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Abstract—The growing number of low-power smart devices
in the Internet of Things is coupled with the concept of “Edge
Computing”, that is moving some of the intelligence, especially
machine learning, towards the edge of the network. Enabling
machine learning algorithms to run on resource-constrained
hardware, typically on low-power smart devices, is challenging
in terms of hardware (optimized and energy-efficient integrated
circuits), algorithmic and firmware implementations. This paper
presents FANN-on-MCU, an open-source toolkit built upon the
Fast Artificial Neural Network (FANN) library to run lightweight
and energy-efficient neural networks on microcontrollers based
on both the ARM Cortex-M series and the novel RISC-V-based
Parallel Ultra-Low-Power (PULP) platform. The toolkit takes
multi-layer perceptrons trained with FANN and generates code
targeted at execution on low-power microcontrollers either with a
floating-point unit (i.e., ARM Cortex-M4F and M7F) or without
(i.e., ARM Cortex M0-M3 or PULP-based processors). This paper
also provides an architectural performance evaluation of neural
networks on the most popular ARM Cortex-M family and the
parallel RISC-V processor called Mr. Wolf. The evaluation in-
cludes experimental results for three different applications using
a self-sustainable wearable multi-sensor bracelet. Experimental
results show a measured latency in the order of only a few
microseconds and a power consumption of few milliwatts while
keeping the memory requirements below the limitations of the
targeted microcontrollers. In particular, the parallel implemen-
tation on the octa-core RISC-V platform reaches a speedup of
22x and a 69% reduction in energy consumption with respect
to a single-core implementation on Cortex-M4 for continuous
real-time classification.

Index Terms—Edge AI, TinyML, Machine Learning, IoT
Low Power Devices, Wearable, Multi-layer Perceptron, Neural
Networks, embedded systems.

I. INTRODUCTION

MACHINE LEARNING has been introduced into many
tasks related to the Internet of Things (IoT) and mobile

applications to address the major challenge of extracting
relevant information from many sensors and data spread in
the physical world. Because of its high efficiency in extracting
actionable information from large amounts of noisy raw data,
machine learning will play a critical role in future IoT devices
and services. Recent results on machine learning models
demonstrate impressive classification accuracy, in some cases
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even outperforming humans [1]. One essential feature of
machine learning and in particular neural networks (NNs) is
their flexibility that makes them suitable for a wide range of
applications, including computer vision [2], natural language
processing [3], biomedical [4], and several others [5]–[7].

Today, machine learning on IoT devices is applied with the
traditional cloud computing paradigm where the whole data
processing is performed in the cloud, and the IoT devices
stream the data out in raw form or possibly after simple
filtering and/or compression [8], [9]. However, the number
of IoT devices is expanding rapidly, and the massive amount
of collected data is hard to manage by central clouds. The
reasons are the massive workload on the IoT network, the cost
of the communication infrastructure, the required energy for
data transmission, and, more generally, reliability, latency, and
privacy concerns [10]. The new trend of IoT devices is to be
“smart” to make decisions on their own, without streaming
all the raw data to the cloud [11]. The edge computing
paradigm is pushing the data processing to the edge of the
IoT (comprising gateways and embedded end-devices) close
to the sensors where the data is collected [9]. In many IoT
applications, the computation can be distributed on different
layers. For instance, the IoT device may perform the pre-
processing of the data and transmit the intermediate results
to the fog where the rest of the processing is performed [12]–
[14].

This new generation of IoT devices is supplied by small-size
batteries, which limits the energy and computational resources
available. Thus, bringing intelligence to the edge is creating
fascinating challenges for industrial and academic researchers
[6], [8]. Lots of research efforts towards specialized hardware
and optimized inference algorithms to run such NNs on
power-constrained devices have been made over the last few
years [15]–[17]. Today’s IoT devices host microcontrollers,
especially from the ARM Cortex-M family, which are able
to achieve power consumption in the order of mW and
computational resources in the order of hundreds of MOPS [1],
[18], [19]. The power consumption in the range of milliwatts is
required for battery-operated devices to avoid frequent battery
recharges. On the other hand, the computational resources of
microcontrollers (MCUs) are often unable to perform on-board
processing for complex algorithms and sensors for several
application scenarios [4], [12], [20]. This results in very
few examples of NNs that are running on milliwatt-powered
microcontrollers, which are the most common compute en-
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gines available at the edge of the IoT [21]–[24]. To attenuate
these computational limits, researchers are proposing new
processing units to match the requirements of computational
resources required by on-board data processing with state-of-
the-art machine learning algorithms. The two most promising
approaches to improve the performance of ultra-low-power
processors are parallelism, low-power fixed-function hardware
accelerators [25], and near-threshold technology [26]. Parallel
architectures for near-threshold operation, based on multi-core
clusters, have been explored in recent years with different
application workloads [26] and low-power systems [27].

On the software side, the majority of approaches in cloud
computing are using deep convolutional NNs, which are
incredibly accurate and well-suited to classify image frames
but require a massive amount of memory and computational
resources. However, there are many application scenarios,
especially dealing with low-bandwidth time-series recordings
from low-power sensors, where multi-layer fully-connected
networks are just as effective [11], [19], [28], [29]. A well-
known heuristic model is the multi-layer perceptron (MLP), a
deep learning approach with multiple layers of interconnected
intricate memory modules. The Fast Artificial Neural Network
(FANN) library is an open-source neural network library
[29], which implements multi-layer artificial neural networks
(ANNs) in C. To push FANN to its best in terms of energy
efficiency on microcontrollers, it is essential that the imple-
mentation of the MLP model is optimized for the hardware
architecture of the processors exploiting special instructions,
parallelism, scratchpad memories, and hardware accelerators.

This paper presents FANN-on-MCU: an open-source frame-
work for easy deployment of NNs trained with the FANN
library on both ARM Cortex-M cores and new parallel ultra-
low-power (PULP) RISC-V-based processors [27]. The for-
mer is the dominant processor core present in most MCUs,
while the latter represents the forefront of open-source multi-
core processors implementing the RISC-V instruction set
architecture (ISA) and many custom instruction set exten-
sions achieving high energy-efficiency and featuring widely-
tunable performance for ultra-low-power embedded systems.
Our framework offers automated deployments on MCUs with
and without a floating-point unit, i.e., ARM Cortex-M0+/M4F
and PULP-based processors such as Mr. Wolf or GAP8 [30],
[31].

We present both the framework and the tools to train ANNs
as well as exhaustive performance measurements on both
ARM Cortex-M and PULP processors. Moreover, we evaluate
the performance of FANN-on-MCU on a designed wearable
system, which includes both an ARM Cortex-M4 core and
a PULP-based processor, with real-world applications. We
compared the performance of the two MCUs running MLP
models, reaching the conclusion that a parallel implementation
on the PULP processor reaches up to 22× runtime speedup
with a 69% reduction in energy consumption with respect to
a single core implementation on Cortex-M4 for continuous
real-time classifications.

The main contributions of the paper are:
• We present FANN-on-MCU: an open-source framework

based on FANN. The framework has been designed to

optimize the performance of the MLP. Moreover, the
framework allows building multi-layer artificial neural
network-based classifiers on all ARM Cortex-M family
processors both with and without a floating-point unit,
and on the very novel class of PULP processors based
on open-source RISC-V instruction set.

• We provide extensive measurements and comparisons of
the performance of our framework on both ARM Cortex-
M and PULP processors implementing NNs of variable
sizes, taking into account the memory footprint.

• We implement fully connected networks for real-world
application scenarios such as hand gesture recognition,
fall detection for elderly people, and human activity
classification using a multi-sensor wearable device based
on an ARM Cortex-M4 MCU and PULP processor.

• We present experimental results with in-field measure-
ments of memory usage, accuracy, feasible network sizes,
and power consumption.

