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Abstract: Celluloid artifacts are known by conservation professionals to be prone to degradation,
threatening their own integrity and that of nearby heritage collections. Celluloid alteration can
have a heterogeneous nature, and this research topic is still in its infancy for heritage science. This
article investigates degradation gradients, both along depth and width, of artificially aged celluloid
sheets, and compares them to three-dimensional (3D) historical objects with the aim of gaining a
better insight into the nature and evolution of their decay. ATR-FTIR was used to systematically
study different sampling points of the artificially and naturally aged specimens and allowed us to
recognize better-preserved surfaces and more deteriorated cores. ATR-FTIR was found suitable for
assessing the molecular changes induced by degradation, particularly denitration and formation of
carbonyl-containing degradation products in severely aged specimens. Even though the severely
artificially aged sheets displayed unusual alteration phenomena, they present a degradation gradient
similar to the one observed for the naturally aged 3D objects under study. This research underlines
that sampling at different depths and/or widths is relevant for characterizing the heterogeneity of
degraded celluloid, and further investigation with chromatographic techniques would greatly benefit
the understanding of the complex degradation of celluloid artifacts.

Keywords: artificial aging; cellulose nitrate; nitrogen content; carbonyl groups; cultural heritage;
historical plastics; attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR);
degradation gradients

1. Introduction

Cellulose nitrate (CN) is the cellulose derivative resulting from the substitution of side
hydroxyl groups (OH) with nitro (NO2) groups. For the total weight of a CN chain, the
mass percentage attributable to nitrogen (N) would be equal to 14.14%, 11.1% or 10.5%
if, respectively, all three, two or only one of the hydroxyl groups per monomeric unit
would have been substituted with nitro groups [1,2]. The mixture of moderately nitrated
CN (nitrogen mass content ≤12% [3,4]) with up to 33% weight camphor as plasticizer
(Figure S1) is known as celluloid [5].

Celluloid was employed for the industrial production of transparent films, sheets and
three-dimensional (3D) artifacts. It could also be mixed with appropriate fillers or pigments
to imitate expensive materials, such as ivory, mother-of-pearl and tortoiseshell in jewelry
cases, brooches, dolls, etc.

Celluloid artifacts are widely spread in archives, cinematheque and modern museum
collections. These objects are well-known by conservation professionals for being highly
sensitive to degradation [5,6]. Yellowing, embrittlement, loss of plasticizer and emission of
volatiles are typical signs of celluloid alteration. Aside from flammability problems, their
high chemical instability may lead to the total collapse of the object itself and poses a threat
towards surrounding assets in the collection.

As a consequence, efforts have been made to study celluloid degradation. As it
would not be practical to wait for several years to observe their natural aging, artifi-
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cial aging protocols, including CN and celluloid samples, have been adopted to simu-
late their natural degradation in shorter times. Past artificial aging experiments studied
the thermal stability of highly nitrated cellulose by subjecting it to high-temperature
conditions (100 ◦C–200 ◦C) [7]; or exposing it to ignition conditions [8]. However, the
resulting kinetics of degradation under such conditions are not necessarily extrapolat-
able to the aging occurring at lower temperatures and could not serve for predicting
long-term natural aging [1]. Thermal degradation studies at relatively low-temperature
ranges (T < 100 ◦C) have been performed by Trache and Tarchoun [3], Chin et al. 2007 [9] and
Shashoua et al. [10].

Most recent studies have preferred instead photodegradation, especially under UV-
visible light filtering wavelengths below 300 nm, to represent outdoor weathering due
to the faster rate of degradation obtained when compared to pure thermal aging at low
temperatures [11]. These studies include the work by Neves et al. [11,12], Bussiere et al. [4],
Berthumeyrie et al. [13] as well as Hon and Gui [14].

Few artificial aging studies have employed humidity coupled with high temperature.
These include early works on the aging of cinematographic films with CN bases [15,16]
and the research by Quye et al. [17], which employed a temperature of 70 ◦C and different
relative humidity (RH) conditions, going up to 75%.

Besides the sublimation of camphor, the loss of nitro groups and the creation of
carbonyl (C=O) functions can be typically linked to the two main pathways that rule the
degradation of celluloid with moderate N mass percent content when the temperature
remains below 100 ◦C and illumination is kept above 300 nm [11,12,18].

