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Explicit-Duration Hidden Markov Models

for Quantum State Estimation

Alessandra Luati, Marco Novelli1

Department of Statistical Sciences, University of Bologna, Italy.

Abstract

An explicit-duration Hidden Markov Model with a nonparametric kernel estimator of

the state duration distribution is specified. The motivation comes from the physical

problem of extracting the maximum information from an open quantum system subject

to an external perturbation, which induces a change in the dynamics of the system.

A nonparametric kernel estimator for discrete data is introduced, which is consistent

and improves the estimates accuracy in presence of sparse data. To reconstruct the

hidden dynamics, a Viterbi algorithm is used, which is robust against the underflow

problem. Finite sample properties are investigated through an extensive Monte Carlo

study showing that our formulation outperforms the original one both in small and in

large samples.

Keywords: Hidden Markov Models, Forward-Backward algorithm, Quantum

statistics, Kernel estimation, Viterbi algorithm

1. Introduction

In recent years, the experimental advances in the field of quantum mechanics have

allowed physicists to perform repeated measurements on the same quantum system,

such as trapped atoms and molecules (Kirchmair et al., 2009; Kubanek et al., 2009),

optical cavities (Gleyzes et al., 2007; Goggin et al., 2011) and superconducting systems

(Palacios-Laloy et al., 2010; Vijay et al., 2011; Hatridge et al., 2013). The novelty

lies in the development of the indirect or generalized measurement, which avoids the

so-called wave-function collapse by extending the measurement process to an auxiliary

meter-system and then performing the measurement only on the latter (Wiseman and

Milburn, 2009; Nielsen and Chuang, 2010). Such procedure involves (at least) two

systems, which are called open quantum systems since they can interact and exchange

information. Open quantum systems are the key tool in developing new quantum
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technologies, namely quantum computers, quantum sensing and quantum secure com-

munication, since any real quantum system behaves as an open system due to the

extreme difficulty to isolate it from its environment.

This paper is motivated by a quantum physical problem that is extracting the max-

imum information from an open quantum system subject to an external perturbation

which changes the oscillation frequency. The relevance of the quantum experiment

is connected with the possibility to track and control quantum systems which un-

dergo a complex evolution, with possible applications to quantum feedback control,

high-precision measurements and quantum computing (Ramakrishna and Rabitz, 1996;

Wiseman and Milburn, 2009; Dong and Petersen, 2010; Barreiro et al., 2011; Dunjko

and Briegel, 2018). The theoretical background which lies behind the experimental

setting considered in the paper can be envisaged in the class of explicit-duration hid-

den Markov models (EDHMM). As a matter of fact, the conventional Hidden Markov

Models (HMM), used for example to model quantum systems under no perturbation

(Gammelmark et al., 2014), are based on the Markovian short-memory assumption and

cannot capture the complex dynamics induced by the external force.

We propose an EDHMM associated with a nonparametric kernel estimator of the

state duration distributions. The motivation for kernel estimation comes from the

following considerations. The standard estimation procedure in the non parametric

setup is based on the cell proportion estimator, i.e. the sample relative frequency. This

choice, although improving flexibility, inevitably increases the dimension of the param-

eter set, thus making difficult to obtain reliable information unless very long observa-

tion sequences are considered. This high dimensional setting generally results in sparse

multinomial table where the cell proportion (maximum likelihood) estimator is neither

consistent nor close to the true discrete duration distribution. A smoothed estimator is

thus derived, based on a discrete kernel function, which improves the estimation and is

shown to be consistent and computationally efficient, according to the theory of sparse

asymptotics (Fienberg and Holland, 1973; Bishop et al., 1975), for multinomial data

(Aitchison and Aitken, 1976; Titterington, 1980; Wang and Van Ryzin, 1981; Simonoff,

1983; Hall and Titterington, 1987).

There are two main contributions in this article. First, to the best of our knowledge,

this is the first attempt to model the dynamics of an open quantum system by means

of the EDHMM. Second, we take into account the presence of sparse data (lack of

information) by introducing a nonparametric kernel estimator for discrete duration

distributions. In addition, in order to reconstruct the hidden dynamics of the system,

a Viterbi algorithm which is robust against the underflow problem is used.

The remainder of the paper is organized as follows. Explicit duration HMM are
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discussed in section 2. Section 3 addresses the estimation issues, including the kernel

estimator along with its properties and the Viterbi algorithm used for state reconstruc-

tion. Section 4 introduces and discusses the experimental setup. Section 5 illustrates

the results of the Monte Carlo study and Section 6 concludes the paper. Additional

results are presented in the Appendix.

2. Hidden semi-Markov models

Hidden semi-Markov Models (HSMM) are extensions of HMM in which each state of

the hidden process can have a different duration (sojourn) time. Based on the assump-

tions on the dependence structure, the general HSMM reduces to specific models, such

as, for instance, the explicit-duration HMM, where the duration depends on the next

state but not on the current one (Rabiner, 1989; Mitchell and Jamieson, 1993) and the

variable-transition HMM, where the state transition is dependent on the state dura-

tion (Ramesh and Wilpon, 1992; Krishnamurthy et al., 1991); for a complete review of

HSMM see Barbu and Limnios (2008) and Yu (2010).

