
j

�
�
S. j̨ /

�
�
�
S. j̨ /

� ˆ
S. j̨ /

 d� �
1

�

X
j

M�.d�/.xj /

ˆ
S. j̨ /

 d�

�
1

�

X
j

ˆ
S. j̨ /

 M�.d�/d� �
1

�

ˆ
xT

 M�.d�/d�;

which proves the weak estimate. Then, a simple application of a variation of the classical
Marcinkiewicz interpolation theorem [36, Exercise 1.3.3] gives us (b) from (a).
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Proof of the equivalence of (i) and (ii) in Theorem 2. Assume that the mass-
energy condition holds and define the measure � on xT by setting

�
�
S.˛/

�
D

X
ˇ�˛

�
�
S.ˇ/

�p�
�.ˇ/1�p

�

:

The mass-energy condition (ME) can be written as �.S.˛// � J�Kp��.S.˛//. Thus,
for any positive function  on xT ,X

˛2E

.I �� /
p�.˛/�.˛/1�p

�

D

X
˛2E

� 
S.˛/

 d�

�p�
�
�
e.˛/

�
�

X
˛2E

.M� /
p�e

�
.˛/
�
�
�
e.˛/

�
�

ˆ
xT

.M� /
p�.x/�.x/

� pp
�

ˆ
xT

 p
�

M�.d�/d�

� pp
�

J�Kp
��1

ˆ
xT

 p
�

d�:

So the dual Hardy inequality (H�), equivalent to (H), is obtained.
Conversely, suppose that the dual Hardy inequality (H�) holds. By testing it on

functions  D �S.˛/, we obtain

�
�
S.˛/

�X
ˇ�˛

�.ˇ/1�p
�

C

X
ˇ�˛

�.ˇ/1�p
�

�
�
S.ˇ/

�p�
� Œ��p

��1�
�
S.˛/

�
;

which implies the mass-energy condition (ME).

3.2. Monotone proof for p D 2

This easiest proof only works for p D 2, because it uses the C � identity for operators
on Hilbert spaces.

Lemma 7. Let T WH1!H2 be a bounded and linear operator between Hilbert spaces.
Then,

kT k D kT �k D kT T �k1=2:

Lemma 8. Let �; � � 0 be measures on xT , suppose that �.S.˛// � �.S.˛// holds
for all ˛ in E, and suppose that f W xT ! RC is monotone, f .x/ � f .y/ if x � y.
Then,

´
fd� �

´
fd�.
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Proof. It suffices to prove the inequality of the corresponding distribution functions.
For t > 0,

�.x W f .x/ > t/ D
X
j

�
�
S. j̨ /

�
since f is monotone;

�

X
j

�
�
S. j̨ /

�
D �

�
x W f .x/ > t

�
:

Proof of the equivalence of (i) and (ii) in Theorem 2 for p D 2. Suppose ini-
tially that our tree is finite, but arbitrarily large. This assures that all relevant operators
are bounded. If we manage to estimate the norm of the Hardy operator independently of
the length of the tree, then we can pass to the infinite case by a simple limiting argument.

For a g W E ! RC, we first compute

	�	g.˛/ D �.˛/�1
ˆ
S.˛/

X
ˇ2Œo�;x�

g.ˇ/d�.x/

D �.˛/�1
X
ˇ

g.ˇ/�
�
S.ˇ/ \ S.˛/

�
D �.˛/�1

X
ˇ�˛

g.ˇ/�
�
S.ˇ/

�
C �.˛/�1�

�
S.˛/

�X
ˇ�˛

g.ˇ/

D �.˛/�1
X
ˇ�˛

g.ˇ/�
�
S.ˇ/

�
C �.˛/�1�

�
S.˛/

�
	g
�
e.˛/

�
D T1g.˛/C T2g.˛/:

Therefore,
k	�	k`2.�/ � kT1k`2.�/ C kT2k`2.�/:

The second norm can be computed in terms of the norm 	. Consider a measure � on T
such that �.e.˛// D ��1.˛/�.S.˛//. The mass-energy condition allows us to apply
Lemma 8 to the measures � and �, obtaining, therefore,

kT2gk
2
`2.�/

D

X
˛

�.˛/�1�
�
S.˛/

�2�
	g
�
e.˛/

��2
D

ˆ
T

.	g/2d� � J�K
ˆ
T

.	g/2d�

D J�K
X
˛

�.˛/
�
	g
�
e.˛/

��2
� J�Kkgk2

`2.�/
k	k2

`2.�/!L2.�/
:

A standard calculation shows that T �2 D T1 (with respect to the inner product in
`2.�/), hence we have for free the estimate on the norm of T1. Putting everything
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together we get

k	k2
`2.�/!L2.�/

D k		�k`2.�/ � 2J�K
1
2 k	k`2.�/!L2.�/:

Since 	 is bounded because our tree is finite, we can divide both sides of the inequality
with its norm to get

k	k2
`2.�/!L2.�/

� 4J�K:

Notice that this proof gives the best constant.

3.3. Bellman function

In this section, we provide a different proof, based on a Bellman function approach,
of the fact that (ME) implies (H). Let T be a general rooted tree and denote by j � j,
as usual, the canonical edge weight defined in Section 2.1. Set kˇ D jˇj=j˛j when
ˇ 2 s.˛/.

The following is a tree version of the weighted dyadic Carleson imbedding theorem
by Nazarov, Treil, and Volberg [57]. With respect to the standard dyadic case, this tree
analogue presents some extra difficulty, due to the fact that the objects into play are
here not martingales but only supermartingales.

Theorem 9 (Carleson imbedding theorem for trees). Let � be a nonnegative weight
on E and � a measure on xT satisfying

(3.1)
X
ˇ�˛

�.ˇ/
I �
�
.ˇ/p

jˇjp
� I �� .˛/; for every ˛ 2 E:

Then,

(3.2)
X
˛2E

�.˛/
I �
�
'.˛/p

j˛jp
� .p�/pk'k

p

`p.�/
; for every ' W E ! RC:

Letting � be the measure defined by �.S.˛// D I �
�
.˛/=j˛j, and switching to the

�-dictionary under the usual correspondence �.˛/ D �.˛/1�p, we see that (3.1) is
equivalent to the mass-energy condition (ME) and (3.2) coincides with the dual Hardy
inequality (H�).

On the dyadic tree, a proof of the above theorem relying on a Bellman function
method was first given in [6] for p D 2, and later extended to every 1 < p <1 in [26].
In his paper, it is proven that the Bellman function employed is the Bellman function of
a problem in stochastic optimal control. We give here a slightly adapted proof which
works on every tree T . We also remark that the result remains true substituting the
canonical weight j � j with a general weight w fulfilling the so-called flow condition,
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that is,
P
ˇ2s.˛/w.ˇ/ D w.˛/, for any ˛ 2 E. Indeed, in the following proof the flow

condition is the only property of the canonical weight which is used. We refer the reader
to [30,47,48] for some recent result concerning trees endowed with flow measures and
flow weights.

Proof of Theorem 9. We begin by observing that it is enough to show the result for
nonnegative functions. For any edge ˛ and any quadruple of nonnegative real numbers
F; f;A; v, define�˛.F; f;A; v/ to be the set of weights � , measures �, and functions
' such that

1

j˛j
I �� .'

p/.˛/ D F;
1

j˛j
I ��'.˛/ D f;

1

j˛j

X
ˇ�˛

�.ˇ/
I �
�
.ˇ/p

jˇjp
D A;

1

j˛j
I �� .˛/ D v:

In order for �˛.F; f; A; v/ not to be empty, it must be f p � Fvp�1, the condition
coming from Hölder’s inequality. Moreover, (3.1) implies A � v. We denote that by
D the domain

¹f p � Fvp�1; A � vº � R4;

which is clearly convex, being the intersection of the half plane ¹A � vº with the
cylindroid having as a basis the convex set

¹f p � Fvp�1º � R3:

Define the Belmann function B W R4 ! RC,

B.F; f; A; v/ D sup
�!.F;f;A;v/

1

j˛j

X
ˇ�!

�.ˇ/
I �
�
'.ˇ/p

jˇjp
:

We aim to prove that

B.F; f; A; v/ � j!j.p�/pF; for all .F; f; A; v/ 2 D :

Let x D .F; f; A; v/ be a point in D and fix arbitrarily .�; �; '/ 2 �!.x/. For each
˛ 2E, let x˛ D .F˛;f˛;A˛; v˛/ 2R4 be the unique point such that .�;�;'/ 2�˛.x˛/.
In particular, x! D x, and it is clear that x˛ 2 D for each ˛. Moreover, the additivity
of I � gives the relations

F˛ D
1

j˛j
'p.˛/�.˛/C

X
ˇ2s.˛/

kˇFˇ ; f˛ D
1

j˛j
'.˛/�.˛/C

X
ˇ2s.˛/

kˇfˇ ;

A˛ D �.˛/
I �
�
.˛/p

j˛jpC1
C

X
ˇ2s.˛/

kˇAˇ ; v˛ D
�.˛/

j˛j
C

X
ˇ2s.˛/

kˇvˇ :
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By denoting bp˛ Dj˛j�1'p.˛/, c˛D�.˛/j˛j�.pC1/I �� .˛/
p , and ap

�

˛ Dj˛j
�1�.˛/ and

defining the point y˛ D .bp˛ ; a˛b˛; c˛; a
p�

˛ /, the above relations can be rewritten as

(3.3) x˛ D y˛ C
X
ˇ2s.˛/

kˇxˇ ; ˛ 2 E:

Now, suppose that we can design a concrete function, B W R4 ! R such that

(i) B.F; f; A; v/ � .p�/pF on D , and satisfying

(ii) j˛jB.x˛/ �
P
ˇ2s.˛/ jˇjB.xˇ / � �.˛/f

p
˛ , for every ˛ 2 E.

