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Abstract The horizon is a classical concept that arises in general relativity and is therefore not clearly defined when the source
cannot be reliably described by classical physics. To any (sufficiently) localised quantum mechanical wavefunction, one can associate
a horizon wavefunction which yields the probability of finding a horizon of given radius centred around the source. We can then
associate to each quantum particle a probability that it is a black hole, and the existence of a minimum black hole mass follows
naturally, which agrees with the one obtained from the hoop conjecture and the Heisenberg uncertainty principle.

1 Introduction

The topic of gravitational collapse and black hole formation in general relativity dates back to the seminal papers of Oppenheimer
et al. [1, 2]. Although the literature has thereafter grown immensely [3], many technical and conceptual difficulties remain unsolved.
One thing we can safely claim is that gravity will come into play strongly whenever a given amount of matter is localised within a
sufficiently small volume. This is the idea in Thorne’s hoop conjecture [4]: A black hole forms when the impact parameter b of two
colliding objects is shorter than the Schwarzschild radius of the system, that is for 1

b � 2 �p
E

mp
≡ rH, (1.1)

where E is total energy in the centre-mass frame. The conjecture, which has been checked in a variety of situations, was formulated
initially having in mind black holes of astrophysical size [5–7], for which the very concept of a classical background metric and
related horizon structure should be reasonably safe.

The appearance of a classical horizon is relatively easy to understand in a spherically symmetric space-time. We can write a
general spherically symmetric metric gμν as

ds2 � gi j dxi dx j + r2(xi )
(
dθ2 + sin2 θ dφ2), (1.2)

where r is the areal coordinate and xi � (x1, x2) are coordinates on surfaces where the angles θ and φ are constant. The location
of a trapping horizon, a surface where the escape velocity equals the speed of light, is then determined by the equation [8]

0 � gi j ∇i r ∇ j r � 1 − 2 M

r
, (1.3)

where ∇i r is the covector perpendicular to surfaces of constant area A � 4 π r2. The function M � �p m/mp is the active
gravitational (or Misner–Sharp) mass, representing the total energy enclosed within a sphere of radius r. For example, if we set
x1 � t and x2 � r , the function m is explicitly given by the integral of the classical matter density ρ � ρ(xi ) weighted by the flat
metric volume measure,

m(t , r ) � 4 π

∫ r

0
ρ(t , r̄ ) r̄2 dr̄ , (1.4)

as if the space inside the sphere were flat. Of course, it is in general very difficult to follow the dynamics of a given matter distribution
and verify the existence of surfaces satisfying Eq. (1.3), but we can say an horizon exists if there are values of r such that rH � 2 M(t ,
r ) > r , which is a mathematical reformulation of the hoop conjecture (1.1).

Whether the above condition on the Misner–Sharp mass, or the hoop conjecture, can also be trusted for sources with energy around
the Planck size or much smaller, however, becomes questionable. In fact, for elementary particles we know for an experimental fact
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that quantum effects may not be neglected [9], as it also follows from a very simple argument. Consider a spin-less point-like source
of mass m, whose Schwarzschild radius is given by rH in Eq. (1.1) with E � m. For such a particle, the Heisenberg principle of
quantum mechanics introduces an uncertainty in its spatial localisation, typically of the order of the Compton–de Broglie length,

λm � �p
mp

m
. (1.5)

Assuming quantum physics is a more refined description of reality, the clash of the two lengths, rH and λm , implies that the former
only makes sense if it is larger than the latter,

rH � λm ⇒ m � mp (1.6)

or M � �p. Note that this argument employs the flat space Compton length (1.5), and it is likely that the particle’s self-gravity will
affect it. However, it is still reasonable to assume the condition (1.6) holds as an order of magnitude estimate and that black holes
can only exist with mass (much) larger than the Planck scale.

The above argument immediately brings us to face a deeply conceptual challenge: how can we describe a system containing both
quantum mechanical objects (like the elementary particles) and classical horizons? Moreover, since matter constituents are properly
described by quantum physics, how can we reliably describe the formation of horizons inside collapsing matter? As a necessary
tool to address these questions, we shall define a wavefunction for the horizon that can be associated with any localised quantum
mechanical particle. This definition will also allow us to put on quantitative grounds the condition (1.6) that distinguishes black
holes from regular particles.

