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Abstract

Collectiveness is an important property of many systems—
both natural and artificial. By exploiting a large number
of individuals, it is often possible to produce effects that
go far beyond the capabilities of the smartest individuals,
or even to produce intelligent collective behaviour out of
not-so-intelligent individuals. Indeed, collective intelligence,
namely the capability of a group to act collectively in a
seemingly intelligent way, is increasingly often a design goal
of engineered computational systems—motivated by recent
techno-scientific trends like the Internet of Things, swarm
robotics, and crowd computing, just to name a few. For sev-
eral years, the collective intelligence observed in natural and
artificial systems has served as a source of inspiration for en-
gineering ideas, models, and mechanisms. Today, artificial
and computational collective intelligence are recognised re-
search topics, spanning various techniques, kinds of target
systems, and application domains. However, there is still
a lot of fragmentation in the research panorama of the topic
within computer science, and the verticality of most commu-
nities and contributions makes it difficult to extract the core
underlying ideas and frames of reference. The challenge is to
identify, place in a common structure, and ultimately connect
the different areas and methods addressing intelligent collec-
tives. To address this gap, this paper considers a set of broad
scoping questions providing a map of collective intelligence
research, mostly by the point of view of computer scientists
and engineers. Accordingly, it covers preliminary notions,
fundamental concepts, and the main research perspectives,
identifying opportunities and challenges for researchers on
artificial and computational collective intelligence engineer-
ing.

Introduction
Nowadays, technical systems are evolving in complexity:
they are increasingly large-scale, heterogeneous, and dy-
namic, posing several challenges to engineers and operators.
For instance, progress in the information and communica-
tion technology (ICT) is promoting a future where computa-
tion is deeply integrated in a large variety of environments:
our bodies, homes, buildings, cities, planet, and universe. In
other words, the vision of pervasive and ubiquitous comput-
ing is stronger than ever, with an increasing trend towards
the mass deployment of a large number of heterogeneous

devices nearly everywhere, to improve existing applications
and create new ones. However, we still seem quite far at
exploiting the full potential of the interconnected networks
of devices at our disposal.

Nevertheless, there is some progress. New paradigms
and solutions have been proposed, often drawing from that
powerful source of mechanisms and solutions that is na-
ture. Indeed, we are witnessing a long-term research en-
deavour aiming at bringing powerful properties and capabil-
ities of living systems into technical systems (Stein et al.,
2021). Intelligence, evolution, emergence of novel capabil-
ities, resilience, and social integration (Stein et al., 2021;
Bellman et al., 2021) are often observed in natural, living
systems and considered important features of artificial, en-
gineered systems as well. Indeed, computer scientists and
engineers are increasingly often interested not just at mak-
ing individual devices smarter, but also at making whole
ecosystems of devices (and people) more collectively intel-
ligent. Creating collective intelligence (CI) in artificial sys-
tems, however, is challenging. Indeed, various computer
science and engineering fields such as, e.g., multi-agent sys-
tems (Wooldridge, 2009) and swarm robotics (Brambilla
et al., 2013), have often encountered problems related to
this “CI challenge”. Moreover, the generality of the prob-
lem and the possibility of transferring ideas and techniques
across fields has also motivated the emergence of a general
research field specifically aimed at studying how to build
CI in artificial systems, also known as under terms such as
artificial collective intelligence (ACI) (Zheng et al., 2018;
Tumer and Wolpert, 2004) and computational collective in-
telligence (CCI) (Badica et al., 2014).

There exist some surveys on CI/ACI, but they tend to
adopt specific viewpoints limiting the overall scope of the
study, such as models for social computing systems (Suran
et al., 2020), interaction modality (He et al., 2019), or large-
scale cooperative multi-agent systems (Tumer and Wolpert,
2004). The main goal of this article is to review the con-
cepts, models, and perspectives needed for the engineer-
ing of ACI. We can say that the article mainly considers
cyber-physical collectives as target systems, namely groups



of interconnected computing devices, possibly situated in
physical environment and possibly involving “humans in
the loop” (Schirner et al., 2013), which are to be thought
as “programmable platforms” for services and applications
benefitting by the CI emerging from their activity. The
idea is to provide a research map on CI for computer sci-
entists and engineers, generally useful for the broad techno-
scientific community.

In summary, we provide the following contributions:

• we perform a scoping review (Petticrew and Roberts,
2008), different from existing surveys in scope and focus,
covering concepts, models, and perspectives related to CI,
ACI, and their (software) engineering, which can also be
seen as a foundation for more systematic reviews;

• we provide a map and taxonomy of the ACI field, by con-
necting it with related fields and providing categories to
frame research works on ACI;

• we outline opportunities and challenges for further re-
search, in terms of target domains and interesting devel-
opments of existing methods.

In other words, we provide a broad overview of the field of
CI/ACI, larger in scope and more oriented towards software
systems engineering with respect to (Malone and Bernstein,
2015; Suran et al., 2020; He et al., 2019; Tumer and Wolpert,
2004).

The article is organised as follows. First, a set of broad
scoping questions are elicited, to provide a structure for the
paper and its discussions. After this, a survey of existing
reviews relevant to CI is presented, to also motivate the per-
spective of this very article. Then, the preliminary concepts
of a “collective” and “(individual) intelligence” are briefly
reviewed. Upon this basis, to understand what CI is, some
reference definitions, examples, models, and classifications
are reviewed from the literature. Then, to discuss how CI
can be engineered, a number of perspectives are considered,
under which some main approaches for CI engineering are
pointed out. Building on such a presentation of approaches,
a discussion of opportunities and challenges related to CI
engineering is developed, providing directions for further re-
search. Finally, a wrap-up is provided with some conclusive
thoughts.

Method
Our goal is to scope the large and fragmented area of
(artificial) collective intelligence, in order to identify its
key concepts, relevant perspectives, research problems, and
gaps—with an emphasis on its engineering and its computa-
tional/artificial intelligence (AI) side. Accordingly, we per-
form a scoping review (Petticrew and Roberts, 2008). This
tool can be preferred over systematic reviews whenever spe-
cific research questions are hard to identify or ineffective, or

when the goal is to identify the types of available evidence,
clarify notions, and key characteristics/factors related to a
concept (Munn et al., 2018). Indeed, we seek to provide a
map of the field, supporting more focussed and systematic
reviews in the future.

We use a question-based method to drive the investigation
and selection of the bibliography of this manuscript. In par-
ticular, we consider the following scoping questions (SQs).

SQ0) What is a collective?

SQ1) What is (individual) intelligence?

SQ2) What is collective intelligence?

SQ3) What behaviours can be termed “collectively intelligent”?
Are there paradigmatic examples?

SQ4) What are the requirements for collective intelligence?

SQ5) What relationships exist between individual and collec-
tive intelligence?

SQ6) How does collective intelligence unfold/emerge?

SQ7) How can collective intelligence be measured?

SQ8) How can collective intelligence be built artifi-
cially/computationally?

SQ9) What is the state of the art of (computational) collective
intelligence?

SQ10) How is the research community on collective intelligence
structured?

SQ0–SQ1 cover the preliminary concepts underlying the no-
tion of CI, setting the necessary background for address-
ing SQ2–SQ3 (which are about what CI is) and SQ4–SQ7
(which are about the factors, characteristics, and mechan-
ics of CI). Then, SQ8 is about the problem of engineering
CI, and SQ9–SQ10 are meta-questions concerning research
in the field. Notice that these are broad scoping questions
aimed mainly at providing directions for the search and iden-
tification of the research works included in the survey.

Tertiary Study
In order to motivate the need for a survey on CI, we per-
formed a tertiary study where secondary studies (e.g., sur-
veys, systematic reviews) and collections are reviewed. We
organise these according to whether they consider CI in
its generality (i.e., abstracting from its applications and ar-
eas) focus on its artificial/computational form (ACI/CCI), its
swarm-like form, or specific kinds of collectives or goals.
Therefore, this section also provides a partial answer to
SQ10.

In general, we can observe a lack of comprehensive re-
views and maps of the CI field. From this situation, we



draw a motivation for this article: providing a map of the
topic, especially aimed at computer scientists and engineers,
showing different perspectives and providing some high-
lights from the state of the art in ACI.

Reviews on CI as a general topic Two main surveys to
date aim at addressing CI as a general topic. He et al.
(2019) analyse CI across different fields based on a taxon-
omy that distinguishes between isolation, collaboration, and
feedback-based CI paradigms. Suran et al. (2020) performed
a systematic literature review to elicit a general model of CI
and its attributes, with a focus on social computing. These
two contributions consider, integrate, and somewhat sub-
sume previous, more limited, or less general CI models and
reviews (Yu et al., 2018; Lykourentzou et al., 2009; Salmi-
nen, 2012; Krause et al., 2010), and so they will be discussed
more extensively in later sections. However, to the best of
our knowledge, there are no comprehensive mapping studies
providing a broad overview of the field for computer scien-
tists.

Multi-disciplinary collections In (Malone and Bernstein,
2015), essays on CI are collected from different fields
including economics, biology, human-computer interac-
tion (HCI), AI, organisational behaviour, and sociology.
In (Millhouse et al., 2021), a collection of contributions
from a workshop gathering scientists in different areas is
provided, with the goal of sharing “insights about how
intelligence can emerge from interactions among multiple
agents—whether those agents be machines, animals, or hu-
man beings.”

