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Abstract—Dynamic radar networks, usually composed of fly-
ing unmanned aerial vehicles (UAVs), have recently attracted
great interest for time-critical applications, such as search-
and-rescue operations, involving reliable detection of multiple
targets and situational awareness through environment radio
mapping. Unfortunately, the time available for detection is often
limited, and in most settings, there are no reliable models of the
environment, which should be learned quickly. One possibility
to guarantee short learning time is to enhance cooperation
among UAVs. For example, they can share information for
properly navigating the environment if they have a common goal.
Alternatively, in case of multiple and different goals or tasks,
they can exchange their available information to fitly assign
tasks (e.g., targets) to each network agent. In this paper, we
consider ad-hoc approaches for task assignment and a multi-
agent reinforcement learning (RL) algorithm that allow the UAVs
to learn a suitable navigation policy to explore an unknown
environment while maximizing the accuracy in detecting targets.
The obtained results demonstrate that cooperation at different
levels accelerates the learning process and brings benefits in
accomplishing the team’s goals.

Index Terms—Autonomous navigation, Task assignment, Re-
inforcement learning, Unmanned aerial vehicles.

I. INTRODUCTION

W IRELESS sensor networks, either with terrestrial fixed

[1] and dynamic [2] sensors, are widely used for data

gathering, sensing, and communications. Among all possible

applications, their monostatic and multistatic deployments

have been investigated for radar localization and target de-

tection [3].

A step forward has been introducing flying dynamic sensor

networks where sensors are integrated onboard unmanned

aerial vehicles (UAVs) [4], [5]. A recent review on the

use of UAVs for remote sensing, spanning from precision

agriculture (e.g., forest monitoring), urban environment and

management (e.g., air traffic control) to disaster hazards and

rescue (e.g., post-disaster assessment), can be found in [6] and

the references therein. In all such situations, networks of UAVs

can offer privileged views for gathering radio and vision-based

data. Compared to terrestrial fixed networks, the advantages of
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using UAV-based networks lie in their flexibility, robustness to

single-point failure, reconfigurability, and ability to maintain a

line-of-sight (LOS) condition with users and other destination

points. For example, in [7], [8], swarms of coordinated UAVs

equipped with ad-hoc radar sensors are deployed to track a

malicious target. Or alternatively, UAVs have been used as a

network infrastructure for localization, communications, and

other applications [9]–[11].

In this domain, an important line of research is the op-

timization of the UAV trajectory [12], [13]. In fact, unlike

terrestrial sensors, all tasks and navigation must be optimized

so as not to waste time flying over areas of little interest

from the mission perspective because of the frequent need

to recharge batteries [4]. Moreover, UAVs must complete

their mission within a finite time horizon, especially if they

operate for time-critical applications. For example, in post-

disaster situations, targets (e.g., victims) must be detected

and localized as quickly as possible by rescuers aided by

networks of autonomous UAVs [14]. Several recent papers

have studied the UAV trajectory optimization for wireless

communication purposes where UAVs are used either as flying

base stations (BSs) or users [15]. For example, in [16], [17],

the navigation goal was maximizing the communication rates

of multiple concurrent cellular users’ transmissions. Other

contributions focus on localization [8], [18] or minimization

of the electromagnetic exposure [19].

Traditionally, the navigation control problem is solved by

adopting model-based optimization, e.g., nonlinear program-

ming or dynamic programming [33]. Thanks to the availability

of a statistical model, the navigation problem can be written

as the minimization (maximization) of a cost (information)

function and is solved by relying on classic optimization tools.

Usually, the formulated optimization problem also considers

constraints for anti-collision, obstacle avoidance, and energy

consumption. For example, in [8], [18], the UAV navigation

problem is described as the minimization of the uncertainty

of target positioning.

Unfortunately, empirical system models are often unavail-

able or, in some situations, unreliable due to highly fast-

changing environments. To this purpose, machine learning

(ML) based approaches are of interest to learn a policy

that achieves the desired objectives efficiently and in a data-

driven fashion [20], [30], [34]–[38]. Among different ML
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Table I: Some examples of deep and standard Q-learning based applications in UAV Networks.

Applications Optimization Objective Techniques

Enhancing cellular communica-
tions (e.g., flying base-stations)

‚ Maximize the sum–rate
‚ Maximize the SNR
‚ Balancing UAV power consumption and coverage

‚ Tabular Q–learning [20]
‚ Double deep Q-network (DDQN) [21]
‚ Dueling Deep Q-network [22]

Detection and/or localization
and/or tracking of targets

‚ Minimize the positioning error
‚ Maximize the detection rate
‚ Maximize the number of detected targets

‚ Tabular Q–learning [4], [11], [14], [23]
‚ SARSA and Q-learning [24]
‚ Enhanced tabular Q–learning [25]
‚ Deep Q-Networks [23]
‚ Deep RL [26], [27]

Environmental radio mapping ‚ Minimize the entropy of the map
‚ Maximize the mapping coverage

‚ Tabular Q-learning [4]
‚ Dueling double deep Q network [28]

Smart sensing (e.g., for wildfires) ‚ Minimize the traveling time ‚ Review of deep learning for remote sensing [29]

Item delivery ‚ Minimize the traveling time ‚ Recurrent policy gradient algorithm [30]

Internet of Things (IoT) ‚ Learn the radio channel
‚ Localize unknown nodes
‚ Maximize data collection
‚ Maximize the number of addressed tags.

‚ Model-aided Deep Reinforcement Learning (Q
Learning) [31]

‚ MARL with Deep Q-Learning [32]

approaches, RL and deep RL have been used for UAV

policy navigation because of their ability to learn directly

by interactions with the surrounding environments [24], [39]–

[43]. When the environment has a grid-world representation

(e.g., indoors), Q-learning represents a simple and optimal

solution because state-action pairs can be represented by a

tractable Q-table that is updated at each time instant according

to the received rewards [4], [14], [44]. Table I summarizes

the use of tabular and deep Q-learning applied to UAV

networks. The main disadvantage of tabular Q-learning is

the curse of dimensionality that occurs for large state and

action spaces (e.g., large environments) and leads to increased

computational complexity and a slow convergence [30]. The

combination of deep learning with reinforcement learning

(deep RL) overcomes this issue by relying on neural networks

(NNs) for Q-function representations [45]. However, most

applications treat NNs as black boxes, and understanding and

interpreting deep learning models remains challenging [46].

The lack of interpretability still requires comprehensive treat-

ment, especially for dual-use technologies like those based on

UAVs and for safe-critical applications. Moreover, having a

tabular representation can help analyze the impact of different

parameters and schemes on performance.

