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1 Introduction

One of the main challenges of string phenomenology is to find a 4D string model which
can explain all the main hierarchies we see in Nature. Two very important energy scales
are the electroweak scale and the Hubble constant during inflation. All of them depend
crucially on moduli stabilisation since they are functions of the vacuum expectation values
of the string moduli. In particular, a ubiquitous modulus is the one controlling the size
of the extra dimensions, i.e. the dimensionless volume V of the internal Calabi-Yau space
in units of the string length ℓs = 2π

√
α′.

A very promising moduli stabilisation mechanism is the Large Volume Scenario (LVS) [1, 2]
where the extra dimensional volume is fixed at exponentially large values in terms of the string
coupling gs ≪ 1 as V ∼ ec/gs ≫ 1 (with c ∼ O(1)). In these string models supersymmetry is
broken spontaneously by non-zero F-terms of the moduli. The largest contribution comes
from the F-term of the volume mode whose fermionic partner is eaten up by the gravitino.
The resulting gravitino mass scales as m3/2 ∼ Mp/V and it is naturally much smaller than
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the Planck mass due to the exponential suppression in V . In turn, gravitational interactions
between the moduli and the Minimal Supersymmetric Standard Model (MSSM) mediate
supersymmetry breaking to the visible sector, generating non-zero soft-terms. When the
MSSM is realised with intersecting and magnetised D7-branes, the soft-terms scale as the
gravitino mass: Msoft ∼ m3/2 [3, 4]. On the other hand, when the MSSM lives on D3-branes
at singularities, the visible sector can be sequestered from supersymmetry breaking, resulting
in soft-terms which are suppressed with respect to the gravitino mass: Msoft ≪ m3/2 [5–7].

The last scenario is particularly interesting to reconcile a high inflationary scale with
low-energy supersymmetry which is still one of the best solutions to explain the smallness
of the electroweak scale. Moreover it avoids any cosmological moduli problem associated
with the presence of moduli with masses below O(50) TeV that would decay after Big Bang
Nucleosynthesis [8–10]. However a viable model of supersymmetry breaking should also avoid
the flavour supersymmetric problem associated to the emergence of dangerously large Flavour
Changing Neutral Currents (FCNCs) [11–15], as well as charge and colour breaking (CCB)
minima or an unbounded from below (UFB) scalar potential [16, 17].

As discussed in [18], these flavour problems can be absent in a so-called mirror medi-
ation scenario where the hidden sector factorises into two parts with no mixing at leading
order: the first responsible to determine the flavour structure, and the second which breaks
supersymmetry. This framework has been argued to be naturally realised in type IIB LVS
models with the MSSM on D7-branes since the flavour structure is determined by the complex
structure moduli U , while supersymmetry is broken by the Kähler moduli T .

In this paper we will instead analyse flavour constraints for sequestered string models
where the MSSM lives on D3-branes at singularities. In these cases slepton and squark
masses can be generated by the F-terms of either the T - or the U -moduli depending on the
moduli-dependence of the Kähler metric for matter fields and the uplifting mechanism to a
dS vacuum [6]. In the first case, mirror mediation is implemented and the mass spectrum is
typical of split supersymmetry with the universal gaugino mass M1/2 suppressed with respect
to the scalar mass m0: M1/2 ∼ Mp/V2 ≪ m0 ∼ Mp/V3/2 ≪ m3/2 ∼ Mp/V. In this scenario
TeV-scale gauginos correlate with sfermions around 107 GeV.

On the other hand, when scalar masses are generated by the F-terms of the U -moduli,
gaugino and scalar masses are of the same order of magnitude, Msoft ∼ M1/2 ∼ m0 ∼ Mp/V2,
resulting in an MSSM-like mass spectrum. However the same moduli which determine the
flavour structure are also responsible to break supersymmetry. This scenario is therefore ruled
out by FCNC constraints, unless the overall scale of the soft-terms is raised to very large
values, Msoft ≳ 106 GeV, which could be compatible with the observed value of the Higgs
mass for tan β ≃ 2 [19]. Nonetheless, this scenario is plugged by two stability problems: (i) a
tree-level scalar potential which is unbounded from below, and (ii) the presence of charge and
colour breaking vacua. The first problem could be avoided if UFB directions could be lifted by
radiative corrections or Planck-suppressed operators, but this detailed analysis is beyond the
scope of our paper. On the other hand, the presence of CCB vacua could be harmless if we live
instead in a metastable Standard Model-like vacuum with a lifetime longer than the age of the
Universe. As pointed out in [20], this could indeed be the case when Msoft is large, as required
to avoid FCNC constraints, since high scale supersymmetry makes CCB minima move away
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from the SM-like one, making the barrier thicker. Nevertheless, even in this case, it is unclear
why CCB minima would not be populated in the early universe during cosmological evolution.

We therefore conclude that sequestered string models are in tension with stability bounds
when gauginos and sfermions have comparable masses, while they seem to satisfy current
flavour bounds in the case of split supersymmetry.

This article is organised as follows. In section 2 we review string models with sequestered
supersymmetry breaking and their different phenomenological scenarios [5–7]. In section 3 we
first describe the flavour supersymmetric problem and the conditions for a supersymmetric
theory to avoid it, and then we analyse flavour conditions on sequestered string models
finding that only split supersymmetry scenarios can be compatible with observations. We
finally present our conclusions in section 4.

2 Sequestering in string models

In string compactifications sequestering can occur when the MSSM fields are localised in the
extra dimensions, like in the case where matter fields are realised as open strings attached
to D3-branes at a Calabi-Yau singularity (typically obtained by shrinking a local del Pezzo
divisor). In this section we shall describe the main features of sequestered LVS models where
moduli stabilisation and supersymmetry breaking are under computational control.

2.1 The low-energy theory

For concreteness in what follows we shall focus on the sequestered model analysed in [6]
within the framework of type IIB flux compactifications with O3/O7-planes. The dilaton
S (with real part s setting the string coupling ⟨s⟩ = g−1

s ) and the complex structure
moduli (collectively denoted as U) are fixed at leading order by 3-form fluxes. The Kähler
moduli are instead stabilised as in standard LVS models. The largest F-terms which break
supersymmetry spontaneously are those of the Kähler moduli, while the F-terms of the
dilaton and the complex structure moduli are subdominant since their stabilisation is at
leading order supersymmetric. The MSSM is realised on fractional D3-branes at a del Pezzo
singularity (see [21–25] for concrete CY orientifold constructions of MSSM-like D3-branes
at singularities). The relevant Kähler moduli are:

Tb = τb + iθb , Ts = τs + iθs , TSM = τSM + iθSM , G = b + ic , (2.1)

where τb and τs are the big and small LVS divisor volumes with the associated C4-axions θb

and θs, τSM → 0 is the blow-up mode resolving the MSSM singularity (with corresponding
axion θSM), and G is the orientifold-odd modulus where b and c arise from the reduction
of B2 and C2 on the 2-cycles dual to the shrinking ones.

