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1 Machine Learning Model Training

Supplementary Figure 1: Training procedure of the 6×4 model characterized with a (a)
learning curve and a (b) scatter plot comparing DFT- and ML-based energies.

2 Exhaustive VO-configurations in the 6×4-cell

During the active learning scheme, we exhaustively predicted optimal polaron configurations

in all possible oxygen vacancy configurations in the 6 × 4-cell. Figure 5 shows the energy

distribution of the most favorable configurations as predicted by the ML model. The marked

region at the lowest energies shows the most interesting configurations and is comprised of

all configurations that feature one oxygen vacancy per [001] bridging oxygen row. Less stable

configurations were not explored as thoroughly during active learning and might contain less

accurate predictions, or some configurations, which were not reproducible at the DFT level.

In Figure 6, we collect the best polaron configuration for all VO-configurations in the

low energy cluster, with their respective DFT energy. Figure 7 collects the energy changes

due to different treatments of polaron-defect interaction in the low energy VO configuration
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Supplementary Figure 2: Training procedure of the combined 6×4 and 12×2 model char-
acterized with a (a) learning curve and a (b) scatter plot comparing DFT- and ML-based
energies.

cluster. Some notable features here are the presence of TiS0-polarons (marked in orange) as

compared to the reference dataset, where most stable configurations usually only consisted

of TiS1-polarons (marked in yellow). The presence of TiS0-polarons is usually associated

with two oxygen vacancies aligned along [11̄2] or [11̄0], which stabilizes the excess charge at

a surface Ti5c site. Subsurface polarons are most stable in the homogeneous ground state, in

particular, when placed symmetrically and diagonally aligned between two oxygen vacancies

in adjacent rows.
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Supplementary Figure 3: Model MSE after 10000 epochs of training in dependence of the
cutoff region around each defect.

3 Experimental Autocorrelation Function

To quantify the attraction and repulsion of VOs on the rutile TiO2(110) surface, we calculated

the autocorrelation function of VO positions as extracted by STM measurements. First, we

identified the VO positions in the STM image (Figure 8a). Then, we calculated the average

number of VOs around each detected VO position. This was done by overlaying copies of the

VO positions on top of each other, such that each VO was placed at the origin once (Figure

8b). The resulting grid-like distribution was subdivided into individual grid cells, and the

number of VOs in each cell was counted.
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Supplementary Figure 4: Comparison of test-set predictions for the model with (up-pointing
triangles) and without (down-pointing triangles) iterative active learning. Blue and green
data points were not added to the training data, orange and red have been used to extend
training data. The inset schematically displays the active learning loop
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Supplementary Figure 5: Distribution of ML-predicted lowest energies within all possible
VO-arrangements in the 6 × 4-cell. Only energies of the optimized polaronic structure for
each VO-configuration are displayed. The highlighted cluster in the bottom left corresponds
to the in-depth optimized configurations displayed in Figure 6.
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Supplementary Figure 6: Schematic representation of the ML-determined optimal polaron-
VO configuration. The 30 most stable VO-configruations are displayed as determined by
simulated annealing of the polaron configuration in a fixed VO-configuration. VO are dis-
played as dashed red circles, surface polarons in orange, and subsurface polarons in yellow.
The DFT energies are given relative to the random polaron homogeneous VO distribution.
The number in the label indicates the stability rank.
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Supplementary Figure 7: Changes of energies for all VO configurations in the low energy
cluster by different treatments of polaron-defect interactions. The ML Polarons column
corresponds to the configurations displayed in Figure 6, where the most stable configuration
in the bottom of the ML Polarons column is c0ML and the highest energy level belongs to c29ML.
The other configurations are labeled sequentially. Configurations containing S0 polarons are
highlighted in orange. The left energy scale ∆Edeloc labels the No Polarons column. The
other two polaronic columns are labeled by the right energy scale ∆Eloc.
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Supplementary Figure 8: Experimental autocorrelation function as extracted from Fig. 1b.
(a) Detected VO positions marked by red circles in STM measurement. (b) Experimental
autocorrelation function of the VO positions along a single and in the adjacent [001]-aligned
Obr rows.
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