Due to their flexibility, since the earliest formulation of Ferguson (1980), HSMM have

been largely studied and applied in a wide variety of fields. In particular, Barbu and

Limnios (2006, 2008) proved consistency and asymptotic normality for nonparametric

maximum likelihood estimators, Johnson and Willsky (2013) introduced the explicit-

duration Hierarchical Dirichlet Process HSMM in a nonparametric Bayesian setting

and Squire and Levinson (2005) propose a recursive maximum-likelihood algorithm

for online estimation. Recently, Melnyk and Banerjee (2015) introduced a spectral

algorithm for inference in HSMM and Bietti et al. (2015) presented an incremental EM

algorithm for online parameters estimation. HSMM have been successfully applied

in many areas among which financial time series modeling (Bulla and Bulla, 2006),

recognition of human genes in DNA (Haussler and Eeckman, 1996), handwritten word

recognition (Kundu et al., 1997), protein structure prediction (Schmidler et al., 2000),

audio segmentation and clustering (Bietti et al., 2015), accurate heart beat detection

(Pimentel et al., 2015), tool wear monitoring (Zhu and Liu, 2017) and for determining

duration and timing of up-down state in neocortical neurons (McFarland et al., 2011).

Prior to the introduction of the HSMM, some basic notions concerning semi-Markov

chains and Markov renewal chains are provided, based on Barbu and Limnios (2008).

In what follows the term chain is used to denote a discrete-time stochastic process.

Let us consider a random system with finite state space S = {1,2, . . . ,M}, then the

evolution in time of the system is described by the following chains:

� R = (Rn)n∈N, with state space S, represents the state of the system at the nth

jump time.
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� J = (Jn)n∈N, with state space N, is the nth jump time, with J0 = 0 and 0 < J1 <
J2 < ⋅ ⋅ ⋅ < Jn < Jn+1 < . . .

� D = (Dn)n∈N with state space N, where Dn = Jn − Jn−1 for all n > 0 and D0 = 0,

namely, Dn represents the sojourn time in state Rn−1, before the nth jump.

Note that the chain (R,J) = (Rn, Jn)n∈N constitutes a Markov renewal chain (MRC)

if, for all n ∈ N, i, j ∈ S and d ∈ N, the condition

P (Rn+1 = j, Jn+1 − Jn = d ∣R0, . . .Rn;J0, . . . Jn) = P (Rn+1 = j, Jn+1 − Jn = d ∣Rn), (1)

is satisfied almost surely. Moreover, if condition (1) is independent of n, then (R,J)
is said to be a homogeneous MRC. In what follows we shall consider only homogenous

MRC.

Let us define the matrix-valued function q = qij(d) as the discrete-time semi-Markov

kernel where qij(d) = P (Rn+1 = j,Dn+1 = d ∣Rn = i) and the transition matrix of (Rn)
defined by

aij = P (Rn+1 = j ∣Rn = i), i, j ∈ S, n ∈ N,

where aii = 0, i.e. the transition to the same state is not allowed. Note that the

semi-Markov kernel q verifies the relation

qij(k) = aijpij(d),

where pij(d) = P (Dn+1 = d ∣Rn = i,Rn+1 = j), i, j ∈ S represents the conditional distri-

bution of Dn+1. Given a MRC (R,J), the chain X = (Xt)t∈N is the semi-Markov chain

(SMC) associated with it if

Zt = RN(t), t ∈ N,

where N(t) = max{n ∈ N ∣Jn ≤ t} is the discrete-time counting process of the number

of jumps in [1, t]. Finally, let Π = {π1, . . . , πM} denote the vector collecting the initial

distribution of the SMC X,

πi = P (X0 = i), i ∈ S.

In the HSMM formulation, the unobserved process is modeled through a SMC and

the observed process is conditionally independent on the value of the semi-Markov

chain. Consider now the double chain (Xt, Yt)t∈N, where (Xt) is S-valued semi-Markov

chain and (Yt) is the observed process taking values on V = {v1, . . . , vK}, where the

conditional distribution of chain Y is given by

bj(vk) = P (Yt = vk ∣Xt = j), (vk, j) ∈ V × S,
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called emission probabilities. The pair (Xt, Yt)t∈N is a HSMM with finite state space

S ×V . If, in addition, the conditional distribution of sojourn times pij(d) depends only

on the next visited state, i.e. pij(d) = pj(d), so that the kernel reads qij(k) = aijpj(d),
we have the so-called EDHMM formulation, which the focus of our work.

Finally, we denote the set of model parameters as

λ = {qij(d), bj(vk), πj},

for all i, j ∈ S, d ∈ N and vk ∈ V .

3. Estimation

The parameter estimation of HMM is based on the well-known Baum-Welch or

Forward-Backward (FB) algorithm, developed by Baum et al. (1970) and primarily

based on the forward and backward variables, α and β, respectively. One of the

most severe issues in practical implementations is the numerical underflow, caused

by the exponential decay of the joint probability of the observations, as the sample

size increases. To overcome this problem, we make use of a modified version of the

FB algorithm due to Yu and Kobayashi (2006), where new forward and backward

variables are defined conditionally on the observations. The resulting algorithm is

computationally efficient and does not suffer from the underflow problem.