Several mechanisms can be responsible for uplifting to a dS vacuum. Importantly, as
shown in [6], they can affect the resulting spectrum of soft-terms as follows (taking some
illustrative examples):

1. Non-zero F-terms of a nilpotent superfield (anti-D3-brane uplifting) [26] or of hidden
matter fields (T-brane uplifting) [27]: this case can allow just for a split supersymmetry
spectrum since M1/2 ≪ m0 ∼ mτb

≪ m3/2.
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2. Non-zero F-terms of the complex structure moduli [28]: this case can allow just for an
MSSM-like spectrum with soft-terms above O(50) TeV (to avoid a cosmological problem
for τb) since M1/2 ∼ m0 ∼ mτb

≪ m3/2.

3. Non-zero F-term of the blow-up mode of a singularity supporting E(-1)-instantons [29]:
depending on the moduli dependence of the matter Kähler metric, this case can allow
for both split supersymmetry and MSSM-like spectra with TeV-scale gauginos.

Given that only the third case can in principle be compatible with different soft-term
spectra, in what follows we shall focus on dS from dilaton-dependent non-perturbative effects
even if our results will apply more generically to any uplifting. For concreteness, we therefore
add the Kähler modulus TdS = τdS + iθdS where E(-1)-instantons are localised at τdS → 0.
The N = 1 low-energy supergravity theory is described by the superpotential:

W = Wflux(U, S) + As(U, S) e−asTs + AdS(U, S) e−adS(S+κdSTdS) + Wmatter , (2.2)

where Wflux is generated by 3-form fluxes [30], the second term is induced by ED3-instantons
or gaugino condensation on the small blow-up cycle, the third term is responsible for dS
uplifting and originates from E(-1)-instantons, while the matter superpotential reads:

Wmatter = µ(U)HuHd + 1
6Yαβγ(U) CαCβCγ + . . . (2.3)

where Cα’s are MSSM superfields and the dots refer to higher dimensional operators. Note
that µ and the Yukawa couplings Yαβγ can only depend on U due to the axionic shift symmetry
of S and T and the fact that W has to be holomorphic. However, explicit computations [31]
have shown that µ = 0. Moreover the Yukawa couplings are proportional to the Calabi-Yau
holomorphic (3,0)-form for D3-branes at a smooth point, while they are just numbers for
D3-branes at singularities. In what follows, we shall therefore set µ = 0 but we shall keep a
generic dependence of Yαβγ on U to allow for a potential dependence on the complex structure
moduli close to the singularity. The Kähler potential is instead:

K = Kcs(U, Ū) − ln(2s) − 2 ln
(
V + ξ

2 s3/2
)

+ λSM
τ2

SM
V

+ λb
b2

V
+ λdS

τ2
dS
V

+ Kmatter , (2.4)

where the first two terms give the tree-level Kähler potential for the complex structure moduli
and the dilaton, the third term is the standard LVS Kähler potential with V = τ

3/2
b − τ

3/2
s

and O(α′3) corrections proportional to the constant ξ [32], the λ’s are O(1) coefficients, and
the matter Kähler potential looks like:

Kmatter = K̃αβ(Φ, Φ) CαC
β +

[
Z(Φ, Φ) HuHd + h.c.

]
, (2.5)

where Φ denotes collectively all the moduli and Z is a moduli-dependent Giudice-Masiero
coupling. Explicit computations in toroidal cases [33, 34], as well as arguments based on
locality of the physical Yukawa couplings [35], imply that the matter Kähler metric can in
general be expanded as (in the singular limit τSM, b → 0):

K̃αβ =
fαβ(U, U, S, S)

V2/3

(
1 − cs

ξ̂

V
+ cdSλdS

τ2
dS
V

)
, (2.6)
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where fαβ(U, U, S, S) is an unspecified real function of U and S, ξ̂ ≡ ξs3/2, and cs and cdS

are two coefficients parametrising respectively O(α′3) corrections to K̃αβ and its dependence
on the dS modulus. The gauge kinetic function for D3-branes at singularities is:

fa = δaS + κaTSM , (2.7)

where κa is a non-universal numerical coefficient, while δa is a constant which is universal for
Zn singularities and can be non-universal for more general classes of singularities.

2.2 Moduli stabilisation

2.2.1 D-term fixing

The two moduli TSM and G are charged under the two anomalous U(1)’s of the visible
sector with charges q1 and q2. Consequently, the corresponding axions θSM and c get eaten
up by the massive Abelian gauge bosons, while τSM and b give rise to moduli-dependent
Fayet-Iliopoulos (FI) terms (see [21] for more details). The resulting D-term potential for
canonically normalised charged matter fields C̃α looks like:

VD = 1
2Re(f1)

(∑
α

q1α|C̃|α − ξ1

)2

+ 1
2Re(f2)

(∑
α

q2α|C̃|α − ξ2

)2

, (2.8)

where f1 and f2 are the gauge kinetic functions of the two U(1)’s, while the FI-terms are:

ξ1 = − q1
4π

∂K

∂TSM
= −q1λSM

4π

τSM
V

,

ξ1 = − q1
4π

∂K

∂G
= −q1λb

4π

b

V
.

