
Supplementary Material: ADOPT: intrinsic protein disorder

prediction through deep bidirectional transformers

Istvan Redl, Carlo Fisicaro, Oliver Dutton, Falk Hoffmann,
Louie Henderson, Benjamin M.J. Owens, Matthew Heberling,

Emanuele Paci, Kamil Tamiola ∗

1 APPENDIX A

1.1 Transformer

The Transformer encoder model of ESM is a multi-layer bidirectional Transformer encoder architecture
derived from the original implementation[1]. The ESM uses Bidirectional Encoder Representations from
BERT-like architecture [2, 3], which alleviates the undirectionality constraint related to a left-to-right archi-
tecture where every token can only attend to previous tokens in the self-attention layers of the Transformer.
The ESM utilizes a masked language model [4] in which some of the tokens from the input are randomly
masked with the objective of predicting the original vocabulary id of the masked residue based only on its
context.

1.1.1 Positional encoding

Here x is mapped into input the embedding matrix E ∈ Rn×dmod , where Ei,∗ is the embedding vector
ei ∈ Rdmod of xi for i = 1, 2, . . . , n.

The vector ei is defined by the affine transformation, also called linear projection, ei = oiW
T + b 1,

where WT indicates the transpose of W , oi ∈ {0, 1}v is the one-hot encoded representation of xi so that
v = |V | is the cardinality of the set V while W ∈ Rdmod×v and b ∈ Rdmod are respectively the weight matrix
and the bias computed during the training procedure. The embedding layer is defined as E = embedding(x).

Since the Transformer contains no recurrence and no convolution, in order for the model to make use of
the order of the sequence, one must inject some information about the relative or absolute position of the
amino acid residues in the protein sequence. To this end, a “positional encodings” ci is added to the input
embedding ei. The ESM makes use of learned positional embeddings [3] i.e an embedding layer fed with the
position of each residue in place of the residue itself.

Finally, stacking di = ei + ci for i = 1, 2, . . . , n one gets the matrix D ∈ Rn×dmod .

1.1.2 Attention mechanism

After applying a layer normalization [5], once gets ND = layerNorm(D), where layerNorm(M) stands
for the layerNorm function applied on each column of the matrix M and ND ∈ Rn×dmod .

Three different linear projections are then applied to ND getting respectively, except for the bias term,
the query matrix NDW

Q = Q ∈ Rn×dmod , the key matrix NDW
K = K ∈ Rn×dmod and the value matrix

NDW
V = V ∈ Rn×dmod with WQ,WKand WV ∈ Rdmod×dmod as weight matrices, respectively, computed at

training time.
Each of the matrices Q,Kand V is then reshaped into h different matrices i.e. Qj ∈ Rn×dk , Kj ∈ Rn×dk

and Vj ∈ Rn×dv where j = 1, 2, . . . , h ∈ N+ and dk = dv = dmod

h .

∗To whom correspondence should be addressed. Tel: +39 338 592 0947; Email: kamil@peptone.io

1

Supplementary Figure S1: Last multi-attention layer in the ESM-1b Transformer model related to a
singular protein entry in the CheZod “1325”, identified with the 25096 index. Lines depict the attention from
each token (left) to every other token (right). Darker lines indicate higher attention weights, whereas the
colours denote different attention heads. The “Layer” drop-down indicates the model layer (zero-indexed).
We cut the sequence for visualisation constraints.

The j-th matrices Qj ,Kjand Vj are then fed into the scaled dot-product attention layer

Aj = σ

(
QjK

T
j√

dk

)
Vj

where σ(M) stands for the softmax function [6] applied on each column of the matrix M . The matrix Aj is
called attention head j with Aj ∈ Rn×dv ∀j ∈ {1, 2, . . . , h} and h represents the number of attention heads
employed.

The attention heads are then concatenated into A = (A1, A2, . . . , Ah) with A ∈ Rn×hdv = Rn×dmod and a
linear projection AMH = AWO is applied where, WO ∈ Rdmod×dmod and AMH ≡ AMH(Q,K, V) ∈ Rn×dmod .
The set of operations which return AMH with a matrix M as input, is called multiHeadAttention(M).