The first pathway begins with the homolytic scission (homolysis) of RO-NO2 bonds
(Figure 1), a reaction with a low activation energy (24–26 kcal/mol [19]), predicted to occur
at a very low rate at ambient temperature [3,20]. This homolytic scission can be caused by
thermal or photo-excitation processes. Photooxidation has been proposed to follow the
same chemical pathways as thermal degradation [11,12,18] but at a much faster rate [21].
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Figure 1. Scheme illustrating the initial homolysis of NO2 groups in CN [7]. NO2 groups can be
attached to C2, C3 and C6 positions.

Nitrogen dioxide radicals (•NO2) and alkoxy macro radicals (RO•) [19,22] result from
the homolytic scission reaction (1). These radicals have been held partially responsible for
the autocatalytic nature of CN degradation, as they can undergo further complex oxidation
reactions even at room temperature [3,21]. The C2 position on the cellulose ring (Figure 1)
is the most labile because it presents the weakest bond at 39.89 kcal/mol (equivalent bond
in C6 has 78.82 kcal/mol bond energy) [22,23]. Reaction (1) accelerates with the length of
the hydrocarbon chain and when the N mass surpasses 4% due to the influence of adjacent
nitro groups, which are strongly electronegative [19].

RONO2 → RO• + •NO2 (1)

From this stage onwards, several radical reactions can take place at the different
C positions [11–13]. If H abstraction occurs at C3 position after denitration, it leads to the
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formation of a cyclic ketone containing a C=O function. If H abstraction occurs instead at
C1 or C5, alkoxy and hydroperoxide radicals are formed, leading both to denitration and
to continuous chain scission by the formation of gluconolactone intermediates and ending
with the formation of an anhydride [11,13].

Summing up, photo-thermal degradation reactions lead to the complete denitration of
the cellulose ring, to the creation of C=O functions and to the decreasing molecular weight
of the CN chain.

The second degradation pathway of celluloid involves the hydrolysis of ester links [1,22].
This may compromise nitro groups (Figure 2) or glycosidic bonds in the main CN chain
following the pathway observed during acid treatment of pure cellulose, which is easier
to occur in the amorphous regions of cellulosic materials [24]. It has been suggested
that CN hydrolysis, when it compromises the nitro groups, can occur even in neutral
conditions in the presence of humidity. However, recent computational calculations with
simplified models suggest that the process is only likely to occur in acidic conditions for
moderately nitrated CN [25]. Hydrolytic denitration leads to the formation of alcohol
(ROH) on the cellulose ring, accompanied by the emission of nitrogen oxide gasses (NOx).
The reaction of highly reactive nitrogen dioxide (NO2) with moisture in the air forms nitric
acid (HNO3) [1,9,19].
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Figure 2. Scheme illustrating the most probable pathway of hydrolysis of the ester links when it
compromises the nitro groups [25].

It is important to notice that both nitrous and nitric acids (HNO2 and HNO3) are
among the most dangerous products which can be formed from •NO2 radicals, either by
•H or reaction with water [11–13]. These acids are highly oxidizing and cause a decrease
in pH, which in turn can trigger acid hydrolysis or speed up acid formation [18]. Acid-
induced hydrolysis occurs rapidly due to its low activation energy (19.1–26.3 kcal/mol [2]),
which is lower than the one required for thermal NO2 detachment [19]. As photo-thermal
degradation, hydrolysis can also lead to the formation of degradation products with
C=O functions.

Artificial aging studies are useful not only to understand the degradation of celluloid
but also to test the effectiveness of conservation treatments, aiming to help heritage institu-
tions to implement the best storage and exhibition practices. In this framework, a recent
study conducted at the Deutsches Museum aimed at assessing the effect of low storage
temperatures on the conservation of 3D celluloid artifacts [26–28]. In the initial stage, the
project aimed at producing celluloid sheets in moderate (i.e., showing only subtle visual
changes but presenting off-gassing) and severe (i.e., significantly altered and presenting
off-gassing) degradation conditions. For that purpose, celluloid sheets were artificially
aged for 10 and 13 days, respectively, at 70 ◦C and 75% RH. However, the first set of sheets
reached a condition accurately representing moderately degraded naturally aged objects;
the sheets aged at 13 days displayed unusual phenomena. They did however present a
degradation gradient along depth similar to the one observed in severely degraded cellu-
loid, i.e., the outer surface was in better condition than the degraded core. Even though the
gradient along depth is reported to be typical for severely degraded 3D celluloid objects in
collections [23,29–31], degradation gradients along width can also occur [27]. However, no
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studies are known to the authors presenting a systematic approach using artificially aged
specimens to describe these phenomena in 3D objects.