(2.9)

As can be seen from the FI-terms, the D-term potential is a leading order effect since it scales
with the exponentially large volume as VD ∼ V−2. D-term stabilisation has therefore to be
supersymmetric at leading order. Vanishing vacuum expectation values of the visible matter
fields then imply ξ1 = ξ2 = 0, forcing τSM and b to the singular regime, i.e. ⟨τSM⟩ = ⟨b⟩ = 0.
Similarly, also the TdS modulus can be fixed in the singular regime by minimising the hidden
sector D-term potential (focusing for simplicity on canonically normalised hidden fields ϕh,i

with charges qh,i under an anomalous U(1)):

V dS
D = 1

2Re(fh)

(∑
i

qh,i|ϕh,i|2 − ξh

)2

, (2.10)

with FI-term:

ξh = −qdS
4π

∂K

∂TdS
= −qdS

4π

λdSτdS
V

. (2.11)

If the hidden matter fields ϕh,i are fixed by the corresponding F-terms at ⟨
∑

i qh,i|ϕh,i|2⟩ = 0,
the D-term potential vanishes for ξh = 0 implying ⟨τdS⟩ = 0 which is compatible with an
E(-1)-instanton at a singularity.
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2.2.2 F-term fixing
It is straightforward to realise that the flux-generated scalar potential scales as the D-term
potential: Vflux ∼ V−2. Therefore its minimisation has to be again supersymmetric. Setting
to zero the F-terms of the dilaton and the complex structure moduli corresponds to fixing
these fields at:

DSWflux|ξ=0 = 0 and DU Wflux|ξ=0 = 0 . (2.12)

Substituting the stabilised values of S and U into Wflux, the flux superpotential can be
considered as constant: ⟨Wflux⟩ ≡ W0. The remaining Kähler moduli are lifted at subleading
order thanks to α′ and non-perturbative corrections which break the no-scale structure
generating a standard LVS potential of the form [1, 2] (after fixing the axion θs at e−asθs = −1
and setting eKcs = 1):

V LVS
F = 1

2s

[
8
3

A2
sa2

se−2asτs
√

τs

V
− 4W0Asase−asτsτs

V2 + 3ξ̂W 2
0

4V3

]
. (2.13)

This potential admits a supersymmetry breaking AdS minimum located at (for asτs ≫ 1):

⟨τs⟩3/2 ≃ ξ̂

2 and ⟨V⟩ ≃ 3W0
√
⟨τs⟩

4asAs
eas⟨τs⟩ . (2.14)

Given that (2.13) depends on S and U (via As = As(S, U) and ξ̂ = ξs3/2), the LVS potential
causes a shift of the vacuum expectation values for the dilaton and the complex structure
moduli determined by the supersymmetric condition (2.12). These shifts can be parametrised
in terms of the functions ωS(U, S) and ωU (U, S) as follows:

DSW ≃ DSWflux|ξ=0 −
3ωS(U, S)ξ̂W0

4sV
= −3ωS(U, S)ξ̂W0

4sV
, (2.15)

DU W ≃ DU Wflux|ξ=0 −
3ωU (U, S)ξ̂W0

4sV
= −3ωU (U, S)ξ̂W0

4sV
. (2.16)

As pointed out in [5], these shifts induce non-zero F-terms for S and U which affect the
soft-terms significantly, as we will show later.

Following [29], a dS vacuum can be realised by E(-1)-instanton corrections to the
superpotential (2.2) which induce the following F-term contribution (after fixing the axion
θdS at e−i2adSθdS = −1):

V dS
F = (κdSadSAdS)2

sλdS

e−2adS(s+κdSτdS)

V
= (κdSadSAdS)2

sλdS

e−2adSs

V
, (2.17)

where we have substituted ⟨τdS⟩ = 0 from D-term stabilisation.1 This potential represents an
uplifting contribution which has to be added to the LVS potential (2.13). The minimum of the
total potential can then be set to zero by tuning the dilaton via an appropriate choice of 3-form
fluxes. If this cancellation is required up to O(V−3), the dilaton has to be tuned such that:

e−2adSs = 9
128

(
W0

κdSadSAdS

)2 ξ̂λdS
asτsV2 . (2.18)

1Note that these minimisation relations are exact only at leading order. Subleading corrections give rise
however just to negligible effects.
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2.2.3 F-terms

Supersymmetry is spontaneously broken by non-zero F-terms of the moduli (non-zero D-terms
also develop due to subleading effects), and so the gravitino becomes massive. Its mass will
be used as a reference for all masses in the model and looks like:

m3/2 = eK/2|W |Mp ≃ W0√
2s

Mp

V
. (2.19)

The F-terms of the Kähler moduli in the geometric regime are given by:

F Tb ≃ −
√

2
s

τbW0
V

∼ O
(
m

1/3
3/2M5/3

p

)
, (2.20)

F Ts ≃ −
( 3

2as

√
2s

)
W0
V

∼ O
(
m3/2Mp

)
. (2.21)

These are the largest F-terms with the dominant F-term given by F Tb , showing that the
gravitino becomes massive by eating up the fermionic partner of Tb. As argued above,
non-zero F-terms for the dilaton and the complex structure moduli are induced by quantum
corrections beyond semi-classical level, and read:

F S ≃ −
(√

s

2
3ξ̂

2 ω′
S(U, S)

)
W0
V2 ∼ O

(
m2

3/2

)
, (2.22)

F U ≃
(

KUU

2s2
ωU (U, S)
ω′

S(U, S)

)
F S ≡ βU (U, S) F S ∼ O(m2

3/2) , (2.23)

where ω′
S(U, S) ≡ 3 + 2ωS(U, S) and βU (U, S) is an O(1) function of S and U in the volume

expansion. Let us stress that these two F-terms are hierarchically smaller than the F-terms
of Tb and Ts. The F-terms of the moduli localised at the MSSM singularity vanish:

F TSM = 0 and F G = 0 , (2.24)

which is a crucial result to guarantee that the visible sector is sequestered from supersymmetry
breaking. Finally the F-term of the dS Kähler modulus TdS scales as:

F TdS ≃

3
4

√
ξ̂

λdSsasτs

 W0
V

∼ O
(
m3/2Mp

)
. (2.25)

2.3 Soft supersymmetry breaking terms

The soft supersymmetry breaking Lagrangian takes the general form:

Lsoft = 1
2
(
Maλ̂aλ̂a + h.c.

)
− m2

αĈαĈ
α
−
(1

6Aαβγ ŶαβγĈαĈβĈγ + Bµ̂ĤuĤd + h.c.

)
, (2.26)

where we have focused for simplicity on a diagonal Kähler matter metric, i.e. K̃αβ = K̃αδαβ ,
and all fields have been canonically normalised. Before computing the form of the soft-terms,
we discuss the moduli dependence of the Kähler matter metric which distinguishes two
phenomenologically different scenarios.
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Matter metric. The Kähler matter metric takes the form (2.6) where fαβ, or simply
fα in the diagonal case, is a priori a general real function of the dilaton and the complex
structure moduli, while cs and cdS are two unspecified parameters. As pointed out in [35],
this expression guarantees that the physical Yukawa couplings:

Ŷαβγ = eK/2 Yαβγ√
K̃αK̃βK̃γ

, (2.27)

do not depend on the overall volume at leading order. A cancellation of the volume dependence
at all orders would instead correspond to:

K̃α = hα(U, U, S, S) eK/3 , (2.28)

where hα is another general real function of S and U related to fα as:

fα = hα eKcs/3

(2s)1/3 . (2.29)

Following [6], we shall consider two cases:

• Local limit: in this case the relation (2.28) holds only at leading order.