• We have released FANN-on-MCU as open-source soft-
ware1 to help engineers and academics to have a powerful
and easy-to-use tool to deploy ANNs on ultra-low-power
IoT devices.

We have organized the remainder of this paper as follows.
In Section II, we shortly summarize the concept of MLPs, the
FANN library, and FANNTool, and provide an overview of
related work on deploying NNs at the edge. In Section III, we
provide an overview of our target platforms, the ARM Cortex-
M series, and the RISC-V-based PULP series MCUs, together
with a description of an application testbed we designed,
named InfiniWolf, which includes both an ARM Cortex-
M processor and a PULP processor. Then in Section IV,
we describe our automated deployment toolkit and highly-
optimized implementation for ARM Cortex-M targets and par-
ticularly also PULP-based systems. We extensively evaluate its
performance in Section V on the supported MCU families and
show results for several application showcases in Section VI
using our designed wearable platform, before concluding the
paper in Section VII.

II. RELATED WORK

In the following subsections, we first provide a summary
of MLPs and introduce the FANN library and FANNTool to
train the networks which we then automatically deploy on
different MCUs. Subsequently, we discuss currently available
frameworks and libraries for deploying NNs on MCUs.

A. Multi-Layer Perceptrons

A multi-layer perceptron is a type of feed-forward ANN,
as illustrated in Figure 1a, which consists of three or more
layers of nodes: an input layer, one or more hidden layers, and
an output layer. Each layer contains a fixed number of nodes,
also called perceptrons or neurons, which (except for the input
nodes) compute a weighted sum of the previous layer’s nodes
and a bias, followed by a non-linearity such as sigmoid or

1Available at https://github.com/pulp-platform/fann-on-mcu
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Fig. 1. Multi-layer perceptron architecture (a) and building block (b).

ReLU functions. An illustration of the artificial neuron can be
seen in Figure 1b. In mathematical terms, each node computes

x
(`+1)
k (x) = σ

(
m∑
i=1

w
(`)
k,ix

(`)
i + bk

)
, (1)

where x(`)
k is the output of kth node in `th layer, xi are the

elements of the input vector x with dimension m, w(`)
k,i is the

weight of the ith input element to the node, and finally, σ is
the activation function.

The entire network is typically trained end-to-end by opti-
mizing its parameters (weights and biases) using backpropa-
gation and stochastic gradient descent, such that it maps the
samples from the dataset to the labels to the best of its abilities
(measured by a loss function). The MLP is specified by the
number of hidden layers, the number of nodes within each
layer, and which non-linearities are used (e.g., sigmoid).

MLPs are commonly used as the classifier after applying
suitable non-learnable feature extractors due to their relatively
moderately resource demand [32]. In fact, MLPs are much less
demanding than deep convolutional networks in terms of mem-
ory and computing requirements, and yet are widely used and
very effective in many application areas such as medical data
analysis and in general applications where hand-engineered
feature extractors are preferred for interpretability [33].

B. Fast Artificial Neural Network (FANN) Library and
FANNTool

FANN [29], [34] is an easy-to-use, mature, and well-
documented framework to train and perform inference on
multi-layer perceptrons. It is all written in C and has bindings
to many languages, such as Python, MATLAB, Rust, etc.
Due to its popularity, many graphical tools to aid training
ANNs and selecting the right architecture and hyperparameters
have become available. FANN also includes an automatic
hyperparameter tuner and can optimize ANNs for fixed-point
inference. FANN uses a simple file format for storing the
dataset and the trained ANN model. It does not support
training on GPUs, which simplifies the framework and is not
required for networks of a size range suitable for deployment
on low-power MCUs [35]. The CPU implementation is highly
optimized with features such as cache optimizations and
approximations of various activation functions as step-linear
functions out-of-the-box.

To facilitate training the NN, to select an appropriate
network architecture, to determine the number of layers and

Fig. 2. Screenshot of the FANNTool 1.2 user interface.

nodes, and choosing a suitable activation function, the FANN
community provides a convenient utility: the FANNTool [34].
Its interface allows for easy modification of the network’s hy-
perparameters, training method, weight initialization method,
and monitoring training progress. It further supports the fully-
automated selection of the network’s hyperparameters by
iteratively modifying them. Figure 2 shows a screenshot of
the FANNTool 1.2.

C. Frameworks for Deploying NNs on MCUs

With the growing attention to NNs, many frameworks have
been developed over the last few years, such as PyTorch, Ten-
sorFlow, and Caffe2, with a focus on NNs training and cloud-
scale deployment in GPU-accelerated data centers. However,
only very recently, some focus has been put on low-power
edge inference on MCUs. To the best of our knowledge, there
are only two frameworks that are effectively working and have
reached popularity: TensorFlow Lite for Microcontrollers and
ST Microelectronics’ STM32Cube.AI.

• STM32Cube.AI can take trained models from Keras,
TensorFlow Lite, and others to generate optimized code
to run them on a wide range of MCUs of the STM32
series [36]. For Keras, it also supports quantized models
to reduce the model size and speed up the computation.

• TensorFlow Lite for Microcontrollers is not vendor-
locked and much more generally supports platforms
based on ARM Cortex-M and RISC-V [37]. It can export
models from TensorFlow, its runtime takes up 16 kB
on a Cortex-M3, and it comes with implementations
for floating-point layers as well as 8 bit weights and
activations with 32 bit accumulation.

These two frameworks highlight the commercial interest in
deploying NNs on milliwatt-range edge devices. In contrast
with those two commercial tools, the toolkit proposed in this
paper provides a solution to deploy optimized MLPs on both
ARM Cortex-M family (not limited to STMicroelectronics
chips as with Cube.AI) and the PULP family, which is the
leading-edge processor family based on RISC-V ISA. With
respect to TensorFlow Lite for microcontrollers, which is still
under development, our toolkit supports parallel processing of
ANNs on RISC-V-based processors and provides optimized
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code for the deployment of microcontroller systems with and
without a floating-point unit.

In parallel, ARM has been developing CMSIS-NN [38], an
additional library for their Cortex Microcontroller Software
Interface Standard (CMSIS), in order to provide optimal-
performance implementations of layers commonly present in
deep NNs with speedups in the order of 4.6× over a simple
baseline implementation. Our toolkit for the ARM Cortex-M
family works on top of the CMSIS library to generate highly
optimized code.

FANN-on-MCU, the toolkit proposed in this paper, has been
developed as an extension of FANNCortexM [35]. The latter
first introduced the deployment flow shown herein, taking a
trained MLP from FANN and exporting the code runnable
on ARM Cortex-M MCUs with only minutes of engineering
effort. In this work, we optimize the implementation, provide
much more detailed measurement results, introduce support
for fixed-point models, and extended it with an optimized
backend for deployment on the RISC-V-based PULP platform
processors. Moreover, this paper shows the benefits of parallel
processing for ANNs evaluating the performance with three
different application scenarios implemented in a working
prototype.

III. LOW-POWER PROCESSORS

As we mentioned in the previous section, one of the main
contributions of this paper is the FANN-on-MCU toolkit,
which enables MLP on low power processors, in particular
microcontrollers. Microcontrollers are the backbone of the
majority of low-power smart devices for the IoT. In the
following, we provide a short overview of the ARM Cortex-
M family of microcontrollers, and we introduce the Mr. Wolf
SoC we use as a representative of the RISC-V-based family of
PULP processors. Both processors have a power consumption
of milliwatts and are suitable for small-size (hundreds of
mAh) battery operation. Moreover, we describe InfiniWolf,
an embedded platform we designed that incorporates both an
ARM Cortex-M and a PULP processor to enable low-power
real-time wearable applications.