Then, summing over ˛ 2 E both sides of the inequality and exploiting the telescopic
structure of the summand, we obtainX

˛2E

�.˛/
1

j˛j
I �� .'

p/.˛/ D
X
˛2E

�.˛/f p˛ � j!jB.x/ � j!j.p
�/pF;

from which follows the thesis,

B.F; f; A; v/ � j!j.p�/pF; for all .F; f; A; v/ 2 D :

We now claim that the function

B.F; f; A; v/ D .p�/p
�
F �

�
p � 1

AC .p � 1/v

�p�1
f p
�

fulfills the desired properties. The construction of a Bellman function is a delicate
matter. The interested reader can find more information and examples in [23,24,58]. It
is immediate that (i) holds on D . For any chosen x D .F; f; A; v/ 2 D , let x˛ be the
associated family of points solving (3.3). Then, also the points x�˛ D x˛ � .0; 0; c˛; 0/
and x��˛ D x˛ � y˛ belong to the convex domain D . Since B is clearly concave in the
third variable, we have

B.x˛/ �B.x�˛/ � c˛
@B

@A
.x˛/ D c˛

� pf˛

A˛ C .p � 1/v˛

�p
� c˛

�f˛
v˛

�p
;

the last inequality following from the domain constraint A˛ � v˛. Indeed, B is also
concave as a function of four variables on the convex set D , as one can verify by
checking that the Hessian matrix of

.F; f; A; v/ 7! B.F; f; A; v/

is positive semidefinite on D . Hence, we have

B.x�˛/ �B.x��˛ / �
@B

@F
.x�˛/b˛ C

@B

@f
.x�˛/a˛b˛ C

@B

@v
.x�˛/a

p�

˛ � 0;
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where the last inequality can be derived by direct calculations. Putting the pieces
together we obtain

c˛

�
f˛

v˛

�p
� B.x˛/ �B.x�˛/ D B.x˛/ �B.x��˛ /CB.x��˛ / �B.x�˛/

� B.x˛/ �B.x��˛ /:

(3.4)

Exploiting the concavity of B,

B.x��˛ / D B
� X
ˇ2s.˛/

kˇxˇ

�
�

X
ˇ2s.˛/

kˇB.xˇ /;

which, by means of (3.4), yields to

c˛

�
f˛

v˛

�p
� B.x˛/ �

X
ˇ2s.˛/

kˇB.xˇ /:

It is easily seen that c˛ D vp˛ �.˛/j˛j�1, which substituted above gives (ii).

It is clear that, a posteriori, the mass-energy and the isocapacitary conditions are
equivalent, being both equivalent to (H). However, it is tempting to look for an a priori
argument for the equivalence of these geometric conditions which does not pass through
the boundedness of the Hardy operator. A direct proof that (ME) implies (ISO), for
a family of weights including � D 1, is in [13], where it is also directly proven, for
p D 2 and � D 1, that � � � implies that J�K � 2J�K.

Problem 2. Find a proof of the equivalence between (ME) and (ISO), which works
for every couple �;� and does not require the boundedness of the Hardy operator.

4. A reverse Hölder inequality

In the particular case that � � 1 and p D 2, the mass-energy condition can be rewritten
in an interesting way as a consequence of the calculationX

ˇ�˛

�
�
S.ˇ/

�2
D

X
ˇ�˛

ˆ
S.ˇ/

ˆ
S.ˇ/

d�.x/d�.y/

D

ˆ
S.˛/

ˆ
S.˛/

� X
ˇ�x^y

1
�
d�.x/d�.y/

D

ˆ
S.˛/

ˆ
S.˛/

d.x ^ y/d�.x/d�.y/:
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Therefore, the mass-energy condition can be expressed as

sup
˛2E

 
S.˛/

ˆ
S.˛/

d.x ^ y/d�.x/d�.y/ < C1:

Notice also that ˆ
S.˛/

d.x ^ y/d�.x/ D 		��.�S.˛//:

The following variation on the above condition:

(s-Testing) sup
˛2E

 
S.˛/

�ˆ
S.˛/

d.x ^ y/d�.x/

�s
d�.y/ WD J�Ks <1

is clearly stronger than the mass-energy condition for s > 1 due to Hölder’s inequality.
The surprising result is that in fact the conditions are equivalent, and the corresponding
quantities are comparable. This result is in the spirit of the John–Nirenberg reverse
Hölder inequality for BMO functions.

Theorem 10. For all measures �, and s > 1,

sup
˛2E

 
S.˛/

�ˆ
S.˛/

d.x ^ y/d�.x/

�s
d�.y/ � CsJ�Ks:

In an implicit form, this result is contained in the work of Tchoundja [67]. The proof
of the above theorem is based on a Calderón–Zygmund-type theorem for the operator
		�� WD T�. More precisely, the following theorem holds.

Theorem 11. Suppose that the operator

T� W L
2.�/! L2.�/

is bounded. Then, for any s 2 .1;C1/ the operator

T� W L
s.�/! Ls.�/

is bounded. Furthermore, kT�kLs.�/ � CskT�kL2.�/.

Since the underlying measure � is not necessarily doubling, this theorem can be
seen as a special case of [56, Theorem 1.1]. Here we will give a direct proof which
also provides better quantitative estimates of the constants involved based on a good-�
inequality as in [67, 70].

Lemma 12 (Good-� inequality). Let � be a trace measure on xT . Then, for every � > 0,
there exists .�/ > 0 such that for any nonnegative function f on xT ,

�
®
x2 xT W T�f .x/>.1C �/� and M�.f

2/.x/�2�2
¯
�
1

2
�
®
x2 xT W T�f .x/>�

¯
:
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Proof. Notice that the set ¹T�f > �º is a stopping time. In other words, it can be
written as a disjoint union of tent regions,

¹T�f > �º D

1[
iD1

S.˛i /:

It is, therefore, sufficient to prove that for all ˛i we have

�
®
x 2 S.˛i / W T�f .x/ > .1C �/� and M�.f

2/.x/ � 2�2
¯
�
1

2
�
�
S.˛i /

�
:

So for the rest of the proof we work on a fixed S.˛i / which we denote by S.˛/ to avoid
an overload of notation. Let f1 D f�S.˛/ and f2 D f � f1. For x 2 S.˛/,

T�f2.x/ D

ˆ
xT nS.˛/

d.x ^ y/f .y/d�.y/

D

ˆ
xT nS.˛/

d
�
b.˛/ ^ y

�
f .y/d�.y/ � T�f

�
b.˛/

�
� �:

Because b.˛/ 62 S.˛/, therefore

T�f .x/ � T�f1.x/C �;

which implies that

�
®
x 2 S.˛/ W T�f .x/ > .1C �/� and M�.f

2/.x/ � 2�2
¯

� �
®
x 2 S.˛/ W T�f1.x/ > ��

¯
�

1

�2�2

ˆ
S.˛/

.T�f1/
2d�

�

kT�k
2
L2.�/

�2�2

ˆ
S.˛/

f 2d�

�

kT�k
2
L2.�/

�
�
S.˛/

�
�2�2

M�.f
2/
�
e.˛/

�
�

kT�k
2
L2.�/

2

�2
�
�
S.˛/

�
;

where we assume without loss of generality that M�.f
2/.e.˛// � 2�2; otherwise

the left-hand side is zero. It suffices, therefore, to choose

 D
�

p
2kT�kL2.�/

:
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Proof of Theorem 10. Since the operator T� is self-adjoint, it suffices to prove that
L2.�/ boundedness implies Ls.�/ boundedness for all s > 2. Let s > 2 and f 2
Ls. xT ;�/. Exploiting Lemma 12 and Theorem 6, we get
ˆ
xT

.T�f /
sd� D

ˆ 1
0

�
�
¹T�f > �º

�
d�s

D .1C �/s
ˆ 1
0

�
�®
T�f > .1C �/�

¯�
d�s

� .1C �/s
ˆ 1
0

�
�®
T�f > .1C �/� and M�.f

2/ � 2�2
¯�
d�s

C .1C �/s
ˆ 1
0

�
�®
M�.f

2/ > 2�2
¯�
d�s

�
.1C �/s

2

ˆ 1
0

�
�
¹T�f > �º

�
d�s C

.1C �/s

 s

ˆ
xT

M�.f
2/
s
2d�

�
.1C �/s

2

ˆ
xT

.T�f /
sd�C

2s=2s.1C �/s

.s � 2/ s

ˆ
xT

f sd�;

which proves the thesis if � is chosen small. In particular,

kT�kLs.�/ � CskT�kL2.�/:

The reverse Hölder inequality is now a corollary of the above theorem.

Proof of Theorem 11. Suppose that � satisfies the mass-energy condition. Then,

kT�kL2.�/ D k		��kL2.�/ D k	k
2
`2!L2.�/

� 4J�K:

On the other hand,

kT�k
s
Ls.�/ �

T�.�S.˛//sLs.�/
�
�
S.˛/

� �

 
S.˛/

		��
�
�
�
S.a/

��s
d�;

and the result follows from Theorem 10.

5. The inequality of Muckenhoupt and Wheeden, and Wolff

In this section, we only consider only the case when T is a homogeneous tree. We
recall that if each vertex of T has q C 1 neighbors, then j˛j D q�d.˛/, for each edge ˛.
Let 0 < s < 1 and 1 < p� <1. For any measure � on xT , we trivially have�

sup
˛�x

�
�
S.˛/

�
j˛js

�p�
�

X
˛�x

�
�
�
S.˛/

�
j˛js

�p�
�

�X
˛�x

�
�
S.˛/

�
j˛js

�p�
8x 2 @T:
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The inequality of Muckenhoupt and Wheeden [55, Theorem 1], (MW) in the sequel,
says that the chain of inequalities can be reversed, on average.2

Theorem 13. For any measure � on @T , p� � 1, and 0 < s < 1, there is a constant
C D C.p�s/ such that

1

C

ˆ
@T

�X
˛�x

�
�
S.˛/

�
j˛js

�p�
dx �

ˆ
@T

X
˛�x

�
�
�
S.˛/

�
j˛js

�p�
dx

� C

ˆ
@T

�
sup
˛�x

�
�
S.˛/

�
j˛js

�p�
dx:

(MW)

As usual, dx here is the Lebesgue measure for which
´
S.˛/

dxj˛j. A first conse-
quence of the (MW) inequality is that we have a one-parameter of seemingly different
conditions characterizing �’s for which the Hardy inequality holds, provided that the

weight � has the special form �.˛/ D j˛j
p�s�1

1�p� . Indeed, the central term in (MW) can
be written as an energy,

ˆ
@T

X
˛�x

�
�
�
S.˛/

�
j˛js

�p�
dx D

X
˛

�
�
S.˛/

�p�
j˛j�p

�s

ˆ
@S.˛/

dx

D

X
˛

�
�
S.˛/

�p�
j˛j.1�p

�s/

D Ep;�.�/;

and the (MW) gives

Ep;�.�/ �

ˆ
@T

 X
˛�x

�
�
�
S.˛/

�
j˛js

�q!p�
dx; for all q � 1:

Proposition 14 (Wolff’s inequality on the tree). Let� be a nonnegative Borel measure
on @T . Then, for any p� � 1 and 0 < s < 1 one has

ˆ
@T

�X
˛�x

�
�
S.˛/

�
j˛js

�p�
dx .