2 Horizon wavefunction

Let us first formulate the construction and then explain it with an example. We shall only consider quantum mechanical states
representing objects which are both localised in space and at rest in the chosen reference frame. The reasons for such restrictions
should be physically obvious, since localisation is part of the idea behind the hoop conjecture, and we want to avoid the irrelevant
complications due to the relative motion of the source. The particle is consequently described by a wavefunction ψS ∈ L2(R3),
which can be decomposed into energy eigenstates,

|ψS〉 �
∑

E

C(E) |ψE 〉, (2.1)

where the sum represents the spectral decomposition in Hamiltonian eigenmodes,

Ĥ |ψE 〉 � E |ψE 〉, (2.2)

and H can be specified depending on the model we wish to consider. If we further assume the wavefunction is spherically symmetric,
all we need is to recall the expression of the Schwarzschild radius in Eq. (1.1), which can be inverted to obtain

E � mp
rH

2 �p
. (2.3)

We then define the (unnormalised) “horizon wavefunction” as

ψ̃H(rH) � C
(
mp rH/2 �p

)
. (2.4)

whose normalisation is fixed by assuming the norm

〈 ψH | φH 〉 � 4 π

∫ ∞

0
ψ∗

H(rH) φH(rH) r2
H drH. (2.5)

We interpret the normalised wavefunction ψH simply as yielding the probability that we would detect a horizon of areal radius
r � rH associated with the particle in the quantum state ψS. Such a horizon is necessarily “fuzzy”, like is the position of the particle
itself.

Having defined the ψH associated with a given ψS, the probability density that the particle lies inside its own horizon of radius
r � rH will be given by

P<(r < rH) � PS(r < rH) PH(rH), (2.6)

where

PS(r < rH) � 4 π

∫ rH

0
|ψS(r )|2 r2 dr (2.7)

is the probability that the particle is inside a sphere of radius r � rH, and

PH(rH) � 4 π r2
H |ψH(rH)|2 (2.8)
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Fig. 1 Left panel: probability density that particle is inside horizon of radius rH, for � � �p (solid line) and for � � 2 �p (dashed line). Right panel: probability
that particle of width � is a black hole

is the probability density that the horizon is located on the sphere of radius r � rH. Finally, the probability that the particle described
by the wavefunction ψS is a black hole will be obtained by integrating (2.6) over all possible values of the radius, namely

PBH �
∫ ∞

0
P<(r < rH) drH. (2.9)

3 Massive particle

The above construction can be exemplified by describing a massive particle at rest in the origin of the reference frame with the
spherically symmetric Gaussian wavefunction

ψS(r ) � e
− r2

2 �2

�3/2 π3/4 , (3.1)

corresponding to the momentum space wavefunction

ψS(p) � e− p2

2 
2


3/2 π3/4 , (3.2)

where p2 � p · p and 
 � �/� � mp �p/�. For the energy of the particle, we simply assume the relativistic mass-shell relation in
flat space, E2 � p2 +m2, and, upon inverting the expression of the Schwarzschild radius (1.1), we obtain the horizon wavefunction

ψH (rH) � �3/2 e
− �2 r2

H
8 �4

p

23/2 π3/4 �3
p
. (3.3)

Note that, since 〈 r̂2 〉 � �2 and 〈 R̂2
H 〉 � �4

p/�
2, we expect the particle will be inside its own horizon if 〈 r̂2 〉 � 〈 R̂2

H 〉, which
precisely yields the condition (1.6) if � � λm . In fact, the probability density (2.6) can now be explicitly computed,

P<(r < rH) � �3 r2
H

2
√

π �6
p
e
− �2 r2

H
4 �4

p

[

Erf
(rH

�

)
− 2 rH√

π �
e
− r2

H
�2

]

, (3.4)

from which the probability (2.9) for the particle to be a black hole is obtained as

PBH(�) � 2

π

[

arctan

(

2
�2

p

�2

)

+ 2
�2 (4 − �4/�4

p)

�2
p (4 + �4/�4

p)2

]

. (3.5)

In Fig. 1, we show the probability density (3.4) that the particle is inside its own horizon, for the two cases � � �p and � � 2 �p, and
the probability (3.5) that the particle is a black hole as a function of the Gaussian width �. From the plot of PBH, it appears pretty
obvious that the particle is most likely a black hole, PBH � 1, if � � �p. Assuming � � λm � �p mp/m, we have thus derived the
same condition (1.6), from a totally quantum mechanical picture.
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4 Concluding remarks

Of course, the above construction could be further refined. For example, one could employ dispersion relations E � E(p) derived
from quantum field theory in curved space-time, and a better definition of what a localised state in the latter context should probably
be employed as well.2 Regardless of such improvements, the usefulness of our construction should already be fairly clear, in that
it allows us to deal with very general sources, and to do so in a quantitative fashion. For example, one could review the issue of
quantum black holes [11, 12] in light of the above formalism, as well as finally tackle the description of black hole formation and
dynamical horizons [8] in the gravitational collapse of truly quantum matter [9, 13].
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