Reviews on ACI/CCI The paper by Tumer and Wolpert
(2004), published in 1999, surveys CCI systems across the
categories of (i) AI and machine learning (ML), includ-
ing multi-agent systems (MASs); (ii) social science-inspired
systems, such as those found in economics and game the-
ory; (iii) evolutionary game-theoretical approaches; (iv)
biologically-inspired systems, like swarm intelligence, ar-
tificial life, and population approaches; (v) physics-based
systems; and (vi) other research fields ranging from net-
work theory and self-organisation. This is a very rich sur-
vey but covers research published before the year 2000 and
is slightly focused towards automatic and utility-based ap-
proaches.

The editorial by Jung (2017) reviews special issue papers
on the integration of CCI and big data, where it is consid-
ered how data-driven CI can help in (i) collecting data, (ii)
analysing data, and (iii) using data e.g. to support decision
making.

The review by Rossi et al. (2018) provides a survey
and taxonomy of multi-agent algorithms for collective be-
haviour, classified into: consensus, artificial potential func-
tions, distributed feedback control, geometric algorithms,
state machines and behaviour composition, bio-inspired

algorithms, density-based control, and optimisation algo-
rithms. What emerges is a rather sharp distinction be-
tween low-level (e.g., bio-inspired self-organisation) and
high-level coordination.

Reviews on swarm intelligence Several reviews on
swarm intelligence have been published (Chakraborty and
Kar, 2017; Mavrovouniotis et al., 2017; Rajasekhar et al.,
2017; Yang and He, 2013; Fister et al., 2013; Dorigo and
Stützle, 2019; Nguyen et al., 2020; Figueiredo et al., 2019;
Zhang et al., 2015; Navarro and Matía, 2013; Zedadra
et al., 2018; Kolling et al., 2016; Brambilla et al., 2013;
Schranz et al., 2021). In the swarm intelligence field, a
large part of research is devoted to devising (meta-)heuristics
and algorithms for solving complex optimisation problems.
Mavrovouniotis et al. (2017) focus on swarm algorithms for
dynamic optimisation, namely in settings where the environ-
ment changes over time.

Moreover, reviews in this context often adopt an angle
based on what natural system inspired swarm intelligence
mechanisms. For instance, Rajasekhar et al. (2017) provide
a survey on algorithms inspired by honey bees, e.g. based on
mating, foraging, and swarming behaviours of honey bees;
similar surveys exist for bat algorithms (Yang and He, 2013),
firefly algorithms (Fister et al., 2013), ant colony optimisa-
tion (Dorigo and Stützle, 2019).

Some surveys consider swarm intelligence applied to spe-
cific problems such as self-organising pattern formation (Oh
et al., 2017), feature selection (Nguyen et al., 2020), clus-
tering (Figueiredo et al., 2019), green logistics (Zhang et al.,
2015), collective movement (Navarro and Matía, 2013).
Other surveys consider swarm intelligence in particular con-
texts or as exhibited by particular kinds of systems, such
as Internet of Things (IoT) systems (Zedadra et al., 2018),
cyber-physical systems (CPSs) (Schranz et al., 2021), and
robot swarms (Brambilla et al., 2013; Kolling et al., 2016).

Reviews on CI for specific systems and settings Reviews
from specific viewpoints include collections and surveys on
human CI (Salminen, 2012), deep learning (Ha and Tang,
2021), enterprise information systems (Nguyen et al., 2019),
and sociotechnical systems supported by 5G communica-
tions (Narayanan et al., 2022).

Salminen (2012) performed a literature review of CI in
human context, grouping contributions into (i) micro level,
emphasising enabling factors; (ii) emergence (or meso)
level, emphasising how global patterns arise from local ac-
tivity; and (iii) macro level, emphasising the kinds of system
output. A review on human CI by a crowd science perspec-
tive is provided by Yu et al. (2018). Krause et al. (2010)
review and compare swarm intelligence in animals and hu-
mans.

Ha and Tang (2021) performed a survey of recent devel-
opments on the embedding of CI principles into deep learn-



ing methods. They discuss e.g. how CI can help in devis-
ing novel architectures and training algorithms, and recent
works on multi-agent (reinforcement) learning. Studies like
this one are important since they elicit and strengthen trans-
disciplinary relationships which are key for complex inter-
disciplinary fields like CI.

Narayanan et al. (2022) provide a survey of the CI emerg-
ing in human-machine socio-technical systems supported by
5G communications. The discussed applications include
road traffic control, unmanned aerial vehicles, smart grid
management, and augmented democracy. The point is that
to realise their full potential, these kinds of decentralised
socio-technical systems often require proper connectivity
properties and capabilities to support and foster the emer-
gence of CI. For instance, from the analysis, the authors
foresee that the 5G communication technology can pro-
mote CI by enhancing aspects like connectivity with neigh-
bour nodes, interaction protocols, knowledge exchange, and
the exploration-exploitation tradeoff via improved speed, la-
tency, and reliability. On the other hand, there are significant
challenges addressed by current and hopefully by future re-
search in terms of security, privacy, and radio resource man-
agement.

Preliminary Concepts
This section provides an introduction to the notions of col-
lectives and individual intelligence, hence addressing SQ0
and SQ1, and providing preliminary concepts for introduc-
ing and discussing CI in the next section.

Collectives
Informally, a collective is a (possibly dynamic) group of
largely homogeneous individuals, which are also called the
members of the collective. Different works may use different
or more specific definitions for a collective. Different fields
often target different kinds of collectives, often resulting in
implicit assumptions.

Devising a general and comprehensive characterisation of
collectives is an open research problem, addressed in the
context of mereology, namely the study of parthood rela-
tions, and ontology, namely the study of “what there is”. In
the literature, a few formal theories attempt to deeply char-
acterise collectives and collective phenomena (Brodaric and
Neuhaus, 2020; Galton and Wood, 2016; Wood and Galton,
2009; Bottazzi et al., 2006).

For instance, in (Wood and Galton, 2009), a taxonomy
of collective phenomena is provided, along the classifica-
tion criteria of membership (concerned with the identity and
cardinality of the members of a collective), location (of the
collective as well as of its members), coherence (the source
of “collectiveness”), roles (if members are distinguished by
roles), depth (concerning levels of collectives). In particular,
two main sources for collectiveness can be devised: internal
or external causes, and shared purposes or goals. Regarding

Table 1
Common group-like notions addressed in computer science
and engineering.

Concept (Typical) Par-
ent concept

(Typical) Defining
properties

Plurality;
Collection;
Group; Set

Set-inclusion

Composite Plurality Componenthood,
heterogeneity

Collective Plurality Membership, homo-
geneity

Crowd Collective Nature (humans)
Swarm Collective Nature (insect-like)
Robot swarm Swarm Nature (simple

robots), structure
(high numbers)

Herd; Flock;
School

Collective Nature (animals)

Organisation Composite /
Collective

Structure, roles

System Composite /
Collective

Interacting ele-
ments; Boundary

Multi-agent
system

System Nature (agency)

depth, it is worth noticing that, unlike the componenthood
relation in composites, membership in collectives is gen-
erally not transitive (Brodaric and Neuhaus, 2020). Com-
posites can be defined as structured pluralities or groups of
parts, called components, playing specific functions (Bro-
daric and Neuhaus, 2020). In the literature, it is generally
assumed that composites are heterogeneous, while collec-
tives are homogeneous (Brodaric and Neuhaus, 2020).

Moreover, a collective is often intended to be a “concrete
particular” (i.e., not an abstraction like a mathematical set)
and a “continuant” (i.e., a particular existing and possibly
changing over a time span) (Wood and Galton, 2009). Defin-
ing a general, comprehensive, and precise characterisation
or taxonomy of collectives is not trivial (Wood and Galton,
2009). For instance, certain collectives may require a cer-
tain number of members or roles to be filled to exist (Wood,
2016), or may change identity following certain changes
in their composition. Sometimes, collectives may be ab-
stracted by specific collective properties or collective knowl-
edge (Nguyen, 2008). Collectiveness may also be consid-
ered as a degree, and hence a quantifiable property (Daniels
et al., 2016) of phenomena and groups of individuals.

There exist several related group-like notions, which dif-
fer e.g. by perspective, the key relation between items,
or the fundamental property of the group. Some of these
group-like notions are summarised in Table 1, with a



proposed classification—following Brodaric and Neuhaus
(2020), though different meronomies are possible. A col-
lective is a particular kind of plurality or group. Crowds,
swarms, herds, flocks, schools can generally be considered
specific kinds of collectives. Organisations and systems
might be modelled as constructs based on the structural ar-
rangement and heterogeneity of composites, but are also
amenable to be characterised as collectives.

Like for the notion of intentional stance (Dennett, 1989),
it may make sense to adopt a collective stance in which e.g.
“the human species [a group] is viewed as a single organ-
ism” (Gaines, 1994), though the idea of collective intention-
ality is problematic and subject of intense philosophical de-
bate (Schweikard and Schmid, 2013). Indeed, we believe
that the perspective of collectiveness can provide a comple-
mentary point of view to that of an individual for under-
standing and engineering various sorts of systems involving
groups of individuals. However, when addressing themes
involving collectives (such as CI), it is important to clarify
what kind of collectives are addressed, as this would help to
clarify the assumptions and generality of a specific contribu-
tion.

Intelligence
Intelligence is a controversial and elusive concept subject to
philosophical debate (Legg et al., 2007), best understood as
a nomological network of constructs (Reeve et al., 2011).
Etymologically, intelligence comes from Latin “intelligere”,
which means “to understand”. It can be defined as “the
global capacity of the individual to act purposefully, to
think rationally, and to deal effectively with the environ-
ment” (Wechsler, 1946), or the property that “measures an
agent’s ability to achieve goals in a wide range of environ-
ments” (Legg et al., 2007). In general, there are two differ-
ent interpretations: intelligence as either a collection of task-
specific skills or a general learning ability (Chollet, 2019),
which reflect the distinction between crystallised and fluid
abilities, respectively.