As such, this work aims, in the first instance, to assess molecular changes and related
gradients induced by artificial aging after 10 and 13 days in order to characterize their
nature and evolution over time, in width and depth. Secondly, the molecular changes
detected in the 13-day aged sheets were compared with those of naturally aged objects, to
determine to which extent their degradation gradient is alike.

Fourier transform infrared spectroscopy (FTIR) has been used for the investigation
of celluloid historical objects and artificial aging experiments in different acquisition
modes [4,17,18,21,27,32]. Therefore, attenuated total reflectance (ATR) was selected for this
study due to its high reliability, ease of interpretation and lack of any sample preparation.
As the loss of camphor, denitration and formation of degradation products containing C=O
functions are considered the main decay markers of celluloid [3,18,33,34], their changes
were assessed by a semi-quantitative approach.

2. Materials and Methods
2.1. Reference Materials

Racemic camphor 96% (CAS 76-22-2, Thermo Electron) and CN membranes (GE
Healthcare) were used as reference materials to characterize the main components consti-
tuting celluloid.

2.2. Celluloid

Transparent celluloid industrially produced by Rothko and Frost™ (Incudo Clear
Transparent Celluloid Sheet IN2322, 430 × 290 × 1 mm) was used and saw-cut into square
sheets (4 × 4 cm). A hole was drilled in one corner of each sheet so they could be hung on
a glass rod to ensure good air circulation during aging.

2.3. Artificial Aging of Celluloid Sheets

In total, 80 Celluloid sheets were aged at 70 ◦C and 75% RH in a fan-assisted dynamic
climate chamber (MKF 115, Binder), ensuring good aeration of the samples by hanging
them on glass rods. After 10 days, 40 sheets achieved a moderate condition of being slightly
yellowed. After 13 days, 40 sheets showed severe discoloration and physical alteration
(Figure 3). In particular, bubbles, crazes and fractures were observed in the central area of
the sheets, while no visual changes were visible along the borders.

After aging, both aged and unaged sheets were kept in the dark at room temperature
inside a safety storage cabinet (Q90.195.120, asecos®) with permanent filtered (active
charcoal) air ventilation.

Four analysis points were considered along the diagonal of each sheet, from its center
(A) to its corner (D) (Figures 4 and 5). Micro-samples with a thickness of ca. 100–200 µm for
each point were taken with a surgical scalpel at the surface and at the core (at a depth of ca.
500 µm). Sampling was performed under a stereo microscope, and depth reproducibility
was ensured by documenting the sheets’ section before and after sampling with a Keyence
VHX-1000 digital microscope under a 5–50x magnification.
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2.4. Naturally Aged Objects

Two historical artifacts were selected. The first was a transparent eyeglass temple
(Figure 6a–c), formally part of the Deutsches Museum optic’s collection, which had been
removed from the inventory due to its advanced degree of alteration. The surface of the
eyeglass temple appeared transparent and continuous, whereas its core seemed cracked
and brittle. The second case study was a white-colored organ key, previously belonging to
a musical instrument from a Bavarian church (Figure 6d–f). The surface of the organ key
remained white and coherent, whereas its core appeared discolored, cracked and brittle.
The fillers in the organ key were previously identified as titanium oxide and zinc oxide by
means of Raman and X-ray fluorescence spectroscopies.
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condition of the organ key before being removed from the instrument (d); detail from the front
(e) and section (f) views of the organ key. Sampling points are indicated on the sections of
both objects.
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As both historical objects appeared to retain a homogeneous condition along their
moderately damaged surfaces, sampling was performed only considering their section.
Two micro-samples were taken from the eyeglass temple, one at the surface and another
at the core. Since the organ key was thicker, three sampling depths were chosen along its
section: at the surface, middle and core, following the gradient of visual degradation.