3.1. Modified Forward-Backward Recursion

This section briefly sketches the modified FB algorithm in Yu and Kobayashi (2006).

Given a sample path of observations, namely y0∶T = (y0, . . . , yT ), the goal is to estimate

the characteristics of the underlying semi-Markov chain along with the conditional

distribution of Y . Note that, in practical applications, the conditional sojourn time

distributions have finite support D; we shall denote as D̄ the maximum time duration

in any given state. Let αt∣k(i, d) be the forward variable defined by

αt∣k(i, d) = P (Xt = i, τt = d ∣ y0∶k, λ),

where y0∶k denotes the observation sequence from time 0 to k, and k = t − 1, t or T ,

the “predicted”, “filtered” and “smoothed” probability, respectively. Furthermore,

τt = JN(t) − t denotes the forward recurrence time, also called the residual or excess

lifetime. Let b⋆i (Yt) be the modified emission probabilities,

b⋆i (yt) =
αt∣t(i, d)
αt∣t−1(i, d)

= bi(yt)
P (yt ∣ y0∶t−1)

, (2)
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where P (yt ∣ y1∶t−1) is the one-step ahead prediction of the observation that can be

obtained by

P (yt ∣ y0∶t−1) =
M

∑
i=1

D̄

∑
d=1

αt∣t−1(i, d)bi(yt) =
M

∑
i=1

γt∣t−1(i)bi(yt),

and γt∣k(i) = ∑dαt∣k(i, d) is the marginal probability distribution of Xt. Then, the

likelihood function for the entire sequence of observations is obtained as follows:

L(λ) = P (y0∶T ∣λ) =
T

∏
t=1

P (yt ∣ y0∶t−1).

For convenience, in the forward recursion, we introduce two additional variables:

Et(i) = P (Xt = i, τt = 1 ∣ y0∶t, λ) = αt∣t−1(i,1)b⋆i (yt),

and

St(i) = P (τt = 1,Xt+1 = i ∣ y0∶t, λ) = ∑
j

Et(j)aji.

To obtain the smoothed estimates, let βt(i, d) be the backward variable defined as

βt(i, d) =
P (Xt = i, τt = d ∣ y0∶T , λ)
P (Xt = i, τt = d ∣ y0∶t−1, λ)

= P (yt∶T ∣Xt = i, τt = d ∣ y0∶T , λ)
P (yt∶T ∣ y0∶t−1, λ)

.

As for the forward recursion, we define two more variables that are symmetric to

St(i) and Et(j) and will be used in the backward recursion

E⋆t (i) =
P (yt∶T ∣Xt = i, τt−1 = 1 ∣ y0∶T , λ)

P (yt∶T ∣ y0∶t−1, λ)
= ∑

d

pi(d)βt(i, d),

and

S⋆t (i) =
P (yt∶T ∣Xt−1 = i, τt−1 = 1 ∣ y0∶T , λ)

P (yt∶T ∣ y0∶t−1, λ)
= ∑

j

aijE⋆t (j).

The modified forward-backward algorithm for explicit-duration HMM can be imple-

mented as follows:

i) the forward recursion becomes

αt∣t−1(i, d) = St−1(i)pi(d) + b⋆i (yt−1)αt−1∣t−2(i, d + 1),

with initial condition α0(i, d) = πipi(d);
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ii) the backward recursion is

βt(i, d) = { S
⋆
t+1(i)b⋆i (yt) d = 1,

βt+1(i, d − 1)b⋆i (yt) d > 1,

with initial condition βT (i, d) = b⋆i (yT ),∀d ∈ D.

We conclude this section by defining two more variables which will enter in the re-

estimation step of the algorithm: the smoothed probability that state i starts at time

t and lasts for d time units:

Dt∣T (i, d) = P (τt−1 = 1,Xt = i, τt = d ∣ y0∶T , λ) = St−1(i)pi(d)βt(i, d), (3)

and the smoothed probability that a transition from state i to j occurs at time t:

Tt∣T (i, j) = P (Xt−1 = i, τt−1 = 1,Xt = j ∣ y0∶T , λ) = Et−1(i)aijE⋆t−1(j). (4)

3.1.1. Parameter re-estimation

Generally, in practical application the parameters are unknown, hence an itera-

tive procedure which maximizes the probability of the given observation sequence,

P (y0∶T ∣λ), is commonly adopted. With initial values that are either randomly selected

or uniformly distributed, the model parameters are estimated and then re-estimated

until the likelihood is locally maximized. Specifically, the smoothed probabilities in

equations (3) and (4) are used to re-estimate the parameters as follows:

âij =
T

∑
t=1

Tt∣T (i, j)
Ka

,

where Ka = ∑j≠i∑Tt=1 Tt∣T (i, j) is the normalizing constant such that ∑j âij = 1∀i,

p̂i(d) =
T

∑
t=1

Dt∣T (i, d)
Kp

, (5)

with Kp = ∑D̄d=1∑Tt=1Dt∣T (i, d) and ∑d p̂i(d) = 1∀i,

π̂i =
γ0∣T (i)
Kπ

,

where Kπ = ∑i γ0∣T (i) and ∑i π̂i = 1. The term γ0∣T (i) can be obtained with the

following backward recursion:

γt−1∣T (i) = γt∣T (i) + Et−1(i)S⋆t (i) − St−1(i)E⋆t (i).
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The emission probabilities can be obtained by

b̂i(vk) =
T

∑
t=0

γt∣T (i)δ(Yt, vk)
Kb

,

with Kb = ∑vk ∑
T
t=0 γt∣T (i)δ(Yt, vk) such that ∑k b̂i(vk) = 1, and δ(Yt, vk) = 1 if Yt = vk,

and zero otherwise.

3.2. Estimation of the duration distribution

One of the novelties of this paper is the introduction of a nonparametric kernel esti-

mator for the discrete distribution of the duration in the iterative step of the estimation

algorithm. Specifically, we shall consider an estimator of the form

p̃i(d) =
D̄

∑
j=1

K(tj)p̂i(j),

where p̂i(j) is the sample relative frequency estimator defined in equation (5), tj =
(d − j)/h with h and d positive integers, and K(tj) is a discrete kernel, i.e. a non

negative, symmetric function of tj which adds up to one.

The relevance of the contribution lies in the fact that smoothing methods for discrete

data are optimal in the mean summed squared error (MSSE) sense in the case of sparsity

(Hall and Titterington, 1987), as it occurs in many practical applications. Indeed, the

cell proportion estimator (the MLE for a multinomial distribution), traditionally used

in the probability mass function estimation, is a consistent estimator of pi(d) only

when the sample size becomes large compared with the number of cells (Fienberg

and Holland, 1973; Simonoff, 1983, 2012). In the case when the number of cells is

close to or greater than the number of observations, which results in a sparse table

with many small or zero cell counts, the cell proportion estimator is inconsistent and

provides estimates characterized by roughness and multimodality. Smoothing methods

based on kernel estimators have been proved to be effective for sparse multinomial data

(Aitchison and Aitken, 1976; Titterington, 1980; Wang and Van Ryzin, 1981; Simonoff,

1983). Besides, Hall and Titterington (1987) proved the optimality of kernel estimators

for sparse multinomial data in the framework of sparse asymptotic earlier introduced

by Fienberg and Holland (1973) and Bishop et al. (1975).

Using a kernel smoother requires that the shape and the bandwidth of the kernel

function are selected. As far as the kernel function is concerned, we have chosen the

discrete version of the Epanechnikov kernel, which belongs to the class of the kernels

generated from Beta distributions and has optimal asymptotic properties for continuous

smoothing, in the sense that it minimises the asymptotic integrated mean square error

(AMISE), (Wand and Jones, 1994).
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In practice, we have a quadratic kernel K(tj) = at2j + b, where tj takes values in a

discrete set, which is a common choice in kernel smoothing, as it represents a good

compromise between fitting ad smoothing (Marron and Wand, 1992; Simonoff, 2012).

Actually, we use the quadratic kernel formulation of Rajagopalan and Lall (1995), with

minor corrections, who derive the value of the normalising constants a and b both in the

interior and at the boundaries. These values must be selected in order for the kernel to

add up to one, ∑jK(tj) = 1, and satisfy the properties of symmetry K(−tj) = K(tj),
positivity, K(tj) > 0 within the bandwidth, and unbiasedness ∑jK(tj)tj = 0. In the

interior, i.e. for h + 1 < d < D̄ − h − 1, the parameters a and b are

a = 3h

(1 − 4h2) , b = −a,

while, at the boundaries, namely for 1 < d < h + 1 and d > D̄ − h − 1, a and b become

a = −6h2

(d − 1 + h)(d − 2 + h)(d − 3 + h) , b = 3(2 − h + h2 − 3d + d2)
(d − 1 + h)(d − 2 + h)(d − 3 + h) .

While the kernel generally has a limited impact on the estimation, the bandwidth

plays a crucial role. In the context of sparse asymptotics, Hall and Titterington (1987)

have shown the optimality of the least cross validation criterion (LSCV) in terms of

rate of convergence. Hence, the optimal h can be found by minimizing the LSCV

function

LSCV (h) =
D̄

∑
d=1

p̃2
i (d) −

2

D̄

D̄

∑
d=1

p̃/i(d)di,

where p̃/i(d) represents the estimate of pi(d) without the i-th’s contribute.

3.3. State reconstruction

This section concerns the Viterbi algorithm for explicit-duration HMM. Viterbi al-

gorithm is a dynamic programming algorithm which finds the optimal hidden state

sequence. Some modified versions for HSMM have been proposed, see for example

Yu (2010) and Pertsinidou and Limnios (2015). Chen et al. (1995) consider a mod-

ified algorithm for continuous density variable-duration HMM, Ramesh and Wilpon

(1992) use the Viterbi algorithm for modeling state duration in inhomogeneous HMM,

Mitchell et al. (1995) introduce a new recursion which reduces the complexity of the

estimation procedure. Recently, Pertsinidou and Limnios (2015) develop a new Viterbi

algorithm for HSMM that achieves the same complexity of the one for HMM.