A. Low-Power Embedded Processing: ARM Cortex-M Family

The ARM Cortex-M (M0, M3, M4, M7) family features
different computational capabilities and operating frequencies
and has power consumption in the milliwatt range. The typical
frequency is 16 MHz for the M0 and up to 300 MHz for the
new and more powerful M7. The majority of those processors
have no floating-point unit, and only the ARM Cortex-M4F
and M7 implement a floating-point unit. This family of MCUs
is characterized by an on-chip SRAM of a few kB (256kB-
512kB) and a non-volatile flash memory with a maximum size
of 1-2 MB. The flash memory is typically used to preload the
program code and static data, while the SRAM is used for
the runtime code and main data memory. Thus, one of the
constraints to be taken into account is the size of the non-
volatile memory. Moreover, as MCUs are designed with low
power and low cost in mind, the operations per second and a
small memory footprint need to be taken into consideration.
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Fig. 3. Block diagram of Mr. Wolf.

Finally, it is important to notice that some ARM Cortex-
M cores have an integrated digital signal processing (DSP)
instruction set. This is the case of all the ARM Cortex-
M3, M4, and M7. The DSP instructions can be used to
accelerate many of the operations used for signal processing
and data analysis (e.g., the Fast Fourier transform). Most
notably, the Cortex-M4 and Cortex-M7 have integrated single
instruction, multiple data (SIMD) instructions, and multiply-
and-accumulate operations (MACs) that might be exploited to
accelerate computation in NNs.

The Cortex Microcontroller Software Interface Standard
(CMSIS) is a vendor-independent hardware abstraction layer
for the Cortex-M processor series and defines generic tool
interfaces [30]. CMSIS enables consistent device support
and simple software interfaces to the processor and the pe-
ripherals, simplifying software reuse, reducing the learning
curve for MCU developers, and reducing the time to market
for a new device. ANNs have a high number of multipli-
cations, so minimizing the computation time increases the
efficiency of the solution. We extensively use the optimized
CMSIS floating-point and fixed-point multiplication function
arm_dot_prod, where we measured a decrease of the
execution time by 36%, which shows the effectiveness of
CMSIS. Among others, we have also used arm_fill and
arm_copy that also gave an improvement in the range of 30%
in execution time. Moreover, CMSIS optimizes the computa-
tional time of many functions, such as DSP operations. The
DSP library includes over 60 digital signal processing related
functions that are optimized for the Cortex-M processors. DSP
functions can be handy for feature extraction (i.e., to perform
Fast Fourier transforms) but are not required for this toolkit,
which can run with optimized performance also on ARM
Cortex-M0 and other processors without DSP instructions.

B. Parallel Ultra-Low-Power Platform: PULP Processors

The PULP platform is an open-source, multi-core platform
based on the RISC-V ISA achieving leading-edge energy-
efficiency and featuring widely-tunable performance within
a power envelope of a few mW [27]. PULP aims to satisfy
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Baseline

mv x5, 0
mv x4, 100
Lstart:

lb x2, 0(x10)
lb x3, 0(x11)
addi x10, x10, 1
addi x11, x11, 1
add x2, x3, x2
sb x2, 0(x12)
addi x4, x4, -1
addi x12, x12, 1

bne x4, x5, Lstart

Post-incr. 
load and 

store

mv x5, 0
mv x4, 100
Lstart:

lb x2, 0(x10!)
lb x3, 0(x11!)
addi x4, x4, -1
add x2, x3, x2
sb x2, 0(x12!)

bne x4, x5, Lstart

Hardware 
loop

lp.setupi 100, Lend
lb x2, 0(x10!)
lb x3, 0(x11!)
add x2, x3, x2

Lend: sb x2, 0(x12!)

Packed 
SIMD

lp.setupi 25, Lend
lw x2, 0(x10!)
lw x3, 0(x11!)
pv.add.b x2, x3, x2

Lend: sw x2, 0(x12!)

11 cycles/output

8 cycles/output

5 cycles/output 1.25 cycles/output

for (i = 0; i < 100; i++) {
d[i] = a[i] + b[i];

}

Fig. 4. RISC-V ISA extensions of PULP.

the computational demands of IoT applications, which require
flexible and fast processing of data streams generated by
multiple sensors, such as accelerometers, microphone arrays,
low-resolution cameras, vital signs monitoring sensors. As
opposed to single-core MCUs, a parallel ultra-low-power pro-
grammable architecture provides the ability to meet the com-
putational requirements of applications in IoT domains where
low latency and low energy consumption are the central keys
for solving tasks on miniaturized, battery-powered systems.
Despite being an academic research platform, PULP offers
the maturity of a commercial device with OpenMP, OpenCL,
and OpenVX support to enable agile application porting, de-
velopment, performance tuning, and debugging. GreenWaves
Technologies produces commercial devices based on the open-
source PULP platform to design ultra-low-power embedded
solutions for image, sound, and vibration AI processing in
sensing devices [39].

In this work, we chose PULP Mr. Wolf processor [31] for
its ultra-low-power scalable performance, designed explicitly
for always-on AI-powered IoT applications. We report its
block diagram in Figure 3. Mr. Wolf features a hierarchical
architecture with a small RISC-V core in the so-called fabric
controller (FC) subsystem. It is coupled with an autonomous
I/O subsystem for efficient data transfers from a broad range
of peripherals exploiting a multi-channel I/O direct memory
access (µDMA) unit in the SoC domain. The small core
can offload compute-intensive tasks to a parallel eight-core
processing engine in the cluster domain, which is activated
only on demand. 512 kB of L2 memory is available in the SoC
domain and it is divided into a shared L2 memory arranged
in four 448 kB memory banks for easy access from both
µDMA and processors, and a private L2 memory for the FC
to store, for example, program, stack, private data, in order
to minimize bank conflicts. On the other hand, the Cluster
domain is equipped with a multi-bank L1 memory (sixteen
4 kB SRAM banks) to serve the parallel access from the eight
cores. The data transfer from/to the L2 memory to/from the
L1 memory is handled by an autonomous DMA unit. The
memory organization of the whole system is designed in such a
way that the interaction and the access conflicts are extremely
minimized.

The small core in the FC is called IBEX [40] and im-
plements the basic RV32IMC ISA, while the Cluster do-
main comprises eight RI5CY cores with custom instruction
set extensions for digital signal processing (DSP) including
hardware loops, post-incremental load and store instructions
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Fig. 5. Block diagram of InfiniWolf and the smart power unit that is able to
harvest energy from dual sources.

Fig. 6. InfiniWolf prototype used to carry out experimental measurements.

and additional ALU instructions. Figure 4 shows the cycle
reduction using the ISA extensions. We can see that with the
post-incremental load and store and the hardware loop, we can
gain a 2× speedup with respect to the baseline RV32IMC ISA,
additionally with packed SIMD instructions, we can achieve
up to approximately 10× speedup. Finally, the operational
frequency of the SoC can be configured between 32 kHz and
450 MHz, while for the cluster, the range is 32 kHz–350 MHz.

In this work, we fully exploit the memory hierarchy of
PULP chips and the custom ISA extensions, i.e., the hardware
loop and the post-incremental load and store instructions, and
more significantly, we will apply the cluster parallelism to
boost the computational capacity of the whole system.

C. Testbed Platform: InfiniWolf

To apply FANN-on-MCU to real-world applications, we
designed a hardware platform and used it as a testbed. The
designed platform is called InfiniWolf, a wearable battery
operated multi-sensor device that aims to work perpetually
with small-size energy harvesting and can be worn as a smart-
watch. Figure 5 shows the block diagram and the architecture
of the designed platform, which features two processors, a
Nordic nRF52832 Bluetooth low energy SoC with an ARM
Cortex-M4 processor and Mr. Wolf. The Nordic SoC handles
communication with a remote host and offers auxiliary support
for small data processing if needed. It provides Bluetooth Low
Energy (BLE) 5 communication capabilities, performs power
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management in various modes of operation (sleep, raw data
streaming, data acquisition, and processing), and keeps track
of the battery charging status. The dual-processor architecture
of InfiniWolf allows local end-to-end processing (i.e., on-board
classification using ML) with lower power and higher energy
efficiency than streaming the data out for remote analysis [41].
Moreover, this architecture allows lower latency in the range
of µs with respect to wireless connectivity.