A way to accelerate the training of large Q-tables without

relying on NNs is having agents cooperating with each other

[47]. Different techniques in the literature have been proposed

for cooperation, accounting for centralized and decentralized

solutions [41], [48]. While centralized solutions usually permit

a global view of the environment, decentralized solutions are

more flexible but require more intelligent agents. According

to Q-learning, several cooperative approaches for sharing the

learned experience among the agents’ network have already

been proposed in [49], [50]. In [50], [51], the authors con-

sidered distributed Q-learning approaches for multiple device

access in massive machine-type communications scenarios,

whereas in [48] the authors analyze a setting where some

agents are more expert than others (thus, being more infor-

mative) in cooperation.

Given this background, and differently from the optimiza-

tion objectives evidenced in Table I, in this paper, we aim

to study cooperative RL in a dynamic radar network (DRN)

of UAVs whose tasks are to detect targets accurately and to

enhance their ambient awareness by estimating its occupancy

radio map. Cooperation among UAVs will be tackled in a

twofold manner: for task assignment when agents within a

DRN share different goals, e.g., detect multiple targets, and for

UAV navigation when only a single target is present. Through

such cooperation, UAVs take actions based on a “global”

(network) shared knowledge and reduce the overall learning

time, thus improving the network’s performance.

The main contributions of this paper can be summarized as

follows.

‚ We propose an ad-hoc DRN architecture, composed of

UAVs, for solving joint target detection and environment

mapping tasks;

‚ We investigate cooperative multi-agent Q-learning ap-

proaches for solving autonomous navigation of UAVs

when agents share the same mission goal so that the

required mission time is reduced;

‚ We investigate different approaches for task assignment

when multiple and competing tasks are required during

the mission. In particular, we consider either a simple

received signal strength indicator (RSSI) based solution,

or a random assignment or a multi-armed bandit (MAB)
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Figure 1: A block diagram for decentralized joint detection, mapping, and navigation. Green, red, purple blocks indicate state

perception, state estimation and policy estimation, respectively. The environment is estimated by processing radar observations.

More specifically, an RF sensor is used to gather RSS measurements for target detection, indicated as RSSi,k, and a scanning

radar permits to collect an Angle-Range matrix, denoted with ei,k, for environment mapping. The true state at time instant

k is indicated with si,k for the ith UAV. The set and the estimated number of targets are denoted by T̂ and T̂, respectively,

whereas the belief of the environment map with bi,k. The policy estimation allows the UAV to select an optimized action ai,k.

Such an action leads to a new state where the UAV collects a reward indicated with ri,k`1.

scheme for properly managing the UAVs-targets assign-

ment at specific time instants of the mission.

‚ We demonstrate through a comprehensive case study,

including Terahertz (THz) mapping, the feasibility of

the proposed DRN in various settings. In particular, we

investigate the trade-off between the mapping and de-

tection performance while reducing the learning process,

highlighting the benefits carried out by cooperation.

The rest of the paper is organized as follows. Sec. II

describes the problem formulation for the DRN, whereas

Secs. III- IV overview the considered navigation and coop-

eration approaches. Then, Sec. V reports the considered case

study, and final conclusions are drawn in Sec. VI.

II. PROBLEM FORMULATION

In this paper, we consider a DRN composed of UAVs

that, by either collaborating together or acting as independent

learners, navigate for detecting active targets in an unknown

environment while reconstructing a probabilistic map of it.1

1In this paper, we focus on active targets sending beacons that can
be detected by radio frequency (RF) sensors. Passive targets are instead
considered objects whose probabilistic presence is inferred by a mapping
procedure.

More specifically, UAVs have the following two tasks:

piq Primary (Extrinsic) Task: High-quality detection of mul-

tiple active targets. Practical examples are cooperative

users that need to be rescued or hidden malicious tar-

gets whose unwanted communication is sniffed within a

certain frequency band;

piiq Secondary (Intrinsic) Task: Estimation of an occupancy

map of the explored area.

To accomplish them, each UAV performs the following

steps: sensing, state estimation, task allocation (for scenarios

with multiple targets) and policy estimation, depicted in Fig. 1

and described in the following.

a) Sensing: Each UAV is considered equipped with ad-

hoc low-cost and low-complexity sensors. A radar working

at high frequencies (e.g., millimeter-waves or THz) can be

accommodated in a small space despite the adoption of many

antennas for accurate beam-steering operations. Such radars

are useful for mapping as they can collect a range-angle

energy matrix to be processed by a mapping algorithm [52].

On the other hand, different sensors can be used for target

detection spanning from vision-based systems to radars. In

the following, we will consider a RF sensor able to measure
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the RSSI from a target that can be discriminated from other

targets through the detected packet ID [53].2

Generally speaking, if other sensors gathering different

types of data are on board, data-fusion techniques can be used

to process heterogeneous information.

b) State Estimation: The state comprises the UAV po-

sitions, an occupancy map of the environment, and the ID

of an associated target. In our investigated scenario, the map

is estimated using a Bayesian filtering approach, namely an

occupancy grid (OG). Appendix A shows the basic principles

of the adopted OG algorithm. The environment is discretized

in cells, and each cell has a binary status (1 if occupied and 0

if free). The goal of the estimation is to infer the a-posteriori

probability mass function of the occupancy of each cell based

on the history of radar measurements.

In addition, we assume to be able to distinguish the signals

coming from different targets, as they use different tones of

an orthogonal frequency-division multiplexing (OFDM) sig-

naling scheme, provided that the signal-to-noise ratio (SNR)

is above a certain threshold that allows to decode the received

signals and extrapolate the sources’ IDs.3

c) Task Allocation: To avoid situations where more

UAVs are likely to get closer to the same target, with the risk

of missing other targets, a UAV-target allocation algorithm can

be run either at each UAV or at a network level to distribute

the available resources better. In the next, we consider the

following three solutions described in Sec. IV-B: (i) Random:

where the allocation is randomly chosen; (ii) Independent

RSSI: where each UAV is assigned to the target corresponding

to the maximum received power; (iii) Cooperative MAB:

where a MAB formulation is used to describe the problem,

and an upper confidence bound (UCB) solution is considered.

d) Policy Estimation: Starting from the estimated state,

each UAV should decide where to navigate to maximize

joint detection and mapping performance and global network

behavior. The functions that map states into actions are called

policies. As a first step, each UAV acts as an independent

learner, estimates its own policy, and takes a navigation

decision. The navigation action drives the UAV to the next

position, where an instantaneous reward is collected according

to the goodness of the chosen action. Such a reward permits

a first update of the policy. In collaborative settings, UAVs

can share their knowledge with neighbors or with more

expert UAVs (e.g., by exchanging Q-values). After such an

exchange, the policy can be further updated. In this sense,

in the rest of the paper, we will focus on the capability

2Such a system works properly only with active targets. If passive targets
are also of interest, the UAVs could use a dual-functional radar for joint
detection and mapping, providing easy on-board integrability [54], [55].
However, this setting is beyond the scope of this paper. Our primary aim
is to develop decision-making strategies for the navigation of autonomous
agents.