Problems about intelligence include, for instance, its def-
inition and modelling, such as devising the structure of in-
telligence (Reeve et al., 2011); its relation with action; its
measurement and evaluation; its analysis; and its construc-
tion and development.

Concerning the theories of intelligence, there are two
main traditions (Reeve et al., 2011): the psychometric tra-
dition, based on the number and nature of basic cognitive
abilities or factors; and the developmental or holistic per-
spective, based on acquired intellect.

The problem of the measure of intelligence (Hernández-
Orallo, 2017; Chollet, 2019) is of course related to what
representation or model of intelligence is considered, and is
complicated by the need of distinguishing between causal-
ity and correlation, selecting a representative set of environ-
ments for evaluation, etc. Carrol defines an ability (i.e. an

intelligence factor) as a source of variance in performance
for a certain class of tasks (Carroll, 1993). Measuring intel-
ligence is based on factor analysis, i.e., it works by run-
ning specific tests (observables) and using factors (unob-
servables) as possible explanations for correlations among
the observables, describing their variability. It is expected
that the nature of the entity whose intelligence we are con-
sidering would drive and require the definition of suitable
factor models.

Various taxonomies of intelligence have been proposed
over time. A common distinction is between natu-
ral (van Gerven, 2017) and artificial intelligence (Russell
and Norvig, 2020). Both can be considered under the unify-
ing notion of abstract intelligence (Wang, 2009).

Understanding Collective Intelligence
On the basis of the preliminary concepts introduced in the
previous section, this section focusses on what CI is, ac-
cording to literature, discussing definitions, examples, mod-
els, and the main classifications of CI (namely ACI and CCI)
we are interested into, hence addressing SQ2 to SQ7. Un-
derstanding the goals, characteristics, and main frames of
reference of CI is important before turning to the problem of
CCI engineering in the next section.

Definitions and characterisations of collective
intelligence
Collective intelligence is the intelligence that can be as-
cribed to a collective—where a collective is a multiplicity of
entities (commonly characterised as discussed in the previ-
ous section). Indeed, by abstracting a collective as a whole,
namely as a higher-order individual in turn (consisting of
other individuals, which are its members), it should be pos-
sible to transfer characterisations of individual intelligence
to it.

Table 2 reports some definitions of CI taken from the lit-
erature. From them, it is possible to see recurrent as well as
peculiar aspects of CI characterisations.

Reuse of (individual) intelligence definitions. Some def-
initions do not attempt to re-define “intelligence” but merely
bring existing characterisations of intelligence, common-
sense acceptations, or its general meaning as a nomologi-
cal network of concepts (Reeve et al., 2011) to the collec-
tive realm. This has the advantages of simplicity, generality,
and openness, which may promote multi-, inter- and trans-
disciplinarity.

General vs. task-specific. If we reuse existing notions of
intelligence, it means that we may consider how different
definitions in turn apply to collective entities. For instance,
similarly to individual intelligence, CI may be considered as
a general problem-solving ability or as a set of specific skills.
Evidence for the existence of a general CI statistical factor c



in human groups has been provided by Woolley et al. (2010),
where such factor is shown to be more correlated with aver-
age social sensitivity and diversity, rather than with average
or maximum individual intelligence of the members.

Collectives of different natures. Some definitions largely
abstract from the nature of collectives (cf. “collections” or
“groups of individuals”, “artificial and/or natural”), some
assume a minimal set of characteristics for individuals (cf.
agency, ability to interact, etc.), some require that the indi-
viduals are connected in some way (cf. interaction, or exis-
tence of social structures).

Different sources for collectiveness and mechanisms for
CI. Terms like interaction, collaboration, competition, and
social structure might be used to further constrain the scope
of CI to particular kinds of collectives or to different mech-
anisms thereof that are possible for supporting CI.

Connection to emergence. Various definitions build on
the notion of emergence, which relates to the production, in
a system, of radically novel, coherent macro-level patterns
from micro-level activity (Wolf and Holvoet, 2004).

Phenomenological approach. Similarly to emergence,
which is often studied phenomenologically (Minati, 2018;
Rainey and Jamshidi, 2018), some CI definitions adopt a
phenomological standpoint where the focus is not on what
CI actually is, but on the phenomena that may be associated
to it.

Positive vs. negative CI. It is common to consider CI as
a quantifiable property and specifically as a signed quantity,
i.e., positive or negative. Indeed, various authors talk about
negative collective intelligence (Szuba, 2001; Laan et al.,
2017) in order to characterise the cases where a collective
would perform worse than one of its individual members. In
such cases, the social constraints effectively hinder individ-
ual abilities with no benefit.

Examples
In the following, notable examples of CI are briefly re-
viewed.

Example 1 (Markets). Markets are economic systems that
consist of a large number of rational self-interested agents,
buyers and sellers, that engage in transactions regarding as-
sets. The prices of assets change to reflect supply and de-
mand, as well as the larger context, and can be seen as a
reification of the collective intelligence of the entire mar-
ket (Lo, 2015). So, markets can be seen as a mechanism
for sharing information and making decisions about how to
allocate resources in a collectively intelligent way (Malone
and Bernstein, 2015). Accordingly, market-based abstrac-
tions have been considered in computer science to promote
globally efficient systems (Mainland et al., 2004).

Example 2 (Wisdom of crowds). Crowds – groups of peo-
ple – can be of different kinds (cf. physical vs. psychologi-
cal crowds) and can exhibit different degrees of CI. A crowd
can exhibit intelligent (Surowiecki, 2005) or unintelligent
behavior (Laan et al., 2017). Surowiecki (2005) popularised
the term “wisdom of crowds”, showing that groups are able
of good performance under certain circumstances, provid-
ing aggregate responses that incorporate and exploit the col-
lective knowledge of the participants. Among the condi-
tions required for a crowd to be wise, Surowiecki (2005)
identified diversity (of individuals), independence (of indi-
vidual opinions), and decentralisation (of individual knowl-
edge acquisition)—whose importance has been confirmed
by later studies such as, e.g., those by Woolley et al. (2010).
Example 3 (Swarm intelligence). Swarm intelligence is the
CI that emerges in groups of simple agents (Bonabeau et al.,
1999). Swarm intelligence was first observed in natural sys-
tems, such as insect societies (e.g., ant colonies, beehives),
which inspired mechanisms and strategies for improving the
flexibility, robustness, and efficiency of artificial systems.
With respect to the general field of CI, swarm intelligence
may be considered as a sub-field that deals with very large
groups and individuals behaving according to simple rules.
Since the criteria of cardinality and simplicity are degrees,
the boundaries of the field is also fuzzy.
Example 4 (Learning multi-agent systems). Another no-
table example of CI is given by MASs (Wooldridge, 2009).
Unlike swarms, MASs usually comprise rational agents,
possibly structured into organisations, and possibly exhibit-
ing properties of strong agency (Wooldridge, 2009), i.e.,
which may in turn be individually intelligent. The agents
as well as the MAS may be able to learn about the environ-
ment, themselves, or the behaviour that they should follow
to maximise some local or global notion of utility (Tumer
and Wolpert, 2004).
Example 5 (Human-machine collective intelligence). A
powerful example of CI is the so-called human-machine
collective intelligence (HMCI) (Smirnov and Ponomarev,
2019) or hybrid CI (Peeters et al., 2021; Moradi et al., 2019),
which is the one that applies to heterogeneous systems in-
volving both machines and humans. The idea is to promote
the synergy between artificial/machine intelligence and hu-
man intelligence, which are often seen as complementary
forms of intelligence. An exemplar of HMCI is Wikipedia, a
hypermedia system of interconnected collective knowledge,
which is created and revised by humans through the me-
diation of Web technologies. Wikipedia data can also be
autonomously processed by agents to build other kinds of
applications leveraging its collective knowledge.

Models
Here, we briefly review two main general models of CI from
the literature, which comprehensively summarise and inte-
grate previous models.



Table 2
Some definitions of CI from the literature.

Ref. Definition Remarks
Malone and
Bernstein
(2015)

Groups of individuals acting collectively in ways that seem in-
telligent • “Reuse” of the notion of intelli-

gence
• Collective action

Nguyen et al.
(2009)

The form of intelligence that emerges from the collaboration and
competition of many individuals (artificial and/or natural) • Emergence

• Mechanisms (collaboration, com-
petition)

• Members of different nature

He et al.
(2019)

Collective intelligence (CI) refers to the intelligence that
emerges at the macro-level of a collection and transcends that
of the individuals.

• Emergence (transcendence)
• Levels (macro, micro)

Tumer and
Wolpert
(2004)

[COllective INtelligence (COIN)] Any pair of a large, dis-
tributed collection of interacting computational processes
among which there is little to no centralized communication or
control, together with a “world utility” function that rates the
possible dynamic histories of the collection.

• Requirements (interaction, decen-
tralisation)

• Embedded metric

Szuba (2001) We can say that the phenomenon of CI has emerged in a social
structure of interacting agents or beings, over a certain period,
iff the weighted sum of problems they can solve together as a
social structure is higher during the whole period than the sum
of problems weighted in the same way that can be solved by the
agents or beings when not interacting

• Requirements (social structure, in-
teraction)

• Embedded metric
• Dynamic property
• Negative and positive CI

Lykourentzou
et al. (2009)

Collective intelligence (CI) is an emerging research field which
aims at combining human and machine intelligence, to improve
community processes usually performed by large groups.