A dual-source energy harvester for solar and thermoelectric
generator (TEG) modules has been embedded. The main goal
is to achieve perpetual work when the energy transducers
are deployed on a wrist band harvesting energy from light
and body heat. The choice of two energy harvesting sources
is motivated by increased flexibility and robustness of the
energy intake, while form-factor is not compromised as the
two harvesters exploit different sides of the watch (top for solar
and bottom side for thermal). Assuming InfiniWolf staying in
challenging indoor conditions for 6 hours, and the worst-case
scenario for the TEG energy harvester, it will acquire 21.44 J
per day. The smart power supply unit (PSU) includes a TEG
energy harvesting integrated circuits based on the BQ25505
from Texas Instruments, while the BQ25570 integrated circuits
deal with the solar energy harvesting and provide a 1.8 LDO.
Finally, a fuel gauge integrated circuit (BQ27441) monitors
the 120 mAh Li-Ion battery. The smartwatch includes a 9-
axis motion sensor (Invensense ICM20948), a pressure sensor
(Bosch Sensortec BMP280), a microphone (Invensense ICS-
43432), and an ultra-low-power ECG/EMG and bioimpedance
analog front-end (Maxim MAX30001) to acquire biomedical
signals as well as a low power galvanic skin response (GSR)
front-end. The wearable device can be worn on the user’s wrist
and periodically and opportunistically acquires information
from the sensors according to the available energy. A prototype
of the smartwatch is shown in Figure 6.

IV. OPEN-SOURCE FANN-ON-MCU FRAMEWORK

This section provides an overview of the steps for devel-
oping an embedded machine learning system and illustrates
FANN-on-MCU in detail.

A. Embedded ML System Development

Developing an intelligent sensor device with on-board pro-
cessing capabilities encompasses many steps. We provide a
brief overview in Figure 7. Development starts with specifying
a precise target application and which platform and sensors to
use, collecting data, and annotating it with the desired labels.
In the next step, the data should be pre-processed, identifying
and applying suitable feature extractors, optionally performing
data augmentation, normalizing the data, and preparing it in a
suitable data format for training. Then the neural network has
to be specified and trained, the network’s hyper-parameters and
its structure have to be explored (number of layers and nodes,
which activations), promising networks have to be trained, and
the best network has to be identified. If the desired accuracy
cannot be obtained, the previous steps have to be revisited
(collection of more data, different feature extractors, changing
the data augmentation for the training samples). Once the
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Fig. 7. Process flow from concept to deployment.

desired accuracy has been achieved, the network must be
deployed on the device, converting the neural network to
fixed-point (if no hardware floating-point support is available),
developing an optimized implementation for the target device,
co-integrating it with the sensor read-out and pre-processing,
and measuring the resulting performance and power.

B. The FANN-on-MCU Deployment Framework

The open-source FANN-on-MCU framework allows multi-
layer ANNs to be easily implemented and optimized on
resource-constrained ultra-low-power MCUs. In particular, the
framework exploits the ARM M-series-specific instructions,
and the custom RISC-V instruction set extensions on PULP.
The framework includes a script for automatic conversion of
the trained network to a directly callable dependency-free C
function, including a test method that applies samples from
the dataset for verification and benchmarking. Notably, the
generated code files include all the parameters of the network
to overcome the need for file system support. This allows for
a straightforward workflow:

1) Convert the data to the standard FANN format;
2) Train a neural network using FANN and save it;
3) Optionally convert the neural network to fixed-

point by rescaling the input data and calling
fann_save_to_fixed;

4) Apply the conversion script to the ANN and dataset;
5) Call the fann_type* fann_run(fann_type

*input) function from within your code;
6) Build your code together with the generated files and

evaluate the resulting application.
Our converter also supports fixed-point and floating-point
models and can thus run also efficiently on MCUs without
a floating-point unit, such as the tiny Cortex-M0 and M0+.
We have released the code as open-source software online1.

The framework is straightforward to use: with a single
line command, one can generate the C code and header files
for the desired platform with the selected data type, i.e.,
floating-point or fixed-point. The conversion script takes into
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account the processor family and evaluates the network size
to automatically select the level of memory closest to the
processing unit, still big enough to contain the whole network.
Specifically, it estimates the required memory for the network
and the buffers according to

Em =(2 · Ldata buffer + 5 ·Nneurons+

Nweights + 2 ·Nfann layers) · sizeof(dtype),
(2)

where Em is the estimated memory size, Ldata buffer is the
buffer length of one input sample multiplied by two con-
sidering the eventual double buffering for continuous data
processing from sensors or other sources, Nneurons is the total
number of neurons in the network including the biases seen as
an additional neuron to every layer, this constant is multiplied
by five due to the storage of indexes to the first and last
connections in the layer, the activation steepness, the type
of the activation function, and the output of every neuron,
Nweights is the total number of the weights in the network,
and Nfann layers is the total number of layers including the
input, the hidden, and the output layers, multiplied by two for
storing the indexes of the first and the last neurons in each
layer.

According to Em and the selected processor, the framework
automatically stores the network parameters in the level of
cache that is closest to the processing unit and still contains
the network. For example, if an ARM Cortex-M processor
with 96 kB RAM available for data storage is selected and the
estimated network size is 30 kB, the network parameters will
be automatically loaded into RAM. Additionally, for PULP-
based processors, the framework is aware of the characteristic
double domain feature of some PULP-based processors and
the DMA unit. For example, the following situations apply
for PULP Mr. Wolf:

• FC selected, Em smaller than the private L2 memory,
then the network is stored into the private memory of the
FC.

• FC selected, Em bigger than the private L2 memory, then
the network is stored in the shared L2 memory.

• Cluster selected, Em smaller than the L1 memory, then
the network is stored into L1 memory.

• Cluster selected, Em bigger than the L1 memory, then
the network is stored into the shared L2 memory with
automatic DMA transfers exploiting the double buffering,
i.e., while computing on one chunk of data, the next
chunk is transferred simultaneously. In this case, two
types of transfers are possible:

– When the largest layer fits into the L1 memory, the
DMA unit transfers the whole layer from L2 to L1
(i.e., layer-wise transfers).

– When the largest layer does not fit into the L1 mem-
ory, the DMA unit performs neuron-wise transfers,
i.e., it transfers the weights for a single neuron at a
time.

Generally, in PULP-based processors, the cluster domain is
used for applications where a large amount of computations is
required, while the FC is usually engaged in I/O handling or
other kinds of scheduling. However, for an application scenario
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Fig. 8. Runtime in number of cycles before and after the first optimization
steps on the example network.

where, for example, a small network is used to detect the onset
and, once the onset is detected, a deeper network is used for
classification [42], both domains (SoC and Cluster) have its
own advantage: the FC continuously reads the sensory data
and executes the onset detection algorithm, while the cluster
domain is activated once the onset is detected to perform
the classification with a deep NN. In this case, our proposed
framework stores the small network into the private L2 mem-
ory for the FC, while for the classification task, the DMA
unit transfers the network using the double-buffering technique
into the L1 memory for the computation in cluster domain.
With this configuration, access to memory is the fastest for
both computation domains. This way, we successfully meet
the two main requirements in the IoT domain: low power
and low latency, since we power on the powerful computation
engine, i.e., the cluster domain, to perform fast computation
only when it is strictly necessary in order to save the overall
energy consumption. The whole process is automated in our
framework to alleviate the user’s workload.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of FANN-on-
MCU on a wide variety of network architectures with varying
input and output sizes and number of hidden layers and
hidden units, before demonstrating its efficiency for specific
application showcases in Section VI.