• Ultra-local limit: in this case the relation (2.28) holds also at subleading order, implying
cs = cdS = 1/3 by comparing (2.6) with (2.28).

As we will see, the local limit reproduces a split supersymmetry scenario whereas the ultra-
local limit is characterised by a mass spectrum where gaugino and scalar masses are of
the same order of magnitude.

2.3.1 Gaugino masses

The general expression of gaugino masses in gravity mediated supersymmetry breaking is:

Ma = 1
2

F m∂mfa
Re(fa) . (2.30)

Given that in our case fa = δaS + κaTSM and F TSM = 0, the only non-zero contribution comes
from the F-term of the dilaton. Focusing on universal δa’s, the resulting gaugino masses
are hierarchically smaller than the gravitino mass:2

M1/2 = F S

2s
=
(

3ξ̂

4
√

2s
ω′

S

)
W0
V2 ∼ O

(
m2

3/2
Mp

)
. (2.31)

2.3.2 Scalar masses

Slepton and squark masses receive contributions from both F- and D-terms which we will
discuss separately.

2Note that M1/2 could receive large corrections from moduli redefinitions [36]. Given that these effects
would desequester, we focus on D3-branes at orbifolded singularities where they would be absent. Moreover, as
shown in [23], if some scalars are tachyonic, D-term fixing could induce a partial resolution of the singularity,
giving however F TSM ≲ W0/V2 that would not modify the leading expression of M1/2.
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F-term contribution. The F-term contribution to the scalar masses for a diagonal Kähler
matter metric is:

m2
α|F = m2

3/2 − F
m

F n∂m∂n ln K̃α . (2.32)

Let us consider the local and ultra-local scenarios separately.

Local limit. To obtain the leading order F-term contribution to scalar masses in the local
scenario, we can rewrite the Kähler matter metric (2.6) as:

K̃α ≃ hα eK/3

1 − cs
ξ̂
V

1 − ξ̂
3V

 . (2.33)

Hence the general expression (2.32) becomes:

m2
α ≃ m2

3/2 − F
m

F n∂m∂n

1
3K + ln

1 − cs
ξ̂
V

1 − ξ̂
3V

+ ln hα


≃ −F

m
F n∂m∂n

ln

1 − cs
ξ̂
V

1 − ξ̂
3V

+ ln hα


≃ 15

16

(
cs −

1
3

)(
F Tb

τb

)2
ξ̂

V
+ O

( 1
V4

)
≃
(

cs −
1
3

) 5
ω′

S

m3/2M1/2 ∼ O(M1/2m3/2) . (2.34)

It is worth pointing out that in the local scenario squark and scalar masses are mainly
generated by the F-term of Tb, and so turn out to be flavour universal, i.e. mα ≃ m0 ∀α,
and with a hierarchy typical of split supersymmetry:

M1/2 ∼ Mp

V2 ≪ m0 ∼ Mp

V3/2 ≪ m3/2 ∼ Mp

V
. (2.35)

Note that we need to require cs > 1/3 to avoid tachyons. For cs = 1/3, the leading result
would instead be vanishing, a clear sign of the ultra-local limit which we will study below.

Ultra-local limit. In the ultra-local scenario we shall instead focus on a Kähler matter
metric of the form K̃α ≃ hα eK/3 which gives:

m2
α ≃ m2

3/2 − F
m

F n∂m∂n

(1
3K + ln hα

)

≃ −F
m

F n∂m∂n ln hα ≃ gα

(
F S

2s

)2

≃ gα M2
1/2 ∼ O(M2

1/2) , (2.36)

where gα is a flavour-dependent function of S and U defined as:

gα(U, U, S, S) ≡ −4s2
(

∂S∂S + βU ∂S∂U + β
U

∂U ∂S + β
U

βU ∂U ∂U

)
ln hα . (2.37)

Contrary to the local limit, in this case the main contribution comes from F S and F U which
is proportional to F S , as can be seen from (2.23). Thus scalar masses turn out to be of
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the same order of gaugino masses and, above all, they are not flavour universal since the
function gα defined in (2.37) is in general different from hα. This can be a potential source
of large FCNCs, as we will analyse in section 3.

More in general, in the ultra-local case the assumption of a diagonal Kähler matter
metric seems inappropriate since the F-terms of the dilaton and the complex structure moduli
would in general generate also non-zero off-diagonal entries of the scalar mass matrix. In
fact, a general Kähler matter metric:

K̃αβ ≃ hαβ eK/3 , (2.38)

would generate soft masses for the unnormalised scalars of the form:

m̃2
αβ

= m2
3/2K̃αβ − F

m
F n

(
∂m∂nK̃αβ − (∂mK̃αγ)K̃γδ(∂nK̃δβ)

)
≃ −eK/3 ∑

m,n∈{S,U}
F

m
F n

(
∂m∂nhαβ − (∂mhαγ)hγδ(∂nhδβ)

)
. (2.39)

Canonical normalisation would remove the eK/3 factor, inducing the following mass matrix
for the normalised squarks and sleptons:

m2
αβ

= gαβ M2
1/2 , (2.40)

where gαβ(U, U, S, S) is an O(1) function of S and U which is in general different from
hαβ, showing that off-diagonal terms are expected to be of the same order of magnitude
as the diagonal ones.