A residual connection [7] is then employed, getting R = identity(ND +AMH) where identity(M) stands
for the identity operator 2 applied on the matrix M and R ∈ Rn×dmod . See Supplementary Figure S1 for a
multi-head attention output visualisation, related to the CheZod dataset.

2

1.1.3 Feed-forward network

A layer normalization is then applied to the multi-head attention output, so that one getsN = layerNorm(R)
with N ∈ Rn×dmod .

The matrix N is then fed into the position independent feed-forward network

fi = g(niW
i
1 + bi

1)W
i
2 + bi

2

where ni ≡ Ni,∗ and g(m) is the Gaussian error linear unit activation function [8] applied to a vector m;
W i

1 ∈ Rdmod×df and W i
2 ∈ Rdf×dmod are the weight matrices whereas bi

1 ∈ Rdf and bi
2 ∈ Rdmod are the bias

terms ∀i ∈ {1, 2, . . . , n}. Here df = 4dmod for convenience while stacking the position independent feed-
forward networks fi for i = 1, 2, . . . , n one gets F ≡ F (N) ∈ Rn×dmod . The set of operations which return F
with a matrix M as input is called, feedForwardNetwork(M).

Finally, mutatis mutandis, a residual connection is employed, getting RF = identity(N + F) with RF ∈
Rn×dmod . Note that the ESM makes use of pre-activation blocks, where the layer normalization is applied
prior to the activation and no dropout [9] is used.

1.1.4 Encoder block

Once the positional encoding layer is applied you get the residue level representation D which is then fed
into the a layer normalization followed by the multi-head attention to which a residual connection is applied,
yielding the residual matrix R. The matrix R is then fed into another layer normalization followed by the
position independent feed-forward network to which another residual connection is applied, yielding RF.

Therefore the encoder block layer can be defined as

encoder(D) :

ND ← layerNorm(D)

AMH ← multiHeadAttention(ND)

R← identity(D +AMH)

N ← layerNorm(R)

F ← feedForwardNetwork(N)

RF ← identity(N + F)

Note that the residue level representation, input matrix D of the encoder block has the same dimension
of the output matrix RF of the same block.

1.1.5 Loss

The Transformer has been trained using the masked language modeling objective [3] where the input x is
corrupted by replacing a fraction of the residues with a special mask token “<mask>” and the expectation E
is computed on the set of masked indices at first, and then on the set of protein sequences. The network has
been trained to predict the missing tokens from the corrupted sequence, which results in the minimisation
of:

LMLM = Ex∼XET

∑
t∈T

−log
[
p
(
xt|x/T

)]
,

where, for each sequence x extracted from the vector of random variables X, a set of indices T is sampled
to mask, replacing the true residue xt with the mask token whereas x/T represents the masked sequence i.e
the context of xt.

The method implemented in [2] has a token dropout scheme which replaces the mask token embedding
with a fixed vector of zeros so that et = 0 ∀t ∈ T with 0 = (0, 0, . . . , 0)︸ ︷︷ ︸

dmod times

.

3

1.1.6 Masking

The masking strategy in [2] has been adopted from BERT [3], where 15% of the input tokens were selected
and predicted through the minimisation of LMLM. Of these 80% were replaced with mask token and 10%
with a random residue extracted from a uniform distribution; 10% not changed.

1.1.7 Architecture

The Transformer is composed of l ∈ N+ stacked encoder blocks, each fed with the output of the previous
one and a final layer normalization applied to the output of the last layer.

The output of the last block is denoted as Z ∈ Rn×dmod with zi = Zi,∗ and,

Z = layerNorm(encoder[l](D))

where, f [l](M) = f(f · · · f(M))︸ ︷︷ ︸
l times

.