3Such values were numerically set to SNR “ 10 dB in our case study
[56].

to make informative navigation decisions, independently or

cooperatively, according to multi-agent Q-learning.

A. System Model

We consider a set of M “ t1, . . . , i, . . . , Mu UAVs

employed in the environment, and a set of T “
t1, . . . , n, . . . , Tu targets’ IDs to be discovered with certain

reliability, i.e., the measured SNR should overcome a desired

threshold. We divide the time into a sequence K̄ of discrete

time instants upper bounded by K to take into account the

limited UAV endurance.

1) State-Action Model: In our scenario, the state vector

for each UAV si,k at time k contains the UAV location,

the map of the environment and a detection variable, i.e.,

si,k “ rpi,k, mk, ni,ksT , where pi,k “ rxi,k, yi,k, hsT P R
3

is the true UAV position, mk P B
Ncell is the true map at time

k described as a vector of Ncell cells in which the map is

discretized, and ni,k contains the target ID associated to the ith

UAV, and that can be empty in case no target is associated to

the considered UAV. The environment is assumed stationary,

so that mk “ m,@ k, with m “ rm1, . . . , mj , . . . , mNcell
sT ,

containing the occupancy value of each cell, i.e., mj P B.

In the navigation algorithm, we consider that the state

coincides with the UAV positions, that is si,k “ pi,k P R
3.

We also assume that the UAVs move in a grid so that

si,k “ ppi,k mod ∆q, where ∆ is the grid step. Conse-

quently, for a single-agent case, the state space considered

for RL navigation purposes is |S| “ Ncell.
4 Similarly, the

UAV navigation actions can be defined as ai,k “ ∆pi,k “

r∆xi,k,∆yi,k, 0sT P R
3 where ∆pi,k is a position displace-

ment in a continuous space. As before, since the UAVs are

constrained to move in a grid with only 4 available actions,

we have ai,k “ p∆pi,k mod ∆q and the action space is

here defined as A “
!

r∆, 0s , r´∆, 0s , r0, ∆s , r0, ´∆s
)

corresponding with right, left, up and down directions.

2) Observation Model for Target Detection: The UAVs

initially sense the environment through a detection module

whose intent is to reveal the presence of a collaborative target

that periodically broadcasts a beacon in the environment.

Then, if the received packets are correctly demodulated, the

UAVs collect a vector with the RSSIs that, for time instant k,

is

RSSi,k “
!

RSS1,i,k, . . . ,RSSn,i,k, . . . ,RSST̂i,i,k
|

s.t. RSSn,i,k ě ξ,@n P T̂i
)

, (1)

where T̂i refers to the set containing the target IDs detected

by the ith UAV with cardinality T̂i, and RSSn,i,k is the RSSI

measured from the nth target at time instant k, where we

assume that the duration of the beacon is less than the interval

4When the dimension of the state space is large (e.g., for large outdoors),
policy iteration might suffer from the “curse of dimensionality” [57].
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between k and k`1. Here the RSSn,i,k (in dBm) is modeled

according to a log-normal power loss model as follows [58]:

RSSn,i,k [dBm] “ 30 ` k0 ´ 10αpl log10
dn,i,k

d1
` Sh, (2)

where αpl is the path-loss exponent, dn,i,k is the distance

between the ith UAV and the nth target at time k, Sh models

the shadowing effect, and it is here considered normally

distributed as Sh „ N
`

0, σ2
s

˘

, with σs being the shadowing

spread, and where k0 is defined as

k0 “ 10 log10

«

Pn Gn Gi

λ2

p4πq2 d21

ff

´ 1i,n,k LNLOS , (3)

is the received power at d1 “ 1m, where λ is the wavelength,

Pn is the nth target’s transmitted power, Gn (Gi) refers to the

transmitting (receiving) antenna gain, 1i,n,k is an indicator

function set to one if there is a non line-of-sight (NLOS)

between the target and the UAV at time instant k, and LNLOS

is the additional attenuation due to the blockages creating

the NLOS condition [14], [59], [60]. Note that RSSn,i,k is a

function of the UAV and target positions and distance dn,i,k,

and in the following it is used for defining the rewards. Typical

values of the shadowing standard deviation can be of 1.70 dB

and 3 dB in LOS and NLOS situations respectively [58].

The path-loss exponent was set to 2. Moreover, in presence

of NLOS, in our case study, we considered an attenuation

of LNLOS “ 30 dB. Next, we describe RL in DRNs for

navigation, and then we discuss cooperation in Sec. IV

III. NAVIGATION POLICY

A. Single-Agent Markov Decision Process

A Markov decision process (MDP) is defined by the tuple

comprising the state space S , the action space A, the reward

space R, and the probability of transitioning from one state

sk, at time instant k, to the next state sk`1 [57].5

The actions of the ith agent are selected according to a

policy πi pai,k|si,kq that is the conditional probability mass

function of the action. The optimal policy selects an action

according to

a˚
i,k “ argmax

a

Qπi
psi,k,aq , (4)

where the Q-function, Qπi
“ Qπi

psi,k,ai,kq, is the expected

sum of discounted rewards over all possible policies and is

given by

Qπi
“Eπi

#

8
ÿ

l“0

γlRi,k`l`1

∣

∣

∣
Si,k “ si,k, Ai,k “ ai,k

+

, (5)

with 0 ď γ ď 1 being the discount rate, and where

tRk,i, Sk,i, Ak,iu are the random variables for the ith agent

5The problem can also be formulated as a constrained MDPs to account for
anti-collision and safety constraints. In our paper, we include such constraint
information in terms of penalties. As soon as a UAV senses an obstacle
through its proximity sensors, then it selects another action.

related, respectively, to rewards, states, and actions at time

instant k taking values in tR,S,Au. The expected reward at

time instant k ` 1 for the state-action pair is

ri,k`1psi,k,ai,kq “ E rRi,k`1|Si,k “ si,k, Ai,k “ ai,ks . (6)

Optimal policies share the same optimal action-value func-

tion for policy π defined as [57]

Q˚
i psi,k,ai,kq “ max

π
Qπ psi,k,ai,kq , (7)

@si,k P S,@ai,k P A.