Within the modified FB algorithm of Yu and Kobayashi (2006) described in Section

3.1, the Viterbi algorithm for EDHMM can be sketched as follows. Let δt(j, d) be the

forward variable for the extended Viterbi algorithm defined by

δt(j, d)= max
X0∶t−d

P (X0∶t−d,Xt−d+1∶t = j, y0∶t ∣λ), (6)
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for 0 ≤ t ≤ T, j ∈ S, d ∈ D. Here δt(j, d) denotes the probability of the best partial

state sequence which ends at time t in state j with duration d. In the explicit-duration

HMM, equation (6) reads

δt(j, d) = max
i∈S/{j},d1∈D

{δt−d(i, d1)aijpj(d)b⋆j (yt−d+1∶t)},

where b⋆j (yt−d+1∶t) represents the emission probabilities related to the partial state se-

quence from t − d to t. The algorithm is initialized as follows:

δ0(j,1) = πjpj(1)b⋆j (y0) ∀j ∈ S, d = 1,

δ0(j, d) = 0 ∀j ∈ S, d > 1,

Hence, δt(j, d) can be recursively obtained by

δt(j,1) = max
d1∈D,i∈S/{j}

{δt−1(i, d1)aijpj(1)}b⋆j (yt), d = 1, (7)

δt(j, d) = max
d1∈D,i∈S/{j}

{δt−d(i, d1)aijpj(d)}b⋆j (yt−d+1∶t), d > 1. (8)

Moreover, for t ≤ D̄ and d = t equation (8) reduces to

δt(j, d) = πjpj(d)b⋆j (yt−d+1∶t).

For backtracking the optimal state sequence, we keep track of the arguments which

maximize equations (7) and (8) defining two variables as follows:

Ψ(t, j) = arg max
i∈S/{j}

{δt−d(i, ω = ∆t(j, i))aij},

which records the state selected by δt(j, d) that ends at time t − d, and

∆(t, j, i) = arg max
ω∈D

{δt−d(i, ω)aij},

which records its duration. The probability of the best state sequence is given by

P ∗ = max
i∈S

{δT (i, η(i))},

where

η(i) = arg max
d∈D

{δT (i, d)}, ∀i ∈ S.

The best path is obtained by finding the last state which maximizes:

x̃T = arg max
i∈S,d∈D

δT (i, d).
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Hence, by letting d̃ = η(x̃T ), t = T and z = d̃, the sequence can be tracked back as

follows:

x̃t−d̃+1 ∶ t = x̃t,

x̃t−d̃ = Ψ(t − d̃ + 1, x̃t),
z = ∆(t − d̃ + 1, x̃t, x̃t−d̃),
t = t − d̃, d̃ = z,

until the first state x̃0 is obtained.

4. Quantum State Estimation

We design an experimental setup that can be thought of as a modification of the one

presented by Nobel Laureate Serge Haroche (Guerlin et al., 2007), in which the grad-

ual step-by-step ‘state collapse’ caused by repeated measurements is experimentally

observed for the first time.

Here, a two-level atom (system A), initialized in a superposition state, is driven by

an external force causing a change in the Rabi frequency. The latter represents the

characteristic angular frequency of the atom corresponding to the oscillation between

the two levels, caused by the time evolution. Two-level atoms (system B, also called

ancilla, meter or probe system), initialized in a superposition state, are sent through the

system A and weakly interact with it. Then, a projection measurement on each system

B is performed, thus avoiding a direct perturbation of the system A. The projection

measurement of the ancilla systems causes a non-projective ‘weak’ disturbance of the

system A, influencing its quantum state.

The experimental set up introduced so far can be nested in the framework of hidden

semi-Markov models, since the measurement results on system B are governed by the

current (hidden) state of the system A, which, in turn, is driven by a semi-Markov

evolution process. Specifically, the transition from one state to another depend on the

state duration and the emission probabilities are obtained by the propagation of the

wave function at different frequency levels.

Our purpose is to keep track of the evolution of system A and to estimate the state

of the chain (the value of the Rabi frequency) at each time-step through measurements

on the ancilla B, which reveals only partial information about the system A.

The model can be sketched as follows. Let us consider a semi-Markov chain with

M states S = {ω1, . . . , ωM} representing the Rabi frequencies of the system A and two

output symbols ‘0’ and ‘1’, representing the measurement results. The quantum system

A under study is initialized in a known state

∣ΨA(ωi)⟩t0 = at0(ωi)∣0A⟩ + bt0(ωi)∣1A⟩,
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where ∣Ψ⟩ represents a unit vector in the two dimensional complex Hilbert space H2,

{∣0A⟩, ∣1A⟩} denotes an orthonormal basis forH2 and a, b are complex numbers satisfying

∣a(ωi)∣2 + ∣b(ωi)∣2 = 1.