D-term contribution. The D-term contribution to scalar masses is given by [37]:

m2
α|D = K̃−1

α

∑
i

g2
i Di∂

2
ααDi − VD,0. (2.41)

In our case, the relevant D-term is the one associated to the anomalous U(1) symmetry at
the singularity which supports the non-perturbative effects responsible for the dS uplift:

DTdS = qdS
4π

∂TdSK . (2.42)

Using g2
TdS

= s−1, we find a universal contribution to scalar masses of the form:

m2
0|D = qdS

4π
K̃−1

α g2
TdSDTdS∂TdS∂2

CC
K − VD,0

= qdS
4πs

K̃−1
α DTdS∂TdSK̃α − VD,0 = (2cdS − 1)VD,0 ∼ O(V−4) , (2.43)

which scales as VD,0 ∼ O(V−4), as can be easily seen by considering subdominant corrections
to D-term moduli stabilisation. Hence, in the local scenario the D-term contribution is
negligible with respect to the F-term one. On the other hand, in the ultra-local scenario
D-term soft scalar masses vanish for cdS = 1/3. This can be seen by including in the D-term
expression also the contribution from the vacuum expectation value of the F-term potential
−VF,0/3 = VD,0/3, giving:3

m2
0 = 2

(
cdS − 1

3

)
VD,0 = 0 . (2.44)

3Strictly speaking, we should have included this term also in the local case but we omitted it since it affects
the final result only quantitatively but not qualitatively.
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2.3.3 Trilinear terms

The trilinear A-terms for a diagonal Kähler matter metric are given by:

Aαβγ = F m
[
Km + ∂m ln Yαβγ − ∂m ln

(
K̃αK̃βK̃γ

)]
. (2.45)

Writing again the Kähler matter metric as in (2.33), where cs > 1/3 in the local limit and
cs = 1/3 in the ultra-local case, the trilinear A-terms turn out to be:

Aαβγ ≃ F m∂m

K − ln
(
eKhαhβhγ

)
− 3 ln

1 − cs
ξ̂
V

1 − ξ̂
3V

+ ln Yαβγ


≃ F m∂m

[
ln
(

Yαβγ

hαhβhγ

)
+ 3

(
cs −

1
3

)
ξ̂

V

]

≃
[
yαβγ + 6

ω′
S

(
cs −

1
3

)]
M1/2 ∼ O(M1/2) , (2.46)

where yαβγ is a flavour-dependent function of S and U defined as:

yαβγ(S, U) ≡ 2s
(
∂S + βU ∂U

)
ln
(

Yαβγ

hαhβhγ

)
. (2.47)

The final result is proportional to the gaugino mass both in the local and in the ultra-local
limit where the last term in (2.46) vanishes for cs = 1/3. The first term in (2.46) is generated
by F S and F U and it proportional to yαβγ . Hence, it breaks flavour universality contrary to
the second term which is flavour universal since it is generated by F Tb . The first contribution
is present both in the local and ultra-local limits, while the second one is present only in the
local case. However the two contributions are in general of the same order of magnitude, and
so we expect that in both limits the physical A-terms Âαβγ = Aαβγ Ŷαβγ are not proportional
to the physical Yukawa couplings Ŷαβγ . This is another manifestation of the supersymmetric
flavour problem which we will discuss in section 3.

2.3.4 µ̂ and Bµ̂-terms

Since the MSSM lives at the singularity, we shall assume that the Giudice-Masiero coupling
Z in (2.5) scales as the Kähler matter metric (2.6) but with the function fαβ replaced by the
generic real function of S and U γ(S, S, U, U). Moreover, we shall focus again for simplicity
on a diagonal Kähler matter metric. As explained in [6], the physical µ̂ term becomes:

µ̂ = γ√
fHufHd

[
3

ω′
S

(
cs −

1
3

)
− 2s

(
∂S + β

U
∂U

)
ln γ

]
M1/2 ∼ O(M1/2) , (2.48)

and so it is of the same order of magnitude of the gaugino mass both in the local and in
the ultra-local limit where cs = 1/3.

Interestingly, as shown in [6], both F- and D-term contributions to the Bµ̂-term turn
out to be proportional to the scalar masses:

Bµ̂|F,D = γ√
fHufHd

m2
0|F,D . (2.49)

Thus in the local limit Bµ̂ ∼ O(M1/2m3/2), whereas in the ultra-local limit Bµ̂ ∼ O(M2
1/2).
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Figure 1. Scaling of the soft-terms for the local (left) and ultra-local scenario (right).

2.3.5 Mass spectrum

The resulting structure of the soft-terms for the local and ultra-local limits are summarised
in figure 1.

Let us comment on the two cases separately:

• The local limit is characterised by the following main features:

1. Squarks and sleptons are hierarchically heavier than gauginos, reproducing a
typical split supersymmetry spectrum.

2. Scalar masses are of the same order of the mass of the lightest Kähler modulus τb.
3. Scalar masses are flavour universal and proportional to the identity.
4. The physical trilinear A-terms scale as M1/2 and are in general not proportional

to the physical Yukawa couplings.
5. As pointed out in [6], TeV-scale gauginos can be obtained for a compactification

volume of order V ∼ 107 which, in turn, gives m3/2 ∼ 1010 GeV and m0 ∼
mτb

∼ 107 GeV. The volume modulus τb is therefore heavy enough to avoid any
cosmological problem.

• In the ultra-local limit the soft-terms have the following interesting properties:

1. Scalar and gaugino masses are of the same order of magnitude, yielding a standard
MSSM-like spectrum.

2. The lightest Kähler modulus τb is hierarchically heavier than the superpartners,
and so its mass is well above the lower bound from the cosmological moduli
problem.

3. Squark and slepton masses are in general not flavour universal and feature off-
diagonal terms of the same order as the diagonal ones.

4. The physical trilinear A-terms are in general not proportional to the physical
Yukawa couplings.
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5. An MSSM-like spectrum can also be obtained when the visible sector lives on
D7-branes [4]. This situation has two important differences with the ultra-local
D3-brane case due to the absence of sequestering which leads to a pro and a con.
The pro is that the soft-terms are mainly generated by the F-terms of the Kähler
moduli which do not induce any flavour problem. The con is that the soft-terms
are of order m3/2, and so TeV-scale supersymmetry is in tension with high-scale
inflation and the cosmological moduli problem for τb.

3 Supersymmetric flavour problem

As we have already seen, the soft-terms can have a non-trivial flavour structure which sources
new flavour mixing contributions that can be in tension with observations. This is the origin
of the famous supersymmetric flavour problem [12–15, 38–40] which in this section we will
analyse in sequestered string models.

3.1 Experimental constraints

In order to avoid the supersymmetric flavour problem, the new sources of flavour violation
from supersymmetry breaking should be small. This is guaranteed if the scalar masses are
nearly flavour universal and the trilinear A-terms are dominantly proportional to the physical
Yukawa couplings. If the relevant soft-terms are written as:

m2
αβ

= m2
0 δαβ + ∆m2

αβ
and Âαβγ = A0 Ŷαβγ + ∆Âαβγ , (3.1)

a solution to the supersymmetric flavour problem for low-energy sparticle spectra requires:

∆m2
αβ

≪ m2
0 δαβ and A0 Ŷαβγ ≪ Âαβγ . (3.2)

These conditions translate into strong bounds once observations are taken into account. A
very constraining process is K0-K0 mixing which receives new contributions from squark
loops, leading to the following bound [38]:

∆m2
s̃d̃

m2
0

≲ VtsVtd

(
m0
MW

)
∼ 10−3

(
m0

500GeV

)
, (3.3)

which shows that TeV-scale squarks require a hierarchy of at least three orders of magnitude
between off-diagonal and diagonal entries of the scalar mass-squared matrix. Note that no
relevant bound arises if instead scalar masses are pushed around 106 GeV or higher.