B. Q-learning for UAV Navigation

Q-learning is an off-policy temporal-difference (TD) con-

trol algorithm where the policy is learned run-time while the

UAV navigates the environment. It is a model-free tabular

approach with the possibility of choosing a random action.

The simplest solution is represented by the ǫ-greedy approach

[57], [61], [62], where a random action is selected with a

probability given by ǫ. Other variants of these approaches

account for exploration only at the beginning (ǫ-first strategy)

or for a time-decaying exploration (ǫ-decaying strategy) to

converge to a quasi-optimal solution. The advantages of using

TD methods instead of Monte Carlo or dynamic programming

is that there is no need for a model, and an update of the return

(i.e., cumulative rewards) is made at each time step.

For discrete states and actions, the Q-value in (5) can be

represented by a Q-table that, at each time instant and for

each agent, is updated by [57]

Qipsi,k,akq ÐQipsi,k,ai,kq ` α
”

ri,k`1 ` γmax
a

Qpsi,k`1,aq

´Qipsi,k,ai,kqs , (8)

where α is the learning rate, and the max operator is used

to have a greedy policy. In this case, the learned action-

value function directly approximates the optimal action-value

function in (7), independently from the policy being followed.

C. Navigation Rewards

One of the most important aspects when adopting RL is the

reward shaping that drives the agents’ behavior in the desired

manner [63], [64]. To this purpose, we recall that the UAV

network has a primary (extrinsic) and a secondary (intrinsic)

task and associated rewards.

The extrinsic rewards are usually task-specific, and they

associate a state-action pair into a real-valued reward, whereas

the intrinsic rewards only indirectly depend on the world’s

state through the beliefs estimated by UAV about such a state

[63].
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Figure 2: From the left to the right: Independent, Centralized, and Distributed Cooperative Learning schemes.

Thus, as in [62], we can write the reward as a weighted

sum of extrinsic and intrinsic rewards as6

ri,k`1 “ η rei,k`1 ` rii,k`1, (9)

where

rei,k`1 “ rdi,k`1, rii,k`1 “ ξ1 r
c
i,k`1 ` ξ2 r

m
i,k`1, (10)

where rdi,k`1, rci,k`1, and rmi,k`1 relate to the target detection,

the mapping coverage, and accuracy, respectively, and η, ξ1,

and ξ2 are the related weight coefficients whose impact will

be studied and discussed in the numerical results.

The detection reward is expressed as a function of the RSSI

measured from the assigned target as

rdi,k`1 fi
RSSni,i,k`1

RSSmax

, (11)

where RSSni,i,k`1 is the measured RSSI from the ni,k`1th

target associated to the ith UAV at time k ` 1, and RSSmax is

the RSSI a UAV would experience at a distance of a single

cell (i.e., the minimum possible distance) from a target.7

The mapping coverage reward is given by

rci,k`1 fi

ř

jPIi,k`1
Ipj P Di,k`1q

Ncell

, (12)

where I is the indicator function, i.e., Ipxq “ 1 if x is true

and 0 otherwise, Di,k`1 Ď Ii,k`1 indicates the cells visited

for the first time, at time k`1, whereas Ii,k`1 represents the

set of indices of all the cells illuminated by the ith UAV at the

same k`1 th instant. In other words, the higher the number of

cells visited for the first time, the higher the reward. Finally,

6The reward model in (10) is also similar to the theory of RL multi-
objectivation [65] where the most common approach is to employ a scalar-
ization of the multi-objectives [66]. Setting these weights a priori to achieve
a particular trade-off requires extensive parameter tuning [65].

7We suppose the positions of targets are unknown. For this reason, we
cannot assume to have a cost function in the form of p

`

pi,k

˘

“ ´1´di,ni,k

as in [67].

rmi,k`1 is defined as follows:

rmi,k`1 “ ´
ÿ

jPIi,k`1

bi,k`1pmjq log2 pbi,k`1pmjqq , (13)

where bi,k`1pmjq is the belief of the occupancy state of the

j th cell as predicted by the i th agent at time slot k ` 1.

Notably, this reward aims to push actions that minimize the

uncertainty of the map in the shortest possible time.

Note that obstacles are assumed to be detected with (prox-

imity) sensors that allow the agent to avoid them by including

numerical penalties in the Q-table.

IV. MULTI-AGENT COOPERATION

According to Fig. 1, cooperation can be intended in a

twofold manner. In the first one, if a group of UAVs shares a

common (detection) task, an exchange of Q-values can speed

up the mission completion. In the second one, if multiple

(detection) tasks should be completed by the network, then

the cooperation can be implemented through task assignment

between UAVs.

A. Common Task: Q-sharing

When UAVs are networked and share a common (detection)

task, they coordinate together for navigation to achieve the

mission goal more rapidly than if they operate independently.

In this section, we extend the single-agent framework of

Sec. III-A to the multi-agent case.

According to Fig. 2, two types of UAVs are conceived: (i)

independent learners; and (ii) cooperative learners that can

work either in a distributed or in a centralized manner. More

specifically, we have:

‚ Independent Learning: Each UAV finds the best policy in

an independent way by solving the optimization problem

in (4) for their local Q-table, i.e., Qi psi,k,ai,kq. Thanks

to the first stage of single-agent Q-learning, they select

their own action and move to the next position (i.e.,
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pi,k`1) where they collect an instantaneous (sample)

reward ri,k`1.

‚ Centralized Cooperative Learning: In this case, the UAVs

share the same Q-table, that is, Qi “ Q,@i P M. Thus,

each UAV indirectly knows what has been experienced

by the others through the Q-table, which is updated by

the ith agent as

Qpsi,k,ai,kq Ð Qpsi,k,ai,kq ` α rri,k`1

`γmax
a

Qpsi,k,aq ´ Qpsi,k,ai,kq
ı

. (14)

Note that while actions are selected on-board by each

UAV, the Q-table is shared among all of them (e.g., it can

be stored in an edge or cloud), and this allows the UAVs

to make more informed decisions. This approach has the

same disadvantages as centralized architecture, i.e., a low

degree of robustness and the need to communicate with

a central node or share all the Q-tables.

‚ Distributed Cooperative Learning: In this case, UAVs

share some learning information (e.g., Q-values) with

other UAVs. This allows updating their own Q-tables by

considering the knowledge acquired by the others. Each

agent updates its own Q-table according to a specific

function, i.e., Qi Ð f
´

Qi, tQνuνPMi,k

¯

where Mi,k

are the UAVs within the communication range of the ith

agent (also indicated as “neighbors”). In the next, we

consider Mi,k “ Mi, @k.

