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We argue that the following three statements cannot all be true: (i) our vacuum is a type IIB/F-theory
vacuum at moderate to large h1;1; (ii) the α0 expansion is controlled via the supergravity approximation, à la
the Kachru-Kallosh-Linde-Trivedi and Large Volume scenarios; and (iii) there are no additional gauged
sectors from 7-branes. Since nearly all known globally consistent F-theory models with the exact chiral
spectrum of the Standard Model and gauge coupling unification occur at moderate h1;1, this finding calls
for new moduli stabilization scenarios or/and a rich 7-brane dark sector.
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I. INTRODUCTION

Explicitly realizing the Standard Model of particle
physics, with all moduli stabilized and all experimentally
measured couplings reproduced, is an important open
problem in string theory that deserves immense effort.
While some aspects related to moduli stabilization and
supersymmetry breaking are more difficult to achieve,
others such as the gauge group and the chiral spectrum
of the Minimal Supersymmetric Standard Model (MSSM)
have been shown to have string embeddings [1–4], with the
largest-to-date ensembles of global models with the exact
chiral spectrum of the Standard Model being in F-theory
[5]. For brevity, we henceforth refer to models in the latter
ensemble as MSSMs, despite the fact that the computation
of Higgs pairs remains an open technical challenge.
Most four-dimensional F-theory compactifications exhibit

gauge sectors much larger than the Standard Model, due to
the generic presence of non-Higgsable clusters (NHCs) [6],
which are gauge groups that do no admit a geometric
Higgsing via a complex structure deformation. Such
NHCs occur generically [7,8] in F-theory bases with large
h1;1, which can be seen from the details of the topological
transitions that move through moduli space from one
elliptically fibered Calabi-Yau fourfold to another. As a vast

majority of topological types of bases have large h1;1,
including the base believed to host the largest number of
flux vacua [8], one concludes that a vast majority of F-theory
compactifications have large gauge sectors, which should
also apply toMSSMembeddings that likely exist at largeh1;1.
However, there exists a class of F-theory bases for which

there are no NHCs, namely, the weak Fano bases. Such
bases allow the construction of MSSMs, without neces-
sarily requiring the presence of dark 7-brane gauge sectors.
Toric weak Fano threefolds have h1;1 ≤ 35, each corre-
sponding to a fine, regular, star triangulation of a three-
dimensional (3D) reflexive polytope. Each of these geom-
etries (provided a triangulation-independent numerical
condition is satisfied) supports a MSSM construction
without dark gauge sectors, by choosing all 7-brane stacks
to wrap a particular homology class in the base, given by
the anticanonical divisors, and thus also ensuring gauge
coupling unification. This gives an estimated Oð1015Þ
MSSM compactifications in F-theory without dark 7-brane
gauge sectors, the vast majority of which arise from a
polytope with h1;1 ¼ 35, which is the largest value among
the weak Fano toric bases but is moderate with respect to
the ensembles of Refs. [7,8]. Nevertheless, our main
conclusions already apply to these cases, and even more
so to cases with h1;1 ≫ 35.
Our main result is a nontrivial correlation between gauge

couplings, dark sectors, and control of the effective theory.
In string theory language, this is a nontrivial correlation
between cycle volumes and tadpole cancellation in the
supergravity approximation. Since we find the result
physically intuitive, we briefly state it here.
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Non-Abelian gauge couplings arising from gauge sectors
on 7-branes are inversely proportional to the volume, τ, of
the cycle that a given 7-brane wraps:

1

α
¼ 4π

g2
¼ τ: ð1Þ

Here, the gauge coupling g is fixed by τ at a fixed energy
scale below the cutoff of the effective field theory, usually
assumed to be the Kaluza-Klein scale of the compactifi-
cation. For example, in a grand unified theory (GUT), we
have α3;2;1 ≃ αGUT ≃ 1=25, corresponding to τ3;2;1 ≃ 25.
For computational control of the effective theory, it is

common to require that all cycles to have volume greater
than some fixed cutoff, typically taken to be Oð1Þ. This
assumption underlies both the Kachru-Kallosh-Linde-
Trivedi (KKLT) [9] and Large Volume scenarios (LVS)
[10] moduli stabilization scenarios, and the associated
region of moduli space is known as the stretched Kähler
cone [11]. There, it was shown that at large h1;1 in the
regime of control at least one toric divisor tends to be large,
often τ ≳Oð103Þ, leading to an ultralight axionlike particle
that can have significant cosmological implications [12].
In this work, we show that the large divisor also has

significant implications for gauge sectors. Specifically,
gauge sectors whose homology class has a contribution
from this divisor necessarily have associated gauge cou-
pling α≲ 1=1000 within the stretched Kähler cone. If the
visible sector (e.g., a MSSM or GUT) lives on 7-branes
wrapped on such a cycle, then the UV gauge coupling is
inconsistent with the observed values. In particular, wrap-
ping the anticanonical divisor, which receives volume
contributions from all toric divisors, leads to tensions if
one relies on conventional moduli stabilization scenarios.
Concretely, by numerically minimizing the volume of the
anticanonical divisor in the stretched Kähler cone (a
quadratic programming problem) at moderate h1;1, we find
that only Oð104Þ of the models in Ref. [5] have a realistic
UV gauge coupling in the most common regime of control.
Given this correlation, it is natural to exploreways around

it. One is to wrap the MSSM or GUT 7-branes on small
cycles (in homology), which correlate with smaller volume
cycles. We show that, due to 7-brane tadpole cancellation,
such constructions require the presence of additional 7-
branes, often providing dark 7-brane gauge sectors1 and a
rich cosmology. Alternatively, one could keep the visible
sector on anticanonical divisors but abandon the large h1;1

assumption. However, this takes one away from the bulk of
theMSSMs in Ref. [5], whichwas dominated by geometries
with h1;1 ¼ 35. Finally, one could instead give up the

restriction to remain in the stretched Kähler cone, requiring
new moduli stabilization schemes that exhibit much more
control over nonperturbative effects.
We therefore posit that generally the following three

statements cannot all be true: (i) our vacuum is a type IIB/F-
theory vacuum at moderate to large h1;1; (ii) the α0
expansion is controlled via the supergravity approximation,
à la the KKLT and LVS scenarios; and (iii) there are no
gauged dark sectors from 7-branes. While in principle there
can be exceptions, we will provide strong evidence that
violation of this rule is rare, if it occurs at all.
This paper is organized as follows. In Sec. II, we revisit

the key aspects of the effective field theory description and
nonperturbative corrections of F-theory/type IIB compac-
tifications. In Sec. III, we elaborate on the correlation
between tuned visible sectors and forced dark sectors from
7-branes at large h1;1. For constructions where we can
entirely avoid such dark sectors, we numerically analyze, in
Sec. IV, the bounds on the UV gauge couplings within the
toric weak Fano landscape. We close with some comments
on challenges and benefits from abandoning one of the
conditions in Sec. V.