The condition (3.3) can be extended to all FCNC contributions induced by the soft-terms.
Focusing on the squark sector, it is useful to define the dimensionless quantity [13]:

(δq̃

αβ
)MN ≡

(M2
q̃ )MN

αβ

m2
0

, (3.4)

where M, N = L, R label the chirality, M2
q̃ denotes the squark mass-squared matrix, and

m2
0 is the average squark mass-squared. More precisely, using our notation, (M2

q̃ )MM
αβ

≡
(m2

q̃)MM
αβ

and (M2
q̃ )LR

αβ
≡ Âqαβ⟨H0

q ⟩. The absence of dangerously large FCNCs for TeV-scale
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supersymmetry corresponds to requiring (δq̃

αβ
)MM ≪ 1 with α ̸= β, i.e. small off-diagonal

terms of the soft scalar masses, and (δq̃

αβ
)LR ≪ 1, which is clearly satisfied if the trilinear

A-terms are proportional to the physical Yukawa couplings. The tightest of these bounds
comes from the Electric Dipole Moment (EDM) of the neutron (using the relation between
the neutron and quark EDMs) and reads [12]:

(δd
11)LR < 4.7 × 10−6

(
m0

1 TeV

)2
(

1 TeV
M1/2

)
. (3.5)

Similarly to the quark sector, flavour violation in the lepton sector is also constrained by
several experiments. Extending the definition (3.4) to the slepton sector, the most severe
bound comes from the electron EDM which gives:4

|Im(δl
11)LR| < 5.8 × 10−9

(
m0

1 TeV

)2
(

1 TeV
M1/2

)
, (3.6)

where we used the relevant formula in [12] and the current experimental limit by ACME
collaboration at 90% confidence level [41]:∣∣∣∣de

e

∣∣∣∣≲ 1.1 × 10−29 cm = 5.6 × 10−13 TeV−1 . (3.7)

This upper bound is expected to be pushed by ACME III to 1.5 × 10−14 TeV−1 [42, 43].5
It is worth mentioning that the trilinear A-terms are constrained, not just by the flavour

supersymmetric problem, but also from the requirement to avoid charge and colour breaking
vacua and an unbounded from below potential [16, 17]. The associated bounds are in general
stricter than the ones from FCNCs and do not depend on the scale of supersymmetry
breaking. They take the form:∣∣∣Âuαβ

∣∣∣2 ≤ Ŷ 2
uγγ

(
m2

uLα
+ m2

uRβ
+ m2

Hu

)
, γ = max(α, β) ,∣∣∣Âdαβ

∣∣∣2 ≤ Ŷ 2
dγγ

(
m2

dLα
+ m2

dRβ
+ m2

Hd

)
, γ = max(α, β) , (3.8)∣∣∣Âlαβ

∣∣∣2 ≤ Ŷ 2
eγγ

(
m2

eLα
+ m2

eRβ
+ m2

Hd

)
, γ = max(α, β) .

3.2 Mirror mediation

In gravity mediation supersymmetry breaking, the experimental bounds described in sec-
tion 3.1 are in general not automatically satisfied. The conditions to break supersymme-
try without generating large FCNCs are called mirror mediation and have been derived
in [18] finding:

1. The hidden sector fields have to be factorised into two classes which we will collectively
denote as Ψ and χ.

4Let us stress that this bound applies only if the axionic partners of the moduli develop appropriate vacuum
expectation values so that the imaginary part of the A-terms is non-zero.

5Note that such experimental limits constrain also possible higher-dimensional operators in the SM effective
field theory with flavour symmetry, as recently discussed in [44, 45].
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2. There should be no kinetic mixing between Φ and χ, i.e. the Kähler potential should
be a direct sum of two terms where the first depends just on the real part of Ψ:

K(Ψ + Ψ, χ, χ) = K1(Ψ + Ψ) + K2(χ, χ). (3.9)

The reality condition on Ψ is necessary to avoid relative phases between different
A-terms.

3. The superpotential Yukawa couplings should depend just on the χ fields, while the
gauge kinetic functions should depend (linearly) just on the Ψ fields:

Yαβγ(Ψ, χ) = Yαβγ(χ) and fa(Ψ, χ) =
∑

i

λiΨi . (3.10)

The linearity of fa allows to have universal gaugino mass phases which are aligned with
those of the A-terms.

4. The Kähler matter metric should factorise as follows:

K̃αβ(Ψ, Ψ, χ, χ) = h(Ψ + Ψ) kαβ(χ, χ) . (3.11)

5. Supersymmetry breaking should be induced by the Ψ fields, while the χ fields should
be stabilised supersymmetrically:

F Ψ ̸= 0 and F χ = 0 , (3.12)

which, given assumption 2, is also equivalent to:

DΨW ̸= 0 and DχW = 0 . (3.13)

These conditions generate flavour universal soft-terms since they imply the existence of
two decoupled sectors: the Φ fields which are responsible to break supersymmetry, and the
χ fields which generate the flavour structure. One can see that these conditions indeed
induce the flavour universal conditions (3.2) by looking at the unnormalised scalar masses
and trilinear A-terms:

m̃2
αβ

= m2
3/2Kαβ − F

Ψ
F Ψ

(
∂Ψ∂ΨKαβ − (∂ΨKαγ)Kγδ(∂ΨKδβ)

)
=
(

m2
3/2h − F

Ψ
F Ψ

(
∂Ψ∂Ψh −

∂Ψh∂Ψh

h

))
kαβ(χ, χ) ,

Ãαβγ = eK/2 Yαβγ(χ)
(

F Ψ∂ΨK(Ψ, Ψ) − 3F Ψ∂Ψh(Ψ, Ψ)
h(Ψ, Ψ)

)
. (3.14)

These seem to be ad hoc conditions to obtain flavour universal soft terms. However, as already
pointed out in [18], they are satisfied in the large class of type IIB string vacua where the
MSSM lives on D7-branes. In the next section we will study if mirror mediation can occur
also in type IIB sequestered models with the MSSM on D3-branes.
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3.3 Sequestering and mirror mediation

In this section, we discuss if the soft-terms obtained in section 2 respect the five mirror
mediation conditions described above:

1. The hidden sector factorises into two classes. The first includes the dilaton S and the
complex structure moduli U , whereas the second involves the Kähler moduli Tb, Ts,
TdS, TSM and G:

• χ = {S, U}.
• Φ = {Tb, Ts, TdS, TSM, G};

Hence the model matches the first condition.