A. Methods

In a first step, we analyzed the code provided by FAN-
NCortexM, which supports only ARM Cortex-M, to find
performance bottlenecks and to do profiling using an example
network with 5 input features, 2 hidden layers with 50 neurons
each, and 3 output classes. The evaluation is done on an
STM32L475VG with ARM Cortex-M4.

We then proceeded with the implementation of FANN-on-
MCU to support the deployment of ANNs on both ARM
Cortex-M series and PULP family, and exhaustively evaluated
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24.4 254.9 478.4 701.8 925.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

23.3 243.6 457.0 670.4 883.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.2 232.2 435.6 639.0 842.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

21.1 220.8 414.2 607.7 801.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.1 209.4 392.8 576.3 759.8 943.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19.0 198.0 371.4 544.9 718.4 891.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

17.9 139.6 350.1 513.6 677.0 840.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

16.8 131.1 328.7 482.2 635.7 789.2 942.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15.7 122.6 307.3 450.8 594.3 737.8 881.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14.6 114.1 285.9 419.4 553.0 686.5 820.0 953.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13.5 105.6 264.5 388.1 511.6 635.1 758.7 882.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

12.4 97.0 243.1 356.7 470.2 583.8 697.3 810.9 924.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.3 88.5 221.8 325.3 428.9 532.4 636.0 739.6 843.4 947.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.3 80.0 149.8 293.9 387.5 481.1 574.7 668.2 762.1 855.7 949.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.2 71.5 133.8 262.6 346.2 429.7 513.3 596.9 680.8 764.4 848.0 931.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.1 62.9 117.8 231.2 304.8 378.4 452.0 525.6 599.5 673.1 746.7 820.3 894.0 967.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7.0 54.4 101.9 149.3 263.4 327.0 390.7 454.3 518.1 581.8 645.4 709.1 772.7 836.4 900.0 963.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.9 45.9 85.9 125.9 222.1 275.7 329.3 382.9 436.8 490.5 544.1 597.8 651.4 705.1 758.8 812.4 866.1 919.7 973.4 0.0 0.0 0.0 0.0

4.8 37.4 70.0 102.6 135.2 224.3 268.0 311.6 355.5 399.2 442.8 486.5 530.2 573.8 617.5 661.2 704.8 748.5 792.2 835.8 879.5 923.2 966.8

3.7 28.9 54.0 79.2 104.4 129.5 154.7 240.3 274.2 307.9 341.6 375.2 408.9 442.6 476.3 509.9 543.6 577.3 611.0 644.7 678.3 712.0 745.7

2.6 20.4 38.1 55.8 73.6 91.3 109.0 126.8 144.5 162.2 240.3 264.0 287.6 311.3 335.0 358.7 382.4 406.1 429.8 453.5 477.2 500.9 524.5

1.5 11.9 22.2 32.5 42.8 53.1 63.4 73.7 84.0 94.3 104.6 114.9 125.2 135.5 145.9 156.2 166.5 232.7 246.3 259.8 273.4 287.0 300.6

0.5 3.3 6.2 9.1 12.0 14.9 17.7 20.6 23.5 26.4 29.3 32.1 35.0 37.9 40.8 43.7 46.6 49.4 52.3 55.2 58.1 61.0 63.8

Runtime Measurements of Single-Layer MLP on Cortex-M4
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34.0 274.2 538.3 754.6 994.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

32.5 274.0 514.2 754.4 950.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

31.0 261.2 490.1 719.1 948.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

29.5 248.3 466.0 683.7 861.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

29.0 235.5 441.9 648.3 816.7 1013.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

27.4 222.7 417.8 612.9 772.2 958.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25.8 209.8 393.7 577.5 727.6 903.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

23.3 197.0 369.6 542.2 714.8 848.0 1013.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

21.8 184.1 345.5 506.8 638.6 792.7 946.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.3 171.3 321.3 471.4 621.5 737.5 880.9 1024.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18.7 158.4 297.2 436.0 549.5 682.2 814.9 947.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

17.2 145.6 273.1 400.7 505.0 626.9 748.8 870.7 992.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15.7 132.7 249.0 365.3 460.5 571.6 682.8 794.0 905.1 1016.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14.2 119.9 224.9 329.9 415.9 516.3 616.8 717.2 817.6 918.0 1018.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

12.7 107.0 200.8 294.5 388.3 461.1 550.7 640.4 730.1 819.7 909.4 999.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.1 94.2 176.7 259.2 341.7 405.8 484.7 563.6 642.5 721.4 800.3 879.3 958.2 1037.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.6 81.3 152.6 223.8 295.0 350.5 418.7 486.8 555.0 623.1 691.3 759.5 827.6 895.8 963.9 1032.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.1 68.5 128.4 188.4 237.8 295.2 352.6 410.0 467.5 524.9 582.3 639.7 697.1 754.5 811.9 869.3 926.7 984.1 1041.5 0.0 0.0 0.0 0.0

6.6 53.3 104.3 153.0 201.7 239.9 286.6 333.3 379.9 426.6 473.2 519.9 566.5 613.2 659.9 706.5 753.2 799.8 846.5 893.1 939.8 986.4 1033.1

5.1 41.0 80.2 117.7 148.8 184.7 220.6 256.5 292.4 328.3 364.2 400.1 436.0 471.9 507.8 543.7 579.6 615.5 651.4 687.3 723.2 759.1 795.0

3.5 29.9 53.9 82.3 104.2 129.4 154.5 179.7 204.8 230.0 255.1 280.3 305.5 330.6 355.8 380.9 406.1 431.2 456.4 481.5 506.7 531.8 557.0

2.0 17.1 32.0 45.3 59.7 74.1 88.5 102.9 117.3 131.7 146.1 160.5 174.9 189.3 203.7 218.1 232.5 246.9 261.3 275.7 290.1 304.5 318.9

0.5 4.2 7.9 11.5 15.2 18.8 22.5 26.1 29.7 33.4 37.0 40.7 44.3 48.0 51.6 55.3 58.9 62.6 66.2 69.9 73.5 77.2 80.8

Number of Cycles of Single-Layer MLP on Single-Ibex Core
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Fig. 9. Runtime in number of cycles of a single layer by varying the number of input and output to the layer. 0.0 is when the network is too big to be stored
in the largest memory. Runtime measurements on (a) an ARM Cortex-M4 and (b) the PULP IBEX core with the basic RV32IMC ISA. In (a), the continuous
blue grid delimits the case when the layer is too large to fit into RAM, therefore it is stored in flash memory. In (b), the purple dotted grid delimits the case
when the layer is too large to fit into private L2, hence it is stored in the shared L2 memory.

its performance on STM32L475VG with ARM Cortex-M4 and
PULP-based Mr. Wolf with the following two approaches:

• We first considered single-layer performance. We mea-
sured the runtime of a single layer by varying the number
of inputs and outputs of the layer, namely the length of
the input feature vector and the number of neurons in the
layer.

• Subsequently, we varied the number of hidden layers with
fixed input features (100 input features) and fixed output
units (8 classes) and measured the performance of the
whole network. The number of hidden units in every
hidden layer varies according to the following equation:

Nl = (l mod 2 + l div 2) · d (3)

where Nl is the number of neurons in l-th hidden layer,
mod is the modulo operation and div is the integer
division, d a tunable parameter. Hence, the number of
total hidden units (Ntot) is:

Ntot =

L∑
l=1

(l mod 2 + l div 2) · d (4)

with L the total number of hidden layers.
The measurements are done in the same manner discarding
the first 3 executions, then averaging through the next 1000
iterations. All the measurements are done on-board. The
results are shown and discussed in the next section.