II. EFFECTIVE FIELD THEORY
CONSIDERATIONS

We will consider N ¼ 1 gauge theories that arise on
7-branes in F-theory compactifications and will use the
convention of unit string length. Such a compactification is
specified by an elliptically fibered Calabi-Yau fourfold
X → B, where the base B are the physical extra dimensions
of the dual type IIB spacetime (see Ref. [13] for recent
reviews). We will study the requirement that the UV
couplings of the Standard Model gauge groups take
realistic values in the UV. This is clearly model dependent,
but we will take as a target α3;2;1 ¼ αGUT ¼ 1=25 and will
often find significant deviations from these values for
compactification within the stretched Kähler cone.
For control of the effective field theory, we demand that

all cycles in the Kähler threefold B to be somewhat larger
than appropriate powers of the string length. In this regime,
the gauge coupling gUV is related to the volume τD of the
7-brane wrapping a divisor D [14], via

4π

g2UV
¼ τD; ð2Þ

where τD can be computed by the calibration

τD ¼ 1

2

Z
D
J ∧ J; ð3Þ

provided by the Kähler form J on B.
In an effective field theory arising in a string compacti-

fication on B, the tree-level action is corrected by Euclidean
strings and branes wrapping appropriate-dimensional
cycles in B. In an N ¼ 1 theory, such corrections can

1Dark sectors can also arise from D3-branes, which are
generally present in F-theory compactifications and can be
uncharged under the Standard Model gauge symmetry. We focus
entirely on dark sectors that arise from 7-branes.
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be organized by whether they correct the Kähler potential,
superpotential, or higher-order F-terms. For instance, the
tree-level Kähler potential for the Kähler moduli takes the
form

K ¼ −2 logV; ð4Þ
where V is the volume of B computed as

V ¼ 1

6

Z
B
J ∧ J ∧ J: ð5Þ

Since the Kähler potential in N ¼ 1 theories does not
appreciate any nonrenormalization properties, it can receive
a plethora of corrections. In particular, in the weakly
coupled orientifold case, worldsheet instantons wrapping
a holomorphic curve C are known to correct the N ¼ 2

prepotential and are expected to descend to theN ¼ 1 type
IIB theory, providing corrections of the form [15]

ΔK ∼
1

V

X∞
n¼1

cne−2πn
ffiffiffi
gs

p
volðCÞ; ð6Þ

where gs is the string coupling, taken to be a constant in the
weakly coupled type IIB orientifold limit of F-theory. The
constants cn are (related to) the Gromov-Witten invariants,
that in essence count unique representatives of the curves in
the class ½nC�.
In order to treat Eq. (6) as a small correction to Eq. (4),

we need to enforce that volðCÞ≳ c, for some constant c,
which depends on the functional form of V, the constants
cn, and the allowed error in the computation of relevant
physics. Restricting all curves volume to be greater than
some threshold c is known as restricting to the c-stretched
Kähler cone, as defined in Ref. [11]. Typically, c is taken to
beOð1Þ. However, restricting to this cone is in general not a
sufficient condition to be in a regime of control; for
instance, the leading Gromov-Witten invariants can be
quite large (Oð103Þ in the simplest example [16]). In
addition, Euclidean D3-branes (ED3s) wrapping 4-cycles
Σ can provide corrections to both the Kähler and super-
potential, and the corrections to the Lagrangian L are
schematically

ΔL ∼ e−2πvolðΣÞ: ð7Þ
ED3 corrections to the superpotential are well studied and
are important for moduli stabilization. On the other hand,
ED3 corrections to the Kähler potential are relatively
unstudied, as the ED3 wraps a volume-minimizing surface
(in its class), whose volume is difficult to compute, but can
perhaps be bounded by quantum gravity considerations
[17]. In any case, we expect uncontrolled corrections if any
surface volume τi satisfies τi ≲ 1. It is important to note that
it may be possible to shrink some curves and surfaces down
to small volume, without spoiling the validity of the
effective description, such as certain orbifold limits. We

will therefore use the stretched Kähler cone, and the
analogous restriction on divisor volumes, as a proxy for
control, and study the consequences.
The central observation of Ref. [11] is that, as h1;1ðBÞ

grows large, these restrictions force some 4-cycle volumes
τi to be very large, due to the fact that the Kähler cone
becomes very narrow at large h1;1. In the case of type IIB
compactified on a Calabi-Yau orientifold B, this implies the
presence of an essentially massless axion. However, from
Eq. (2), one can see that this growth will affect the
distribution of gauge couplings at large h1;1: large cycles
will force small UV gauge couplings for any gauge groups
supported on 7-branes wrapping the large cycle. Clearly,
this can provide an obstruction to realizing the Standard
Model, with the UV correct gauge coupling, on 7-branes
wrapping such cycles.
Our focus in the remainder of this manuscript will be on

understanding the relationship between the stretched
Kähler cone, h1;1, and the appearance of 7-brane dark
sectors. Our findings suggest that, by tuning a visible sector
on 7-brane stacks, one may choose two, but not three, of the
following simultaneously:
(1) Control of the theory via the stretched Kähler cone.
(2) The absence of 7-brane dark sectors.
(3) Large h1;1.
The first item is necessary for control of the low-energy

effective theory given current understanding, but not a
necessary condition for the theory’s existence; there is no
fundamental principle stating that the string vacuum
corresponding to our Universe is weakly coupled (in gs
or α0). The second is one of phenomenological interest, for
as the number of additional sectors grows, the number of
possibilities for model building grows; however, at the
same time, the possible constraints from experiments
become more stringent (cf. Refs. [12,18,19]). Finally, there
is an overwhelming amount of evidence that majority of
both geometries and vacua exist at moderate to large h1;1,
from a flat counting as well as a cosmological perspective
[8,20]. That is, in the absence of an extremely selective yet-
unknown measure factor, one should expect that our string
vacuum is at moderate to large h1;1.