Since there are different ways to conceive distributed co-

operative approaches, in the following, we highlight different

possible techniques and implementations of the cooperative

function f p¨q according with [68].

a) Distributed Cooperation with Maximum Q-values:

Each agent i updates its Q-table by substituting each Q-

value with the related best Q-value among all the Q-tables

of neighboring agents. By omitting the temporal index, for

each state-action pair, the Q-value is updated by

Qi ps,aq Ð f
`

Qi, tQνuνPMi

˘

“ Qmax ps,aq

“ max
νPti,Miu

Qν ps,aq , (15)

@ i P M, s P S, a P A. Each Q-table entry indicated by the

pair ps,aq is substituted with the maximum Q-values among

the corresponding entries of all neighbors.

In this type of cooperation, all agents must share the

entire Q-table with the risk of slow and time-consuming

communication operations.8

b) Distributed Cooperation with Absolute Q-Values:

The previous approach might suffer because negative rewards

are neglected since they are not considered useful, even if they

8A simplified version is to restrict the shared information to only the

UAV’s state at time instant k, i.e., Qi

`

si,k,a
˘

Ð f
´

Qi, tQνuνPMi

¯

“

Qmax
`

si,k,a
˘

“ max
νPti,Miu

Qν

`

si,k,a
˘

, @ i P M, a P A.

are important, as they can prevent other agents from repeating

the same mistakes.

Thus, a possible alternative is to account for the absolute

value of the Q-table (BestAbs-Q). In this case, (15) becomes

Qi ps,aq Ð f
`

Qi, tQνuνPMi

˘

“ Qbest ps,aq (16)

“ max
νPti,Miu

|Qν ps,aq| .

c) Distributed Cooperation with Averaged Q-Values:

Each agent averages the best Q-table with its current Q-table

as follows:

Qi ps,aq Ð f
`

Qi, tQνuνPMi

˘

“
Qbest ps,aq ` Qi ps,aq

2
,

(17)

@ i P M, s P S, a P A. In this way, the best values of the

Q-table are mixed with the current Q-values of the ith agent,

such that new and past information is balanced.

B. Multiple Tasks: UAV-Target Association

We refer to the task allocation of the target-UAV association

procedure that maximizes the number of discovered targets in

a given mission time.

Let L “ t1, 2, . . . , ℓ, . . . , Lu be the set of all possible asso-

ciations. The output of the assignment is a vector containing

the estimated association. Such a vector is a part of a matrix

A of size L ˆ M where L “ |L| is the cardinality of L. Each

matrix entry is an index identifying the target associated with

the considered UAV.

We recall that the term “discovered target ID” refers

to a label associated with targets detected with a received

power larger than a predefined threshold ξ as defined in

(1). Moreover, the task of target discovery ends when the

aforementioned targets are detected with a RSSI higher than

RSSmax. In the following, we describe the proposed solutions.

1) Cooperative UAV-Target Association: The cooperative

solution is based on MAB. MAB is a sequential decision

process equivalent to one-state MDP whose objective is the

maximization of the cumulative payoff/reward obtained in a

sequence of decisions [69], [70]. Indeed, differently from Q-

learning, it is defined by a reward and a set of actions (i.e.,

arms), but it does not entail the concept of state transitions.

Among the possible solutions for the MAB problem, the UCB

allows picking arms by solving the dilemma exploration vs.

exploitation in a closed form [69], [71]. In the following,

we propose an ad-hoc UCB-based approach such that the

target-UAV association is performed in a fashion that it avoids

assigning the same target to multiple UAVs.

The UCB-based algorithm consists of four phases: initial,

explore-all, training and association phases, and it works as

follows [72]:

a) Initial Phase: The UAVs performs an initial mea-

surement campaign with the intent to reveal the presence

of a target through its transmitted beacon, as described in
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Sec. II-A2. At the end of this phase, all the UAVs combine the

gathered information and a set with T̂ “
Ť

iPM T̂i detected

ID targets is created with cardinality T̂ “ |T̂ |. The number of

arms (i.e., of possible associations), indicated with L “ |L|,
is determined as follows:

L “

$

’

’

&

’

’

%

M! if M “ T̂,
M!

pM´T̂q!
if M ą T̂,

T̂!

pT̂´Mq!
if M ă T̂,

(18)

where x! indicates the factorial of x. Note that if the number of

targets is below the number of agents, some UAVs will remain

without targets and dedicate their efforts only to environment

radio mapping. On the contrary, if the number of targets is

larger than the number of UAVs, some targets will be served

later.

b) Explore-All Phase: After the initial procedure, with

the creation of T̂ , there is a training phase where all the arms

ℓ P L are played once. For each arm, played at instant t “ ℓ,

we observe a global reward r̄ℓ, and we update the average

reward due to the choice of arm ℓ

r̄ℓ “
1

M

M
ÿ

i“1

rℓ,i, µ̂ℓ “
r̄ℓ

Nℓ

, (19)

where Nℓ is the number of times the ℓ-th arm is selected that,

for this phase, is equal to 1 (i.e., µ̂ℓ “ r̄ℓ), and rℓ,i is evaluated

according to (11).

c) Training Phase: After the Explore-All phase, the UCB

solves the trade-off between exploration (e.g., choosing a

random action) and exploitation (e.g., choosing an action

according to the collected information) in a closed form.

By assuming Gaussian distributions and a known standard

deviation of rewards, the objective reduces to compute the

best estimate for the mean value of the reward to pick the

best arm. By accounting for τ training instants, at the tth

training time, with L ă t ď τ , the choice of an UAV-target

allocation action is performed by picking the ℓ-th arm as

ℓt “ argmax
ℓ

˜

µ̂ℓ `

d

2 lnptq

Nℓ

¸

, (20)

where, in this case, it holds µ̂ℓ as defined in (19) which is the

estimated average cumulative reward collected so far for arm

ℓ and r̄ℓ is updated as

r̄ℓ “
t

ÿ

ν“1

«

1

M

M
ÿ

i“1

rℓ,ipνq ¨ 1pℓ, νq

ff

, (21)

where rℓ,ipνq is the reward associated to agent i due to choice

ℓ at time instant k, and 1 pxq is the indicator function defined

as in (12) as

1pℓ, νq “

#

1, if ℓth arm selected at time instant ν

0, otherwise.
(22)

The rationale behind the utility function in (20) is to find

a trade-off between exploitation and exploration based on

time and the number of times an arm has been chosen. The

exploration part is included with the term

b

2 lnptq
Nℓ

: when Nℓ

is large, then this term goes to zero, and the agent can rely on

its already acquired knowledge. Concurrently, the exploitation

term described by µ̂ℓ will be more accurate as time passes.

d) Association Phase: Finally, the arm selected for the

association is ℓ̂ “ ℓτ where ℓτ is computed as in (20).