We are adopting the Dirac bra-ket notation for column vectors ∣Ψ⟩ (ket) and their

conjugate transpose row vectors ⟨Ψ∣ (bra) commonly used for representing physical

entities. In the rest of the paper, we will suppress the dependence of a and b on ωi
and we will maintain it only in the quantum state. The ancilla system is initially in

the state ∣ΨB⟩ ∈ H2, with orthonormal basis {∣vB⟩; v ∈ V} where V = {0,1} is the set

of all possible measurement outcomes. The initial state of the composite system is

thus ∣ΨA(ωi)t0⟩⊗ ∣ΨB⟩ and belongs to H = H2 ⊗H2. When the interaction between the

systems takes place, the system A and the meter become correlated, and the subsequent

entangled state becomes

∣ΨAB(ωi)⟩t1 = αt1 ∣0A⟩ ⊗ ∣Ψ0
B⟩ + βt1 ∣1A⟩ ⊗ ∣Ψ1

B⟩,
= αt1 ∣0A⟩ ⊗ (√p∣0B⟩ +

√
q∣1B⟩) + βt1 ∣0A⟩ ⊗ (√q∣0B⟩ +

√
p∣1B⟩),

where p + q = 1, representing the ability to distinguish between the two states. Then,

the ancilla system is measured and the result ‘0’ is obtained with probability

Pt1(B = 0 ∣ ∣ΨAB(ωi)⟩t1) = ∣αt1
√
p∣2 + ∣βt1

√
q∣2, (9)

This quantity represents the probability to obtain the output value ‘0’ conditional on

the system dynamics up to time t1 and then on the ωi value which governs the evolution

of the system A. For more details on quantum probability and quantum statistical

inference, the reader is referred to Helstrom (1976), Holevo (1982) and Barndorff-

Nielsen et al. (2003).

In the HMM framework, equation (9) can be viewed as the emission probability,

at time t1, of symbol ‘0’ when the system is in state ωi, that is Pt1(B = 0 ∣ωi). The

measurement resulting in the output ‘0’ leaves the system A in the (unnormalized)

state

∣ΨA(ωi ∣B = 0)⟩ = αt1
√
p∣0A⟩ + βt1

√
q∣1A⟩,

where we explicitly indicate that the state is conditional on the previous result on the

system B. Instead, the measurement result ‘1’ is obtained with probability

Pt1(B = 1 ∣ ∣ΨAB(ωi)⟩t1) = ∣αt1
√
q∣2 + ∣βt1

√
p∣2,

and the (unnormalized) A state is

∣ΨA(ωi ∣B = 1)⟩ = αt1
√
q∣0A⟩ + βt1

√
p∣1A⟩.
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5. Monte Carlo study

To validate the finite samples properties of the EDHMM formulation introduced so

far, a Monte Carlo study is carried out. Let us remind that the aim is to characterize

the behavior of an open quantum system subject to an external force by using only the

partial information obtained from a set of ancillary systems. The observed sequence

y0∶T is a binary sequence obtained by measuring the systems B.

We present 3 simulation scenarios in which the hidden chain is composed of M = 3,4

and 5 states, respectively. These correspond to different frequency values in the range

(0, π2 ). The model’s ability to correctly characterise the hidden states strongly depends

on the type of measurement performed. Since the output is a binary time series, our

simulations show that the model is able to obtain a good fit up to 5 chain states,

beyond which the accuracy of the estimates decreases. It is worth to note that the

value M = 5 is far beyond the one found in commonly applied models, which usually

consider only two or three frequency values.

The truncation value D̄, representing the maximum number of consecutive time

steps in the same state, is set to 120. The choice of D̄ is of crucial relevance: a small

value could prevent the model to fully capture the dependence structure of the chain,

while a large value can cause a curse of dimensionality that makes the estimation

process impractical. From a practical point of view, the choice of the maximum D̄ can

be done by a grid search over several values of D̄. We have fixed a large value of D̄

since the simulations have been carried out using an optimized R/C++ code and is not

time consuming.

The initial values for the transition probabilities and the initial state distribution

of the semi-Markov chain are assumed to be either uniformly distributed or randomly

selected. The final results are found to be robust in terms of the choice of the initial

condition. The emission probabilities are obtained by propagating the wave function at

each frequency ωi: this represents a point of strength in the estimation/re-estimation

procedure since they do not enter in the estimation algorithm (Rabiner, 1989).

Four observations sequence’ lengths are considered: T = 300,500,1000,5000. The

number of Monte Carlo replications is set to 5000 for each sample size. In the first step

of the simulation, the semi-Markov chain representing the time evolution of the Rabi

frequencies is generated. The duration of each state is modeled using a zero-truncated

Poisson distribution with probability mass function given by

pi(d) =
θdi

(eθi − 1)d!
, i = 1,2, . . . ,M,

where d ∈ D and for each ωi a different value of θi is chosen. In the case of M = 5

states, we set θi = 33, 41, 25, 53 and 38 respectively.