• Hybrid or human-machine CI

The isolation-, collaboration-, and feedback-based CI
paradigms (He et al., 2019) He et al. (2019) propose a
taxonomy of CI into three paradigms of increasing power,
based on the absence or presence of interaction and feedback
mechanisms. In their view, CI can be generally regarded as
an aggregation of individual behaviour results. Then:

1. Isolation paradigm. The individuals are isolated and be-
have independently, producing results that are aggregated
in some way. The aggregation result does not affect the
individual behaviours. Isolation studies use statistical and
mining tools.

2. Collaboration paradigm. There is direct or indirect inter-
action between the individuals. Indirect interaction can be
modelled through a notion of environment. Aggregation
operates on individual behaviour results and the environ-
ment state. The aggregation result does affect neither the
individual behaviours nor the environment.

3. Feedback paradigm. This paradigm adds to the interac-
tion paradigm a “downward causation” of the aggrega-

tion result on the individual behaviours and/or the envi-
ronment.

CI framework by Suran et al. (2020) Suran et al. (2020)
analyse 12 studies on CI and devise a generic model based
on 24 CI attributes split into 3 CI components: individu-
als, coordination/collaboration activities, and communica-
tion means. The generic model is based on:

• Characterisation of who is involved in a CI system, in
terms of: passive actors (users); active actors (CI contrib-
utors), which may be crowds or hierarchies; properties
of actors in terms of diversity, independence, and critical
mass; and interactions.

• Characterisation of motivation of CI actors: intrinsic or
extrinsic.

• Characterisation of CI goals: individual and community
objectives.

• Characterisation of CI processes: in terms of types of ac-



tivities (decide, contest, and voluntary) and interactions
(dependent or independent).

Moreover, CI systems can be considered as complex adap-
tive systems and often are subject to requirements for proper
functioning e.g. on state, data, aggregation, decentralisation,
task allocation, and robustness.

Factors and quantification of CI
Key scientific questions, fundamental for both understand-
ing and engineering CI, include what factors promote or
inhibit CI, and, specifically, what is the relationship be-
tween individual and collective intelligence. We already
mentioned the seminal work by Woolley et al. (2010) sus-
taining the idea of a general CI factor c, shown to be more
correlated with the level of sociality than with the levels of
intelligence of individuals. We also pointed out the example
of swarm intelligence as a kind of CI emerging from a mul-
titude of simple agents characterised by limited individual
intelligence. In this example, clearly, it is the aspect of in-
teraction – with other agents and/or the environment – that
fosters the production of effective patterns of behaviour.

Works have been carried out to investigate these relation-
ships. For instance, in a later study, Woolley et al. (2015)
focus on (i) group composition, e.g., in terms of skills and
diversity of the members of a group; and (ii) group inter-
action, e.g., in terms of structures and norms constraining
and ruling the interaction. They found that the individual
skills that contribute the most to CI are those that bring suf-
ficient diversity and effectiveness in collaboration, whereas
group-level psychological elements like satisfaction and co-
hesiveness are not influential. Considering different kinds of
interactive cognitive systems, Chmait et al. (2016) study the
influence of the following factors: (i) concerning individ-
uals: individual intelligence, individual reasoning/learning
speed; (ii) concerning cooperation: cardinality of the collec-
tive, time to interact, communication protocol; and (iii) con-
cerning agent-environment interaction: search space com-
plexity (through uncertainty), and algorithmic complexity
of the environment. They quantify the CI of a group of
agents as the mean accumulated reward in a set of test en-
vironments, hence extending the Anytime Universal Intelli-
gence Test (Hernández-Orallo and Dowe, 2010) to collec-
tives. What is observed is that such factors – considered
independently and/or in joint configurations with other fac-
tors – do shape the CI of groups in non-trivial ways. These
factors are also related to the components of CI models—a
nice overview is provided in (Suran et al., 2020).

Main kinds of CI
A typical classification of CI is by the nature of the entities
involved.

Natural CI Natural CI is the CI exhibited by collectives
found in nature, such as swarms of insects, packs, herds, or

CI

Artificial CI Natural CI

Computational
CI

Figure 1
The relationships between collective intelligence (CI), artifi-
cial collective intelligence (ACI), and computational collec-
tive intelligence (CCI). The dashed line is used to denote the
false dichotomy between artificial and natural CI.

groups of animals, crowds of people, flocks of birds, schools
of fishes, etc. In all these systems there exist non-trivial col-
lective phenomena and societal aspects that deserve deep in-
vestigation. Insect societies are analysed e.g. in the seminal
book by (Bonabeau et al., 1999). For collective animal be-
haviour, one of the main references is the book by Sumpter
(2010), which describe collective phenomena as those in
which “repeated interactions among many individuals pro-
duce patterns on a scale larger than themselves”. For CI in
humans, some historical references include (Le Bon, 2002;
Surowiecki, 2005); moreover, there are contributions for
specific human settings like crowds of pedestrians (Sieben
et al., 2017) and problems like e.g. the relationship between
language and collective action (Smith, 2010).

The study of natural CI is important because it is power-
ful source of inspiration for CI mechanisms to be applied to
artificial systems (Bonabeau et al., 1999).

Artificial (ACI) and Computational Collective Intelli-
gence (CCI) ACI is the CI exhibited by human-made ma-
chines. Notice that, strictly speaking, natural and artificial
CI constitute a false dichotomy since there is inherent sub-
jectivity regarding where the line between the two is drawn,
and these could also be considered as a gradation. ACI and
CCI are mostly considered as synonyms in the literature.
However, some authors refer to CCI as a particular kind
of ACI, i.e., “as an AI sub-field dealing with soft comput-
ing methods which enable making group decisions or pro-
cessing knowledge among autonomous units acting in dis-
tributed environments” (Badica et al., 2014). Soft comput-
ing methods are those that help to address complex problems
by overcoming approximation and uncertainty, using tech-



niques such as fuzzy logic, expert systems, machine learn-
ing, genetic algorithms, artificial neural networks (Ibrahim,
2016). In other words, the distinction between ACI and CCI
may follow the common way to distinguish between arti-
ficial and computational intelligence (Engelbrecht, 2007),
where the former tends to prefer hard, symbolic approaches
while the latter tends to prefer soft and bio-inspired com-
puting techniques. The relationships between CI, ACI,
and CCI is shown in Figure 1. CCI might also be intended
as a part of natural CI to account for the notion of bio-
logical computation (Mitchell, 2011), whereby biological
systems are considered as computing devices (van Gerven,
2017). However, not all of ACI is necessarily computa-
tional, since also mechanical machines can exhibit intelli-
gence (Wang, 2009; Stradner et al., 2013)—cf. Braitenberg
vehicles (Dvoretskii et al., 2022), some of which are purely
mechanical vehicles with hard-wired connections between
sensors and actuators. Common sub-fields of ACI include
e.g. semantic web, social networks, and multi-agent sys-
tems (Nguyen et al., 2009). Often, ACI and CCI include
systems comprising both machines and humans. Possible
taxonomies for ACI are proposed in the next section.

Notice that terms like swarm intelligence or multi-agent
intelligence may refer to natural, to artificial systems, or to
a general model comprising both.

Other kinds of CI are described in the following, as they
are very much related to peculiar CI engineering methods
and techniques.

Perspectives of Artificial Collective
Intelligence Engineering

Building on the previous discussion of what CI is and its
main models, this section focusses on how CI can be en-
gineered, according to literature, hence addressing SQ8 to
SQ10. In doing this, we will picture a map of the state of
the art in CI engineering, setting the stage for a discussion
of research opportunities and challenges in the next section.

Depending on what kind of CI has to be achieved (cf. the
previous section), various perspectives and approaches to CI
engineering can be devised, each one leveraging and provid-
ing peculiar sets of CI mechanisms.

Knowledge-oriented vs. behaviour-oriented CI
From an industrial point of view, the engineering of CI of-
ten revolves around engineering the ICT platforms and algo-
rithms for collecting data from human activity and extracting
knowledge from collected data (Segaran, 2007; Alag, 2008).
There are several ways in which humans using web appli-
cations can provide data through their interaction: e.g., by
what content they search, what paths they follow, what feed-
back they provide, what content they add, etc. Then, tech-
niques like data mining, text mining, and machine learning
can be used to classify information, cluster information, pre-
dict trends, recommend content, filter information, aggre-

gate information etc. We may call this knowledge-oriented
CI since the collective intelligence lies in the data produced
and processed by a collective, and ICT has a role in sup-
porting such information creation, ultimately promoting the
emergence of latent collective knowledge. This is essen-
tially what Surowiecki (2005) calls cognition problems.

This kind of systems may not seem a form of CI. Indeed,
one might be tempted to completely abstract over the collec-
tive of agents providing the data, and merely consider a con-
ceptually single source of data and how data is processed and
aggregated by a conceptually single process. However, the
CI nature of all this starts to emerge once one considers the
overall process by a larger, socio-technical perspective. By
this perspective, several agents produce information through
their activity and reasoning, possibly interacting with other
agents and with supporting tools (e.g., a network to share
information, tools to make sense of others’ contributions,
etc.)—cf. the isolation, collaboration, and feedback-based
paradigms.