III. UBIQUITY OF DARK SECTORS

To correctly produce the UV gauge coupling, one might
attempt to wrap 7-branes carrying the visible sector only on
small divisors, whose volumes define a boundary of the
stretched Kähler cone. These divisors will have the smallest
possible volume while maintaining perturbative control and
can in principle (depending on the topology of B) support
the visible sector with realistic gauge couplings. However,
with increasing h1;1ðBÞ≡ h1;1, the presence of such gauge
sectors on small divisors comes at the expense of “dark”
sectors, which may not really be dark, as we will
explain now.
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The origin of these additional gauge sectors lies in the
cancellation of 7-brane tadpoles. Namely, the divisors Wi
wrapped by 7-branes must satisfy

X
i

δiWi ¼ ½Δ� ¼ 12K̄B; ð8Þ

where δi is the vanishing order of the discriminant Δ of the
elliptic fibration overWi, and K̄B is the anticanonical class
of B. Certain choices of irreducible divisors Dvis to
support the visible gauge sector (be it a GUT or directly
the Standard Model) can force the presence of additional
gauge sectors on “nearby” rigid divisors. “Nearby” in this
context means that these divisors will intersectDvis, which
can lead to matter charged both under the visible and the
additional gauge symmetries.2 Their presence is a conse-
quence of the required geometric tuning to obtain the
visible gauge sector in the first place: Higgsing along this
bicharged matter corresponds to the inverse geometric
deformation, which must break both the visible and the
additional sectors.
Because of these matter states, these additional sectors

could have nontrivial interactions with the visible sector.
The matter serves as messengers to a gauged dark sector
and may be constrained by LHC searches for vectorlike
quarks and leptons. Even if those matter states can be lifted
by suitable fluxes or scalar field vacuum expectation
values, there could be additional constraints arising from
the overproduction of dark glueballs [18]. Of course, the
details of these depends on the geometry of the base B. For
example, on B ¼ P3, there are no rigid divisors, and
consequently, any tuned visible sector will not lead to
additional gauge sectors. However, even in the regime of
low h1;1, mathematical and phenomenological consistency
conditions may require the existence of 7-brane dark
sectors (see, e.g., Ref. [21]), whose numbers will grow
with h1;1.
To make these statements precise, we will focus on the

class of weak Fano toric spaces B, which is the context of
the recently found large ensemble of three-family Standard
Models [5]. These spaces can be characterized by a three-
dimensional reflexive lattice polytope ⋄ ⊂ N ≅ Z3 and a
(fine regular star) triangulation. Each vertex (except the
single internal one) vi corresponds to a toric divisor
Di ¼ fxi ¼ 0g ⊂ B. Any effective divisor is linearly equiv-
alent to a positive linear combination of toric divisors
Di, i ¼ 1;…; h1;1 þ 3.
Given any effective divisor D ¼ P

i aiDi, there is a
simple combinatorial formula that computes a basis for

H0ðB;OBðDÞÞ in terms of monomials formed out of the
toric coordinates xi. Let

⋄�
D ¼ fm ∈ Mj ∀ i∶hm; vii ≥ −aig; ð9Þ

where M is the dual lattice of N.3 Then, every m ∈ ⋄�
D

defines a monomial

dm ¼
Y
i

xhm;viiþai
i ; ð10Þ

such that any global section of OBðDÞ is a polynomial

s ¼
X
m∈⋄�

D

λmdm with λm ∈ C: ð11Þ

Since D ¼ fs ¼ 0g for a suitable global section
s ∈ H0ðB;OBðDÞÞ, it is clear that D necessarily factorizes
if all monomials dm share at least one common factor.
The case D ¼ K̄B ¼ P

i Di deserves a detailed discus-
sion. In this case, ⋄�̄

KB
≡ ⋄� is just the dual polytope of ⋄.

Because of the reflexivity requirement for ⋄, each two-
dimensional facet F of ⋄ has an associated point mF ⊂ M
that is a vertex of ⋄�, satisfying hmF; vi ¼ −1 for all v ∈ F.
Moreover, reflexivity implies that ⋄� contains an interior
pointm0 with hm0; vi ¼ 0 for all v ∈ ⋄. As a consequence,
a generic representative of K̄B is irreducible, because the
monomial dm0

¼ Q
i xi contains a factor of every toric

coordinate, but—since any vi ∈ ⋄ is contained in at least
one facet F—there is also a monomial dmF

without any xi
factor, since hmF; vii þ ai ¼ −1þ 1 ¼ 0. Incidentally, the
irreducibility of K̄B guarantees that there are no non-
Higgsable clusters in F-theory compactifications on bases
B of this type.
Let us briefly summarize the results that follow. We will

generally be interested in tuning gauge groups on divisors
in B and checking how Δ0 further factorizes as a result of
this tuning. We will first consider tuning a Standard Model
gauge group along a prime toric divisor. The location of the
prime toric divisor, that is, whether it is a vertex, internal to
an edge, or internal to a face, will analytically determine a
minimal factorization of Δ0 into at least I1 loci, which in
particular interesting examples are enhanced to non-
Abelian gauge sectors. In particular, tuning a gauge group
on a divisor corresponding to a vertex, bounding edges ei
and faces Fj, forces I1 loci on all toric divisors correspond-
ing to points in the strict interior of ei and Fj. In a similar
vein, tuning a gauge group on a divisor corresponding to a
point interior to an edge, bounding faces Fj, forces I1 loci
on all other divisors corresponding to points interior to that
edge as well as divisors corresponding to points on the strict

2Of course, the precise spectrum in F-theory compactifications
to four dimensions will depend on the flux background. However,
a detailed quantitative study of them will require case by case
analyses of each individual geometry, which is beyond the scope
of this work.

3Given a basis choice of N ≅ Z3, one can simply takeM ≅ Z3

with h·; ·i being the standard dot product.
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interior to Fj. Finally, tuning a gauge group along a divisor
corresponding to a point interior to a face forces an I1 locus
on all divisors corresponding to points interior to that face.