2. The Kähler potential factorises at leading order but α′ corrections induce a mixing
between the Φ and χ sectors:

K = Kcs(U, Ū) − ln(S + S)︸ ︷︷ ︸
χ sector

−2 lnV + λdS
τ2

dS
V

+ λSM
τ2

SM
V

+ λb
b2

V︸ ︷︷ ︸
Φ sector

− ξ

V

(
S + S

2

)3/2

︸ ︷︷ ︸
mixing term

.

(3.15)
Thus the second condition is respected only at leading order in the large volume
expansion.

3. The mirror mediation condition on the superpotential Yukawa couplings is respected
since they depend only on the χ fields due to the shift symmetry of the Kähler moduli
and the holomorphy of the superpotential. On the other hand, the gauge kinetic
functions do not respect the third condition as they depend on both Φ and χ:

fa = δaS + κaTSM . (3.16)

4. Similarly to condition 2, the matter Kähler potential factorises just at leading order since
α′ corrections induce a mixing between the Φ and χ sectors (setting τSM = τdS = b = 0):

K̃αβ = fαβ(U, U, S, S)︸ ︷︷ ︸
χ factor

1
V2/3︸ ︷︷ ︸

Φ factor

1 − cs
ξ

V

(
S + S

2

)3/2

︸ ︷︷ ︸
mixing term

 . (3.17)

Hence the fourth mirror mediation assumption is not respected by higher order correc-
tions.

5. The fifth condition is badly violated in sequestered models since the F-terms of the
two local Φ fields, TSM and G, vanish: F TSM = F G = 0. The F-terms of the other
Kähler moduli are instead non-zero and scale as F Tb/τb ∼ F Ts ∼ F TdS ∼ O

(
V−1).

Moreover, the χ fields develop non-zero F-terms since the second condition is not
perfectly matched. However, given that the kinetic mixing is induced only at subleading
order, the associated F-terms are volume suppressed: F S ∼ F U ∼ O

(
V−2).
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This analysis shows that the mirror mediation conditions are in general satisfied at leading
order, apart from the gauge kinetic functions and the vanishing of the F-terms of TSM and G.
One could therefore be tempted to conclude that sequestered D3-brane models might give
rise to universal soft-terms at leading order. As we have seen in section 2 this is however
in general not true. The reason is that the locality of the D3-brane construction induces
a cancellation of the contribution to the soft-terms of the F-terms of the Kähler moduli.
Combined with the fact that F TSM = F G = 0, the main contribution to the scalar masses
and the trilinear A-terms can then come from the F-terms of S and U which control also the
superpotential Yukawa couplings. This is indeed the case in the ultra-local limit which is
therefore expected to be severely constrained by FCNCs. On the other hand, in the local
limit the cancellation of the contribution to the soft-terms of F Tb is not perfect, allowing to
match the mirror mediation conditions at leading order. This is not true for the A-terms but
the hierarchy between them and the scalar masses can easily suppress large FCNCs.

3.4 Comparison with experiments

After the qualitative discussion of the previous section, let us now check in a more quantitative
way if the soft-terms computed in section 2 respect the experimental bounds described in
section 3.2. We shall consider the local and ultra-local limits separately.

3.4.1 Local limit

As we have seen in section 2, in the local scenario scalar masses are nearly flavour universal
with the leading diagonal result given by (2.34) and subdominant off-diagonal contributions
given by (2.40):

m2
0 =

(
cs −

1
3

) 5
ω′

S

m3/2M1/2 and ∆m2
αβ

= gαβ M2
1/2 , (3.18)

where gαβ(S, S, U, U) is an O(1) function of the dilaton and the complex structure moduli.
The model is therefore safe from large FCNCs. In fact, applying the experimental bound (3.3)
we find:6

V ≳ 10−2

 ξ̂ ω′2
S gαβ(

cs − 1
3

)
(107 GeV

m0

)
, (3.19)

which is clearly satisfied for V ∼ 107 that yields m0 ∼ 107 GeV since the factor in square
brackets is expected to be of order unity. Expressing generically m0 in terms of the volume
using (2.34), the bound (3.19) reduces to V ≲ 1026 which is always satisfied for V ≲ 107

that forbids gaugino masses below the TeV-scale. It is straightforward to check that also the
constraints (3.5) and (3.6) are easily satisfied in the local scenario thanks to the hierarchy
between scalar and gaugino masses. Moreover, the CCB and UFB conditions (3.8) are
automatically satisfied in the local scenario since Âαβγ ∼ M1/2 ≪ m0.

6Note that our bounds differ from the ones obtained in [46, 47] which assumed that the Kähler metric for
matter fields on D3-branes at singularities takes the same form as in the case where the D3-branes are at a
smooth point.
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Let us finally comment on the fact that the split supersymmetry spectrum of the local
scenario affects the value of the mass of the Standard Model Higgs. Ref. [19] computed
the renormalisation group flow of the Higgs mass in the MSSM for different supersymmetry
breaking scenarios. For split supersymmetry with M1/2 ∼ 1 TeV and m0 ∼ 107 GeV, matching
the observed value of the Higgs mass requires tan β ≃ 1.

3.4.2 Ultra-local limit

In the ultra-local case squark and slepton masses are given by (2.40):

m2
αβ

= gαβ(S, S, U, U) M2
1/2 . (3.20)

This expression is not flavour universal and there is no clear source of suppression of the
off-diagonal terms. Given that gαβ is expected to be an O(1) function of the dilaton and
the complex structure moduli, the l.h.s. of the bound (3.3) is also expected to be of O(1).
Moreover, in the ultra-local case scalar masses scale as gaugino masses, and so TeV-scale
soft-terms would violate the bound (3.3) since the term on the r.h.s. would be of O(10−3).
The only way to satisfy the bound (3.3) seems therefore to push all the soft-terms to higher
scales: Msoft ≳ 106 GeV.