B. Experimental Results and Discussion

In the previous FANNCortexM, the buffer used to keep
the intermediate values of each neuron is firstly filled in
with the bias, which is overwritten immediately afterward.
This step causes unnecessary performance slowdown, which is
eliminated in our version of FANN-on-MCU. Figure 8 shows
the gain in performance and the profiling results of the exam-
ple network executed on STM32L475VG with ARM Cortex-
M4. From the plot we can observe three main outcomes:
firstly, the elimination of unnecessary initialization offered
around 4.3% and 7.1% improvement in runtime respectively
for floating-point and fixed-point implementations; secondly,
the fixed-point version is around 15% faster than the floating-
point version; thirdly, the computation of the weight matrices
without the activation functions is the most computationally
demanding part. More specifically, it comprises approximately
85% of the total compute time for this example network. Based
on these observations, we conducted our following analyses in
fixed-point implementation, focusing on the computation of
weight matrices without activation functions.

We further proceeded with a single-layer performance ex-
amination. Figure 9a shows the runtime in number of cycles of
a single layer by varying the number of input and the number
of output to the layer executed on STM32L475VG with ARM
Cortex-M4 with the fixed-point implementation. The blue grid
delimits the case when the layer is too large to fit into RAM
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1.9 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.9 2.2 2.2 2.2 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.0 2.2 2.2 2.2 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.0 2.2 2.2 2.2 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.0 2.2 2.2 2.2 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.0 2.0 2.0 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.0 2.0 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.0 2.0 2.0 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.0 2.0 2.1 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.1 2.1 1.9 1.9 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.9 2.2 2.1 2.1 2.1 1.9 1.9 1.9 1.9 1.9 2.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.1 2.1 2.1 2.0 2.0 2.0 2.0 2.0 1.9 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.1 2.1 2.1 2.0 2.0 2.0 2.0 2.0 1.9 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 2.0 2.0 1.9 2.0 2.0 2.0 2.0 2.0 2.0 1.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0

2.1 2.1 2.2 2.2 1.9 1.8 2.0 2.0 1.8 1.8 2.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2.0 1.8 1.8

2.0 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.8 2.0 2.0

1.8 2.1 2.0 2.1 1.9 1.9 1.9 1.9 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.8 1.8

1.7 2.0 2.0 2.0 2.0 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.7

1.3 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

Speedup of Single-Layer MLP on Single-Ri5cy Core wrt. Single-Ibex Core
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ize

3.4 5.6 6.3 6.7 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.4 5.6 6.3 6.7 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.4 5.6 6.4 6.7 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.4 5.5 6.3 6.7 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.4 5.5 6.3 6.6 6.8 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.4 5.5 6.3 6.6 6.8 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.4 5.5 6.3 6.6 6.8 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 6.0 6.9 7.2 7.4 6.9 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 6.0 6.9 7.2 6.8 6.9 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 6.0 6.8 7.2 7.4 6.9 7.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 6.0 6.8 7.2 6.7 6.9 6.9 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 6.0 6.8 7.2 6.7 6.8 6.9 7.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 7.1 6.2 6.5 6.7 6.9 6.9 7.0 7.1 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 7.0 6.7 7.1 6.7 6.8 6.8 6.9 7.0 7.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.3 5.8 6.1 6.4 6.6 6.8 6.9 6.9 7.0 7.6 7.0 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.9 6.9 6.1 6.4 6.6 6.2 6.3 6.3 6.9 6.9 7.0 7.0 7.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.9 6.9 6.0 6.3 6.5 6.1 6.2 6.3 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.9 6.8 7.3 6.8 6.4 6.5 6.1 6.2 6.7 6.7 6.8 6.8 6.8 6.8 6.8 6.9 6.9 6.9 6.9 0.0 0.0 0.0 0.0

2.8 5.5 6.0 6.2 6.9 7.0 6.5 6.6 6.7 7.2 6.7 7.3 7.3 7.3 7.3 7.3 6.9 6.9 6.9 6.9 6.8 6.9 6.9

2.7 6.4 7.0 7.2 6.7 6.3 5.9 6.0 6.4 6.5 6.6 6.5 6.5 6.5 6.5 6.6 6.6 6.6 6.6 6.6 6.7 6.6 6.6

2.8 5.6 5.6 5.8 6.9 7.0 6.1 6.1 6.2 6.7 6.2 6.7 6.7 6.7 6.8 6.8 6.4 6.4 6.4 6.4 6.3 6.4 6.4

2.5 5.0 5.5 5.3 5.4 6.2 6.3 6.3 6.4 6.4 6.4 6.0 6.1 6.1 6.1 6.1 5.8 5.9 5.9 5.9 5.8 5.9 5.9

1.6 3.2 3.5 3.6 3.7 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9

Speedup of Single-Layer MLP on Multi-Ri5cy Cores wrt. Single-Ri5cy Core

2 3 4 5 6 7
Speedup

(b)

Fig. 10. Speedup on PULP of a single layer perceptron by varying the number of input and output to the layer. The purple dotted grid delimits the case
when the layer is too large to fit into private L2, hence it is stored in the shared L2 memory for the FC. The gray dash-dotted grid delimits the case when the
layer does not fit into the L1 memory and neuron-wise DMA transfer is applied for the Cluster. 0.0 is when the layer is too big to be stored in the largest
memory. (a) Speedup of single RI5CY core with respect to a single IBEX core, (b) Parallel speedup of multiple RI5CY cores with respect to a single one.

and is thus stored in flash memory. 0.0 indicates that the layer
is even too large to be stored in flash memory. Figure 9b shows
the same measurements on the FC of Mr. Wolf, i.e., single
IBEX core with the basic RM32IM instruction set. The dotted
purple grid marks the fact that the layer does not fit into the
private L2 memory anymore and is thus stored in the larger
shared L2 memory. These two figures represent the reference
in number of cycles for the following discussions, which will
be led in terms of speedups.

Compared to a single IBEX core, we can see from the
results in Figure 10a that we gain up to 2.2× speedup
using a single RI5CY core, by adding the custom instruction
set extensions, most importantly hardware loops and post-
increment loads. The grey dash-dotted grid delimits the results
when the layer does not fit into the L1 memory, and neuron-
wise double-buffering transfer using DMA unit is applied, i.e.,
the weights of a single neuron is transferred from the L2 to the
L1 memory while the RI5CY processor computes the result
of the previous neuron. We can see that the speedup for larger
input sizes is higher than the speedup for smaller input sizes
because the overhead of activating the DMA transfers becomes
negligible with longer computation time due to larger input
feature vectors. We further measured the speedup of parallel
execution with respect to single RI5CY core execution. The
results in Figure 10b demonstrate up to 7.7× speedup with
measurements on-board.

Subsequently, we compared the execution on ARM Cortex-

M4 and PULP Mr. Wolf. Figure 11a shows the speedup of
single RI5CY core over ARM Cortex-M4, while Figure 11b
demonstrates the parallel RI5CY core speedup over ARM
Cortex-M4. The former reaches almost a 2× speedup, whereas
the latter achieves up to 13.5× speedup.

Finally, we measured the performance of entire networks
with fixed input and output layers while varying the number
of hidden layers and hidden units, as described in Section V.
We first chose d = 8 in (3) and (4) to show the performance
measurements from relatively small networks with a single
hidden layer with only 8 hidden nodes to relatively large
networks with 24 hidden layers with 1248 hidden units. With
this design, networks larger than 24 hidden layers do not fit
into the largest memory of our selected processors. Figure 12
shows the runtime in number of cycles, and Figure 13a and
Figure 13b present the speedup.