2.5. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The ATR-FTIR spectra were acquired with an Alpha FTIR Spectrometer (Bruker)
equipped with a diamond ATR crystal controlled through the OPUS 8.1 software (Bruker).
The spectra were collected by integrating 64 scans for each measurement in the
4000 to 400 cm−1 range with a 4 cm−1 spectral resolution. At least two spectra were
acquired from each micro-sample. Enough material was collected from the historical
objects to allow the acquisition of at least three spectra per micro-sample.

The ATR-FTIR spectra of the two components of celluloid, cellulose nitrate (CN) and
camphor, are depicted in Figure 7. Full band assignments are reported in Table 1.
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Figure 7. ATR-FTIR spectra of an unaged celluloid sheet (A), of pure CN (B) and camphor (C)
references. The COC stretching reference band is highlighted with a green triangle, probe bands
related to the NO2 group are marked with a blue circle, and the C=O stretching band is highlighted
with a magenta diamond. Bands representative of camphor presence are marked with a black star.
Each spectrum has been normalized considering the strongest infrared band.

Three sheets of each aging time were randomly selected for conducting the analyses
because they showed similar conditions among each other.

The absorbance of each probe band was measured using the peak height tool of the
OMNIC 7.2 software (Thermo Electron Corporation) without any correction or further
manipulation of the spectra. An average ratio was calculated between the absorbance
of each probe band (νC=O at 1730 cm−1, νaNO2 at 1634 cm−1, νsNO2 at 1273 cm−1 and
νNO at 826 cm−1) against the absorbance of the reference band (νCOC at 1053 cm−1) [18].
The absorbance calculations were performed at the maximum for each band in every
individual spectrum, drawing for each band a baseline always using the same points: from
1840 to 1503 cm−1 for νaNO2 and νC=O bands; from 1503 to 1187 cm−1 for νsNO2 band;
from 1187 to 930 cm−1 for νCOC band; and from 1189 to 771 cm−1 for νNO band. In the
spectra of the eyeglass temple and organ key, the baselines were drawn differently: from
1187 to 881 cm−1 for the νCOC band and from 1187 to 785 cm−1 for νNO band because
they showed significant variations that required tailored intervals for detecting the peak
height. The standard deviation (SD) among original measurements was used to assess the
statistical difference between the obtained averaged values.
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Table 1. Assignment of the main bands of the ATR-FTIR spectra depicted in Figure 7.

Wavenumber (cm−1) Assignment

CN Membrane
(Reference)

Unaged CN Coupon Racemic Camphor
(Reference)

3657

3448 3468 νO-H (bound)

2966 2963 2958 νC-H [35,36]

2923 2927 2931 νsC-H [35,37]

2908

2887 2872

1728 1738 νC=O [37], from camphor [35,38,39] or CN
degradation products [11,13,15,36]

1637 1635 νaO-NO2 [35,39]

1454 1452 1447 δCH2 in CN [37]
δaCH3 and δsCH2 in camphor [40]

1427 1428 δCH2 [35]

1417 1416 δsCH2 at position C3 in camphor [40]

1391 1390 δsCH3 in camphor [40]

1375 1374 1373 δC-H in CN [35]
δsCH3 and νC-C in camphor [40]

1325 1324 ωCH2, νC-C, and δsCH3 at C1 in camphor [40]

1278 1276 1277 νsNO2 in CN [35,37–39]
ωCH2, νCC, with minimum ρCH2 and ring
deformation in camphor [40]

1160 1159 1167 νaO-C-C [38]
νCC, ρCH2 and τCH2, in camphor [40]

1115 1111 νCO in ring [35]

1061 1051 1045 νaO-C-C attached to the NO2 group [38], νCOC of
the cellulose ring in CN [18]
νCC, τCH2, ρCH2 and in-plane δCO in camphor [40]

1022 1021 1022 νCO [37]

999 999 νC-O [37]

947 945 951 δsCH [37]

918 918 914 δsCH [37]

827 828 827 ν-NO in CN [37–39]