Conversely, we may call behaviour-oriented CI the col-
lective intelligence that drives the global behaviour of a sys-
tem. This includes what Surowiecki (2005) refers to as co-
ordination and cooperation problems. Examples include
the form of intelligence driving the way in which robotic
swarms move (Navarro and Matía, 2013), a computational
ecosystem that self-organises into activity and communi-
cation structures (Pianini et al., 2021), and a market that
self-regulates itself (Lo, 2015). However, as the latter ex-
ample shows, since collective action is connected with col-
lective decision making, which in turn is connected to col-
lective knowledge, the border between knowledge-oriented
and behaviour-oriented CI is fuzzy and so these types of
CI should not be thought as containers for mechanisms but
rather as containers for typical CI goals.

The distinction between “plain” systems and systems-of-
systems (SOS) (Nielsen et al., 2015), e.g., based on the prop-
erties of autonomy, belonging, connectivity, diversity, and
emergence (Boardman and Sauser, 2006), is also relevant in
this discussion (Peeters et al., 2021). Research under the
knowledge-oriented CI umbrella, typically involving socio-
technical systems, seems mostly related to the SoS frame-
work. Research under the behavior-oriented CI umbrella,
instead, seems more uniformly distributed along both the
system (cf. swarm intelligence and aggregate computing—
Bonabeau et al. (1999); Viroli et al. (2019)) and SoS view-
points (cf. hybrid human-machine systems—Peeters et al.
(2021); Scekic et al. (2020)).

Manual vs. automatic ACI development

Regarding ACI, it is possible to distinguish two main kinds
of approaches: those based on manual design and those
based on automatic design.



Manual design of ACI In the manual approach, a de-
signer specifies the behaviour of the computational agents
making up the collective directly by providing behavioural
rules (or policies).

Here, the key issue is determining what individual be-
haviour, when replicated or combined with other behaviours
or phenomena, can give rise to the desired emergent be-
haviour. Programming approaches that are thought to
somehow address this goal are often known as macro-
programming in the literature (Casadei, 2023), a term that
recurred especially in early 2000s in the context of wireless
sensor networks (WSNs) (Newton et al., 2005). A founda-
tional contribution to macro-programming is given by Reina
et al. (2015), where a methodology is proposed for pass-
ing from macroscopic descriptions to a microscopic im-
plementation through a design pattern, obtaining a quan-
titative correspondence between micro and macro dynam-
ics. Research has produced different macro-programming
frameworks, e.g., for expressing the behaviour of robot
swarms (Pinciroli and Beltrame, 2016) and distributed, IoT
systems (Noor et al., 2019; Mizzi et al., 2018)—though most
of them lack formal foundations.

A notable macro-programming approach that has recently
been subject to intense research is aggregate computing
(AC) (Viroli et al., 2019). AC consists of a functional macro-
programming language expressing collective behaviour in
terms of computations over distributed data structures called
computational fields (Mamei et al., 2004; Viroli et al., 2019).
The basic language constructs provide support for dealing
with (i) lifting standard values to field values; (ii) abstract-
ing field computations through functions; (iii) stateful evo-
lution of fields; and (iv) handling bi-directional communi-
cation through so-called neighbouring fields. Using such
constructs, and library functions e.g. handling informa-
tion flows through gradients or supporting higher-level pat-
terns, a programmer can write an aggregate program that ex-
presses the global behaviour of a possibly dynamic network
of agents. The agents, by repeatedly evaluating the program
in asynchronous sense-compute-interact rounds, and inter-
acting with neighbours by exchanging data as dictated by
the program, could steer self-organising behaviour hopefully
fulfilling the intent of the program. Casadei et al. (2021)
argue that multiple concurrent and dynamic aggregate com-
putations could pave a path to CI engineering.

While AC adopts a swarm-like self-organisation model,
another class of approaches for ACI is given by multi-
agent programming, as supported e.g. by the JaCaMo plat-
form (Boissier et al., 2020b), which comprises Jason for
programming cognitive autonomous agents, CArtAgO for
programming the distributed artifacts-based environment of
the MAS, and MOise for programming agent organisations.
However, it is worth noticing that the relationships between
MAS research and CI research are often hindered by dif-
ferent terminologies and separate communities. A reason

might be that a large part of MAS research properly focusses
on composites rather than collectives, i.e., well-structured
organisations of heterogeneous intelligent agents rather than
self-organising swarms of largely homogeneous and cogni-
tively simple agents.

Automatic design of ACI Since manually crafting con-
trol and behavioural rules of computational agents might be
difficult, especially for complex tasks in non-stationary en-
vironments, a different approach consists in devising strate-
gies for automatically designing behaviours. The idea is
to provide hints about the intended behaviour or the results
to be attained by it (e.g., in terms of specifications or data),
and to leverage mechanisms to generate or find behaviours
that satisfy the specification. This can be addressed through
automatic programming (O’Neill and Spector, 2020), (ma-
chine) learning (Behjat et al., 2021), and search (Russell and
Norvig, 2020). For CI systems, these are essentially the ap-
proaches followed by prominent methods like, e.g., multi-
agent reinforcement learning (MARL) (Busoniu et al., 2008)
and evolutionary swarm robotics (Trianni, 2008).

One of the early models and notable example is COl-
lective INtelligence, or COIN (Wolpert, 2003). Essentially,
COIN considers a collective as a system of self-interested
agents, trying to maximise their private utility function,
sharing an associated world utility giving a measure of the CI
of the overall system. MARL is clearly a powerful technique
for building CI, and it is currently a hot research area, with
several surveys emerging (Zhang et al., 2019b; Canese et al.,
2021; Gronauer and Diepold, 2022). Learning of collective
behaviour may be related but should not be confused with
collective learning, which is learning carried out by multiple
agents that does not necessarily yield collective behaviour
models.

In evolutionary robotics (Trianni, 2008), the idea is to
use evolutionary algorithms (i.e., algorithms that use mech-
anisms inspired by biological evolution for evolving popu-
lations of solutions) to optimise models of robot controllers
(e.g. mapping inputs from sensors to outputs to actuators)
with respect to desired behavioural goals. Various tech-
niques have been proposed in the literature to improve tradi-
tional evolutionary approaches, e.g., novelty search (Gomes
et al., 2013). An interesting approach for the automatic
design of the control logic of swarms is given by Auto-
MoDe (Francesca et al., 2014). AutoMoDe generates modu-
lar control software as a probabilistic finite state machine by
selecting, composing, and configuring behavioural modules
(bias). The idea is to leverage the bias to make the automatic
design approach robust to differences between simulation
and reality. Another relevant methodology for evolutionary
robotics is the so-called embodied evolution approach (Wat-
son et al., 2002; Bredèche et al., 2018), which is based on
evolutionary processes that are distributed in a population
of robots situated in an environment, to support online and



long-term adaptivity. Embodied evolution is an interesting
setting for studying aspects like embodied intelligence, co-
evolution, the role of environmental niches, the relationship
between optimisation and selection pressure, locality of in-
teraction, etc. The combination of learning and evolution
is also a very interesting research direction (Gupta et al.,
2021).

A second possibility for automatic design comes from
program synthesis (Gulwani et al., 2017), which is the field
studying the task of automatically crafting programs (in
some given programming language) that satisfy a specified
intent. Particularly interesting are the recent attempts of
combining program synthesis and reinforcement learning—
cf. Bastani et al. (2020); Aguzzi et al. (2022). However, in
the context of CI, this direction has not yet been investigated,
representing an opportunity for future research (cf. next sec-
tions).

As a final remark, we stress that manual and automatic
design can be seen as the extremes of a continuum, and
that hybrid approaches can be used—cf. interactive program
synthesis (Zhang et al., 2020).

Relationships between humans and machines in
HMCI
In HMCI, it is possible to distinguish multiple threads
of research. A first classification could be based on
the aforementioned distinction between knowledge-oriented
and behaviour-oriented CI. Other classifications can be
made by considering what kind of entity plays the role of
controller and executor:

1. tasking crowds of humans (Ganti et al., 2011; Guo et al.,
2014; Zhen et al., 2021; Sari et al., 2019)—cf. crowd-
sourcing (Zhen et al., 2021) and crowdsensing (Guo et al.,
2014);

2. using humans to guide machine operations, e.g., interac-
tively (Yu et al., 2021);

or considering what entity plays the role of input and output

1. using AI to extract or mine intelligence from human con-
tributions (Segaran, 2007; Alag, 2008);

2. using humans (or human computation) to extract value
from machine contributions, especially in tasks where
machines cannot (yet) generally perform well, such as vi-
sual recognition and language understanding (Quinn and
Bederson, 2011).

or, finally, considering humans and machines as peers and
hence the so-called human-machine networks (Tsvetkova
et al., 2017) or social machines (Burégio et al., 2013;
Berners-Lee, 1999).

Regarding the engineering of social machines, a notable
macro-programming approach is given by the SmartSociety

platform (Scekic et al., 2020), which is based on abstractions
like persistent and transient teams of human/machine peers,
and collective-based tasks. The approach can be used for
human orchestration and human tasking activities like those
found in crowdsourcing and hybrid collectives.

Concerning the general design of ACI in social machines,
Peeters et al. (2021) propose three principles: (i) goals
from the collective, technological, and human perspectives
should be considered simultaneously; (ii) development ef-
fort should continously embrace all the product’s lifecycle;
and (iii) the requirements of observability, predictability, ex-
plainability, and directability should be considered at all ab-
stractions levels (AI, team, and society).

Collective tasks
Another main classification of CI engineering research is by
the kind of collective task that is addressed. A collective
task can be defined as a task that requires more than one
individual to be carried out. Notice that CI may be seen
as a requirement or mechanism for solving collective tasks
(cf. the general CI interpretation) or, conversely, CI might
be defined (and measured) in terms of the ability to solve a
set of collective tasks in a variety of environments.