To avoid the need to have the UCB running continuously,

intermittent MAB mode can be used to enable UAVs making

assignments only in a few instants to save power.

2) Independent UAV-Target Association: The previous ap-

proach allows the coordination of multiple UAVs for assigning

separate tasks, but it might entail the exchange of several

messages between each UAV and a central node, which can

be a UAV of the network or an edge/cloud. This, however,

can imply extra power consumption.

To overcome this limitation, a viable and simple solution is

that each UAV decides on its own to which target to associate

according to the measured environmental characteristics. In

this sense, the simplest and most intuitive solution is that

each UAV picks the target it reveals with the highest RSSI,

even though other agents might have the same goal. Such

association rule aligns with [67], [73].

In operating like this, a twofold aspect merits attention: the

first is that the entire swarm of agents might go toward the

same goal, neglecting other targets that need support. On the

other hand, this solution can also be adopted as a backup

plan if the network’s connectivity prevents using the MAB

approach.

Thus, omitting the time index k, in this case, we have that

the association is defined by a scalar9 given by

tAu1,i “ argmax
n

RSSn,i, @i P M, (23)

where RSSn,i is defined as in (1), and A contains a single

row.

In particular, the argmax operation in (23) searches the

highest RSS value inside the vector RSSi and returns the

corresponding index.

3) Random UAV-Target Association: The third approach

entails the adoption of a completely random target-UAV

assignment procedure which can also decide that a UAV is

assigned only for exploration. Each matrix element is set as

tAu1,i “ χ where χ „

Z

U
´

1, T̂
¯

^

is a uniformly distributed

random variable considering integer values between 1 and T̂i,

and t¨u is the rounding down operator.

From one side, this approach is not efficient, especially

when an agent is close to a target but is assigned to another

one. But on the other hand, it also exploits the concept of

exploration in the case of resource allocation, which could be

9Note that each UAV only knows its target association, as the procedure
is performed in a completely independent manner.
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Figure 3: Reference occupancy map for the single-target case.

The UAV initial positions are indicated with blue markers, and

the source positions with red markers. Double circle markers

indicate the positions of UAVs when only two are considered

in simulations.

enlightening when the accumulated experience is insufficient

to make informative decisions.

Note also that A is a single vector for the last two ap-

proaches, as the task assignment does not require any learning

procedure but is essentially based on an independent choice.

V. NUMERICAL RESULTS

In this section, we provide a numerical investigation of the

proposed techniques for task assignment and navigation of a

network of agents exploring an unknown indoor environment

while detecting the presence of targets. The mission time

is described by episodes of duration K, so that the generic

discrete-time temporal index is given by t “ pe ´ 1qK ` k P
t1, 2, . . . ,K Nepu, where k P t1, 2, . . . ,Ku is a discrete-time

index of each episode and e P t1, 2, . . . , Nepu is an index of

a generic episode.

a) Onboard Sensors: For this case study, we used a sub-

THz multiple-antenna radar for environment mapping and a

radio receiver for active target detection.

The sub-THz radar was equipped with a planar squared

array of 100 antennas working at 140GHz with a maxi-

mum gain of 26 dBi. The transmitted power and the signal

bandwidth were set to 5 dBm and to 1GHz, respectively,

whereas the observation window (time frame) was set to

50 ns in accordance to the size of the environments.10 We

considered 25 steering directions with angles between ´60

and 60 degrees with a step of 5 degrees. Finally, the radar

noise power was set to ´80 dBm. Please refer to Appendix

A for further details.

The RF receiver for target detection worked at a central

frequency of 2.4GHz with a bandwidth of 120MHz [53]. The

10Note that the related maximum range is of 7.5m considering the radar
two-way link.

transmitted power of each target was 10 dBm, and the receiver

noise power was set to ´90 dBm. Finally, we assumed that the

UAV is equipped with a conventional omnidirectional antenna

of G “ 5 dBi gain.
b) Figure of Merits: Next, we assess the source detection

performance in terms of the rate of experiencing a certain SNR

regime (Success Rate (SR)). Let’s define the time instant at

which the mission can be considered successfully completed

as

t̂ “pê ´ 1qK ` k̂ (24)

s.t.

$

&

%

SNR
pêq

1,i,k̂
ě ζ,@i P M, T “ 1

D i
∣

∣ SNR
pêq

n,i,k̂
ě ζ,@n P T , T ą 1

, (25)

with ζ being a threshold set to guarantee a reliable detection

rate (i.e., the expected SNR at a distance of 2m from the

source). More specifically, the condition for T “ 1 in (24)

is valid for the single-target scenario and indicates that all

UAVs should experience a SNR above a certain threshold to

reach the mission goal. Instead, the condition for T ą 1, i.e.,

valid for the multiple target case, indicates that the mission

ends when all the targets are detected with an SNR over the

threshold. Then, for each episode e, we define the SR as

SRe “
1

NMC

NMC
ÿ

m“1

˜

1

K

K
ÿ

k“1

1

`

t ě t̂
˘

¸

, (26)

where NMC is the number of Monte Carlo iterations.

To obtain a quantitative evaluation of the mapping perfor-

mance, we consider the image similarity (IS) index defined as

[52], [74]

IS pm̂,mq “
ÿ

cPC

d pm̂,m, cq ` d pm, m̂, cq , (27)

where m is the actual occupancy map taking value mj P C “
t0, 1u ,@j P M with M being the set of all grid cell indexes,

m̂ is the estimated map with m̂j “ 0 if bk pmkq ď 0.4 and

m̂j “ 1 if bk pmkq ą 0.6, and d pm1,m2, cq is defined as

d pm1,m2, cq “

ř

m1,i“c min pdM pm1,i,m2,jq |m2,j “ cq

Nc

,

(28)

with Nc being the number of times a cell in map m1 has

the occupancy value c, and dM pm1,i,m2,jq is the Manhattan

distance between the ith cell of the map m1 and the jth cell

of the map m2, both having the same occupancy value c.
The mapping metric in (27) can be computed for each UAV

and at each Monte Carlo cycle.
c) Simulation Environment: The reference scenario is

displayed in Fig. 3 where the color of each cell represents its

occupancy value: empty cells are displayed in white, whereas

occupied cells are in black. To describe complete uncertainty

about the map status, we initially set b0 pmjq “ 0.5, @j P M.