750 750 751 δO-NO2 in CN [35,37,39]

694 698 δO-NO2 [35,37,39]

681 676 Pyranose [37]

554 553

541

521 521

Note: ν stretching vibration, νs symmetrical stretching vibration, νa asymmetrical stretching, δ bending vibration,
δs scissoring (for CH2) and symmetrical deformation (for CH3), δa asymmetrical deformation (for CH3), ρ rocking,
τ twisting,ωwagging.
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3. Results and Discussion

The evolution of molecular changes and related gradients along both depth and width
at different aging times was successfully characterized by ATR-FTIR (Figures 8 and 9).
Generally, the nitro groups were observed to decrease, particularly at the central area of
the sheets, with the first evidence already after 10 days. Instead, a clear opposite trend
was detected for the νC=O probe band at 13 days of aging. In general, the evolution of
the bands νsNO2 at 1273 cm−1 and νNO at 826 cm−1 was more descriptive in registering
molecular variations with aging than the νaNO2 signal at 1634 cm−1.
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Figure 8. Averaged and normalized ATR-FTIR absorbance for NO2 groups of the artificially aged
celluloid sheets. A, B, C and D refer to sampling points. Error bars correspond to the SD.

In accordance with visually evident alteration, ATR-FTIR detected statistically signifi-
cant modifications between surface and core after 13 days, identifying a higher degree of
denitration at the core. A gradient along width was also observed from the border (point D),
showing higher signals of the nitro groups, towards the center (point A) with lower nitro
group absorption. The carbonyl group increased significantly after 13 days, highlighting
the greatest molecular change at the core, even for the border areas (point D), not affected
by severe visual degradation. Just as for the nitro groups, a gradient of carbonyl signal
intensity along the sheet’s width was detected, being more intense at sampling point A
than at sampling point D, in correspondence with the severity of degradation. In summary,
the analytical evidence correlates well, i.e., higher denitration along a more intense signal
of carbonyl groups, highlighting the severest extent of degradation at the core of the sheet
center (point A) after 13 days.
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The mechanisms responsible for denitration can be both thermolytic and hydrolytic,
due to the simultaneous presence of high temperature and humidity, influencing one
another and giving rise to fast, complex and intertwined degradation reactions. For
example, •NO2 is formed by initial thermolysis, and by H abstraction at the RH groups
of CN, it gives rise to an R• radical, which leads to further oxidation and the creation of
HNO2, which can trigger acid hydrolysis. This reaction (2) is enhanced by the relatively
low solubility of NO2 in CN [19].

RH + •NO2 → R• + HNO2 (2)

It is possible that hydrolysis of CN occurred at an early stage because a certain amount
of water was already adsorbed by the celluloid sheets due to CN’s slight hygroscopicity [1,19]
and relatively high permeability coefficient towards water (4.72 Pa−1 [41,42]) at room
temperature. Additionally, Manelis et al. state that below 70 ◦C, a humidity of 1% (easily
adsorbed from the surrounding air) induces hydrolysis at a higher rate than primary NO2
detachment due to the presence of free OH groups [19], further reinforcing the notion that
hydrolysis played an important part since the beginning. Therefore, one can infer that
the high humidity conditions at 75% RH at 70 ◦C could greatly promote hydrolysis of the
nitro group.

As mentioned in the Introduction, thermal degradation leads to the creation of cyclic
ketones, gluconolactones and anhydrides as carbonyl-containing degradation products, but
hydrolytic degradation has been suggested to also give rise to the formation of aldehyde
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(RCHO) functions (3), containing C=O groups, upon hydrolysis of the NO2 group at the C6
position [1], or by reaction of nitric acid with ROH [9,43] (4).