A. Dark sectors from the Standard Model on prime
toric divisors

We now consider I1 loci forced to occur on divisors
corresponding to points interior to faces. We emphasize that
the forced fibers are often more singular than I1, but
studying forced I1 fibers is a convenient way to proceed
with the analysis.
Suppose there is a facet F ⊂ ⋄ containing vk and another

interior point vint ≠ vk. Note that the toric divisor asso-
ciated to vint is rigid on B. As facet internal points, the only
point in ⋄� with hm; vinti ¼ −1 is mF, the point dual to the
facet F; it also satisfies hmF; vki ¼ −1. Now, consider the
divisorD ¼ K̄B −Dk, whose monomials are determined by
points m ∈ ⋄�

D, i.e., must have hm; vki ≥ 0. Since mF is
clearly not in ⋄�

D, this means that we must have hm; vinti ≥
0 for all m ∈ ⋄�

D. Hence, the exponent of xint in every
monomial dm is hm; vinti þ 1 ≥ 1. In other words, any
representative in the divisor class of D ¼ K̄B −Dk is
reducible and contains components fxint ¼ 0g for any
other point internal to the same facet F containing vk.
A similar argument applies to vk on an edge and vint in

the strict interior of the same edge. Tuning a gauge group
on the prime toric divisor corresponding to vk requires an I1
locus on the divisor corresponding to vint, which can be
easily seen from linearity: the presence of a gauge group on
Dk requires hvk;mi ≥ 0 for allm ∈ ⋄�

D withD ¼ K̄B −Dk.
If we assume no gauge group on the divisor corresponding
to vint, this implies that for at least one m ∈ ⋄�

D we have
hvint; mi ¼ −1, but by linearity, we must have hvl; mi ≤ −2
for some vl on the edge, on the opposite side of vint from vk,
which is a contradiction. Therefore, tuning a gauge group
on vk on an edge requires at least an I1 locus on all divisors
corresponding to interior points to that edge.
To apply these facts to F-theory models, suppose we

engineer a visible sector (a GUT or non-Abelian part of the
Standard Model group) on a toric divisor Dvis wrapped by
δ 7-branes. These setups will have the smallest possible
value for τDvis

within the stretched Kähler cone, as all
effective divisors are generated by toric divisors. Since we
have K̄B ¼ P

i Di for toric spaces, there must be additional
7-branes wrapping the residual discriminant with class

½Δ0�≡ ½Δ� − δDvis ¼ 12
X
i≠vis

Di þ ð12 − δÞDvis: ð12Þ

The corresponding polytope in the dual lattice is then

⋄�
Δ0 ¼ fm ∈ Mjhm; vii ≥ −12 for i ≠ vis;

hm; vvisi ≥ δ − 12g: ð13Þ

This situation is now similar to the previous example. First,
for any facet internal point vint ≠ vvis sharing the same
facet F ⊂ ⋄, there is precisely one4 vertex mF;Δ ¼ 12 ×
mF ∈ ⋄�

Δ with hmF;Δ; vvisi ¼ hmF;Δ; vinti ¼ −12. As this
point is not in ⋄�

Δ0 per Eq. (13), it follows analogously that
every monomial must have a positive power of xint.
Note that for the existence of additional gauge sectors on

a common factor fxint ¼ 0g, the power of xint in all
monomials of Δ0 must be at least 2 or 3 (depending on
additional details of the elliptic fibration that we will
neglect here). This now depends, in addition to the choice
ðDvis; δÞ of tuning, also on the details of the polytope ⋄,
e.g., the number and relative positions of the interior points
vint in the same facet as vvis.
For concreteness, let us consider the polytope ⋄8 (in the

numeration of Ref. [22]), which is one of two polytopes that
dominated the ensemble of Standard Models constructed in
Ref. [5]. This polytope has 38 points (which is the maximum
among 4319 polytopes classified in Ref. [22]); i.e., the
corresponding bases have h1;1ðBÞ ¼ 35. ⋄8 has four facets,
three of which are exchanged by a Z3 symmetry of the
polytope; these three have two internal points, while the
fourth facet has ten internal points. One can then check
explicitly that for the minimal requirement of the visible
sector to contain an SUð3Þ, i.e., a tuned I3 fiber with δ ¼ 3 or
type IV fiber with δ ¼ 4, one will always find at least two I2
singularities, i.e., SUð2Þ sectors on facet interiors. For an
SUð5ÞGUTwith δ ¼ 5, one finds at least two SUð4Þ sectors
or even more factors of lower rank. Similar enhancements
going beyond the desired gauge sector also occurs on bases
definedbyother polytopes. In general, the bigger the facets of
the polytopes are (i.e., the more rigid divisors B has), the
more additional gauge sectors appear. For example, there
exists one other polytope with 38 points which has a similar
number of enhancements in the presence of a tuned GUTor
MSSM gauge group.

B. Dark sectors from visible sector
on square-free divisors

To attempt to avoid such enhancements while still
maintaining perturbative control within the stretched
Kähler cone, we can also consider the case of divisors
“larger” than prime torics, where Dvis is a square-free

4Since ⋄ is reflexive, S ≔ fm ∈ M ⊗Z Rj ∀ v ∈ ⋄∶hm; vi ≥
−1g is the convex hull of ⋄� ⊂ M. If there were another vertex
m̃ ≠ 12mF with hm̃; vi ¼ −12 for all v ∈ F, m0 ≡ 1

12
m̃ ∈ M ⊗Z

R would satisfy hm0; vi ¼ −1 for all v ∈ F, placing m0 on the
boundary of S. By linearity, the line between mF and m0 must
then also be on the boundary of S, and thus either be inside a facet
or be itself an edge of S, and hence also in a facet or an edge of ⋄�.
This facet or edge must end on at least one other (integral) vertex
m̂ in ⋄� different than mF, which by linearity also satisfies
hm̂; vi ¼ −1 for all v ∈ F. This is a contradiction of the fact that
⋄� (as dual to a reflexive polytope) has exactly one vertex
saturating the inequality hm; vi ≥ −1 for all v ∈ F.
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divisor, i.e., a divisor where all ai are either 0 or 1. Clearly,
these will be the smallest divisors after the toric ones, which
are themselves a special case of square-free divisors.
However, such divisors will in general not be irreducible
by themselves and thus lead to additional gauge factors in
the effective theory. Necessary conditions for nonfactori-
zation for square-free divisor D can be derived simply be
inductively including the toric components ofD. Let T D be
the simplicial complex corresponding to D, induced by the
triangulation of ⋄. One finds [23]