Please, refer to [2] for additional details.
It is also noteworthy that a projection3 back to the size of the vocabulary v has been applied to Z in

order to get the log probabilities one needs to compute LMLM.
Finally, the Transformer was trained in batches of b ∈ N+ proteins, each. Therefore the input was a 2nd

rank tensor Xα,µ and each layer was applied on the batch whereas the output was a 3rd rank tensor Zα,µ,ν

where α ∈ {1, 2, . . . , b}, µ ∈ {1, 2, . . . , n} and ν ∈ {1, 2 . . . , dmod}.

4

2 APPENDIX B

−5 0 5 10 15
0

0.05

0.1

0 5 10 15
0

0.05

0.1

0 5 10 15

0

0.05

0.1

0 5 10 15

0

0.05

0.1

0.15

0 5 10 15

0

0.05

0.1

−5 0 5 10 15

0

0.05

0.1

0.15

−5 0 5 10 15
0

0.05

0.1

−5 0 5 10 15
0

0.05

0.1

0 5 10 15 20

0

0.05

0.1

0.15

5 10 15
0

0.05

0.1

0.15

Z-scores Z-scores

Z-scores Z-scores

Z-scores Z-scores

Z-scores Z-scores

Z-scores Z-scores

N R

Q P

V S

D T

H W

Supplementary Figure S2: Residue level histograms/density plots of actual (green), ESM-1b (blue) and
ODiNPred (orange) predicted Z-scores for residues (from top left to bottom right) [’H’, ’W’, ’D’, ’T’, ’V’,
’S’, ’Q’, ’P’, ’N’, ’R’]. While in general the ESM transformer based predictor is similar to ODiNPred, in some
instances (e.g. residues ’T’ and ’R’) it puts more mass closer to the actual density, than ODiNPred.

5

−5 0 5 10 15

0

0.05

0.1

0.15

0 5 10 15
0

0.05

0.1

0 5 10 15
0

0.05

0.1

−5 0 5 10 15

0

0.05

0.1

0 5 10 15

0

0.05

0.1

0.15

−5 0 5 10 15

0

0.05

0.1

0 5 10 15 20

0

0.05

0.1

0 5 10 15 20

0

0.05

0.1

0 5 10 15 20

0

0.05

0.1

0.15

0 5 10 15
0

0.05

0.1

Z-scores Z-scores

Z-scores Z-scores

Z-scores Z-scores

Z-scores Z-scores

Z-scores Z-scores

E I

F K

G A

L Y

C M

Supplementary Figure S3: Residue level histograms/density plots of actual (green), ESM-1b (blue) and
ODiNPred (orange) predicted Z-scores for residues (from top left to bottom right) [’C’, ’M’, ’L’, ’Y’, ’G’,
’A’, ’F’, ’K’, ’E’, ’I’]. While in general the ESM transformer based predictor is similar to ODiNPred, in some
instances (e.g. residues ’G’ and ’Y’) it puts more mass closer to the actual density, than ODiNPred.

6

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is All you Need,” in Advances in Neural Information Processing Systems (I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran
Associates, Inc., 2017.

[2] A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L. Zitnick, J. Ma, and
R. Fergus, “Biological structure and function emerge from scaling unsupervised learning to 250 million
protein sequences,” Proceedings of the National Academy of Sciences, vol. 118, no. 15, 2021.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[4] W. L. Taylor, ““cloze procedure”: A new tool for measuring readability,” Journalism quarterly, vol. 30,
no. 4, pp. 415–433, 1953.

[5] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

[8] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint arXiv:1606.08415,
2016.

[9] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way
to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

Notes

1. The linear projection applied of the protein sequence p can be represented, except for the bias term, as D = OWT where
O ∈ Rn×v is the one hot encoding matrix

2. The identity operator Î is defined as ÎM ≡ M

3. A Gaussian error linear unit function and a layer normalisation are applied before the output

7

	APPENDIX A
	Transformer
	Positional encoding
	Attention mechanism
	Feed-forward network
	Encoder block
	Loss
	Masking
	Architecture

	APPENDIX B