The navigation task was solved by running a multi-agent

tabular Q-learning where the learning parameters were set to
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Figure 4: Example of trajectories for the last episode, i.e.,

e “ 100, and two agents, and for a single Monte Carlo iter-

ation. Reward weights were η “ 1, ξ “ 0. Top: Independent

learning, Middle: Centralized cooperative learning, Bottom:

Distributed cooperation with BestAbs-Q.

α “ 0.99, γ “ 0.9, and the probability of taking a random

action, i.e., ǫ, was considered as a time-decaying function to

favor exploitation phases over exploration behaviors (similar

to decayed epsilon-greedy [75]). For this reason, we have

considered the empirical strategy reported in Table II.

We fixed the mission time K for each episode to 150 and

the number of episodes Nep to 100. The training episodes

allowed UAVs to leverage over prior knowledge acquired

through time and experience.

We denote with ξ “ ξ1 “ ξ2 the mapping weight.11

11We omit a discussion about the convergence to an optimal policy
because it would depend on the chosen parameters, and it would require
lengthy training procedures that are not compliant with time-critical missions
[76]. Moreover, for a standard Q-learning approach, it has already been
demonstrated that, for a large number of episodes, this approach converges
to its optimum [76]–[79]. The conditions to achieve such convergence are
related to the exploration policy and learning rate [80]–[82].

Table II: Adopted time decayed epsilon-greedy rule.

Step
Episode

e ă Nep{2 Nep{2 ă e ă Nep ´ 1 e “ Nep

k ď K{4 0.8 0.5 0

K{4 ă k ď K{2 0.6 0.3 0

K{2 ă k ď 3{4K 0.4 0.2 0

k ą 3{4K 0.3 0.1 0

Exploration High Medium-Low None
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Figure 5: Example of trajectories for the last episode, i.e., e “
100, and two agents, and for a single Monte Carlo iteration.

Reward weights were η “ 1 and ξ “ 0.3. Top: Independent

learning, Middle: Centralized cooperative learning, Bottom:

Distributed cooperation with BestAbs-Q.

A. Performance in Single-Target Scenario

We first consider a scenario with only one target, and the

UAVs of the DRN cooperate to reduce the learning time.

In such settings, being the mission goal common for all the

network, UAVs do not perform a task allocation phase.

In Figs. 4-5, we report the estimated occupancy maps and

trajectories during the last episode by considering a single

Monte Carlo realization. Rewards were set to optimize the

detection of the source, i.e., η “ 1 and ξ “ 0 (Fig. 4), or

for joint detection and mapping, i.e., η “ 1 and ξ “ 0.3

(Fig. 5). We tested the following configurations with two

UAVs: (i) Independent learning (top) where each UAV has

and updates its own Q-table; (ii) Centralized learning (mid-

dle) where each UAV updates a common Q-table; and (iii)

Distributed learning (bottom) where each UAV cooperates

by exchanging the Q-values (BestAbs-Q). It is possible to

notice that when a centralized or distributed cooperation is

performed, all the UAVs successfully complete the mission

by following a trajectory reaching the source as a destination

point. Contrarily, independent learning can fail when there are

NLOS conditions as it happens in Figs. 4 and 5-(top, left).

Figures 6-7 depict the Q-table of Figs. 4-5-bottom. Each

map corresponds to a possible action (left, right, up, and

down), and each Cartesian coordinate inside each map is a

possible UAV state. The actual map is reported in white,
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Figure 6: Q-Table for the distributed cooperation with

BestAbs-Q with η “ 1, ξ “ 0. The true map is juxtaposed in

white. The initial UAV position are white markers with blue

edges; the source is indicated with a white marker with a red

contour. The UAV trajectory is displayed with a white marker

and green edges.

whereas colors represent the intensity of the Q-values, that

is, a color tending towards red indicates that a UAV located

at the considered cell and choosing the action indicated in the

title will receive a good reward based on past experiences.

By contrast, colors tending to blue indicate state-action pair

that did not lead to high rewards in the previous episodes.

As expected, in Fig. 6, UAV trajectories are mainly driven by

the target detection, and hence the cells with higher values

minimize the distance from the target. Instead, in Fig. 7, the

path towards the target leads to lower rewards because the

mapping penalizes navigation over the same trajectories in

favor of exploring new areas.

In Figs. 8-9 the Q-tables are displayed as functions of the

cooperation scheme for ξ “ 0 and ξ “ 0.3, respectively. As

it can be noticed, independent learners update only a local

part of the Q-table, whereas, when cooperation is performed,

UAVs can opt to follow paths explored by others and lead to

higher rewards.

Now, we investigate the performance averaged over Monte

Carlo iterations. To this end, we set the number of simulations

to 50.

Figure 10 reports the IS score for two agents and for

different cooperation strategies and values of ξ. Continuous

and dashed lines refer to a radar (maximum) range of 7.5m,

and 3.75m, respectively. The image similarity index dimin-

ishes over time as the map reconstruction accuracy improves.

Instead, the choice of the cooperation strategy does not

significantly impact this metric. Finally, a variation of ξ does
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Figure 7: Q-Table for the distributed cooperation with

BestAbs-Q with η “ 1, ξ “ 0.3. The meaning of colors

is the same as Fig. 6.

not impact the mapping performance when the radar range is

similar to the environment size, whereas some changes can be

perceived when the radar has a scarce illumination capability.

Figure 11 reports the SR as a function of time and for

different rewards, that is, for joint detection and mapping

rewards, when ξ “ 0.3. As expected and confirmed by the es-

timated trajectories, cooperation among the UAVs is beneficial

in reducing the time needed to find a single source. Indeed,

with cooperation, 80 episodes are sufficient to accomplish the

mission in more than 85% of cases.

Figure 12 depicts the SR by varying the mapping weight

and changing the cooperation scheme. Through Fig. 12-top,

it is confirmed that centralized or distributed cooperation is

beneficial for speeding up target detection. Figure 12-bottom

instead puts in evidence that when the radar has a limited

reading range (e.g., 3.75m instead of 7.5m), the mission

cannot be successfully accomplished even in the presence of

cooperation, which has almost no impact (the SR is always

below the 40% at the end of the mission in all cases). Note

also that for ξ “ 1, Fig. 12-top shows that the detection

performance is worsening because the UAVs do not focus

only on the primary task but also on mapping. On the

other way round, when the reading range (RR) is reduced

(Fig. 12-bottom), having ξ “ 1 helps the UAVs privilege

the exploration phase with an increased likelihood to find the

target.