RCH2ONO2 + OH− → RCHO + H2O +NO2
− (3)

ROH + HNO3 → RCHO + HNO2 + H2O (4)

The formation of degradation products containing carbonyl groups during artificial
aging of CN has been previously reported by UV spectroscopy [14], synchrotron deep UV
photoluminescence micro spectral-imaging [11] and analysis after chemical derivatization
which, all together, explain the influence of carbonyl-containing degradation products in the
νC=O IR band [13]. This was evidenced in the FTIR spectra of photo- and thermally aged
pure CN samples by a clear broadening and increase in intensity in the carbonyl region in
1730–1740 cm−1 [4,15]. However, the intensity of νC=O absorption due to aging in celluloid
is contemporarily influenced by two variables [35]: the loss of camphor that induces its
decrease, and the formation of carbonyl-containing degradation products that leads to the
bands‘ increase. Both νC=O functions of camphor and carbonyl-containing decay products
present IR bands in the same spectral region [4,11,12,35]. Thus, as aging progressed, the
νC=O absorption of celluloid samples in the present research (Figure 9) cannot be solely
related to the camphor content and it is not suitable to estimate the camphor loss due to
aging. Indeed, other representative bands of camphor should be considered (marked with
a black star in Figure 7). In the present investigation, a very small decrease in their relative
intensity after 13 days of aging was observed, which suggests that the increase in the νC=O
absorbance is likely mainly attributable to the creation of degradation products containing
carbonyl groups.

After 13 days, the artificially aged celluloid sheets displayed unexpected degradation
effects. To pose hypotheses about the mechanisms that might have induced such degrada-
tion, it was necessary to correlate infrared data with visual appearance, considering the
sampling points.

The volume expansion at the center of the sheets could be related to the formation of
volatiles, which would remain trapped and induce internal pressure. The accumulation of
volatiles in the bulk of celluloid has already been reported to occur in naturally aged 3D
objects [5]. Such expansion was not observed at the borders of the sheets, partly because
their increased surface area would likely facilitate the aeration and diffusion of the emitted
gasses and perhaps due to structural differences of the CN chains in this region induced
by the heat during saw-cutting, altering its porosity and therefore its permeability [25].
In the authors’ opinion, extreme volume expansion is unlikely to occur for thin celluloid
films, which would enable a faster and easier diffusion of volatiles than thicker objects, as
reported by Quye et al. [17]. Another factor that should be considered is that the employed
celluloid sheets appear to have been fabricated by blending two thinner sheets of 0.5 mm
each (Figure 5). This supposition is reinforced by the observation that all sheets showed
a symmetrical volume deformation as if the two layers would have been detached along
their joint. This interface (not yet recognizable at 0 days) became apparent at the borders of
sheets after 13 days of aging (Figure S2).

The development of brown color in the core can be attributed to the accumulation
of NOx species [3] and to N2O4 in particular due to the reddish-brown discoloration [9]
(Figure 3d), as nitrous oxide gases have been reported to be lowly soluble in CN [19]. The
developed gases may very likely promote further denitration and hydrolysis autocatalytically.

When collecting micro-samples from the 13-day aged sheets, it was noticed that the
core was rigid while the surface was still flexible. This rigidity can be related to a higher
crystallinity due to the formation of OH functions at the expense of NO2- groups, which
would incite the formation of intramolecular and intermolecular hydrogen bonds [3].

ATR-FTIR analysis also showed that the gradients of the 13-day aged sheets and two
historical celluloid objects are similar in what concerns the trends of NO2 and C=O groups
(Figure 10). Indeed, the core of the eyeglass temple and organ key displayed the severest
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extent of degradation, as measured for the 13-day aged sheets. The trend of the ATR-FTIR
absorbance ratios of both historical objects at the different sampling points matches with
their degradation phenomena in section (Figure 6c,f). Interestingly, both 13-day aged sheets
and organ key display severe discoloration in their core (Figures 3d and 6f).
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The formation of NOx gasses, as a consequence of the loss of the nitro groups, likely
occurred in 13-day-aged celluloid sheets and historical objects. However, bubbles were
observed in the artificially aged sheets. The high temperature and high humidity in the
aging chamber could have softened the CN in celluloid, which is a common behavior of
thermoplastic polymers [44–46]. The celluloid, in turn, could have been easily deformed
due to the pressure of the gas formation. To the best of the authors’ knowledge, bubbles
have never been observed in 3D historical objects. The chances of having the material
be deformable at room temperature are much less, and the material would likely release
stresses by forming cracks, which is more typical for celluloid degradation.