h0ðB;OBðDÞÞ ¼ 1þ
X
v

gðvÞ þ
X
e

gðeÞ þ
X
f

gðfÞ; ð14Þ

where v, e, and f are complete vertices, edges, and faces of
⋄ included in T D and g is the generalized genus of an n-
face Θ, computed by the number of strict interior points
l�ðΘ⋆Þ of its dual face in the dual polytope ⋄⋆: gðΘÞ ¼
l�ðΘ⋆Þ [for a face f we define gðfÞ ¼ 1, since it is a facet of
⋄, dual to a vertex of ⋄⋆].5 This immediately implies that if
T D includes any points interior to an edge or a face it must
include all points on that edge or face in order not to
factorize. In addition, the genus of the edge or face must be
nonzero to avoid factorization.
As a concrete example, consider ⋄8, whose vertices are

given by

½½−1;−1;−1�; ½−1; 5;−1�; ½−1;−1; 5�; ½1;−1;−1��: ð15Þ

This polytope is a simplex. ⋄8 exhibits a Z3 symmetry and
has a single large face with 28 points on it and 5 points
interior to each of its edges. The three edges emanating off
of the large face have one interior point each, and the
remaining three faces have two interior points per each one.
Let us now consider a general square-free divisor D on a
toric variety B, corresponding to a simplicial decomposition
T D of ⋄8. To compute the number of global sections of
OðDÞ, we will use Eq. (14). The structure of ⋄8 makes it
particularly simple to count the number of square-free
divisors with deformation. In ⋄8, the only vertex with a
nonzero genus is ½1;−1;−1�. All edges are genus 0, and all
faces are genus 1. Recall that for a square-free divisor one
must include all points on a face or edge for the genus of
that face or edge to contribute to the number of global
sections. Note that all faces and all edges have at least one
interior point. Any simplicial complex T D will correspond
to a reducible divisor D if T D includes any point on a face
(not necessarily interior to), without including that face,
unless that point is ½1;−1;−1�, or T D is a prime toric
divisor. First, there are 38 square-free toric divisors, which
are irreducible and do not factorize. If our complex T D,

corresponding to our square-free divisor D, includes the
point ½1;−1;−1� but none of the facets it bounds, then the
only way to increaseH0ðB;OBðDÞÞ is to include the face F
opposite ½1;−1;−1�, and one or more connecting edges to
F to make T D connected, but such a divisor necessarily
factorizes since the edges are genus 0. Finally, one can
consider the combinatorial ways of adding in full faces, of
which there are 24. A simple counting yields there are
38þ 24 ¼ 54 square-free divisors that satisfy this property.
The total number of nontrivial square-free divisors on B is
238 − 1 ¼ 274877906943, and so the irreducible square-
free divisors on B constitute a fraction of 2 × 10−10 of all
square-free divisors. Therefore, most choices of square-free
homology class of the standard model will produce addi-
tional standard-model-like dark sectors.
The prospect of additional forced SUð3Þ × SUð2Þ sec-

tors is potentially interesting for the N-naturalness scenario
[24], though F-theory topology and its relation to tadpole
cancellation bounds the number of such sectors to not be
too high.

C. PF11
model and K̄B

As a final concrete example, let us consider the PF11

model [25], which realizes the exact Standard Model gauge
group in the absence of any additional enhancement. The
(resolved) elliptically fibered Calabi-Yau geometry is
described by the hypersurface

P ¼ s1e21e
2
2e3e

2
4u

3 þ s2e1e22e
2
3e

2
4u

2vþ s3e22e
3
3uv

2

þ s5e21e2e
3
4u

2wþ s6e1e2e3e4uvwþ s9e1vw2 ¼ 0:

ð16Þ

The coefficients are sections of the following bundles:

½s1� ¼ 3K̄B − S7 − S9; ½s2� ¼ 2K̄B − S9;

½s3� ¼ K̄B þ S7 − S9; ½s5� ¼ 2K̄B − S7;

½s6� ¼ K̄B; ½s9� ¼ S9: ð17Þ

Here, different choices of the classes ½si� correspond to
topologically inequivalent MSSM fibrations over a
fixed base. Every such fibration, labeled by a choice of
divisor classes ðS7; S9Þ, will have an I2 singularity corre-
sponding to an SUð2Þ gauge symmetry over fs3 ¼ 0g, and
an I3 singularity, i.e., SUð3Þ gauge symmetry, over
fs9 ¼ 0g. Generally, ðS7; S9Þ must be chosen such that
the classes ½si� are effective on B. As we have seen above,
however, requiring that the visible sector does not factorize
will limit the choices of ðS7; S9Þ. Moreover, even if s3 and
s9 do not factorize, the residual discriminant Δ0 (which
itself is a complicated polynomial in the si) can factorize
through the factorizations of the other coefficients. For
example, if s1 ¼ ss01 and s5 ¼ ss05, then Δ0 ∼ s2, signaling
an I2 fiber over fs ¼ 0g.

5In the case in which D is an anticanonical divisor, there is an
additional additive factor of 1 in this formula from the fact that the
entire boundary of the 3-polytope is included.
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In general, the precise number of additional sectors is
highly dependent on the base geometry. However, as
utilized in Ref. [5], the choice S7;9 ¼ K̄B always provides
an effective, irreducible solution to Eq. (17), as this choice
renders all classes ½si� in Eq. (17) to be the anticanonical,
which as we discussed above is always irreducible for a
weak Fano toric threefold. Despite this rather restrictive
choice, there are around Oð1015Þ compactifications based
on the PF11

fibration, which leads to a globally consistent
three-family MSSM-like effective field theory with no
additional 7-branes gauge sectors [5].
Given these considerations, it is natural to relate the

gauge coupling(s) of the visible sector to the volume of the
anticanonical divisor K̄B of the base B in F-theory
compactifications. Before we present a quantitative analy-
sis for the ensemble of toric weak Fano bases, let us provide
one further argument, independent of additional gauge
enhancements and divisor (ir)reducibility, why the volume
of K̄B is interesting for phenomenological discussions.