As shown in Figure 13a, the network fits into the L1
memory of Mr. Wolf up to 12 hidden layers, i.e., 336 hidden
units. Networks larger than 12 hidden layers are stored in the
L2 memory and are transferred piece-wise to the L1 memory
with DMA transfers in a double-buffering configuration. The
largest layer of the networks with between 13 and 21 hidden
layers still fits into the L1 memory allowing for layer-wise
DMA transfers, i.e., the parameters of a whole layer are
transferred at a time. For networks with more than 21 hidden
layers, neuron-wise DMA transfers are performed as not all
layers fit into the L1 memory even individually. Thus, we
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t s
ize

1.4 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 1.8 1.8 1.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 1.9 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 1.9 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 1.4 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.8 1.8 1.8 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.8 1.8 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.8 1.8 1.8 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.7 1.7 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.7 1.7 1.9 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.9 1.9 1.7 1.7 1.7 1.7 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.3 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 1.5 1.4 1.9 1.9 1.7 1.7 1.7 1.7 1.7 1.9 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.4 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.7 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.4 1.4 1.9 1.9 1.9 1.9 1.9 1.9 1.7 1.9 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.5 1.3 1.3 1.3 1.9 1.9 1.9 1.9 1.9 1.9 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 0.0 0.0 0.0 0.0

1.5 1.4 1.4 1.4 1.3 1.7 1.9 1.9 1.7 1.7 1.9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.9 1.7 1.7

1.5 1.3 1.3 1.3 1.4 1.4 1.4 1.8 1.8 1.8 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.8 1.8

1.3 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.7

1.3 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.6 1.6 1.6 1.7 1.6 1.6

1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
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1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Speedup

(a)

4 36 68 100
132

164
196

228
260

292
324

356
388

420
452

484
516

548
580

612
644

676
708

Output size

708
676
644
612
580
548
516
484
452
420
388
356
324
292
260
228
196
164
132
100
68
36
4

In
pu

t s
ize

4.7 10.7 12.2 12.9 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.7 10.7 12.2 12.9 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.7 9.8 11.2 11.8 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.7 10.7 12.2 12.8 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.7 10.6 12.1 12.8 13.1 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.7 10.6 12.1 12.8 13.1 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.7 7.9 12.1 12.7 13.1 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.7 7.9 12.0 12.7 13.0 13.3 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.6 7.9 12.0 12.6 13.0 13.2 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.6 7.9 12.0 12.6 13.0 13.2 13.3 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.6 7.8 11.9 12.5 12.9 13.1 13.3 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.6 7.8 11.9 12.5 12.8 13.1 13.2 13.4 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.6 9.4 11.8 12.4 11.8 12.0 12.1 12.2 12.3 12.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.5 9.3 8.7 12.3 12.7 12.9 13.1 13.2 13.3 13.3 12.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.5 8.4 8.7 12.2 12.6 11.8 12.0 12.1 12.1 13.2 13.3 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.4 9.2 8.6 12.1 12.5 11.8 11.9 12.0 13.0 13.1 12.2 13.2 13.2 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.4 9.1 8.5 8.9 12.3 11.6 11.7 11.8 12.8 12.9 12.0 13.0 13.1 13.1 13.1 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.3 9.0 9.7 8.8 12.1 12.3 11.6 11.7 12.6 12.7 11.8 12.8 12.8 12.9 12.9 12.9 12.9 12.9 13.0 0.0 0.0 0.0 0.0

4.2 8.0 8.7 9.0 8.8 12.0 12.1 12.2 11.4 12.4 12.4 12.5 12.5 12.5 12.6 12.6 11.8 11.8 11.8 11.8 12.7 11.8 11.9

4.0 8.5 9.2 9.5 9.6 8.6 8.2 11.0 11.8 11.9 11.2 12.0 12.0 12.1 12.1 12.1 12.1 12.2 12.2 12.2 11.4 12.2 12.2

3.8 8.0 8.1 8.3 9.1 9.2 8.2 8.3 7.8 8.4 11.2 11.2 11.3 11.3 11.3 11.3 10.7 10.8 10.8 10.8 11.4 10.8 10.8

3.3 7.1 7.7 7.5 7.6 8.2 8.3 8.3 8.4 8.4 8.4 7.3 7.4 7.4 7.4 7.4 7.1 9.3 9.4 9.4 9.8 9.4 9.4

1.9 4.2 4.6 4.8 4.9 4.9 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1

Speedup of Single-Layer MLP on Multi-Ri5cy Cores wrt. Cortex-M4
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Fig. 11. Comparison between ARM Cortex-M4 and PULP RI5CY cores on a single layer perceptron by varying the number of input and output to the
layer. The gray dash-dotted grid delimits the case when the layer is too big for the L1 memory and neuron-wise DMA transfer is applied for RI5CY. The
continuous blue grid delimits the case when the layer is too large to fit into RAM, hence it is stored in flash for Cortex-M4. 0.0 is when the layer is too big
to be stored in the largest memory. (a) Speedup of single RI5CY core with respect to ARM Cortex-M4, (b) Parallel speedup of multi RI5CY with respect to
ARM Cortex-M4.
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Fig. 12. Runtime in number of cycles of whole network with varying number
of hidden layers and hidden units.

transfer the parameters of one neuron at a time. We can see
from the plot that when the network size is small, the parallel
speedup is lower than in cases where the network size is large.
This can be attributed to the overhead of parallelization and
is more noticeable for small networks where the amount of
computation is relatively small. However, we can still reach
around 4.5× parallel speedup with respect to the single RI5CY

core for tiny networks such as the one with only one hidden
layer comprising 8 hidden neurons. The general tendency of
the parallel speedup increases while augmenting the network
size.

Figure 13b demonstrates the comparisons between PULP
Mr. Wolf and ARM Cortex-M4. We can see that IBEX core
is slightly slower than Cortex-M4 when the latter accesses to
RAM, while the performance of Cortex-M4 degrades slightly
when the network is too large to fit into RAM, and it has
to access the flash memory. In this case, the IBEX core is
as fast as the Cortex-M4. The same phenomenon can be
observed in the other two figures, i.e., single-core and multi-
core speedup of RI5CY over Cortex-M4. Specifically, a single
RI5CY core is almost twice as fast as a Cortex-M4 code
as a result of the custom ISA extensions, e.g., hardware
loops and post-increment loads. The parallel speedup grows
steadily with increasing network size. As expected, we see
a speedup drop when the network is too large to be stored
in L1 for RI5CY cores, while it still fits into the RAM of
the Cortex-M4. Contrarily, when the network is stored into
flash on the Cortex-M4, the DMA transfer from L2 to L1 in
Mr. Wolf offers much more gain with respect to flash access
in Cortex-M4, more specifically the speedup reaches up to
11.1× for the designed network architecture. As mentioned
previously, the purpose of this experiment is to show the
performance of an entire network starting with very small
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Fig. 13. Speedup measurements of whole network with varying number of hidden layers and hidden units. (a) Speedup measurements on PULP Mr. Wolf,
(b) Comparison between PULP Mr. Wolf and ARM Cortex-M4.

network sizes, such as the one with only 8 hidden units,
and increasing the network size by adding hidden layers and
hidden neurons consecutively. With this design, the networks
with more than 24 hidden layers do not fit into the largest
memory. Nevertheless, the performance of larger networks
using neuron-wise DMA transfer is exhaustively presented in
figures 10a, 10b, 11a, and 11b, and discussed in the first part
of this section.

VI. APPLICATION SHOWCASES

MLPs have been successfully used in a wide range of
application scenarios, such as disease detection [43], activity
recognition [44], and brain-machine interface [45]. Many
studies identified MLPs to be the best or one of the best
algorithms to solve tasks in the IoT domain using wearable
devices [46]–[49]. In this section, we present three application
showcases found in the literature using an MLP with different
network sizes [44]–[46] in order to demonstrate the usability
and the power efficiency of our proposed framework with the
supported MCUs. We reproduced the network architectures
and executed the classifications on both Nordic nRF52832 with
ARM Cortex-M4 and PULP Mr. Wolf present on InfiniWolf
using our proposed framework and measured the runtime and
power consumption.