ˆ
@T

X
˛�x

�
�
�
S.˛/

��p�
j˛jsp

� dx:

Since the particular choice of q plays no role, from now on, to keep the notation
lighter, we fix the homogeneity of the tree T setting q D 2; i.e., we put ourselves back
in the realm of the classical dyadic Hardy inequality (A.1). Given an edge ˛ 2 E, we

(2) In fact, the full Muckenhoupt–Wheeden inequality in the Euclidean setting applies to
more general situations when the underlying measure is only A1 equivalent to the Lebesgue
measure dx.
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denote by ˛C and ˛� its two children edges. In this setting, Proposition 14 follows from
the slightly more general statement below. The function ' W T ! RC is a logarithmic
supermartingale with the drift d > 0, if for every edge ˛ one has

(5.2)
1

2

�
log'.˛C/C log'.˛�/

�
� log'.˛/ � d:

Proposition 15. Assume that ' is a logarithmic supermartingale with the drift d > 0,
and that its jumps are bounded from above,

(5.3) max
�
'.˛C/; '.˛�/

�
� C'.˛/; ˛ 2 E;

for some constant C > 0. Then, for any p� � 1 one hasˆ
@T

�X
˛�x

'.˛/
�p�

dx � C1.p
�; d /

ˆ
@T

X
˛�x

'p
�

.˛/ dx

� C2.p
�; d /

ˆ
@T

sup
˛�x

'p
�

.˛/ dx:

(5.4)

Proof of Proposition 14. One only needs to observe that '.˛/ WD �.S.˛//=j˛js ,
˛ 2 E, defines a logarithmic supermartingale with the drift log2 � .1� s/ and bounded
jumps. Indeed, given any edge ˛ in T , we clearly have j˛˙js D 2�sj˛js; hence, since
�.S.˛// D �.S.˛C//C �.S.˛�//, we see that

�
�
S.˛C/

�
j˛Cjs

�
�
�
S.˛�/

�
j˛�js

D 22sj˛j�2s�
�
S.˛C/

�
�
�
S.˛�/

�
� j˛j�2s22.s�1/

�
�
�
S.˛C/

�
C �

�
S.˛�/

��2
D 22.s�1/

�
�
�
S.˛/

�
j˛js

�2
:

The logarithmic supermartingale property follows immediately. On the other hand,

�
�
S.˛˙/

�
j˛˙js

� 2s
�
�
S.˛/

�
j˛js

;

so the jumps of ' are clearly bounded from above.

In order to prove Proposition 15, we will need the following lemma, of which we
postpone the proof.

Lemma 16 (Wolff’s lemma). Fix ı > 0 and N > 1=2. Let ' be a logarithmic super-
martingale with positive drift d > 0 satisfying (5.3). Then, for any edge ˛0 in T the
following inequality holds:

(5.5)
X
˛�˛0

'ıCN .˛/j˛j &
X
˛�˛0

'ı.˛/
X
ˇ�˛

'N .ˇ/jˇj:
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Proof of Proposition 15. We only show the left inequality in (5.4). Let us introduce
the following notations: write Œp�� and ¹p�º for the integer and the decimal part of p
and set

p� D Œp��C ¹p�º; r D
1C ¹p�º

2
; Q D Œp�� � 1:

Note that p� D QC r C r . Then, we haveˆ
@T

�X
˛�x

'.˛/
�q
dx

�

ˆ
@T

�X
˛�x

'.˛/
�Q�X

˛�x

'p.˛/
��X

˛�x

'p.˛/
�
dx

D

ˆ
@T

� X
˛1;:::;˛Q;˛QC1;˛QC2�x

'.˛1/ : : : '.˛Q/'
p.˛QC1/'

p.˛QC2/
�
dx

D

X
�2SQC2

X
˛1�����˛QC1�˛QC2

'p�.1/.˛1/ : : : '
p�.QC2/.˛QC2/j˛QC2j;

(5.6)

where SQC2 is the symmetric group of all permutations of ¹1; : : : ;QC 2º and pj D 1,
1 � j � Q, pQC1 D pQC2 D p.

The next step is to use Wolff’s lemma: given a permutation � 2 SQC2, we apply
(5.5) repeatedly to (5.6), obtainingX

˛1�����˛QC1�˛QC2

'p�.1/.˛1/ : : : '
p�.QC2/.˛QC2/j˛QC2j

D

X
˛1�����˛Q

'p�.1/.˛1/ : : : '
p�.Q/.˛Q/

�

� X
˛Q�˛QC1�˛QC2

'p�.QC1/.˛QC1/'
p�.QC2/.˛QC2/j˛QC2j

�
.

X
˛1�����˛Q

'p�.1/.˛1/ : : : '
p�.Q/.˛Q/

�

� X
˛Q�˛QC1

'p�.QC1/Cp�.QC2/.˛QC1/j˛QC1j
�

D

X
˛1�����˛Q�1

'p�.1/.˛1/ : : : '
p�.Q�1/.˛Q�1/

�

� X
˛Q�1�˛Q�˛QC1

'p�.Q/.˛Q/'
p�.QC1/Cp�.QC2/.˛QC1/j˛QC1j

�
. � � � .

X
˛1

'
p�.1/C���Cp�QC2 .˛1/j˛1j D

ˆ
@T

X
˛�x

'q.˛/ dx:

Summing over all � 2 SQC2, we obtain the first half of (5.4).
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We now prove Wolff’s lemma. The proof is based on a careful analysis of slow and
fast growing geodesics.

Proof of Lemma 16. Without any loss of generality, we may assume that N D 1

(since the proof works all the same for every N ) and ˛0 D !, the root edge.
What we are going to do next is to fix an edge ˛ and look at the possible growth

rate of '.ˇ/ for ˇ � ˛. The idea is that, if ' does not grow too fast in this region, then
one could expect for the second sum on the right-hand side of (5.5) to be dominated by
the value at the starting point, X

ˇ�˛

'.ˇ/jˇj . '.˛/j˛j:

On the other hand, if ' grows very (exponentially) fast, then we write the right-hand side
of (5.5) as

P
ˇ '.ˇ/jˇj

P
˛0�˛�ˇ

'ı.˛/, and expect the second sum to be estimated
by the value at ˇ.

Given ˛ 2 E and k � 0, let

A.˛; k/ WD

²
ˇ � ˛ W d.ˇ; ˛/ D k;

'.ˇ/

'.˛/
� .1C r/k

³
be the set of slowly growing successors (here r D r.d; ı/ < 10�2 is some small constant
to be chosen later), and let also A.˛/ D

S
k�0A.˛; k/. We haveX

˛2E

'ı.˛/
X
ˇ�˛

'.ˇ/jˇj D
X
˛2E

'ı.˛/
X

ˇ2A.˛/

'.ˇ/jˇj

C

X
˛2E

'ı.˛/
X

ˇ�˛;ˇ…A.˛/

'.ˇ/jˇj:

We start by estimating the second term,X
˛2E

'ı.˛/
X

ˇ�˛;ˇ…A.˛/

'.ˇ/jˇj D
X
ˇ2E

'.ˇ/jˇj
X

˛�ˇ;ˇ…A.˛/

'ı.˛/

<
X
ˇ2E

'.ˇ/jˇj
X

˛�ˇ;ˇ…A.˛/

'ı.ˇ/.1C r/�ıd.˛;ˇ/

� C.r/
X
ˇ2E

'ıC1.ˇ/jˇj:

To deal with the first term we let

B.˛; k/ WD

²
ˇ � ˛; d.ˇ; ˛/ D k W

'.ˇ/

'.˛/
� .1 � r/k

³
; ˛ 2 E; k � 0;
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and, as before, B.˛/ D
S
k�0B.˛; k/. The function ' decays exponentially outside of

B.˛/, in particular,X
˛2E

'ı.˛/
X

ˇ�˛; ˇ…B.˛/

'.ˇ/jˇj <
X
˛2E

X
ˇ�˛; ˇ…B.˛/

.1 � r/d.˛;ˇ/'1Cı.˛/jˇj

� C.r/
X
˛2E

'1Cı.˛/j˛j:

So far, we took care of two types of behavior of ': points of very fast growth (i.e.,
ˇ … A.˛/), and points of very fast decay (ˇ … B.˛/). Now we consider the points
ˇ � ˛, where '.ˇ/ is roughly comparable to '.˛/. It turns out that these points are
very rare in the successor set of ˛. More precisely, we show that, for every ˛ 2 E and
k � 0,

(5.7)
ˇ̌
B.˛; k/

ˇ̌
D ]

®
ˇ 2 B.˛; k/

¯
� C.r/2

k
2 :

The reason for this is that by the multiplicative property (5.2) the function ' decays
exponentially on (geometric) average, and its pointwise growth rate is bounded from
above.

Let ˆ D log'. By (5.3),

max
�
'.ˇC/

'.ˇ/
;
'.ˇ�/

'.ˇ/

�
. 1;

hence
max

�
ˆ.ˇC/ �ˆ.ˇ/;ˆ.ˇ�/ �ˆ.ˇ/

�
. 1:

On the other hand (remember that r < 10�2), if ˇ 2 B.˛; k/, then we get

ˆ.ˇ/ �ˆ.˛/ � �kr D �d.˛; ˇ/r:

Choose r < min.1=100; d=10/. The inequality (5.7) now follows from the following
lemma.

Lemma 17. Let Y D ¹Ynº be a dyadic supermartingale with drift d > 0,

1

2

�
Y.ˇC/C Y.ˇ�/

�
� Y.ˇ/ � d;

and its differences are bounded from above,

Yn � Yn�1 � C:

Then, for any k � 0 and r � d=10 one has

]
®
ˇ 2 E W d.ˇ; !/ D k; Y.ˇ/ � �kr

¯
� C.r/2

k
2 :
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Assume for a moment that we have Lemma 17, and hence (5.7). Then, we getX
˛2E

'ı.˛/
X

ˇ2B.˛/
T
A.˛/

'.ˇ/jˇj

D

X
˛2E

'ı.˛/
X
k�0

X
ˇ2B.˛;k/

T
A.˛;k/

'.ˇ/jˇj

�

X
˛2E

'ı.˛/
X
k�0

X
ˇ2B.˛;k/

.1C r/k'.˛/jˇj

D

X
˛2E

'ıC1.˛/
X
k�0

jB.˛; k/j.1C r/kjˇj

�

X
˛2E

'ıC1.˛/
X
k�0

jB.˛; k/j22rkj˛j2�k

�

X
˛2E

'ıC1.˛/j˛j
X
k�0

jB.˛; k/j2�k.1�2r/

.
X
˛2E

'ıC1.˛/j˛j
X
k�0

2
k
2 2�k.1�2r/

.
X
˛2E

'ıC1.˛/j˛j;

and we are done.

Lemma 17 clearly follows from the following rescaled driftless version.

Lemma 18. Let X D ¹Xnº be a dyadic supermartingale,

(5.8)
1

2

�
X.ˇC/CX.ˇ�/

�
� X.ˇ/;

and its differences are bounded from above

(5.9) Xn �Xn�1 � 1:

Then, for any k � 0 and � > 0 one has

]
®
ˇ 2 E W d.ˇ; !/ D k; X.ˇ/ � k�

¯
� C.�/2

k
2 :

This lemma is in turn a corollary of Azuma–Hoeffding inequality (essentially a
good-� argument for supermartingales).