Multiple taxonomies of collective tasks have been pro-
posed in the literature. For instance, Brambilla et al. (2013)
classify collective behaviours (of swarm robotics systems)
into (i) spatially-organising behaviours, (ii) navigation be-
haviours, (iii) collective decision making, and (iv) others.
Other reviews of swarm robotics tasks include (Bayindir,
2016; Nedjah and Junior, 2019). Moreover, collective tasks
can be classified also according the three paradigms dis-
cussed in (He et al., 2019) and reviewed in previous sections:
isolation, collaboration, and feedback.

In the following, we review material for two general, main
kinds of collective tasks – collective decision making and
collective learning – and then point out references to other
kinds of tasks.

Collective decision making Collective decision making is
the problem of how groups reach decisions without any cen-
tralised leadership (Bose et al., 2017; Prasetyo et al., 2019).
This is also known as group decision making (Zhang et al.,
2019a; Tang and Liao, 2021).

Decision making and its collective counterpart can be
classified according to the nature of the decision to be made.
Reaching consensus and multi-agent task allocation are two
common kinds of collective decision-making behaviours,
typical in swarm robotics (Brambilla et al., 2013). Guttmann
(2009) classifies MAS decision making by four dimensions:
(i) use of models of self vs. models of others; (ii) individual
inputs vs. group input; (iii) learning vs. non-learning, de-
pending on whether decision making spans multiple rounds
or just one round; and (iv) collaboration vs. competition.
Surowiecki (2005) distinguishes three kinds of problems or



tasks of distributed decision making: (i) cognition, (ii) co-
operation, and (iii) coordination.

Collective decision making is often supported by self-
organisation mechanisms based on, e.g., collective percep-
tion (Schmickl et al., 2006), voter models (Valentini et al.,
2014), opinion formation models (de Oca et al., 2011), and
self-stabilising leader election (Pianini et al., 2022a).

Recent surveys on collective decision making include the
following. Valentini et al. (2017) focus on discrete consen-
sus achievement, and propose a formal definition of the best-
of-n problem (choice of the best alternative among n avail-
able options); then, they define a taxonomy based on dif-
ferent classes of the problem, and classify the literature on
discrete consensus agreement accordingly. Zhang et al.
(2019a) provide a review of consensus models in collective
decision making, and compare them based on multiple crite-
ria for measuring consensus efficiency. They also argue that
two interesting research directions include (i) large-scale
collective decision making and (ii) addressing social rela-
tionships and opinion evolution. Tang and Liao (2021) pro-
vide a review of literature around five challenges in large-
scale collective decision making with big data: dimension
reduction, weighting and aggregation of decision informa-
tion, behaviour management, cost management, and knowl-
edge distribution and increase. Rizk et al. (2018) provide a
survey of decision making in MASs. The survey focusses
on five cooperative decision-making models: Markov deci-
sion processes (and variants), control theory, game theory,
graph theory, and swarm intelligence. These models are
discussed along the dimensions of heterogeneity, scalabil-
ity, and communication bandwidth—which are also crucial
research challenges. Particularly challenging is also deci-
sion making in dynamic environments (Rizk et al., 2018;
Prasetyo et al., 2019). Other challenges include security,
privacy, and trust; approaches to address these include, e.g.,
blockchain consensus (Pournaras, 2020b).

Collective learning Learning is intimately related to in-
telligence (Jensen, 1989). Collective learning is learn-
ing backed by a collective process, with coordination
and exchange of information between individuals and ar-
tifacts (Fadul, 2009). As a multi-disciplinary theme, it is
studied both in areas like sociology and organisational the-
ory (Garavan and Carbery, 2012; Fadul, 2009), and in AI
research (Bock, 1993). Collective learning spans both the
knowledge-oriented and behaviour-oriented perspectives of
CI, and is the main technique for automatic design of ACI.
Goals of collective learning include supporting individual
learning (Fenwick, 2008), producing collective knowledge,
and promoting collective decision making (Garavan and
Carbery, 2012). As a wide concept, collective learning
can be interpreted along multiple perspectives (Garavan and
Carbery, 2012): e.g., as the independent aggregation of indi-
vidual learning, or as a collaborative activity. So, collective

learning is related but not necessarily the same as coopera-
tive and collaborative learning (Fadul, 2009). These differ-
ent views can also be found in AI and ACI research.

Artificial collective learning includes distributed machine
learning (Verbraeken et al., 2020): examples include cen-
tralised, federated, and decentralised machine learning sys-
tems. In centralised learning, the different individuals of
the system provide data to a central entity that performs the
actual learning process. So, in this case, the core learning
process is not collective, though it would be collective if
considered by a larger perspective that includes data genera-
tion. In federated learning (Kairouz et al., 2021), the idea is
that individual independent workers perform machine learn-
ing tasks on local data sets, producing models that are then
aggregated by a master into a global model without the need
of sharing data samples. It enables to address data privacy
issues. The combination of multiple models is also called
ensemble learning (Dong et al., 2020). Hegedüs et al. (2021)
propose gossip-based learning as a decentralised alternative
to federated learning, where no central entities are used and
models are gossiped and merged throughout the nodes of
the system. Collective learning might be supervised or un-
supervised. An example of an unsupervised decentralised
collective learning approach is provided by Pournaras et al.
(2018).

Another important example of collective learning is
MARL (Busoniu et al., 2008), which considers learning by
collections of reinforcement-learning agents. MARL algo-
rithms are commonly classified depending on whether they
address fully cooperative, fully competitive, and mixed co-
operative/competitive problems. In fully cooperative prob-
lems, the agents are given a common reward signal that eval-
uates the collective action of the MAS. Instead, in fully com-
petitive problems, the agents have opposite goals. Mixed
games are in between fully cooperative and fully compet-
itive problems. Three common information structures in
MARL are (Zhang et al., 2019b): (i) centralised structures,
involving a central controller aggregating information from
the agents; (ii) decentralised structures, with no central en-
tities and neighbourhood interaction; and (iii) fully decen-
tralised, namely independent learning, with no information
exchanged between the agents. Various formal frameworks
have been proposed to address MARL problems, including
COIN (Wolpert, 2003) and Decentralised Markov Decision
Processes (Dec-MDP) (Oliehoek and Amato, 2016). The
reader interested to MARL algorithms and frameworks can
check out multiple comprehensive surveys on the topic (Bu-
soniu et al., 2008; Zhang et al., 2019b; Hernandez-Leal
et al., 2019).

There exist surveys on collective learning. D’Angelo et al.
(2019) perform a systematic literature review on learning-
based collective self-adaptive systems. Their analysis ex-
tracts, as the main characteristics of such systems, the ap-
plication domains involving groups of agents with the abil-



ity to learn, the levels of autonomy of the agents, the lev-
els of knowledge access (i.e., the way in which they explic-
itly share learning information), and the kinds of behaviours
involved (e.g., selfish vs. collaborative). Accordingly, the
authors provide a framework for learning collective self-
adaptive systems, based on three dimensions: autonomy,
knowledge access, and behaviour. The learning goals are
analysed w.r.t. the target emergent behaviour; from the anal-
ysis, two clusters of works emerge: those where the emer-
gent behaviour is associated to the anticipated learning task,
and those where it is not. Among the learning techniques,
they report that the majority of research works leverage re-
inforcement learning, while game theory, supervised learn-
ing, probabilistic and other approaches are less investigated
in these settings. Resilience and security are deduced as the
main open challenges in this research domain.

Pournaras (2020a) provides a review of 10-years research
on human-centred collective learning for coordinated multi-
objective decision making in socio-technical systems, within
the context of the Economic Planning and Optimized Selec-
tions (EPOS) project. Collective learning is motivated as a
way to address the long-standing tragedy of the commons
problem, and argued to be a promising paradigm of artifi-
cial intelligence. As research opportunities and challenges,
the author identifies: explainability and trust, resilience to
plan violations and adversaries, collective learning in or-
ganic computing systems, co-evolution of collective human
and machine learning, and digital democracy.

Learning is also very related to evolution (Bredèche et al.,
2018). Learning and evolution are generally considered
as different mechanisms for adaptation working on dif-
ferent time and spatial scales (Mataric, 2007; Anderson
et al., 2013). However, these techniques can also be com-
bined (Nolfi and Floreano, 1999): learning can guide evolu-
tion (Hinton and Nowlan, 1987) and evolution can improve
learning (cf. evolutionary learning—Telikani et al. (2022)),
where different architectures for the combination are possi-
ble (Sigaud, 2022).

Other collective tasks Collective action (Oliver, 1993)
commonly refers to the situation where multiple individu-
als with conflicting goals as well as common goals would
benefit from coordinated action. Clearly, the ability to act
collectively in an effective manner can be seen as an expres-
sion of CI. The problem is addressed mainly in sociology,
but computer science also provides tools (e.g., simulations,
models etc.), such as the SOSIEL (Self-Organising Social &
Inductive Evolutionary Learning) simulation platform (Sot-
nik, 2018), for studying the problem and investigating so-
lutions for human societies as well as for socio-technical
and artificial systems. Collective actions may be supported
by collective and self-organised decision-making processes,
and leveraging abstractions like electronic institutions and
social capital (Petruzzi et al., 2015).