In Fig. 13, performance is compared by accounting for

the different Q-learning cooperation schemes described in

Sec. IV. Notably, cooperation allows for boosting perfor-

mance, regardless of the choice of a specific algorithm.
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Figure 10: Example of image similarity index computed using

(27) for joint detection and mapping for the first two episodes.

Continuous and dashed lines refer to a maximum radar reading

range of 7.5m, and 3.75m, respectively. Left: centralized

cooperative learning and different values of ξ; Right: ξ “ 0.3

and different forms of cooperation.

B. Performance in Multi-Task Scenario

We now analyze the task assignment performance in the

presence of multiple targets. To this end, we considered the

scenario of Fig. 14-top, where M “ 2 and T “ 2 are

placed in three different geometric settings, namely Config.

#1, Config. #2 Config. #3. In the first configuration, the

UAV initial positions are close to each other, whereas, in the

second, they are more spread out in the environment. The third
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Figure 11: SR for source detection as a function of the number

of episodes averaged over Monte Carlo iterations and the num-

ber of agents (N “ 2). Dashed lines: Independent learning

(IL), Dot-Dashed lines: Centralized cooperative learning (CC),

Continuous lines: Distributed cooperation with BestAbs-Q

(DC).
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Figure 12: SR for source detection as a function of the number of episodes averaged over Monte Carlo iterations and the

number of agents (N “ 2). The radar reading range was 7.5m (top), and 3.75m (bottom). The mapping weights are varied

as reported in the legend, whereas the weight associated with detection was set to η “ 1.

configuration has been chosen to investigate the performance

when one target is close to an obstacle. In our simulations,

the task assignment was performed from k “ 1 till k “ K{2
with a step of 20. The training duration of the MAB was set

to τ “ 20 steps.

In Fig. 14-bottom, we plotted the obtained results for differ-

ent multi-task assignment techniques, that is, (i) cooperation

through MAB; (ii) independent by considering the maximum

measured RSSI (namely, max ´ RSSI) and; (iii) independent

and random task assignment (namely Random).

The performance shows that the case where the maximum

RSSI and the MAB are employed allows for drastically re-

ducing the mission time with respect to the random approach.

Moreover, the MAB-based approach avoids having different

UAVs sharing the same task in the environment and, conse-

quently, the UAVs can focus on other operations. Nevertheless,

the MAB-based approach requires a certain number of training

episodes and, thus, a higher complexity.

VI. CONCLUSIONS

In this paper, we have investigated the possibility of em-

ploying a DRN for indoor scenarios, where targets must be

revealed in the shortest possible time, and the environment has

to be reconstructed. More specifically, we have investigated

both scenarios where cooperation is exploited alternatively

for navigation or task assignment. First, we proposed an ad-

hoc model for both situations and assessed the performance

through extensive simulation analysis. Our results showed that

the proposed framework allows for attaining robust perfor-

mance (in terms of SR and IS) under different settings, which

makes DRN a promising solution for solving joint detection

and mapping problems.

APPENDIX A

MAPPING

We provide insights about how the mapping reward is

evaluated when a multi-antenna radar is exploited by the

ith UAV. In this case, for each steering direction, the radar

transmits a train of Np pulses, and for each pulse, it collects

the backscattering response (e.g., an echo). The time frame

is subdivided into Nbin bins, and for each time bin, the

radar computes the corresponding energy profile. Notably,

according to [52], each energy element ebs, referring to a
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Figure 13: SR for source detection as a function of the

number of episodes and the number of agents. We consider a

distributed cooperation with different schemes for updating

the Q-tables. In all cases, rewards were set considering

η “ 1, ξ “ 0.3. Solid and dashed lines refer to M “ 2 and

M “ 4, respectively.

specific steering direction b and a specific time bin s, is

expressed with

ei,bs “

Np´1
ÿ

n“0

ż s TED

ps´1q TED

y2i pt ` nTf, θbq dt , (29)

where Np is the number of pulses transmitted for each steering

direction, θb is the bth steering direction, TED « 1{W is

the duration of the energy bin, yiptq is the band-pass filtered

version of the signal, and Tf is the time frame. Starting from

(29), it is possible to write a Range-Angle matrix given by

ei“

s “ 1 s “ 2 ... s “ Nbin
¨

˚

˚

˝

˛

‹

‹

‚

ei,11 ei,12 ... ei,1Nbin
b “ 1

ei,21 ei,22 ... ei,2Nbin
b “ 2

...
...

...
...

...

ei,Nsteer 1 ei,Nsteer 2 ... ei,Nsteer Nbin
b “ Nsteer

.

(30)

A possible approach to estimate a map of the environment

is to use an OG algorithm that, given these observations and

by operating cell-by-cell, estimates the log-odd of occupancy

for the jth cell as

ℓi,k pmjq “ log

ˆ

bi,k pmjq

1 ´ bi,k pmjq

˙

, (31)

where bi,k pmjq is the belief of the occupancy state of the j th

cell computed by the i th UAV at time instant k. To this end,

the algorithm proceeds in two main steps [52]:

‚ Initialization: The map is initialized as ℓi,0 pmjq “

log
´

bi,0pmjq
1´bi,0pmjq

¯

with bi,0pmjq “ 0.5, corresponding to

a complete uncertainty, @j “ 1, 2, . . . , Ncell.

‚ Measurement and Scan Vector Generation: A new

Range-Angle matrix. as in (30), is acquired and each row

ei;b “ rei,b1, ei,b2, . . . , ei,bs, . . . , ei,bNbin
s is compared

with a threshold 0 ă γ ď 1. The distance corresponding

to the first element exceeding γmaxpei;bq is saved in a

vector ri,k. At the same time, all the steering angles are

collected into the angle vector φ “ rφ1, φ2, . . . , φNsteer
s.

The final scan vector at time instant k is given by

si,k “
”

rTi,k, φ
T

ı

.

‚ Log-Odd Update: Starting from sk, the beliefs are up-

dated following a classic occupancy grid algorithm [83],

i.e.,

ℓi,k pmjq“log

ˆ

p psk|mj “ 1q

p psk|mj “ 0q

˙

` ℓi,k´1 pmiq

@ i “ 1, . . . , Ncell (32)

where p psk|mj “ 1q (p psk|mj “ 0q) is the likelihood

function considering the current scan sk given the pres-

ence of an occupied (free) cell in mj .

Note that (32) assumes that each cell is independent of all

the others (including the adjacent cells).
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