Proposition 19 (Azuma–Hoeffding inequality). Let Z D ¹Znº be a supermartingale
with bounded differences,

jZn �Zn�1j � cn; n 2 N:
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Then,

P .Zn �Z0 � K/ � e
�K2

2
Pn
kD1

c2
k ; K > 0; n 2 N:

While the proposition above requires the supermartingale differences to be bounded
above and below, it is not really relevant here. Namely, assume that X satisfies the
hypothesis of Lemma 18 and let S D ¹Snº be its differences,

S.ˇ/ D X.ˇ/ �X
�
P.ˇ/

�
; ˇ 2 E;

where P.ˇ/ is the parent of ˇ. By (5.9), S � 1. Consider the set

F D
®
ˇ 2 E W S.ˇ/ � �2

¯
and define

zS.ˇ/ D

´
�2; ˇ 2 F;

S.ˇ/ otherwise:

Now let
Z.ˇ/ D

X
˛�ˇ

zS.˛/:

Clearly, Z is still a dyadic supermartingale, since zS.ˇ�/C zS.ˇC/ � 0 by (5.8). Also
zS � S , hence Z � X . It is easily seen that Z has bounded differences and, therefore,
satisfies Azuma–Hoeffding inequality.

6. Conformally invariant Hardy inequality

While the right-hand side of the Hardy inequality (H) does not depend upon the
choice of the root vertex o, the Hardy operator contained in the left-hand side does,
and consequently also the optimal constant Œ�� D Œ��o depends on this choice. It
is, therefore, natural to seek an alternative “conformal” invariant theory. The term
“conformal invariant” should be interpreted in the sense that as (H) corresponds, as
explained in the introduction, to a Carleson inequality for Besov spaces, in the same way
the inequality we are going to introduce should correspond to a continuous inequality
which remains invariant under the group of automorphisms of the unit disc.

We consider here the case p D 2, � � 1. We also assume the tree is dyadic and not
rooted: each vertex is the endpoint of three edges, and T is endowed with a rich group
of automorphisms which, having the Poincaré distance in mind, play in T the role of
conformal automorphisms. Such automorphisms are also isometries with respect to
the distance d and act naturally also on the boundary @T (see [35] for a comprehensive
exposition on the topic). Once we fix a root o, there are 3 � 2n�1 vertices at distance n
from it.
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It is easily seen that the Hardy inequality (H), holding for functions f W E ! R, is
equivalent to

(6.1)
ˆ
xT

ˇ̌
F.x/

ˇ̌2
�.x/ � Œ��o

�ˇ̌
F.o/j2 C

X
˛2E

ˇ̌
rF.˛/

ˇ̌2�
; F W xT ! R;

where rF.˛/ D F.e.˛//� F.b.˛// depends on the choice of the root, but jrF.˛/j2

does not. A first attempt to write down a “conformally invariant” formulation of the
Hardy inequality is, assuming that �.T / D 1,

(CH)
ˆ
xT

ˇ̌
F.x/ � �.F /

ˇ̌2
d�.x/ � Œ��inv

X
˛

ˇ̌
rF.˛/

ˇ̌2
;

where �.F / D
´
T
Fd� is the mean of F and Œ��inv 2 Œ0;C1� the best constant in the

inequality. The invariance is the following.
Let ‰ be an isometry of xT and define ‰��.A/ D �.‰�1.A// and ‰�F.x/ D

F.‰.x//, A � xT . Then,ˆ
xT

ˇ̌
F.x/ �‰��.F /

ˇ̌2
d‰��.x/ D

ˆ
xT

ˇ̌
‰�F.y/ � �.‰�F /

ˇ̌2
d�.y/

� Œ��inv
X
ˇ

ˇ̌
r‰�F.ˇ/

ˇ̌2
D Œ��inv

X
˛

ˇ̌
rF.˛/

ˇ̌2
;

showing that Œ‰���inv D Œ��inv.
Observe that the finiteness of Œ��o in (6.1) implies that � has no atoms on @T . On

the other hand, if � is a Dirac delta measure supported on the boundary, the left-hand
side of (CH) vanishes, while the average � D ıxCıy

2
of two Dirac delta gives a true,

nontrivial inequality.
We will show that if � is not a boundary Dirac delta, then (CH) is equivalent to (H).

We present two separate arguments, one for measures supported on the boundary
of the tree, and another one for measures supported on the vertex set. The first case
is proved by means of the isocapacitary characterization. Since also the capacity
Cap.A/D Cap2;�.A/ of a setA� xT depends on the choice of the root o, in this section
we will denote it by Capo.A/, making explicit the dependence so far kept implicit. On
the other hand, condensers capacity is invariant under Möbius trasformations of the
unit disc and, on trees, under the action of automorphisms. Given two disjoint sets
A;B � @T , each being a finite union of arcs3, we define the capacity of the condenser

(3) A tent in a non-rooted dyadic tree is any rooted dyadic subtree, and an arc is the boundary
of a tent. We consider, here and in the whole section, finite unions of tents only in order to avoid
the complication of properties which, in the general case, only hold outside sets of capacity zero.
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.A;B/ as

Cap.A;B/D inf
°X
˛2E

ˇ̌
rF.˛/

ˇ̌2
W F jA D 1; F jB D 0; and jrF j has finite support

±
:

The next result shows that, for measures supported on the boundary, (6.1) and (CH)
are equivalent, and relates the optimal constants to a capacitary expression.

Theorem 20. Let � � 0 be a Borel probability measure on xT , giving no mass to
vertices, and not being a Dirac delta on the boundary. Then,

J�K � inf
o2T

Œ��o � sup
A;B�@T

�.A/�.B/

Cap.A;B/
;

where the supremum is over all couples of finite union of arcs.

The following lemma provides a recursive formula for calculating the capacity of a
condenser of a special type. This kind of formulas arises often in the setting of discrete
capacities.

Lemma 21. Let o 2 T be a vertex and let T1; T2; T3 be the dyadic subtrees having it
as pre-root. Let Aj � @Tj be finite union of arcs. Then,

Cap.A1; A2 [ A3/ D
Capo.A1/ �

�
Capo.A2/C Capo.A3/

�
Capo.A1/C Capo.A2/C Capo.A3/

:

In particular, for i ¤ j ¤ k, Cap.Ai ; @Tj [ @Tk/ � Capo.Ai /.

Proof. Let cj D Capo.Aj /. As in [12, Proposition 1], it can be proved that there exists
an extremal function F � 0 on T such that (a) limT3x!� F.x/ D 0 for � 2 A2 [ A3,
(b) limT3x!� F.x/ D 1 for � 2 A1, (c)

P
˛2E rF.˛/

2 D Cap.A1; A2 [ A3/. Of
course, such jrF j is not finitely supported. Similarly, there exist analogous extremal
functions Fj for cj , j D 1; 2; 3, with Fj .a/ D 0; limT3x!� Fj .x/ D 1 for � 2 Aj ;P
˛2E rFj .˛/

2 D cj .
By extremality, it is obvious that there are numbers 0 < sj � 1 such thatˇ̌

rF.˛/
ˇ̌
D sj

ˇ̌
rFj .˛/

ˇ̌
on the edges ˛ of Tj , and since jrF j adds to one along geodesics going from A1 [A2

to A3, it must be s1 C s2 D s1 C s3 D 1. Again by minimality, we look for t D s1
which minimizes

f .t/ D krF k2
`2
D .1 � t /2

�
krF2k

2
`2
C krF3k

2
`2

�
C t2krF1k

2
`2

D .1 � t /2.c2 C c3/C t
2c1;
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which is minimal when t D c2Cc3
c1Cc2Cc3

, and thus

Cap.A1; A2 [ A3/ D f
�

c2 C c3

c1 C c2 C c3

�
D
c1 � .c2 C c3/

c1 C c2 C c3
:

Since clearly Capo.T1/ D Capo.T2/ D Capo.T3/ D 1 and Capo.Ai / � 1,

Cap.Ai ; @Tj [ @Tk/ D
2Capo.Ai /
2C Capo.Ai /

� Capo.Ai /:

Proof of Theorem 20. In one direction,ˆ
@T

�
F � �.F /

�2
d� D

ˆ
@T

��
F � F.o/

�
� �

�
F � F.o/

��2
d�

D

ˆ
@T

�
F � F.o/

�2
d� �

� ˆ
@T

�
F � F.o/

�
d�

�2
� Œ��o �

X
˛2E

rF.˛/2;

hence, J�K � info2T Œ��o.
In the other direction, consider closed subsets A;B � @T , which we might assume

to be finite unions of arcs, and a function F with finitely supported jrF j such that
F D 1 on A and F D 0 on B . Then,

J�K �
X
˛2E

rF.˛/2 �

ˆ
@T

ˇ̌
F � �.F /

ˇ̌2
d�

D
1

2

ˆ
@T�@T

�
F.x/ � F.y/

�2
d�.x/d�.y/

� �.A/�.B/:

Passing to the infimum over all such F ’s, we obtain

�.A/�.B/ � J�K � Cap.A;B/;

giving

J�K � sup
A;B�@T

�.A/�.B/

Cap.A;B/
:

It is not difficult to see that finiteness of supA;B�@T
�.A/�.B/
Cap.A;B/ implies that � does

not have more than an atom on the boundary, which would then be a Dirac delta. Hence,
if � has boundary atoms, the statement holds.

Suppose now that � is atomless. We claim that

(i) if � is a probability measure on @T having no atoms, then there are disjoint arcs
I1 [ I2 D @T , such that 1=3 � �.Ij / � 2=3.
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With the claim given, let A be a finite union of arcs, let I1; I2 be as given by (i),
and A1 D A \ I2, A2 D A \ I1. Let oj be the pre-root of the dyadic tree T j1 having
boundary Ij and T j2 ; T

j
3 the two other dyadic trees having it as a pre-root, so that, for

k ¤ j , Ik D @T
j
2 [ @T

j
3 and

J�K � sup
A;B�@T

�.A/�.B/

Cap.A;B/
�
�.Aj /�.Ij /

Cap.Aj ; Ij /
�

�.Aj /

Capok .Aj /
:

Observing that Capok .Aj / � Capoj .Aj /, for o 2 ¹o1; o2º we have

�.A/

Capo.A/
�

�.A1/

Capo2.A1/
C

�.A2/

Capo1.A2/
� 2 sup

A;B�@T

�.A/�.B/

Cap.A;B/
� 2J�K:

By the isocapacitary condition (ISO) characterizing measures satisfying the Hardy
inequality, Œ��o D sup¹ �.Aj /

Capo.Aj /
W A finite union of arcsº, and we have the promised

statement.
We now come to the proof of the claim. Choose a vertex x0 2 T and for j D 1; 2; 3

let T 0j be the dyadic subtrees having pre-root at it and call xj the neighborhood point
of x0 lying in T 0j . For at least one j , �.@T 0j / � 1=3; say j D 1. If �.@T 01 / � 2=3,
we set I1 D @T 01 and we are done. Otherwise, let T 11 ; T

1
2 be the two infinite subtrees

of T 01 with pre-root in x1. For one j 2 ¹1; 2º, we have �.@T 1j / � 1=3; let it again be
j D 1. As before, set I1 D @T 11 if �.@T 11 / � 2=3; otherwise consider the two infinite
subtrees of T 11 rooted at the neighborhoods of x1, and iterate the reasoning. If there is
no stop, we have a family of nested tents @T 01 � @T

1
1 � � � � , whose intersection is a

single boundary point x with �.¹xº/ � 2=3, contradicting the assumption.