Collective movement (Navarro and Matía, 2013) is the
problem of making a group of agents (e.g., robots, drones,
vehicles) move towards a common direction in a cohesive
manner. Notice that this is not just about movement per
se, but rather moving in conjunction or in order to support
other tasks as well—e.g., distributed sensing, exploration,
and rescue tasks. Two main sub-problems can be identi-
fied (Navarro and Matía, 2013): (i) formation control (Yang
et al., 2021), when the shape of the group and/or the indi-
vidual positions’ are important; and (ii) flocking (Beaver and
Malikopoulos, 2021), where such aspects are less important.

Distributed optimisation (Yang et al., 2019) refers to the
problem of minimising a global objective function, which is
the sum of the local objective functions of the members of a
collective, in a distributed manner. Distributed optimisation
can be a technique for collective decision making.

Collective knowledge construction refers to the creation
of new, distributed, and shared knowledge by a collec-
tive (Hecker, 2012). This topic is generally studied by con-
sidering aspects such as collaboration (Hmelo-Silver, 2003),
socio-technical infrastructures (Gruber, 2008), knowledge
transfer (Huang and Chin, 2018), the interplay between
individual and collective knowledge (Kimmerle et al.,
2010) models of information diffusion dynamics (Maleszka,
2019), and lifelong learning (Rostami et al., 2018).

A view of CI-related fields
Being CI a multi-disciplinary field, the engineering of CI
and ACI can benefit from ideas and research results from a
variety of fields. It would be useful to have a comprehensive
map of research fields contributing to CI.

Though we consider providing a comprehensive research
map of CI engineering as a future work, we provide a re-
search map (see Figure 2) from the perspective of collective
adaptive system (CAS) research (Casadei, 2020; Nicola
et al., 2020; Bucchiarone et al., 2020; Ferscha, 2015). The
idea is that CI engineering should be supported through
inter-disciplinary research and a systems science perspec-
tive (Mobus et al., 2015), also providing a rigorous treat-
ment of system-level properties that could be sustained
by CI processes. This includes leveraging studies of ab-
stract and fundamental kinds of systems such as, for in-
stance, CPS, namely systems that combine discrete and
continuous dynamics (Alur, 2015). Then, a set of inter-
related fields can promote the study of peculiar CI phe-
nomena such as emergence, self-organisation, ensemble for-
mation, etc. Such fields include but are not limited to
the field of coordination (Malone and Crowston, 1994),
multi-agent systems (Wooldridge, 2009), autonomic/self-*
computing (Kephart and Chess, 2003), collective adaptive
systems (Casadei, 2020; Nicola et al., 2020; Bucchiarone
et al., 2020; Ferscha, 2015), ubiquitous/pervasive comput-
ing (Weiser, 1991), swarm intelligence (Bonabeau et al.,
1999), and collective computing (Abowd, 2016). Some of



these are briefly overviewed in the following.
We noticed multiple times in previous sections how inter-

action is a key element of CI. Coordination is the interdisci-
plinary study of interaction (Malone and Crowston, 1994).
In computer science, interaction was early recognised as
a concern related but clearly distinguished from computa-
tion (Gelernter and Carriero, 1992), hence amenable to sep-
arate modelling by so-called coordination languages. A gen-
eral meta-model of coordination (Ciancarini, 1996) consists
of coordinables (the interacting entities), coordination me-
dia (the abstractions supporting and constraining interac-
tions), and coordination laws (describing the behaviour of
a coordination medium). Languages, abstractions, and pat-
terns, can be used to define the way in which computational
components coordinate across aspects like control, informa-
tion, space, and time. This has motivated the birth of whole
communities and long-standing research threads (Ciancarini
and Hankin, 1996; ter Beek and Sirjani, 2022).

Collective adaptive systems (CASs) are collectives of
agents that can adapt to changing environments with no cen-
tral controller. Their engineering poses several challenges,
tackled in corresponding research communities (Nicola
et al., 2020; Bucchiarone et al., 2020). CASs are some-
times considered to be heterogeneous (Loreti and Hillston,
2016; Andrikopoulos et al., 2013), contrasted to more ho-
mogeneous intelligent swarms, though we tend to disagree
with this view. In our view, CASs are a superset of intelli-
gent swarms, which are characterised by (i) large numbers
of (ii) relatively simple (or not particularly intelligent) in-
dividuals (Beni, 2004). Collectives are generally quite ho-
mogeneous, at least at some level of abstraction (Pianini
et al., 2022b), though research works aim to address hetero-
geneous collective adaptive systems (Scekic et al., 2020) as
well as heterogeneous swarms (Dorigo et al., 2013; Kengyel
et al., 2015), e.g., with systems involving humans and
robots (Hasbach and Bennewitz, 2022), or groups of robots
with different morphology or behaviour. Swarm robotics is
the combination of swarm intelligence and robotics (Bram-
billa et al., 2013; Beni, 2004).

Coordination, CASs, and swarm robotics can also be
seen as sub-fields of the larger field of MASs (Wooldridge,
2009; Faliszewski et al., 2022), which itself stemmed from
the field of distributed artificial intelligence (Ferber, 1999).
In MASs engineering, two main levels and corresponding
problems are considered: the micro level of agent design,
and the macro level of agent society design. Autonomy
(encapsulation of control) and agency (the ability to act)
are generally considered the two fundamental properties of
agents (Franklin and Graesser, 1996; van der Hoek and
Wooldridge, 2003), from which other properties like proac-
tiveness, interactivity, and sociality stem. By a software pro-
gramming and engineering point of view, agents can be con-
sidered as an abstraction following active objects and ac-
tors (Odell, 2002) that, together other first-class abstractions

like artifacts (Omicini et al., 2008), environments (Weyns
and Michel, 2014), and organisations (Horling and Lesser,
2004), provide a support for the so-called (multi-)agent-
oriented programming paradigm (Shoham, 1993; Boissier
et al., 2020a). The MAS field/perspective is clearly inti-
mately related to CI.

Like for MASs, the key property of autonomy is at the
centre of autonomic computing (Kephart and Chess, 2003),
namely the field devoted to the construction of computa-
tional systems that are able to manage/adapt themselves
with limited or no human intervention. Following this
vision, research has been carried out to find approaches
and techniques to endow artificial systems with different
self-* properties: self-adaptive (de Lemos et al., 2010; Sale-
hie and Tahvildari, 2009), self-healing/repairing (Psaier and
Dustdar, 2011), self-improving/optimising (Bellman et al.,
2018), self-organising (Heylighen, 2013), and so on. To
build autonomic systems, approaches typically distinguish
between the managed system and the managing system,
structuring the latter in terms of Monitoring, Adaptation,
Planning, Execution, and Knowledge (MAPE-K) compo-
nents (Kephart and Chess, 2003). In so-called architecture-
based self-adaptation (Garlan et al., 2004), architectural
models of the managed systems are leveraged at runtime
to organise the self-managing logic. The managing system
could also be distributed and decentralised (Weyns et al.,
2010). If the managed system is a collective, then its self-*
properties could be put in relation to its CI. Consider
the property of being self-organising, characterised by pro-
cesses that autonomously and resiliently increase/maintain
order or structure (Wolf and Holvoet, 2004); it typically
emerges from the interaction of several entities. Self-
organisation can be considered as a key promoter or element
of CI (Rodríguez et al., 2007).

As a last remark, we stress that the aforementioned fields
are highly inter- and trans-disciplinary. For instance, MASs
can be considered by economical, sociological, organisa-
tional, and computational perspectives (Wooldridge, 2009).
Same goes for coordination (Malone and Crowston, 1994).
Moreover, a great source of inspiration is given by natural
(e.g., physical and biological) systems, as recognised by a
wealth of nature-inspired coordination (Zambonelli et al.,
2015) and nature-inspired computing (Siddique and Adeli,
2015) contributions.

Research Opportunities and Challenges
With an understanding of the nature of CI and its engineer-
ing perspectives, in the following, we discuss a few related
research directions that include interesting opportunities and
challenges for researchers in CI engineering.

Programming emergence and macro-programming
The problem of programming emergent and self-organising
behaviours is an open research challenge (Gershenson et al.,



Figure 2
A research map of fields and concepts contributing to (research on) CI engineering.

2020; Varenne et al., 2015) intimately related to CI engineer-
ing. Term macro-programming emerged in early 2000s to
identify programming approaches with the goal of defining
the global behaviour of WSNs (Newton et al., 2005); cur-
rently, it generally denotes paradigms aiming at supporting
the programming of system- or macro-level properties and
behaviours. A recent survey by Casadei (2023) shows that,
beside the first wave of research in the context of WSNs, we
are witnessing a renewed interest in macro-programming fu-
elled by scenarios like the Internet of Things, robot swarms,
and collective adaptive systems in general. This is also very
much related to spatial computing (Beal et al., 2013), as
space is often a constraint, a means, or a goal in systems.

The key challenge here is determining what local be-
havioural rules of the individuals can promote the desired
collective behaviour. In particular, we can distinguish two
problems (Tumer and Wolpert, 2004). Given a set of indi-
viduals and the corresponding local behavioural rules, the
local-to-global mapping problem (or forward problem) is
the problem of determining what global outcomes will be
produced. Conversely, the global-to-local mapping problem
(or inverse problem) is the problem of determining what lo-

cal behaviours have produced the observed global outcomes.
In macro-programming, the latter problem turns into how to
map a description of a global intent (macro-program) into
local behavioural rules (micro-programs) (Casadei, 2023).

It has been shown that approaches like aggregate com-
puting (Viroli et al., 2019) can support forms of self-
organisation and CI with macro-programs that can be en-
coded as compositions of functions of reusable collective
behaviours (Audrito et al., 2022). This is promising, but
still little research has been devoted yet at investigating,
systematising, and formalising the principles, concepts, and
mechanisms of macro-programming in general or specific
settings (Casadei, 2023).