A. Hand Gesture Recognition

The authors in [45] presented a gesture classification method
based on a sensor fusion technique using surface electromyo-
graphy (EMG) and a 9-axes inertial measurement unit (IMU).
The EMG and IMU signals were acquired using Myo Arm-
band [50] placed around the forehand. The goal is to recognize
10 hand gestures. 76 time-domain features are extracted from
EMG and IMU signals and fed as input to the designed
MLP with three hidden layers of 300, 200, and 100 hidden
units each, and an output layer of 10 classes. The highest
classification accuracy achieved is 85.58%. As a shorthand,
we name it application A.

B. Fall Detection for Elderly People

We implement the model proposed in [46], named applica-
tion B, where is proposed a combination of pressure sensors
in the insoles and accelerometers at the head, pelvis, left,
and right shanks of the shoes to assess fall-risk in elderly
people. The authors extracted spatial, temporal, and frequency
domain features from the pressure and accelerometer data
and explored various sensor combinations and three different
machine learning models, i.e., MLPs, naı̈ve Bayesian, and
Support Vector Machine. As a result, the best performing
model was an MLP with input parameters from pressure
sensors and accelerometers at the head, pelvis, and left shank,
reaching the best accuracy of 84%. The network is composed
of 117, 20, and 2 nodes, respectively, as input, hidden, and
output layers.

C. Human Activity Classification

The authors in [44] proposed an FPGA implementation of
MLPs with parallel computation to classify human activity in
real-time. The dataset is acquired by a 3-axial accelerometer
wore on the waist and classified into five activity classes.
Various MLP topologies were investigated, and the final pro-
posed architecture consists of 7 input features extracted using
a sliding window, 6 hidden nodes arranged in a single layer,
and 5 output nodes, with the best accuracy being 94.6%. The
trained model runs on a Xilinx FPGA with an execution time
of 270 ns and a power consumption of 241 mW. Here we call
it application C for convenience.

D. Experimental Evaluation and Results

We reproduced the network architectures described above
with sigmoidal activation functions using the FANN library
and deployed them with our framework on the two processors
present on InfiniWolf, i.e., the Nordic nRF52832 with an ARM
Cortex-M4 and Mr. Wolf, using our proposed framework.
The measurements on nRF52832 are done with the processor
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running at 64 MHz and with DC/DC regulator enabled, since
on the datasheet is stated that using the DC/DC regulator will
reduce current consumption compared to when using the LDO
regulator. The measurements on Mr. Wolf are done considering
both the SoC and Cluster domains with the processors running
at 100 MHz since it is shown that at this frequency, the
energy efficiency is maximized [31]. The measurements are
performed using the power analyzer Keysight N6705C with
the minimum sampling interval being 0.1024 ms.

Table I summarizes the measured runtime and the average
power consumption of the three MLPs used in the three appli-
cations. Let us first analyze the application A which has the
largest network architecture, i.e., 76-300-200-100-10, yielding
103800 MACs. We can see that the runtime parallel speedup
using multi RI5CY cores is 7.1× with respect to a single one,
which corresponds to the measurements shown in Figure 10b.
For example, according to Figure 10b, if we take an input size
of 324 and an output size of 292, which requires approximately
the same amount of computation (94608 MACs), we gain
the same speedup of 7.1×. For comparisons with IBEX and
Cortex-M4 we have to consider additionally the activation,
the initialization, and the deactivation of the cluster, that
introduce a constant overhead of 1.2 ms on average, and the
DMA transfers of the input data from L2 to L1, which in
this case is negligible with 76 inputs (~2.5µs). Figure 14
plots the measured power consumption during the end-to-
end execution of a single classification, including the cluster
activation/deactivation and DMA transfers. Due to Amdahl’s
law, the overall runtime speedup of multi RI5CY cores is
3.5× with respect to a single core for one classification.
If we do multiple classifications, the constant overhead will
become negligible as we increase the number of classifications.
Moreover, this overhead can be reduced with improved drivers,
which is not the focus of this work.

Considering the end-to-end performance of a single classifi-
cation, we obtain 5.7× and 8.8× speedup using multi RI5CY
cores with respect to IBEX and Cortex-M4. These figures grow
asymptotically towards 14.3× and 22× with an increasing
number of MLP classifications per cluster activation. Similar
conclusions can be drawn for the energy consumption. The
constant overhead is around 13µJ, while the energy consumed
for one classification using parallel computation is 54µJ,
which is around 2.2× more energy efficient than the single-
core computation. Comparing the end-to-end parallel perfor-
mance of one classification to Cortex-M4 and IBEX, we save
respectively 2.8× and 1.8× more energy. These gains increase
up to 3.4× and 2.3×, with a rising number of classifications
per cluster activation.

Finally, for very small networks, such as the ones used in
applications B and C, the runtime is far below the millisecond
range. If the application scenario requires only very few
classifications per cluster activation, then the IBEX core is the
most energy-efficient one, with a consumption of 2.9µJ and
0.15µJ, respectively for applications B and C. Comparing to
the work in [44] for application C, the IBEX core is 13.5×
faster in computation time and 434× more energy efficient
than a parallel FPGA implementation. However, if continuous
classification is required, which is the case for the vast majority
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Fig. 14. End-to-end power measurements of one classification of application
A on Mr. Wolf with RI5CY core(s).

of the IoT applications, then the parallel execution, once
again, outperforms in terms of speed and energy efficiency.
For example, for one classification in application B, IBEX
core consumes 2.86µJ, while the parallel execution consumes
0.67µJ in addition to the constant overhead of 13µJ which
is spent only once, then the parallel ultra-low-power approach
already pays off when more than 6 classifications are done. If
a continuous classification is required, the parallel approach is
4× as energy-efficient as the single IBEX core.

VII. CONCLUSION

Artificial intelligence and machine learning for low-power
IoT devices that host MCUs are key technologies for near-
sensor data analytics and decision making. Multi-layer neural
networks are showing incredible performance in terms of
accuracy in many applications. However, very few implemen-
tations and measurement results exist for low-power MCUs.
We have presented FANN-on-MCU, a framework to facilitate
deployment of optimized neural networks trained using the
open-source FANN library. Our framework supports not only
the very popular ARM Cortex-M series MCUs, but also the
RISC-V-based Parallel Ultra-Low Power (PULP) processors,
both with and without a floating-point unit. We have further

TABLE I
MEASURED RUNTIME AND AVERAGE POWER CONSUMPTION ON

APPLICATION SHOWCASES.

App. nRF52832 —————– PULP Mr. Wolf —————–
ARM Cortex-M4 IBEX Single-RI5CY Multi-RI5CY

17.6 ms 11.4 ms 5.7 ms* 0.8 ms*
A 10.44 mW 10.75 mW 20.35 mW 61.79 mW

B 0.4 ms 0.3 ms 0.14 ms*, † 0.03 ms*, †

11.21 mW 9.52 mW 17.54 mW 22.18 mW
0.03 ms† 0.02 ms† 0.01 ms*, † 0.004 ms*, †

C 9.74 mW 7.31 mW 16.91 mW 17.17 mW
* In addition around 1~1.3 ms for cluster activation, initialization, and deac-

tivation with an average power consumption of 11.88 mW.
† The runtime is below or very close to the precision of the measuring

instrument, hence it is calculated from the measured number of cycles.
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shown performance comparisons of neural network inference
between the two classes of processors and presented three
different use-cases to evaluate the performance of our frame-
work. We have demonstrated that ANNs are suitable for
deployment on ultra-low-power MCUs in terms of memory
usage, compute time, and energy consumption. Specifically,
experimental measurements have shown that using FANN-
on-MCU, neural network inference with 103800 multiply-
accumulate operations can be performed with a mere 183µJ on
a Nordic nRF52832 MCU with an ARM Cortex-M4 and with
just 53µJ on a Mr. Wolf MCU with 8 RISC-V-based RI5CY
cores. The framework is released open-source and ready to be
used to deploy neural networks for applications on low-power
embedded systems.
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