We come now to the case of measures supported on the vertex set of T . Since no
extra work is required, we present a proof which holds in much higher generality.

Proposition 22. Let X be a locally compact space and let B be a Banach space of
functions on X such that for every compact K there is C.K/ with supx2K jf .x/j �
C.K/ if kf kB � 1. Then, the following are equivalent for a probability measure �:

(a)
´
jf � �.f /jpd� � C0kf k

p
B ,

(b)
´
jf jpd� � C1kf k

p
B .

Proof. If (b) holds, thenf � �.f /
Lp.�/

� kf kLp.�/ C
ˇ̌
�.f /

ˇ̌
� 2C1kf kB :

Suppose that (a) holds and (b) does not. By (a),

kf kLp.�/ �
f � �.f /

Lp.�/
C
ˇ̌
�.f /

ˇ̌
� C0kf kB C

ˇ̌
�.f /

ˇ̌
;
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then there exists a sequence fn in B with (i) kfnkB D 1, (ii) kfnkLp.�/ % 1,
(iii) Mn WD j�.fn/j � 2

�1kfnkLp.�/.
We can find compact sets Kn % X such that

´
Kn
jfnjd� >

Mn
2

. For any fixed
compact S , we have thatˆ

S

jfnjd� � C.S/ �
Mn

4
for n � n.S/;

hence ˆ
Kn=S

jfnjd� �
Mn

2
�
Mn

4
D
Mn

4
;

for n � n.S/. Thus

M
p
n

4p
�

�ˆ
Kn=S

jfnjd�

�p
� kf k

p

Lp.�/
�.X n S/p=p

�

I

i.e.,
j�.fn/j

kf kLp.�/
� 4�.X n S/1=p

�

;

which can be made as small as we wish, leading to a contradiction.

Problem 3. A more general problem is that of characterizing the probability measures
� on T � T such that

(a)
ˆ
T

ˆ
T

ˇ̌
F.x/ � F.y/

ˇ̌2
d�.x; y/ � ¹�º

X
˛

ˇ̌
rF.˛/

ˇ̌2
;

which is as well conformally invariant if we set

‰��.A � B/ D �
�
‰.a/ �‰.B/

�
and reduces to the above for � D �˝ �:
ˆ
T

ˇ̌̌̌
F.x/ �

ˆ
T

F.y/d�.y/

ˇ̌̌̌2
d�.x/ D

ˆ
T

ˇ̌̌̌ˆ
T

�
F.x/ � F.y/

�
d�.y/

ˇ̌̌̌2
d�.x/

�

ˆ
T

ˆ
T

ˇ̌
F.x/ � F.y/

ˇ̌2
d�.y/d�.x/

D 2

" ˆ
T

F.x/2d�.x/ �

�ˆ
T

F.x/d�.x/

�2#
D 2

� ˆ
T

ˇ̌̌̌
F.x/ �

ˆ
T

F.y/d�.y/

ˇ̌̌̌2
d�.x/

�
:

No characterization of the measures � for which (a) holds is known, to the best of
our knowledge.
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Problem 4. A natural generalization of the conformal Hardy inequality is to consider a
p-version, or even a weighted version of it. Then, given a weight function � W E ! RC,
an interesting problem would be that of characterizing all positive Borel probability
measures such that there exists a constant Œ��inv, possibly depending on � and � , for
which ˆ

xT

ˇ̌
F.x/ � �.F /

ˇ̌p
d�.x/ � Œ��inv

X
˛

ˇ̌
rF.˛/

ˇ̌p
�.˛/;

for all F W xT ! R.

There is a related interesting, conformally invariant interpolation problem.

Problem 5. Set kF k2 D
P
˛2E rF.˛/

2. Then,ˇ̌
F.x/ � F.y/

ˇ̌
� kF k � d.x; y/1=2:

Given a subset Z � T , we say that it is universally interpolating for the seminorm
k � k if

(i)
P
z2T

P
w2T

jF.z/�F.w/j2

d.z;w/
� CkF k2,

(ii) for all sequences ¹a.z/ºz2Z such thatX
z2T

X
w2T

ˇ̌
a.z/ � a.w/

ˇ̌2
d.z; w/

<1;

there exists F with kF k <1 such that F.z/ D a.z/, 8z 2 Z.

Condition (i) says that the measure � D
P
z;w2T

ı.z;w/
d.z;w/

satisfies (a). We call the
sequence onto interpolating if just (ii) holds. We think that it is an interesting prob-
lem finding characterizations of universally, or onto, interpolating sequences. For
background on interpolating sequences for Dirichlet-type space see [27–29].

7. Miscellaneous results

7.1. Compactness

We will briefly discuss the compactness conditions for the Hardy operator. As it is
natural to expect, the compactness of the Hardy operator corresponds to the “vanishing”
versions of the conditions characterizing boundedness.

Theorem 23. The map 	 W `p.�/! Lp.�/ is compact if and only if

(7.1) lim
n!1

sup
d.˛/�n

P
ˇ�˛ �.ˇ/

1�p��
�
S.ˇ/

�p�
�
�
S.˛/

� D 0:
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Proof. Suppose that (7.1) holds, fix n � 1, and consider the finite rank truncation
of 	��, 	��;ng.˛/ D �.d.˛/ � n/	

�
�g.˛/. Then,

k	��g � 	��;ngk
p�

`p
�
.�1�p

�
/

D

X
d.˛/Dn

X
ˇ�˛

ˇ̌
	��g.ˇ/

ˇ̌p�
�.ˇ/1�p

�

� C
X

d.˛/Dn

sup
�˛

P
ˇ� �

1�p�.ˇ/�
�
S.ˇ/

�p�
�
�
S./

� kg�S.˛/k
p�

`p
�
.�/

� C sup
d.˛/�n

P
ˇ�˛ �

1�p�.ˇ/�
�
S.ˇ/

�p�
�
�
S.˛/

� kgk
p�

`p
�
.�/
! 0:

Therefore, 	�� is compact as an operator norm limit of finite rank operators. By
Schauder’s theorem [46, Theorem 7, p. 243], 	 is also compact.

To see the necessity of the condition, we can again work with 	�� courtesy of
Schauder’s theorem. Suppose that (7.1) does not hold. Then, there exists a " > 0 and a
sequence of edges ¹˛kºk such that limk d.˛k/ D1 andP

ˇ�˛k
�1�p

�

.ˇ/�
�
S.ˇ/

�p�
�
�
S.˛k/

� � ":

Then, consider the sequence of testing functions gk WD �.S.˛k//
�1=p��S.˛k/,

which converges weakly to 0 in the space Lp�.�/. By compactness, we must have

0 D lim
k
k	��gkk

p�

`p
�
.�1�p

�
/
D

P
ˇ�˛k

�1�p
�

.ˇ/�
�
S.ˇ/

�p�
�
�
S.˛k/

� ;

which contradicts the fact that the above quantity is bounded below by ".

In a very similar way, one can characterize the compactness of the Hardy operator
in terms of a vanishing capacitary condition. We state the theorem without a proof in
order to avoid repetition.

Theorem 24. The map 	 W `p ! Lp.�/ is compact if and only if

lim
n

sup
d.˛i /�n

Capp;�

� k[
iD1

S.˛i /

��1 kX
iD1

�
�
S.˛i /

�
D 0:

Problem 6. Find a simple characterization of measures� such that the Hardy operator
	 W `2.�/! L2.�/ belongs to the p-Schatten ideal.
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zk�1n
(Nk�1)

xk�1n yk�1n

wk�1n
(Mk�1)

zk2n�1 (Nk) zk2n

xk2n�1 yk2n�1 xk2n yk2n

wk2n�1 (Mk) wk2n (Mk)

Figure 2. A snapshot from the defined family of points and their relations: continuous lines
represent edges and dashed lines paths of (many) edges. Next to some vertices is specified, in
parenthesis, their distance from the origin.

In [49], Luecking has studied trace ideal criteria for Toeplitz operators on weighted
Bergman spaces. It is very possible that some of his results apply also to our case,
although his results are not complete.

7.2. No sufficiency of the simple box condition

A necessary condition for the Hardy inequality to hold is the simple, one-box condition

sup
˛2E

�
�
S.˛/

�
d�
�
e.˛/

�p�1
WD J�Ksc < C1;

where d�.x/D
P
˛2Œo�;x� �.˛/

1�p� . In fact, if ' D �Œo�;x��1�p
� , then

´
xT

	'pd� �

�.S.˛//d�.e.˛//
p , while k'kp

Lp.�/
D d�.e.˛//.

In general, however, (SB) is not sufficient. We provide here a counterexample for
p D 2, � D 1, and T the dyadic tree. Working a bit, the example can be modified to
hold for 1 < p <1.

Example 25 ((SB) 6H) (H)). Let T be a dyadic tree, � � 1, and p D 2. At level
Nk D 2

kk, choose 2k vertices ¹zknº2
k

nD1, with children named xkn and ykn , such that
zk2n�1 ^ z

k
2n D y

k�1
n . Choose points wkn 2 S.xkn / with d.wkn/ D Mk D 2

kk2. This
configuration of points is described in Figure 2.

Let � D
P
k;n

1
Mk
ıwkn

. A simple reasoning shows that it suffices to verify the
one-box condition at the nodes zkn :

�
�
S.zkn /

�
D

1X
jD0

2j

MjCk
D 2�k

1X
jD0

1

.j C k/2
�

1

Nk
D d.zkn /

�1:
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On the other hand, the mass-energy condition (ME) fails. To see this, denote by Z the
minimal subtree containing all the zkn points. Then,X

x2T

�
�
S.x/

�2
�

X
x2Z

�
�
S.x/

�2
D

1X
kD0

.NkC1 �Nk/2
k

� 1X
jD0

1

.j C k/2

�2
�

1X
kD0

�
NkC1

N 2
k

�
1

Nk

�
2k �

1X
kD0

1

k
D C1:

Problem 7. Find a characterization of those couples .p; �/ for which (SB) is not
sufficient on the dyadic tree.

7.3. Two opposite examples

In the generality in which we have stated it, the dyadic Hardy inequality covers a variety
of contexts; some of them very rich, some very poor. The richest context is in our
opinion the unweighted case � D 1, corresponding to the classical Dirichlet space. We
consider here two cases at the opposite extremes.