The ATR-FTIR spectra of the 13-day-aged celluloid sheets and eyeglass temple show a
similar molecular decay in which the characteristic response of cellulose nitrate is still visible
in the fingerprint region (Figure 11). Instead, the organ key is characterized by a greater
extent of degradation, especially at the core, as the intensity of the hydroxyl stretching
(νOH) increased, appearing as a broad band centered around 3400 cm−1. Furthermore,
the disappearance of the νCOC cellulose ring band probably indicates the total collapse of
the material. Concerning camphor, its infrared marker bands (marked with a black star
in Figure 7) are very similar to the spectra of the eyeglass temple and 13-day sheets. The
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strong νC=O bands in the organ key spectra can be more likely related to the formation of
the degradation products as the bands of camphor are much less recognizable.
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4. Conclusions

This study successfully investigated the denitration of artificially aged 3D celluloid
sheets at different depths and across their width via FTIR-ATR. The intensity of νC=O
absorbance was not suitable to evaluate the loss of camphor because it is contemporarily
influenced by the formation of carbonyl-containing degradation products. An incipient
degradation gradient was detected in the moderately aged sheets even before visible
changes were noticed. Furthermore, the degradation at different depths of the severely
artificially aged sheets was compared to a pair of historical 3D celluloid objects. The results
proved that the artificially and naturally aged specimens show the highest denitration
and increase in νC=O signals, the latter being only partially explainable by the formation
of degradation products in the core, most evidently at later stages of degradation. This
finding also matches the gradient of degradation, which increases with depth from the
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surface towards the core, and which can be observed by the naked eye. The transparent
celluloid sheet and eyeglass temple samples present a similar molecular extent of decay,
while the opaque white organ key is characterized by a higher degree of alteration.

The artificial aging protocol applied in this study followed literature procedures [17,47,48].
Thanks to this artificial aging experiment, it was possible to conclude that studying the
degradation gradient is fundamental for understanding celluloid degradation, and that
sampling should consider both depth and width depending on the macroscopic appearance
of alteration.

The artificial aging induced bubbling and extreme volume expansion in the core of
the severely aged samples, which were not identified in naturally aged 3D museum ob-
jects so far. Nonetheless, this study can serve to plan future aging studies. From a future
perspective, the measurement of the glass-transition temperature (Tg) of celluloid would
greatly support the selection of T and RH for the aging protocol. Tg measurement requires
specific method development and data interpretation via dynamic mechanical analysis
(DMA) [49,50], as the glass transition behavior is strongly dependent on the plasticizer and
moisture contents. Besides exploring the influence of different intervals and combinations
of T and RH, other parameters should be considered in future aging protocols, including
the ventilation of the headspace (to allow or avoid volatile concentration around the sam-
ple [15]), the sample thickness (which influences the retention of degradation products [17]),
the crystallinity and molecular packing that alter the porosity and permeation of celluloid
at different local regions of the specimen [25], plasticizer content as well as the influence of
extra compounds in the plastic mixture formulation (e.g., inorganic fillers).

The mechanisms responsible for the observed degradation gradients deserve future
investigation. In particular, chromatographic techniques could be applied, following the
same in-depth sampling strategy implemented in this work, to measure the molecular
weight (Mw), the nitrogen and camphor contents. In detail, size exclusion chromatography
(SEC) can be used for determining the Mw of CN [27,51,52] and measuring the amount of
camphor [27] along sample points that show distinct νC=O infrared absorptions. Ion chro-
matography (IC) can be applied instead to quantify N content and, in turn, to estimate the
extent of denitration [17]. This multi-analytical strategy has already been implemented in a
DBU project, presenting promising results [53]. ATR-FTIR can be used as a preliminary tool
to investigate the degradation gradient because the proposed chromatographic methods
are expensive, time-consuming, destructive and require complex sample preparation. In
addition to its chemical characterization, also investigating the mechanical properties of 3D
celluloid along its section would greatly support a comprehensive understanding of the
degradation mechanisms and formation of alteration gradients in celluloid.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15030522/s1, Figure S1: Camphor molecule; Figure S2:
Explanatory drawing of unaged (0 days) and artificially aged (13 days) celluloid samples with volume
expansion at the center. The two layer sheets constituting the celluloid sample are highlighted. The
microscopic image taken at the border of a 13-day aged sample display the interface between both.
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