D. Couplings of U(1)s

The anticanonical divisor K̄B of the base naturally
appears in the context of 7-brane Uð1Þ gauge symmetries
in F-theory. Geometrically, they are described by rational
sections σ of the elliptic fibration [26]. The couplings of
each Uð1ÞA factor is tied to the volume τbA of the so-called
height pairing divisor bA ⊂ B associated to the section σA
generating Uð1ÞA [27]. As explained in Ref. [28], the
divisor takes the form

bA ¼ 1

m2
A
ð2K̄B þ ηAÞ; ð18Þ

where ηA is an effective divisor and mA ∈ N is a positive
integer. Both quantities depend on details of the fibration
structure; however, we can provide an upper bound for the
coupling,6

g2A ¼ 2π

volðbAÞ
¼ 2πm2

A

volð2K̄B þ ηAÞ
≤

πm2
A

volðK̄BÞ
: ð19Þ

The value of mA depends on how σA intersects codi-
mension-1 fibers of the elliptic fibration differently than
zero section σ0 [28]. For fibrations with a single non-
Abelian gauge factor over the discriminant locus W ⊂ Δ,
the integer mA is determined by requiring that mA × σA in
the Mordell-Weil group law intersects the same Kodaira
fiber component as σ0 (i.e., the affine node over W). In the
presence of multiple discriminant lociWi carrying Kodaira
fibers,mA is the smallest positive integer such thatmA × σA
intersects the affine node over all Wi.

The different intersection pattern between σA and σ0 is
also intimately tied to the global gauge group structure [29].
In particular, for fibrations realizing the Standard Model
gauge group ½SUð3Þ × SUð2Þ ×Uð1ÞA�=Z6, the section σA
intersects [up to a symmetry for SUð3Þ] the unique non-
affine nodes of SUð2Þ and SUð3Þ. In the absence of any
other non-Abelian gauge algebras, e.g., as in Ref. [5], we
thus have mA ¼ 6, and therefore

g2A ≤
36π

volðK̄BÞ
: ð20Þ

Thus, the hypercharge coupling in direct realizations of the
MSSM would always be sensitive to the volume of K̄B.
One might wonder if additional non-Abelian gauge

sectors, which we just argued are generically present,
could lead to a larger mA and thus increase this bound.
While this is possible in principle, the list of gauge algebras
with such a desired effect is limited. To have mA > 6, the
fiber structure must be such that no 6 × σA does not
intersect the affine node of the codimension-1 fiber
associated with the additional gauge factor G0 [28].
Because of the connection between the intersection patterns
of sections and the global gauge group, this translates into
the condition that the order of the fundamental group of G0
is not a divisor of 6. This only applies to G0 ¼ SUðnÞ with
n > 3 (and n ≠ 6) or G0 ¼ SOð2kÞ, k ≥ 6. In the latter
case, the maximal “enhancement” in mA → m0

A is a factor
of 2 [since π1ðSOð2kÞÞ ¼ Z4 or Z2 × Z2], which is not a
significant increase. In the concrete examples considered
above, where the additional gauge sector arose from an
MSSM tuned over prime torics on bases B associated to the
polytope ⋄8, mA does not change at all since the additional
gauge sectors are only SUð2Þ or SUð3Þ.
In summary, we have argued that in concrete F-theory

compactifications realizing the Standard Model on 7-branes,
without additional dark sectors the gauge couplings are
always related to the volume τK̄B

of the anticanonical divisor
of B. In addition, if the Uð1Þ is realized by a section of the
elliptic fibration, its gauge coupling is always related to τK̄B

,
independent of the model. In the following, we will see that
this severely limits compactifications with realistic coupling
values within the stretched Kähler cone.

IV. DISTRIBUTION OF PURE MSSM
GAUGE COUPLINGS

We now analyze gauge couplings in the ensemble of
weak Fano toric bases, with the MSSM or the GUT
supported on K̄B. Recall from Eq. (2) that the gauge
coupling of a gauge group supported on a 7-brane wrapping
a divisor D is determined by its volume τD ≡ τ. In this
construction, each gauge group is supported on an anti-
canonical divisor, whose volume is the sum of the volumes
of the toric divisors:

6For non-Abelian couplings [cf. Eq. (2)], there is an additional
factor of 2, stemming from different normalizations of Lie
algebra generators in particle physics and in algebraic geometry.
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τ ¼
X
i

τi: ð21Þ

For realistic gauge couplings, we require τ ≃ 25. In the
stretched Kähler cone, we require that all curves C have
volðCÞ ≥ 1, and in general, control of the theory also
requires τi ≳ 1, which for large numbers of moduli is in
tension with the value τ ≃ 25; even a single large divisor
spoils the UV gauge coupling requirement. Our first task is
then to check which geometries allow for τ ≃ 25 in the
stretched Kähler cone. Each geometry corresponds to a
triangulation of one of 4319 3D reflexive polytopes. As the
number of triangulations is expected to be Oð1015Þ, enu-
merating all triangulations is beyond the scope of this work,
and so we will consider a single triangulation per polytope.
Given a geometry, our task is then to compute the

maximum gauge coupling achieved within the stretched
Kähler cone. This is performed by minimizing the volume
of the anticanonical divisor, within the stretched Kähler
cone. We must therefore solve

fminimize volðK̄BÞjvolðCÞ ≥ 1 ∀ effectiveC ⊂ Bg:

We perform this minimization using Mathematica. The
minimization problem itself is technically a nonconvex
global quadratic program, which in its general form is non-
deterministic polynomial-time (NP) hard. This provides a
new instance of computational complexity arising in string
theory, in addition to those of Ref. [30]. Because of NP-
hard-ness, (in the absence of additional structure) at
moderate to large h1;1, it is difficult to check whether
the local minima we obtain are global minima. However,
the parameter space of this problem is relatively con-
strained, as the stretched Kähler cone is quite narrow. In
particular, in order to find a significant deviation in the
volumes, one must go deep into the stretched Kähler cone,
which is far away from the expected location of the
minimum (in fact, we always find the minimum to lie
on the boundary of the stretched Kähler cone). In addition,
for h1;1 ≤ 5, we attempted the minimization procedure with
several data points, and with all numerical minimization
algorithms available inMathematica, and always found the
same minima. We therefore expect the general pattern of
minimal volumes to persist.
Our implicit assumption in computing a single triangu-