13



A comparison between the EDHMM model with and without the nonparametric

kernel estimator (henceforth NKE) is provided. Although the kernel choice has gen-

erally a limited impact on the estimation, other results - not shown here for the sake

of brevity - highlight that adopting the parabolic kernel described in Section 3.2 leads

to an improvement in the estimation accuracy with respect to other functions, like

triangular, rectangular and binomial kernels, among others. Moreover, the optimal

bandwidth h ∈ {1,2, . . . ,20} is selected by minimizing the LSCV function. The tran-

sition matrices used to simulate the hidden chains are reported in the Appendix. All

numerical simulations are performed using an R/C++ code and a Dell Laptop with

Processor Intel CoreTM i7-8550U (1.8 GHz) and RAM 16GB DDR4 2133MHz.

5.1. Simulation results

Tables 1 and 2 summarize the results for the chains with 3 and 4 hidden states,

respectively. Specifically, the tables show the Monte Carlo averages and standard errors

for: the percentage of correctly reconstructed states using Viterbi algorithm, the sum

of the absolute difference between the true and the estimated transition matrix and

the percentage of bias in the estimated expected values of the duration distribution.

The percentage of states correctly reconstructed is uniformly higher using the NKE,

which provides an increase of about 2−3% with respect to the standard formulation in

the case with 3 states. This is even more evident with 4 states in which the improvement

rises up to 4 − 5%. Besides, adopting the NKE the Monte Carlo standard errors are

lower, indicating a higher precision and stability of the estimates. As an example,

in Figure 1 for T = 300 and 500 and M = 3 and 4 states, the distribution of the

proportion of correctly reconstructed states with and without NKE is provided. For

what concerns the transition matrix, the sum of the absolute difference between the

true value and the estimated one is used as a measure of goodness of fit. The latter is

always lower with the NKE, confirming also the increase in the estimation precision.

As regards the state duration distributions, the NKE provides a reduction in the bias of

the estimated expected values with only few exceptions, while the estimates variability

turns out to be always lower. Clearly, moving from 3 to 4 states the model complexity

increases considerably and the overall performance of the algorithm decreases. This is

particularly evident for the case with 5 hidden states in Tables 3 in which the ability

to recover the true state sequence, with T = 300, reduces to about 80% and 74.3%

with and without NKE, respectively. Indeed, one of the drawbacks of HSMM is that

they require long sequences of observations to obtain reliable estimates, especially for

complex models with high-dimensional parameter spaces. However, the results show

that adopting the NKE is particularly useful with short observation sequences and

complex models, since the presence of sparsity may affect the estimation accuracy of
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the standard formulation based on the cell proportion estimator. Furthermore, using

the NKE increases the estimation precision for all the parameters, indeed it seems to

improve both the estimation of the transition matrix and the initial state distributions

(see Appendix).

Figure 1: Distribution of the proportion of correctly reconstructed states using Viterbi algorithm,

with and without NKE, for T = 300 and 500 and M = 3 and 4.
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Table 1: Simulation results for a chain with 3 hidden states: Viterbi estimates, transition matrix and

duration distributions

Parameter T w NKE w/o NKE

Mean MC SE Mean MC SE

Viterbi

300 .928 .038 .909 .046

500 .930 .028 .914 .033

1000 .937 .028 .907 .038

5000 .965 .008 .931 .009

Trans. matrix

300 1.490 .596 1.536 .623

500 1.044 .459 1.082 .478

1000 .750 .400 .801 .384

5000 .297 .133 .319 .144

Bias State 1

300 .013 .213 .009 .229

500 .009 .123 -.019 .144

1000 .000 .077 .003 .097

5000 -.014 .032 -.003 .036

Bias State 2

300 .009 .208 -.052 .237

500 -.025 .118 -.015 .149

1000 -.030 .061 -.047 .071

5000 -.003 .028 -.007 .032

Bias State 3

300 .034 .199 -.047 .232

500 -.015 .130 -.031 .154

1000 -.020 .083 -.026 .101

5000 .007 .036 -.017 .037
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Table 2: Simulation results for a chain with 4 hidden states: Viterbi estimates, transition matrix and

duration distributions

Parameter T w NKE w/o NKE

Mean MC SE Mean MC SE

Viterbi

300 .840 .097 .796 .106

500 .846 .078 .801 .085

1000 .859 .059 .837 .064

5000 .890 .024 .861 .028

Trans. matrix

300 4.031 .676 4.281 .702

500 3.377 .724 3.632 .739

1000 2.603 .686 2.792 .699

5000 1.083 .303 1.333 .401

Bias State 1

300 .091 .467 .085 .491

500 .031 .298 .046 .332

1000 .021 .175 .056 .194

5000 -.026 .071 .093 .099

Bias State 2

300 -.013 .488 .081 .543

500 .176 .439 .213 .486

1000 .120 .300 .240 .335

5000 -.019 .102 .146 .142

Bias State 3

300 -.085 .497 -.173 .545

500 .358 .617 .473 .745

1000 .284 .474 .434 .489

5000 -.056 .103 .097 .142

Bias State 4

300 -.008 .195 -.061 .237

500 -.030 .115 -.077 .144

1000 -.018 .068 -.041 .091

5000 -.007 .026 -.037 .055
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Table 3: Simulation results for a chain with 5 hidden states: Viterbi estimates, transition matrix and