Integration of manual and automatic CI
engineering methods
In previous sections, we have discussed how CI can be pro-
grammed manually (e.g., through macro-programming lan-
guages, or using traditional techniques to connect and ex-
tract knowledge from human activity) or automatically (e.g.,
via multi-agent reinforcement learning techniques or pro-
gram synthesis). Arguably, the two approaches could be
combined to overcome their individual issues. This is a still



an unexplored research direction, but early works and ideas
are emerging.

A first idea could be to use program synthesis (Gulwani
et al., 2017) to synthesise macro-programs expressed in a
macro-programming language (Casadei, 2023). This could
be coupled with simulation to verify how systems executing
synthesised programs operate in various environments. On
one hand, since simulations may also be computationally-
intensive, it might be necessary to limit simulation to few
program candidates. On the other hand, the problem of
generating macro-programs might be hard especially if the
space of possible programs is very large. Therefore, macro-
programming languages admitting few primitives or combi-
nators may be more suitable for this.

Additionally, there exist some recent attempts at combin-
ing program synthesis and reinforcement learning (Verma
et al., 2018; Bastani et al., 2020; Qiu and Zhu, 2022). For
instance, Bastani et al. (2020) discuss approaches to rein-
forcement learning based on learning programmatic policies
(i.e., policies in the form of a program), which can provide
benefits in terms of interpretability, formal verification, and
robustness. Therefore, it would be interesting to consider
the application of MARL where policies are expressed in
a multi-agent oriented or a macro-programming language.
An early attempt has been carried out e.g. in (Aguzzi
et al., 2022), where MARL has been used to fill a hole in
a sketched aggregate computing program (cf. the sketching
technique in program synthesis (Solar-Lezama, 2009)), re-
sulting in a collective adaptive behaviour that improves over
a simple, manually encoded collective behaviour.

Integration of bottom-up and top-down processes
Another interesting research challenge and opportunity for
our ability of engineering CI lies in achieving a better under-
standing of how bottom-up and top-down processes can be
integrated—or, in other words, how emergence and down-
ward causation/feedback can be exploited altogether to pro-
vide both flexibility and robustness in collective behaviour.
Indeed, we are considering feedback CI paradigm (He et al.,
2019), where the aggregation of contributions from the in-
dividuals and the environment in turn affects the individuals
and the environment. This is also what Lykourentzou et al.
(2009) call active CI systems, where collective behaviour is
supported by the system level, which are contrasted from
passive CI systems where no collective awareness or inten-
tionality is present.

The problem of integrating top-down and bottom-up pro-
cesses is indeed connected with the problem of control-
ling emergence, addressed in research fields like autonomic
computing (Kephart and Chess, 2003), with its MAPE-
K (Monitor–Analyse–Plan–Execute with Knowledge) loops,
and organic computing (Müller-Schloer and Tomforde,
2017), with observer-controller architectures. One issue
is that emergence itself is a controversial concept, subject

to philosophical and scientific investigation, and often pre-
sented with definitions that hardly apply to systems engi-
neering (Müller-Schloer and Sick, 2006). Attempts to defin-
ing emergence based on hierarchical system models and on-
tological approaches (Gignoux et al., 2017) may prove use-
ful. Initial, working classifications of emergence for reason-
ing in systems engineering may be based e.g. on whether it
is anticipated or not anticipated, and whether it is desirable
or undesirable (Iivari, 2016).

Some engineering techniques discussed in this section,
such as macro-programming and MARL, could support the
design of “controlled emergence” and, on the other way,
a deeper understanding on emergence and its relationship
with feedback could provide insights for mechanisms or the
implementation of such techniques. A macro-program, in-
deed, could be seen as a top-down structure for emergent
processes. Also interesting in this respect are e.g. formal
studies carried out on self-stabilisation of aggregate compu-
tations (Pianini et al., 2022a), which guarantees that stable
outputs are eventually achieved from stable inputs.

Integrating humanity and technology: social
machines
A key subfield of CI that is still at its early days is human-
machine collective intelligence (HMCI) (Smirnov and Pono-
marev, 2019), also known as hybrid CI (Peeters et al., 2021;
Moradi et al., 2019), or hybrid CASs (Scekic et al., 2020). In
the systems we consider in this article, we can identify two
main domains (Beal et al., 2013): (i) the domain of space-
time, which corresponds to physical environments and their
evolution; and (ii) the domain of information, which evolves
through computation. Of course, these two domains interact,
e.g., by measuring space-time to get associated information,
and using information to manipulate space-time, through ac-
tuations. Now, addressing the integration of humans and ma-
chines passes through the realisation that both kinds of indi-
viduals can fully operate on those two domains. That is, hu-
mans can be thought as computing machines (cf. the concept
of human computation (Quinn and Bederson, 2011)), and
(computing) machines can operate in the physical world (cf.
the notion of cyber-physical system (Alur, 2015)). Indeed,
various terms or buzzwords are emerging to denote systems
where such integration of humans, computation, and phys-
ical systems is present—cf., human CPSs (Liu and Wang,
2020), human-in-the-loop CPSs (Schirner et al., 2013), and
crowd computing (Murray et al., 2010). From the perspec-
tive of computing, it is worth noting that collective comput-
ing based on heterogeneous human-machine collectives was
identified by Abowd (2016) as the fourth generation in com-
puting following Weiser’s characterisation of evolution of
computing from mainframe computing to personal comput-
ing to ubiquitous computing (Weiser, 1991).

In order to address the complexity of systems and unleash
the potential of humans and technology, it is increasingly



important to consider technical aspects together with hu-
man, social, and organisational aspects (Bucchiarone et al.,
2020). In other words, a key challenge and opportunity
revolves around the design of social machines (Burégio
et al., 2013; Berners-Lee, 1999), hybrid societies (Hamann
et al., 2016), and socio-technical systems (Baxter and Som-
merville, 2011). A social machine can be described as “a
computational entity that blends computational and social
processes” and that is at the intersection of social software,
people as computational units, and software as sociable en-
tities (Burégio et al., 2013; Berners-Lee, 1999). In this
respect, elements whose formalisation and use might pro-
mote the engineering of CI into social machines may in-
clude macro-level and collective abstractions (Scekic et al.,
2020), social concepts (Bellman et al., 2017), and coordina-
tion models (Malone and Crowston, 1994). However, sev-
eral challenges remain, related to proper modelling of hu-
man computation, achieving effective communication and
coordination between humans and machines, achieving self-
improving system integration (Bellman et al., 2021).

Summary of recommendations for future research
on ACI engineering
This section has discussed multiple issues and directions
providing for plenty of research opportunities and chal-
lenges. To summarise, we recommend the following topics
to be further investigated:

• language-based solutions to CI programming, as also fos-
tered by recent research on macro-programming (Casadei,
2023; Sene Júnior et al., 2022), possibly also working as
a foundation for explainability (Krajna et al., 2022);

• approaches and mechanisms for controlling or steering
emergence and self-organisation (Gershenson et al., 2020;
Varenne et al., 2015), together with efforts for building a
deeper understanding of these very concepts (cf. Gignoux
et al. (2017));

• the role of CI across the various level of modern comput-
ing systems (e.g., the application level, the middleware
level, and the physical system level) (Sene Júnior et al.,
2022), to address functional as well as non-functional as-
pects including, e.g., security, resilience, and resource ef-
ficiency;

• designs for integrating manual and automatic approaches
to CI engineering, for instance along the lines of MARL
with specifications (Ritz et al., 2021) or program synthe-
sis (Bastani et al., 2020; Aguzzi et al., 2022) of macro-
programs;

• integration of human intelligence with machine in-
telligence into hybrid, collectively intelligent sys-
tems (Smirnov and Ponomarev, 2019; Peeters et al.,
2021), e.g., leveraging wearable computing (Ferscha

et al., 2014), ways for combining methods for human
teamwork with AI, and self-organisation protocols con-
sidering both humans and artificial agents (Smirnov and
Ponomarev, 2019; Scekic et al., 2020).

Last but not least, we strongly believe that the collective
viewpoint has yet to find its place within the software engi-
neering practice. Recent efforts on formal models and lan-
guages for CASs (Nicola et al., 2020; Viroli et al., 2019;
Scekic et al., 2020) might highlight a path in that direction.

Conclusion
Collective intelligence (CI) is a rich theme that builds on
multi-, inter-, and trans-disciplinary collective endeavours.
However, research is largely fragmented across several spe-
cific research problems (cf. types of collective tasks), re-
search methods (cf. manual vs. automatic CI design), and
even entire computer science research areas (cf. hybrid sys-
tems, CASs, MASs, etc.), and comprehensive mapping stud-
ies are currently missing, making it difficult for people of
diverse backgrounds to get a sense of the overall field and
even a sense of CI-related work in their sub-field. This
scoping review aimed at providing a comprehensive view on
CI for computer scientists and engineers, with emphasis on
concepts and perspectives, and also providing some research
highlights on the forms of CI that most interest them, namely
artificial collective intelligence (ACI), computational collec-
tive intelligence (CCI), and human-machine collective intel-
ligence (HMCI). The final part reviews some interesting op-
portunities and challenges for researchers in computer sci-
ence and engineering. These point at directions that, despite
visionary and preliminary work, are yet to develop: CI pro-
gramming, integration of manual and automatic techniques
for CI engineering, integration of collectiveness and emer-
gence, and hybrid human-machine systems.
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