lation per polytope is that the anticanonical volume τ will
not very greatly under changing triangulations. We have
verified this by checking all triangulations for polytopes
with h1;1 ≤ 6 and found that minðvolðK̄BÞÞ varied by a
factor of at most 2.7, discussed further below.
The distribution of couplings over the entire ensemble is

shown in Fig. 1. The vertical lines indicate the value of h1;1

for which all geometries with that or larger h1;1 have
minimum anticanonical volumes to the right of the line. We

find 15 polytopes that satisfy τ ≤ 25, with a maximal h1;1

of 5. To contrast, let us compare this to the geometries
corresponding to the two maximal 3D reflexive polytopes
(including ⋄8) with h1;1 ¼ 35. For a single triangulation of
each, we find that minðvolðK̄BÞÞ ≃ 14 000 and 28 000,
respectively. Therefore, to realize a realistic gauge coupling
in these examples, τ would need to be reduced by a factor of
about 1000. Scaling the Kähler form J homogeneously
J → λJ, we would need to take λ ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
1000

p
≃ 0.03,

resulting in many very small curves and divisors, taking
us well outside of the stretched Kähler cone, and therefore
well outside the region of control. One might hope to find a
point in the stretched Kähler cone where τ is greatly
reduced; however, due to the narrow nature of the stretched
Kähler cone [11], this seems quite unlikely. Finally, there is
the question of how much τ can vary under changing the
triangulation. At h1;1 ≤ 6 above, we found a difference of at
most a factor of 2.7. While we expect the allowed variance
to grow with h1;1, to get τ ≤ 50, the largest toric divisor
must have volume at most 12 (assuming the rest have unit
volume), which we expect cannot happen in the stretched
Kähler cone at even moderate h1;1.
Let us finally discuss the statistics of this study in the

context of the PF11
models of Ref. [5]. We found 15

polytopes that satisfy τ ≤ 50, with a maximal h1;1 of 5. The
polytopes with h1;1 ≤ 5 admit 4530 regular fine triangu-
lations. On the other hand, it is expected that the large
polytopes, with unrealistic gauge couplings in the stretched
Kähler cone, admit ∼Oð1015Þ fine-regular-star triangula-
tions, and so we expect a fraction of approximately 10−11 of
pure MSSM constructions in this ensemble to admit the
correct gauge coupling in a regime of control.

FIG. 1. The distribution of log10ðminðvolðK̄BÞÞÞ for a single
triangulation of each 3D reflexive polytope. The distribution
peaks around volðK̄BÞ ∼ 103, for which the associated UV gauge
coupling is much smaller than the necessary Standard Model
couplings. The vertical lines indicate the value of h1;1 for which
all geometries with that or larger h1;1 have minimum anticanon-
ical volumes to the right of the line.
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V. DISCUSSION

In this paper, we have argued for the incompatibility of
realistic F-theory compactifications with the following three
criteria simultaneously: (i) moderate to large h1;1, (ii) control
of the effective field theory, and (iii) no gauged dark sectors
from 7-branes. The tension arises from reproducing the
correct UV values of the Standard Model’s gauge couplings
while suppressing certain nonperturbative instanton correc-
tions to the effective theory, in particular theKähler potential,
while also satisfying 7-brane tadpole cancellation.
Using the landscape of toric weak Fano threefolds, we

have exemplified how for bases with large h1;1 tuning the
visible sector (be it a MSSM or a GUT scenario) on small
divisors generically leads to a large hidden sector. It is
worth noting that there are sometimes MSSM-charged
vectorlike messengers to these sectors. The extent to which
the beyond-MSSM gauge sector is hidden depends cru-
cially on the messenger mass.
In this landscape, there is also a particular setting,

namely, by tuning the visible sector on anticanonical
divisors, which guarantees the absence of any additional
7-brane gauge sectors. The recently found ensemble of
Oð1015Þ three-family MSSM compactifications [5] falls
into this category. For these and similar compactifications,
we then analyzed the volumes of the anticanonical class K̄B

within the stretched Kähler cone. Minimizing volðK̄BÞ≡
τK̄B

within this part of the Kähler moduli space gives an
upper bound on the gauge coupling gUV, via Eq. (2), in the
supergravity regime. We find that with this restriction only
around 4500 topologically distinct weak Fano toric three-
folds admit realistic gauge couplings, α3;2;1 ≃ 1=25 for
7-branes on K̄B. All have h1;1 ≤ 5, which only makes about
a fraction of∼10−11 of the whole weak Fano toric landscape.
Avoiding one or more of the three conditions appears

necessary and opens the model-building possibilities at the
expense of encountering other challenges.
Abandoning condition i allows for the models of Ref. [5]

with the exact chiral spectrum of the Standard Model to
obtain the correct values of the (by construction unified)
gauge couplings in a regime of control. In fact, 104 of the
models allow for this possibility, which is nevertheless a
small fraction of that ensemble. More generally, given the
great deal of evidence suggesting that most string vacua lie
at h1;1 > 5, a large yet-unknown measure factor would be

required to select these vacua. An interesting consequence,
however, is that these vacua would face fewer constraints
(and discovery possibilities) from axionlike particles.
Abandoning condition ii means giving up well-studied

moduli stabilization scenarios such as KKLT or LVS, and
more generally control of the effective theory. Such an
endeavor is certainly the most challenging, but perhaps also
the most exciting direction for future works. Developing
techniques to control towers of worldsheet and ED3-
instanton corrections would not only enhance the string
model-building toolkit but also allow for more general tests
of recently discussed swampland conjectures, such as the
swampland distance conjecture [31], in the context of four-
dimensional N ¼ 1 string compactifications.
Lastly, let us entertain the possibility of having a large

hidden sector by abandoning assumption (ii). The main
advantage then is that we can put the visible sector on small
divisors that give realistic UV gauge couplings inside the
stretchedKähler cone. Such scenarios will arguably bemuch
more numerous compared to the models where the only
gauge sectors are on anticanonical divisors. Turning the
argument around, our analysis also implies that within the
string landscape there is only a small fraction of models with
a controlled effective description that realize just theMSSM.
Instead, the vast majority will have a significant hidden
sector, whose phenomenological impact will depend on
details, such as consistent G4 background, that remains to
be studied.
In summary, we see that, while each of the three

conditions are appealing by themselves from a phenom-
enological or model-building perspective, their incompat-
ibility with our observed vacuum requires new techniques
and ideas to advance toward realistic globally consistent
string compactifications in the bulk of the landscape.