Example 26 (Boundary having null capacity). Consider the dyadic, infinite tree with
the weight �.˛/ D 2�d.˛/ and p D 2. The reader familiar with martingale theory can
fruitfully think of � as the probability of a fair coin tossed d.˛/ times. Let us show
that with this choice Cap2;�.@T / D 0. Let gN .˛/ D 1

N
if d.˛/ � N and gN .˛/ D 0

elsewhere. Then,

Cap2;�.@T / D inf
®
kf k2

`2.�/
W f � 0; 	f � 1 on @T

¯
� kgN k

2
`2.�/

D

NX
nD0

2n
1

N 2
2�n D

1

N
! 0; as N !C1:

It follows from the isocapacitary inequality (ISO) that @T does not support any Car-
leson measure p D 2 and the chosen weight � . In particular, the Lebesgue measure
�0.@S.˛// D 2

�d.˛/ does not define a Carleson measure. This fact is best appreciated
having in mind basic martingale theory.

Consider the filtration associated with the infinite tossing of a fair coin, where
@T is the probability space and �0.@S.˛// D 2�d.˛/ is the probability measure. A
martingale for the filtration has the formXn.�/D 	f .˛/ for � 2 @S.˛/ and d.˛/D n.
The martingale Hardy space M2 contains those martingales for which

kXk2
M2 D sup

n

ˆ
@T

X2nd�0 D

ˆ
@T

	f 2d�0 D
X
˛

f .˛/2�.˛/ <1I
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i.e., M2 D `2.�/ \M, where M is the space of all martingales. By definition, �0 is
Carleson measure for M2, but it is not for `2.�/. The underlying reason is that in M2

cancelations play a prominent role, and this much enlarges the class of the Carleson
measures at the boundary.

But suppose we ask a measure � to be Carleson for the variation of the martingales
in M2, ˆ

@T

� X
˛2P.�/

ˇ̌
f .˛/

ˇ̌�2
d�.�/ � C

X
˛

f .˛/2�.˛/;

where the variation of X D 	f is V.X/.�/ D
P
˛2P.�/ jf .˛/j. It is easy to see that

this is the same as asking � to be Carleson for `2.�/, hence � D 0. This is reflected in
the fact that functions in the classical Hardy space can have unbounded variation a.e.
at the boundary of the unit disc [21, 59].

Let us note that, in contrast, for the weights��.˛/D 2�d.˛/, 0� � < 1, the Carleson
measures for `2.��/ \M and `2.��/ are the same [9]. This is in much the spirit of
Beurling’s result on exceptional sets [20].

Example 27 (All boundary points have positive capacity). It is easy to see that for
any tree T and any � 2 @T , Cap�p .¹�º/ D d� .�/�1. In fact, for any function f which
is admissible for �,

kf k
p

`p.�/
�

X
˛��

ˇ̌
f .˛/

ˇ̌p
�.˛/

�

�X
˛��

ˇ̌
f .˛/

ˇ̌
d� .�/1=p

�
�.˛/

�p
D

�
I�f .�/

�p
d� .�/p�1

� d� .�/
1�p;

and the right-hand side is the `p.�/-norm of the admissible function taking constant
value d� .�/�1 on the edges ˛�� and zero elsewhere. Then, assuming that Cap�p .¹�º/�
c > 0 for all boundary points is the same as saying that @T is bounded with respect
to the distance d� . This is the case, for example, for the weights �.˛/ D 2�d.˛/ with
� > 0. Under this assumption, all functions 	f with f 2 `p.�/ are bounded on @T :ˇ̌

	f .�/
ˇ̌
�

� X
˛2Œo�;��

ˇ̌
f .˛/

ˇ̌p
�.˛/

�1=p� X
˛2Œo�;��

�.˛/
�1=p�

� kf k`p.�/

�
2

c

�1=p�
;

from which follows that all bounded measures � are Carleson for `p.�/.
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Under this assumption, all functions 	f with f 2 `p.�/, where as usual� D �1�p ,
are continuous up to the boundary, with respect to the natural topology induced by the
visual distance d.�; �/ D e�d.�^�/:ˇ̌

	f .�/ � 	f .�/
ˇ̌
�

X
˛2Œ�;��

ˇ̌
f .˛/

ˇ̌
�

� X
˛2S.�^�/

ˇ̌
f .˛/

ˇ̌p
�.˛/

�1=p� X
˛2Œ�;��

�.˛/
�1=p�

�

� X
˛2S.�^�/

ˇ̌
f .˛/

ˇ̌p
�.˛/

�1=p�2
c

�1=p�
;

which tends to zero as � ! � by dominated convergence. By Weierstrass theorem, all
bounded measures � are Carleson for `p.�/.

8. Some variations on the structure

8.1. The viewpoint of reproducing kernels

Let us recall to the reader that a reproducing kernel Hilbert space (RKHS) is a Hilbert
space H of functions defined on a set X such that the point evaluation functionals are
continuous or, equivalently, such that for any x 2 X there exists an element Kx 2 H

which fulfills the reproducing property

f .x/ D hf;KxiH ; for all f 2 H :

It is easy to see that the function K W X �X ! C given by

K.y; x/ WD Kx.y/ D hKx; KyiH

is a kernel on H ; that is, it is positive semi-definite, nonzero on the diagonal and
satisfies K.x; y/ D K.y; x/. See [17] or [3] for a systematic treatment of the topic.

Let HK be a RKHS of functions on a locally compact space X with continuous
reproducing kernel K. A simple and well-known “T �T argument” shows that the
imbedding Id W HK ! L2.�/ (i.e., �, a positive Borel measure on X , is a Carleson
measure for HK) can be rephrased various ways in terms of integral inequality on
L2.�/.

Lemma 28. Given a RKHS HK of functions on a locally compact space X with
continuous reproducing kernel K.x; y/ D Ky.x/, the following are equivalent for a
Borel measure � on X :

(i) kf k2
L2.�/

� ¹�º1kf k
2
HK

; i.e., kId�gk2HK � ¹�º1kgk
2
L2.�/

,



n. arcozzi, n. chalmoukis, m. levi and p. mozolyako 698

(ii) hId�g; Id�giHK D
´
X

´
X
g.x/g.y/Ky.x/d�.x/d�.y/ � ¹�º1kgk

2
L2.�/

,

(iii)
´
X

´
X
g.x/g.y/ReKy.x/d�.x/d�.y/ � ¹�º2kgk2L2.�/,

(iv)
´
X

´
X
g.x/g.y/ReKy.x/d�.x/d�.y/ � ¹�º2kgk2L2.�/, for real (or even just

positive) g,

(v) kf k2
L2.�/

� ¹�º1kF k
2
HReK

,

(vi) jhId�g; iL2.�/jDj
´
X

´
X
g.x/ .y/Ky.x/d�.x/d�.y/j�¹�º3kgkL2.�/k kL2.�/,

(vii) kId�gk2
L2.�/

� ¹�º3kgk
2
L2.�/

,

where the statements are assumed to hold for all f; g W X ! C, and the constants
¹�º1; ¹�º2; ¹�º3, which are the best constants in the respective inequalities, might
depend on � and � but not on f; g. In particular, � is Carleson measure for HK if
and only if it is a Carleson measure for HReK .

The proof of Lemma 28 can be found with some variations in different sources:
[16, Proposition 4.9], [13, Lemma 24], [14, pp. 9–10]. The proof itself is a short “soft”
analysis argument, and we write it here for convenience of the reader. The statement
we give is an elaboration of various statements in the literature.

Proof of Lemma 28. (i) says that Id W HK ! L2.�/ is bounded with norm ¹�º1=21 ,
so Id� W L2.�/! HK is bounded with the same norm, where

Id�g.x/ D hId�g;KxiHK D hg;KxiL2.�/ D
ˆ
X

g.y/Ky.x/d�.y/;

where in the last equality we used Kx.y/ D Ky.x/. Hence,

kgk2
L2.�/

¹�º1 � hId�g; Id�giHK D hg; Id
�giL2.�/

D

ˆ
X

ˆ
X

g.x/g.y/Ky.x/d�.x/d�.y/;

showing that (i) and (ii) are equivalent.
Testing (ii) on real g’s, we have that (iv) holds with ¹�º2 D ¹�º1. If viceversa (iv)

holds and g D gR C igI is the decomposition of g in real and imaginary parts, then

kI �gk2HK �
�
kI �gRkHK C kI

�gIkHK
�2

� 2
�
kI �gRk

2
HK
C kI �gIk

2
HK

�
� 2¹�º2kgk

2
L2.�/

;

and we obtain the dual form of (i) with ¹�º1 � 2¹�º2. A similar reasoning works if
we assume (iv) to hold for positive g’s, but with a different constant.
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It is clear that (vi) and (vii) are equivalent, and (vi) implies (ii) with ¹�º1 � ¹�º3,

hId�g; Id�giHK D hg; Id
�giL2.�/ � ¹�º3kgk

2
L2.�/

:

In the other direction, setTg.x/D
´
X
Kx.y/g.y/d�.y/D Id�g.x/, whereT is defined

on L2.�/, T D T � and T is positive, hTg; giL2.�/ � 0. Then, it has a positive square
root
p
T and by (ii)

k
p
T gk2

L2.�/
D hTg; giL2.�/ � ¹�º1kgk

2
L2.�/

;

hence (vii) holds with ¹�º3 D ¹�º1.
Since ReK is positive definite, hence a reproducing kernel, (iii), and (v) are equiv-

alent for the same reason (i) and (ii) are. Finally, (iii) clearly implies (iv) and, on the
other hand, if (iv) holds, thenˆ

X

ˆ
X

g.x/g.y/ReKy.x/d�.x/d�.y/

D

ˆ
X

ˆ
X

gR.x/gR.y/ReKy.x/d�.x/d�.y/

C

ˆ
X

ˆ
X

gI .x/gI .y/ReKy.x/d�.x/d�.y/

� ¹�º2
�
kgRk

2
L2.�/

C kgIk
2
L2.�/

�
D ¹�º2kgk

2
L2.�/

:

This lemma allows one to use methods from singular integral theory (where ReK
is the kernel of the “singular” integral) on nonhomogeneous spaces.

This point of view, at least in dyadic theory, started in [13] in connection to the
problem of Carleson measures for the Drury–Arveson space, which we will mention
below, then it is taken up by Tchoundja [67] and Volberg–Wick [71] in order to study
more general function spaces on the unit ball.

What we aim here, instead, is to give an interpretation of the conformal invariant
inequality (CH) in terms of reproducing kernels. Indeed, we will provide such an
interpretation for the even more general inequality (a) introduced in Problem 3. The
idea is to read (a) as the imbedding inequality of an appropriate RKHS intoL2.�˝�/,
where� is a Borel measure on the rooted tree T . Lemma 28 would then provide various
ways to reformulate inequality (a).