duration distributions

Parameter T w NKE w/o NKE

Mean MC SE Mean MC SE

Viterbi

300 .806 .073 .743 .148

500 .818 .091 .780 .101

1000 .827 .047 .806 .054

5000 .857 .018 .837 .021

Trans. matrix

300 5.779 .801 5.990 .796

500 5.019 .870 5.274 .865

1000 3.540 .711 3.840 .738

5000 1.833 .431 1.910 .448

Bias State 1

300 -.177 .494 -.175 .505

500 .005 .490 -.026 .319

1000 -.008 .148 -.013 .195

5000 -.0301 .051 -.001 .071

Bias State 2

300 -.204 .484 -.257 .465

500 -.030 .406 -.064 .484

1000 -.020 .252 -.029 .284

5000 -.072 .090 -.057 .153

Bias State 3

300 .031 .609 -.053 .649

500 .158 .470 .165 .577

1000 .091 .244 .117 .287

5000 .090 .071 .207 .222

Bias State 4

300 .024 .316 -.030 .332

500 .090 .313 .128 .347

1000 .034 .142 .073 .157

5000 -.023 .045 .048 .088

Bias State 5

300 -.038 .303 -.026 .326

500 -.009 .204 -.096 .254

1000 -.011 .099 -.021 .111

5000 -.027 .044 .010 .050
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Finally, Table 4 shows the estimated initial distributions with 5 states and Figure 2

provides a graphical representation of the case with T = 300. As it can be seen, for T

up to 1000, the improvement in the estimated initial distribution is evident, especially

for small sample sizes.

Table 4: Simulation results for 5 hidden states: initial distribution

T State 1 State 2 State 3 State 4 State 5

True values .4 .2 .1 .1 .2

w NKE

300 .415 .163 .118 .109 .195

500 .403 .202 .084 .118 .193

1000 .395 .203 .038 .156 .207

5000 .390 .216 .102 .096 .201

w/o NKE

300 .346 .174 .213 .108 .160

500 .336 .233 .132 .191 .183

1000 .309 .277 .059 .153 .202

5000 .359 .245 .051 .149 .197

Figure 2: Initial distribution, T = 300.
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6. Concluding remarks

The paper provides the model based and computational solution to a complex prob-

lem arising in modern quantum physics. The problem is the extraction of information

from an open quantum system, subject to an external perturbation. The solution con-

sists in the specification of an Explicit Duration Hidden Markov Model which takes

into account the features of the experimental problem, i.e. presence of sparsity and

the characterisation of a complex (not directly observable) evolution using only par-

tial information. By means of an extensive Monte Carlo study, we showed that our

formulation outperforms the original one in the accuracy of the chain reconstruction

along with a consistent reduction in the variability of the estimates, especially for short

observation sequences.

Several additional aspects may be considered. Firstly, the ability to reliably track the

evolution of the hidden system decreases considerably as the complexity of the model

increases. This is mostly due to both the dichotomous nature of the observed signal

and to the precision of the quantum measurement that is applied. Secondly, the choice

of the maximum number of consecutive time steps in the same state D̄ can be possibly

carried out through a grid search over several candidate values. Finally, assuming a

known and pre-specified number of hidden states may limit the applicability of the

methodology whenever the a priori information about the hidden system is scarce.

Future research may focus on a Bayesian model selection procedure for estimating the

number of hidden states.

Appendix

Additional results

Table 5: Transition matrix used to simulate the semi-Markov chain with 3 hidden states.

1 2 3

1 0.0 0.75 0.25

2 0.4 0.0 0.6

3 0.5 0.5 0.0
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Table 6: Transition matrix used to simulate the semi-Markov chain with 4 hidden states.

1 2 3 4

1 0.0 0.33 0.11 0.56

2 0.33 0.0 0.44 0.22

3 0.25 0.25 0.0 0.5

4 0.33 0.5 0.17 0.0

Table 7: Transition matrix used to simulate the semi-Markov chain with 5 hidden states.

1 2 3 4 5

1 0.0 0.1 0.3 0.1 0.5

2 0.3 0.0 0.1 0.4 0.2

3 0.1 0.1 0.0 0.6 0.2

4 0.2 0.3 0.1 0.0 0.4

5 0.2 0.1 0.5 0.2 0.0

Table 8: Simulation results: initial distribution with 4 states.

T State 1 State 2 State 3 State 4

True values .3 .1 .5 .1

w NKE

300 .295 .129 .474 .101

500 .300 .089 .449 .162

1000 .300 .172 .430 .098

5000 .310 .097 .491 .102

w/o NKE

300 .262 .163 .479 .096

500 .284 .121 .446 .149

1000 .280 .200 .417 .102

5000 .306 .104 .487 .104
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Table 9: Simulation results: initial distribution with 3 states.

T State 1 State 2 State 3

True values .3 .2 .5

w NKE

300 .302 .193 .505

500 .308 .198 .494

1000 .301 .205 .492

5000 .290 .208 .502

w/o NKE

300 .297 .202 .501

500 .320 .193 .487

1000 .301 .209 .492

5000 .286 .213 .500
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