A similar lower bound on the soft-terms comes from the condition (3.6) which involves the
trilinear A-terms that in the ultra-local case are in general not proportional to the physical
Yukawa couplings. Thus they are more generically proportional to a combination of the
Yukawa couplings which is expected to scale as the largest Yukawa coupling of the u-, d- or
l-type respectively, unless some hidden structure gives rise to a further suppression. Given that
we do not see any reason for this to happen, we expect the relevant physical A-term to scale
as Âl11 ∼ yτ M1/2, where yτ ≡ Ŷl33 denotes the τ Yukawa coupling. Assuming |Im(δl

11)LR| ∼
|(δl

11)LR|, and taking m0 ∼ M1/2, the bound (3.6) becomes again Msoft ≳ 106 GeV. Therefore
the ultra-local limit can be compatible with flavour observables if supersymmetry shows
up at high scales.

However the CCB/UFB conditions (3.8) are much more stringent since they cannot
be evaded by simply enhancing the mass scale of the soft-terms. Given that squark and
slepton masses scale as the A-terms which are not proportional to the physical Yukawa
couplings, only the CCB/UFB conditions involving the heaviest sleptons and u- and d-type
squarks seem to be satisfiable. On the other hand, the most dangerous conditions are the
ones for the trilinear A-terms associated to the lightest sfermions since we expect them to
scale as the Yukawa couplings of the heaviest fermions. For example, as already explained,
we expect Âl11 ∼ yτ M1/2 ∼ yτ m0 which would not satisfy the third condition in (3.8) since
ye ≪ yτ (where ye is the electron Yukawa coupling). We conclude that, unless unexpected
new cancellations and suppressions arise from the complex structure sector, the ultra-local
scenario does not seem to survive CCB/UFB constraints, leading to unstable MSSM models.

Let us however point out that the inclusion of Planck-suppressed operators from UV
physics, or radiative corrections to the scalar potential of the form ∆V ≃ StrM4 ln

(
M2

Λ2

)
,

could in principle yield new stable minima without UFB directions. Studying these effects
in detail is however beyond the scope of our paper. Moreover, we could very well coexist
with CCB minima, as long as they are not populated in the early Universe and the lifetime
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of the metastable Standard Model-like vacuum is longer than the age of the Universe to
prevent its decay to CCB minima. Interestingly, as shown in [20], this is indeed the case
for high scale supersymmetry, which we are requiring anyway to avoid large FCNCs. We
will not try to envisage a cosmological mechanism which could guarantee the fact that CCB
minima are not populated in the early Universe, but we will just note that this does not seem
to be the generic situation. We thus conclude that sequestered models with an MSSM-like
spectrum are in severe tension with stability bounds.

4 Conclusions

The low-energy limit of type IIB string compactifications on Calabi-Yau orientifolds is an
N = 1 supergravity theory. Background fluxes combined with quantum corrections beyond
the tree-level approximation can stabilise all closed string moduli whose F-terms break
supersymmetry spontaneously. This breaking is mediated to the MSSM living on D-branes
via gravitational interactions, resulting in the generation of non-zero soft-terms. When the
MSSM is realised with D7-branes, the soft-terms scale as the gravitino mass, Msoft ∼ m3/2,
while D3-branes can lead to sequestered models with Msoft ≪ m3/2.

This hierarchy can be very useful for phenomenological applications since it can allow
for 4D string models with a large Hubble scale during inflation, low-energy supersymmetry,
and no cosmological moduli problem. In this paper we therefore focused on LVS sequestered
string models and analysed under what conditions they can also satisfy current flavour
bounds. When gaugino and sfermion masses are of the same order of magnitude, FCNC
constraints can be satisfied by raising the energy scale of the soft-terms to Msoft ≳ 106 GeV.
However, regardless of the value of Msoft, these models are in tension with data due to the
emergence of charge and colour breaking vacua together with potential directions along which
the potential is unbounded from below.

On the other hand, sequestering is compatible with split supersymmetry scenarios where
gauginos are hierarchically lighter than squarks and sleptons. In this case, supersymmetry
breaking does not yield large FCNCs since scalar masses are flavour diagonal at leading order
and the trilinear A-terms, even if not proportional to the physical Yukawa couplings, are
suppressed with respect to scalar masses. This last feature guarantees also the absence of
CCB vacua and UFB directions. Phenomenologically viable sequestered LVS models are
therefore characterised by a split supersymmetry spectrum. For example, V ∼ 107 would
give rise to TeV-scale gauginos, a lightest modulus (the volume mode) and sfermions around
107 GeV, which requires tan β ≃ 1 to reproduce the correct Higgs mass, and a gravitino
mass around 1010 GeV.

Note that this scenario can arise in different cases: (i) in the local limit of the Kähler
metric for matter fields for any uplifting mechanism except when this is achieved by non-zero
F-terms of the complex structure moduli [28] since this case can lead to CCB/UFB vacua
given that M1/2 ∼ m0; (ii) in the ultra-local limit any time the uplifting sector induces large
D-term contributions to scalar masses that lead to M1/2 ≪ m0, as for T-brane uplifting [27].
Let us stress that this result is also supported by model building considerations. In fact,
it appears generic from a top-down perspective since the ultra-local limit seems hard to
realise given that it would require cs = cdS = 1/3 and, more in general, a cancellation of
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the volume dependence of the physical Yukawa couplings at all orders. In the absence of
explicit computations of quantum corrected Kähler metrics, it is not clear if this can be
achieved and if parameters like cs and = cdS can be tunable in the string landscape. Moreover,
even in the ultra-local limit, the uplifting sector should also be localised to suppress its
D-term contribution to scalar masses, as for dilaton-dependent non-perturbative effects at
singularities [29], which again does not seem a generic situation.

Let us stress that our analysis has been focused on the LVS framework since sequestered
KKLT models are in strong tension with stability bounds. In fact, following [26], KKLT models
with the visible sector on D3-branes at singularities and a local Kähler metric for matter
fields would generate a split SUSY spectrum with M1/2 ∼ m3/2/τ < m0 ∼ m3/2/(gsτ)3/4 <

m3/2 ∼ e−τ Mp/τ3/2. TeV-scale gauginos would be reproduced for W0 ∼ O(10−10) and
τ ∼ O(25) which would give

(
m0/M1/2

)2
∼ 5 g

−3/2
s . This quantity can be large enough to

avoid CCB/UFB vacua only for extremely small values of gs since scalar masses around
107 GeV or larger would require values of the string coupling of order gs ≲ 10−5 which is
hard to achieve in flux compactifications.

Let us finally mention that this analysis leads to a clear phenomenological prediction
since it indicates that collider searches for supersymmetric particles should discover gauginos
before squarks and sleptons.
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