Let T be the rooted tree and � an arbitrary positive weight function. We first
introduce the Dirichlet space D.�/ WD ¹F D 	f W f 2 `2.�/º, endowed with the inner
product hF;GiD.�/ D hf; gi`2.�/ D hrF;rGi`2.�/, for F D 	f ,G D 	g 2D.�/.
We claim that this (semi-)Hilbert space has a reproducing kernel,

Kx.y/ D d�.x ^ y/ WD
X

˛2Œo�;x^y�

�.˛/�1:
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Indeed, for f 2 `2.�/ and F D 	f we have

F.x/ D
X

˛2Œo�;x�

f .˛/��1.˛/�.˛/

D

X
˛2E

f .˛/�Œo�;x�.˛/�
�1.˛/�.˛/ D hF; �Œo�;x��

�1
iD.�/;

from which it follows that

Kx.y/ D 	�Œo�;x��
�1.y/ D

X
˛2Œo�;y�

��1.˛/�
�
˛ 2 Œo�; x�

�
D d�.x ^ y/:

It is then imprecise but harmless to say that D.�/ is a RKHS. The inequality we are
re-interpreting as a RKHS imbedding is (a) for � D �˝ �; i.e.,

(a0)
ˆ
T

ˆ
T

ˇ̌
F.x/ � F.y/

ˇ̌2
d�.x/d�.y/ � ¹�º

X
˛2E

ˇ̌
rF.˛/

ˇ̌2
;

We are not quite done yet, since this inequality bounds the L2.�˝ �/ norm of the
differences of a function with the (� D 1) Dirichlet (semi-)norm of the function itself.
However, we argue here that, given a RKHSHK on a set X such that 1 2 HK (assume
k1kHK D 1), there is a canonical way to construct the RKHS of its differences, having
as elements the functions .x; y/ 7! F.x/ � F.y/ DW rF.x; y/, with F 2 HK . We
define the kernel � W .X �X/ � .X �X/! C as

�.a;b/.x; y/ D �
�
.x; y/; .a; b/

�
WD hKa �Kb; Kx �Kyi

D K.x; a/ �K.y; a/ �K.x; b/CK.y; b/

D rKa.x; y/ � rKb.x; y/

D r.Ka �Kb/.x; y/:

(8.1)

We show that � reproduces the spaceHr of the functions rF , endowed with the inner
product

(8.2) hrF;rGiHr WD
˝
F � 1hF; 1iHK ; G � 1hG; 1iHK

˛
HK
;

which is well defined since rF D 0 if and only if F is constant, i.e., if and only if
F � 1hF; 1iHK D 0.

Lemma 29. Hr with the inner product (8.2) is a RKHS with kernel � given by (8.1).

Proof. Since hKa �Kb; 1iHK D 0, we have

hrF; �.a;b/iHr D
˝
F � 1hF; 1iHK ; Ka �Kb

˛
HK

D F.a/ � F.b/

D rF.a; b/:
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Lemma 29, in particular, tells us that the space Dr of differences of functions in
the Dirichlet space D D D.1/ has reproducing kernel

k.a;b/.x; y/ D d.x ^ a/ � d.x ^ b/ � d.y ^ a/C d.y ^ b/:

Inequality (a0) represents then the boundedness of the imbedding Dr ! L2.�˝ �/,
which by means of Lemma 28 admits various re-writings.

A picture shows that the definition of the kernel of Dr is independent of the choice
of the root, as we know a priori by conformal invariance.

For many classical spaces of holomorphic functions, as far as it concerns their
imbedding properties, one can substitute the reproducing kernel with its absolute value
causing no losses. It is a natural question if the same applies here.

Problem 8. Is (a0) equivalent to the imbedding in L2.�˝ �/ of the space having
jk.a;b/.x; y/j as kernel?

As a comment to the above problem, we observe that the kernel k.a;b/.x; y/ seems
to present important cancelations, which might be an indication that tools from singular
integral theory are needed in the characterization of the conformally invariant Hardy
inequality. Indeed, it is a simple exercise to check that for .a; b/; .x; y/ 2 T � T and
Œp; q� WD Œa; b� \ Œx; y�, it holds that

k.a;b/.x; y/

D

´
Cd.p; q/ if a and x (hence, b and y) can be joined in T n Œp; q�;
�d.p; q/ if a and x (hence, b and y) cannot be joined in T n Œp; q�:

8.2. Quotient structures

Dyadic quotient structures appeared for the first time in [13], to the best of our knowledge,
to deal with the problem of the Carleson measures for the Drury–Arveson space. Using
the T �T argument outlined in Section 8.1, the problem was shown to be equivalent to
the immersion Id WHK ! L2.�/ for a tree and a kernel which we are going to describe
in a special case containing all essential information.

Consider a 4-adic, rooted tree T , whose vertices x at level d.o�; x/ D n might be
labeled as 4-adic rationals x D 0:t1 : : : tn, with tj 2 Z=4Z and an edge joining the
parent 0:t1 : : : tn�1 with the child 0:t1 : : : tn�1tn. Define similarly the dyadic tree U
and consider the surjective map ˆ W T ! U induced by the map Œt �mod4 7! Œt �mod2,
sending digits 0; 2 to binary digit 0, and digits 1; 3 to binary digit 1.

The map ˆ is a root-preserving tree epimorphism: it is surjective, and ˆ.x/ and
ˆ.y/ are joined by an edge in U if and only if x and y are joined by an edge in T . In
other words, we have defined a quotient structure U D T=ˆ on T .
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We define a kernel KG on T by

KG .x; y/ D
2�d.Œo

��;Œx�^G Œy�/

2�2d.o
�;x^Gy/

;

which can be proved to be positive definite, hence defining a RKHS HKG
. The wedge

^G is a modified version of the wedge we have used so far. For the exact definition, the
reader is referred to [13].

The following theorem is proved in [13, 67].

Theorem 30. The following are equivalent for a measure � � 0 on T :

(i) the map Id W HKG
! L2.�/ is bounded,

(ii) we have both the simple condition �.S.˛// � C02�d.e.˛/;o
�/ and the inequality

ˆ
S.˛/

�ˆ
S.˛/

KG .x; y/d�.y/

�s
d�.x/ � Cp�

�
S.˛/

�
;

for one, or equivalently for all, 1 � s <1.

It is not clear if one needs to introduce the modified wedge ^G in order for the
above theorem to hold. Thus the following problem remains open.

Problem 9. Is it true that Theorem 30 remains true if we replace the kernel KG with
the kernel

K.x; y/ WD
2�d.Œo

��;Œx�^Œy�/

2�2d.o
�;x^y/

;

where ^ is the standard tree wedge?

The real part of the reproducing kernel of the Drury–Arveson space can be naturally
written down as the quotient of two kernels which reflect this stratification. Passing
to dyadic decompositions, this leads to the kernels KG and K we have just described,
and the Carleson measure problem for the Drury–Arveson space can be reduced to the
theorem stated above.

We have seen that conditions similar to those in the theorem also provide alternative
characterizations of the measures � satisfying the Hardy inequality, at least when
p D 2. We think that there are here some interesting questions for further investigation.

Problem 10. Is it possible to have a characterization of the Carleson measures for
HK in terms of the potential theory associated with the kernel K?

8.3. Product structures: poly-trees

The dyadic tree T parametrizes the set of the dyadic subintervals of Œ0; 1�, and the
corresponding product structure T d is defined to parametrize Cartesian products
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R D I1 � � � � � Id of such intervals: dyadic rectangles for d D 2, etcetera. Following
the same lines of Section 2.1, a potential theory can now be defined on T d by taking
tensor products of everything on sight, as we will detail below. This leads to a natural
extension of the Hardy inequality to the multi-parameter setting. In this situation,
however, characterizing trace measures is a much more complicated problem. We
remark that the poly-tree is not a tree, but a graph presenting cycles, and this creates
new and major difficulties. So far, solutions to the problem are known for � � 1, p D 2
and for dimension d D 2; 3 only [5, 8, 53]. It is also known [52] that the techniques
used in these works are not feasible to be extended to d D 4 and p ¤ 2. Let us briefly
expand on that.

We identify T with its vertex set, T d 3 x D .x1; : : : ; xd /, and denote by Ed the
edge set of T d , Ed 3 ˛ D .˛1; : : : ; ˛d /. Let k W xT �E ! RC be the kernel defined
in Section 2.1. We define the kernel k W xT d �Ed ! ¹0; 1º,

k.x; ˛/ D �¹˛�xº.x; ˛/ D …d
jD1k.xj ; j̨ /:

Let � W Ed ! RC be a positive weight. For a function ' W Ed ! RC we set I� D
	� ˝ � � � ˝ 	� ; i.e.,

I�'.x/ D
X
˛2Ed

k.x; ˛/'.˛/�.˛/ D
X

Ed3˛�x

'.˛/�.˛/;

and for � > 0 on xT d ,

I��.˛/ WD �
�
S.˛/

�
; ˛ 2 Ed :

The d -parameter, weighted Hardy inequality for such product structure4 isˆ
xT d

�
I�'.x/

�p
d�.x/ 6 Œ��˝

X
˛2Ed

'.˛/p�.˛/; ' > 0;

and the problem is characterizing �’s for which Œ��˝ < 1, or even better some
geometric, sharp estimate of Œ��˝.

(4) The prototype of the bi-parameter Hardy inequalities is Sawyer’s result [61], where he
considers, in much more generality, inequalities of the form

1X
m;nD0

� mX
iD0

nX
jD0

f .i; j /

�2
�.m; n/ 6 Œ��Saw

1X
m;nD0

ˇ̌
f .m; n/

ˇ̌2
:

His very clever proof does not extend to the tri-parameter case. Moreover, his inequality is not
dyadic and covers the facts here surveyed only in the case of the trivial homogeneous rooted
tree N.
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Once we have the kernel k, the general theory [2] provides us also with definitions
of potentials and energies of measures, and capacities of compact set K � xT d , as
exposed in Section 2.1. We can hope at this point that the capacitary estimate does the
job,

�

� n[
jD1

˛.j /
�

6 Œ��˝;c Cap�;p

� n[
jD1

˛.j /
�
; for all ˛.1/; : : : ; ˛.n/ 2 Ed :

Following Maz’ya’s lead, this would follow from a (multi-parameter) strong capacitary
inequality (see Section 2.2),

(SCI)
C1X
kD�1

22k Cap�;p
�
x W If .x/ > 2k

�
6 Ak'k

p

`
p
C
.Ed ;�/

:

Here a major difficulty appears: the standard proofs of (SCI) depend, more or less
explicitly, on the boundedness principle for potentials of measures,

sup
®
V�;�p .x/ W x 2 xT d

¯
6 B �max

®
V�;�p .x/ W x 2 supp.�/

¯
;

but in the multi-parameter situation such a principle miserably fails.

Proposition 31 ([8]). For d > 2, there exist measures �K which are equilibrium for
a compactK � .@T /d , hence automatically satisfy V�K WD V�

K ;1
2 6 1 on supp.�K/,

such that V�K .x/ D C1 at some point x 2 .@T /d .

The idea is to have a set K which is rarefied, but “curved” is such a way many “not
too thin” rectangles join it to the point x, like rays focusing on it.

The way out of this difficulty, implemented in [8] for d D 2, p D 2, and � � 1, is
proving a distributional boundedness principle.

Theorem 32. There is C > 0 such that for � > 1 and for an equilibrium measure �,

Cap
�®
x W V�.x/ > �

¯�
6 C
kI��k2

`2

�2C1
:

The inequality would follows by rescaling if one has 2 instead of 2C 1. This weaker
form of the boundedness principle suffices to produce a variation of a classical proof
of the strong capacitary inequality,

Œ��˝ � Œ��˝;c ; for d D 2:

This result was then extended to d D 3, but no higher, in [53]. With some major
difficulty, the capacitary characterization of the measures for which the multi-parameter,
dyadic Hardy inequality holds is true at least for d D 2; 3. What about the other
characterizations and proofs?
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It is proved in [5] that a mass-energy condition holds as well in d D 2, and in [53]
this was extended to d D 3, always for p D 2. More precisely, for d D 2; 3 we have
that Œ��˝ � J�K˝, where J�K˝ is the best constant in

(ME˝)
X

Ed3ˇ�˛

�
�
S.ˇ/

�2
� J�K˝ �

�
S.˛/

�
<1; ˛ 2 Ed :

This fact might surprise practitioners of the Hardy space on the bi-disc. It was
proved in [25] that Carleson measures for the Hardy space on the bi-disc are not
characterized by a “single-box condition” such as (ME˝), and A. Chang proved in
[31] that the characterization holds if one allows multiple boxes. One might expect that
a multiple-box condition likeX
ˇ�

Sn
jD1 ˛

.j/

�
�
S.ˇ/

�2
� Œ��mult�

� n[
jD1

S.˛.j //

�
<1; for all ˛.1/; : : : ; ˛.n/ 2Ed ;

might not be weakened, but in fact this is not the case.
The proofs we surveyed for the one-parameter Hardy operator seem not to work

in the multi-parameter case. The simple maximal proof, for instance, does not work
because, contrary to the usual dyadic, weighted maximal function, its several parameter
versions,

M�f .x/ D sup
Ed3˛�x

1

�
�
S.˛/

� ˆ
S.˛/

fd�;

are not necessarily weakly bounded on L1, neither they are bounded on L2. In the
unweighted case, the L2 boundedness of the multi-parameter maximal function was
proved in [42], and a nice account of multi-parameter theory with applications to
martingales and the Hardy space is in [37].

Problem 11. It would be interesting to know whether, like in the one-parameter case,
for 1 6 s <1,

sup
˛2Ed

1

�
�
S.˛/

� ˆ
S.˛/

� ˆ
S.˛/

ıd .x ^ y/d�.y/

�s
d�.x/ � CsJ�Ks;

where ıd .x ^ y/ WD
Qd
jD1 d.xj ^ yj /.

A. Dyadic decomposition of Ahlfors regular metric spaces

Let D be the sets of the dyadic intervals In;j D Œ.j � 1/=2n; j=2n/ in Œ0;1/, 1� j � 2n,
n � 0. Let also �; � W D ! RC be two weight functions. Then, we say that the two-
weight dyadic Hardy inequality holds if there exists a positive constant Œ��, possibly
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depending on � and p, such that for all f W D ! RC,

(A.1)
X
I2D

�X
J�I

f .J /
�p
�.I / � Œ��

X
I2D

f .I /p�.I /:

It is clear that the above is, in fact, a Hardy inequality on the homogeneous dyadic
tree: interpret D as the vertex set of a tree, where two vertices are connected by an
edge if and only if one of the corresponding intervals In;j ; Im;k contains the other
and jn �mj D 1, and set o to be the vertex corresponding to Œ0; 1/. Observe that here,
as compared to the general formulation (H), we are in the simplest case when � is
supported on the tree D rather than on xD . In the paper, we chose to work in higher
generality and allow trees to be not necessarily homogeneous and the measure � to
give mass also to @T , the natural boundary of the tree. In this way, it becomes clear that
the symmetric-space structure of the group of automorphisms of the homogeneous tree
plays no role in (most of) this theory. Moreover, to extend the support of the measure
up to boundary is justified by the problem of exceptional sets at the boundary, i.e., of
trace measures.

We remark that D is just the prototype of decomposition of a metric space. In a
more general context, if .X; �; �/ is a homogeneous metric measure space, then its
Christ’s decomposition [32, Theorem 11] provides a family of generalized “cubes”
¹Q˛

k
º which can be readily checked to form a tree.

Let us show that (A.1) is a genuine generalization of the classical Hardy inequality
(Hardy).

Suppose for example that ¹Inº is an infinite branch of dyadic intervals; i.e., In 2D ,
I0 D Œ0; 1/, InC1 � In, and 2jInC1j D jInj. Set also �.I / D �.I / D 0 if I 2 D is
not one of the In and �.In/DW Un, �.In/DW Vn. Write 'n for '.In/. Then, the dyadic
Hardy inequality takes the form

1X
nD0

� nX
mD0

'm

�p
Un � Œ��

1X
nD0

'pn Vn;

which is of course the discrete analogue of Muckenhoupt’s two-weight Hardy inequality
in RC. In particular, by choosing Un D n�p and Vn D 1, one gets back to (Hardy).

An interesting example of an unexpected application of (A.1), coming from complex
analysis, is the problem of characterizing Carleson measures for Besov spaces Bpa . A
Carleson measure forBpa is a positive Borel measure z� on the unit disc D of the complex
plane for which there exists a constant C.z�/ <1 such that, for all f holomorphic
on D,

(Besov)
ˆ

D
jf jpd z� � C.z�/

�ˇ̌
f .0/

ˇ̌2
C

ˆ
D

ˇ̌
f 0.z/

ˇ̌p�
1 � jzj2

�pCa�2
dxdy

�
;
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with 0 � ap < 1. Such problems appear in connection to the characterization of
multipliers and of exceptional sets at the boundary for spaces of holomorphic functions,
sequences of interpolation, and more. The first result is by Stegenga [64] who manages to
characterize such measures for p D 2 in terms of a condition involving Riesz capacities
of compact subsets of the unit disc. The root of Stegenga’s work can be traced back
to earlier works: Maz’ya [51] and Adams [1]. For the case 1 < p < 1, a similar
characterization of Carleson measures in terms of nonlinear Riesz capacities was later
obtained by Verbitskiı̆ [69] and rediscovered by Wu [72].

More recently, it was proved in [10, 44] that the Carleson inequality for Besov
spaces is equivalent to a dyadic Hardy inequality. More precisely, for a given dyadic
interval I D In;j 2 D , let Q.I/ be the set of points z D rei� with �=2� 2 I and
1� 2�n � r � 1� 2�n�1. Set also �.I / WD z�.Q.I // and �.I / D 2�an. Then, z� is a
Carleson measure forBpa ; 0� ap < 1, if and only if the triplep;�;� satisfies the dyadic
Hardy inequality (A.1). Motivated by this application, we will call Carleson measures (or
trace measures) all measures � WD ! RC satisfying the Hardy inequality on trees (H).

The dyadic setting is much ductile. The same inequality (A.1), with different choices
of the weight � , can be used to characterize Carleson measures for holomorphic spaces
in several dimensions or for spaces of harmonic functions, trace inequalities for potential
spaces, and more. Many such problems, in fact, can be proven to be equivalent to their
dyadic counterparts, and often (A.1) is the form they assume.

B. Bessel potentials on the boundary of the dyadic tree

The content of this section is specific to the homogeneous tree. Out of simplicity, we
consider only the dyadic case, but everything we say applies, mutatis mutandis, to
homogeneous trees of any degree.

Our objective in this section is to introduce, using as usual the axiomatic theory
of Adams and Hedberg, a seemingly different potential theory on the boundary of
the dyadic tree which depends on two parameters p and s. Subsequently, we will use
the inequality of Muckenhoupt and Wheeden in order to prove that it is “equivalent”
to the potential theory introduced in Section 2.1 for the same parameter p and a
particular choice of the weight � . “Equivalent” means that for compact sets that lie on
the boundary of the dyadic tree, the capacities of the sets measured by means of the
two different potential theories are comparable.

Let T be the dyadic tree and consider the compact Hausdorff space xT and the
measure space .@T; dx/. Fix some parameter 0 < s � 1=p�. We then define the s-
Bessel kernel as

Gs.x; y/ WD j˛j
�s; x; y 2 @T;

where ˛ is the (unique) edge such that e.˛/ D x ^ y.
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Following, as always, [2], we define the Bessel potential of a function ' W @T !RC
as

Gs'.y/ WD

ˆ
@T

Gs.x; y/'.x/dx; y 2 xT :

Also the Bessel co-potential of a measure � is defined as

G�s �.x/ WD

ˆ
xT

Gs.x; y/d�.y/; x 2 @T:

Notice that, if temporarily we use the notation y̨ to denote the only child of ˛ lying
in Œo�; x�, for some fixed vertex x, we can estimate the Bessel co-potential as follows:

G�s �.x/ D

ˆ
xT

Gs.x; y/d�.y/

D

X
˛�x

ˆ
S.˛/nS.y̨/

j˛j�sd�.y/

D

X
˛�x

�
�
�
S.˛/

�
� �

�
S.y̨/

��
j˛j�s:

Hence, we trivially have G�s �.x/ �
P
˛�x �.S.˛//j˛j

�s . On the other hand,

G�s �.x/ D
X
˛�x

�
�
S.˛/

�
j˛js

�

X
˛�x

�
�
S.y̨/

�
2sjy̨js

D �.@T /C .1 � 2�s/
X

˛�x;˛¤!

�
�
S.˛/

�
j˛js

� .1 � 2�s/
X
a�x

�
�
S.˛/

�
j˛js

:

In other words,
G�s �.x/ �

X
˛�x

�
�
S.˛/

�
j˛j�s:

The associated Bessel energy is given by

Esp.�/ WD

ˆ
xT

� ˆ
@T

Gs.x; y/G
�
s �.x/

p��1dx

�
d�.y/

D

ˆ
@T

G�s �.x/
p�dx �

ˆ
@T

�X
˛�x

�
�
S.˛/

�
j˛js

�p�
dx

�

X
˛

�
�
S.˛/

�p�
j˛jsp

��1
D Ep;�.�/;

where �.˛/D j˛j
1�sp�

1�p� . Notice that we have used the Muckenhoupt–Wheeden inequal-
ity (MW) in the last step.
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Therefore, since the energies associated to a positive Borel measure via the two
different potential theories are comparable, we can conclude that the Capp;� capacity
of a compact subset of the boundary of the dyadic tree and its s-Bessel capacity are
comparable. In particular, compact sets of zero Capp;� capacity coincide with those of
zero s-Bessel capacity.
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