ACKNOWLEDGMENTS

We thank Seung-Joo Lee, Liam McAllister, and Cumrun
Vafa for helpful discussions. The work of M. C. is supported
in part by the DOE Award No. DE-SC0013528, the Fay R.
and Eugene L. Langberg Endowed Chair, and the Slovenian
Research Agency (ARRS No. P1-0306). J. H. is supported
by NSF CAREER Grant No. PHY-1848089. C. L. is sup-
ported in part by NSF Grant No. PHY-1719877 and NSF
CAREER Grant No. PHY-1848089.

[1] M. Cvetič, G. Shiu, and A. M. Uranga, Nucl. Phys. B615, 3
(2001); Phys. Rev. Lett. 87, 201801 (2001).

[2] V. Braun, Y.-H. He, B. A. Ovrut, and T. Pantev, Phys. Lett. B
618, 252 (2005); V. Bouchard and R. Donagi, Phys. Lett. B

633, 783 (2006); V. Braun, Y.-H. He, B. A. Ovrut, and T.
Pantev, J. High Energy Phys. 05 (2006) 043; V. Bouchard,
M. Cvetič, and R. Donagi, Nucl. Phys. B745, 62 (2006);
L. B. Anderson, Y.-H. He, and A. Lukas, J. High Energy

CONSTRAINTS ON STANDARD MODEL CONSTRUCTIONS … PHYS. REV. D 102, 026012 (2020)

026012-9

https://doi.org/10.1016/S0550-3213(01)00427-8
https://doi.org/10.1016/S0550-3213(01)00427-8
https://doi.org/10.1103/PhysRevLett.87.201801
https://doi.org/10.1016/j.physletb.2005.05.007
https://doi.org/10.1016/j.physletb.2005.05.007
https://doi.org/10.1016/j.physletb.2005.12.042
https://doi.org/10.1016/j.physletb.2005.12.042
https://doi.org/10.1088/1126-6708/2006/05/043
https://doi.org/10.1016/j.nuclphysb.2006.03.032
https://doi.org/10.1088/1126-6708/2007/07/049


Phys. 07 (2007) 049; L. B. Anderson, J. Gray, Y.-H. He, and
A. Lukas, J. High Energy Phys. 02 (2010) 054.

[3] M. Cvetič, D. Klevers, D. K. M. Peña, P.-K. Oehlmann, and
J. Reuter, J. High Energy Phys. 08 (2015) 087.

[4] L. Lin and T. Weigand, Fortschr. Phys. 63, 55 (2015); Nucl.
Phys. B913, 209 (2016); M. Cvetič, L. Lin, M. Liu, and
P.-K. Oehlmann, J. High Energy Phys. 09 (2018) 089.

[5] M. Cvetič, J. Halverson, L. Lin, M. Liu, and J. Tian, Phys.
Rev. Lett. 123, 101601 (2019).

[6] A. Grassi, J. Halverson, J. Shaneson, and W. Taylor, J. High
Energy Phys. 01 (2015) 086; D. R. Morrison and W. Taylor,
J. High Energy Phys. 05 (2015) 080.

[7] J. Halverson and W. Taylor, J. High Energy Phys. 09 (2015)
086.

[8] W. Taylor and Y.-N. Wang, J. High Energy Phys. 01 (2016)
137; 12 (2015) 164; 01 (2018) 111; J. Halverson, C. Long,
and B. Sung, Phys. Rev. D 96, 126006 (2017); J. High
Energy Phys. 02 (2018) 113; Y.-N. Wang, J. High Energy
Phys. 05 (2020) 043.

[9] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, Phys.
Rev. D 68, 046005 (2003).

[10] V. Balasubramanian, P. Berglund, J. P. Conlon, and F.
Quevedo, J. High Energy Phys. 03 (2005) 007.

[11] M. Demirtas, C. Long, L. McAllister, and M. Stillman, J.
High Energy Phys. 04 (2020) 138.

[12] J. Halverson, C. Long, B. Nelson, and G. Salinas, Phys. Rev.
D 100, 106010 (2019).

[13] T. Weigand, Proc. Sci. TASI2017 (2018) 016 [arXiv:
1806.01854]; M. Cvetič and L. Lin, Proc. Sci. TASI2017
(2018) 020 [arXiv:1809.00012].

[14] T. W. Grimm, Nucl. Phys. B845, 48 (2011).
[15] S. Hosono, A. Klemm, and S. Theisen, Lect. Notes Phys.

436, 235 (1994).
[16] P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes,

Nucl. Phys. B359, 21 (1991).
[17] M. Demirtas, C. Long, L. McAllister, and M. Stillman, J.

High Energy Phys. 03 (2020) 021.
[18] J. Halverson, B. D. Nelson, and F. Ruehle, Phys. Rev. D 95,

043527 (2017).

[19] J. Halverson, C. Long, B. Nelson, and G. Salinas, Phys. Rev.
D 99, 086014 (2019).

[20] J. Carifio, W. J. Cunningham, J. Halverson, D. Krioukov, C.
Long, and B. D. Nelson, Phys. Rev. Lett. 121, 101602
(2018).

[21] M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo, and
R. Valandro, J. High Energy Phys. 09 (2012) 019; 07 (2013)
150; M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F.
Quevedo, and R. Valandro, J. High Energy Phys. 05 (2014)
001.

[22] M. Kreuzer and H. Skarke, Adv. Theor. Math. Phys. 2, 853
(1998).

[23] A. P. Braun, C. Long, L. McAllister, M. Stillman, and B.
Sung, arXiv:1712.04946.

[24] N. Arkani-Hamed, T. Cohen, R. T. D’Agnolo, A. Hook,
H. D. Kim, and D. Pinner, Phys. Rev. Lett. 117, 251801
(2016).

[25] D. Klevers, D. K. Mayorga Peña, P.-K. Oehlmann, H.
Piragua, and J. Reuter, J. High Energy Phys. 01 (2015) 142.

[26] D. R. Morrison and C. Vafa, Nucl. Phys. B476, 437
(1996).

[27] D. S. Park, J. High Energy Phys. 01 (2012) 093; D. R.
Morrison and D. S. Park, J. High Energy Phys. 10 (2012)
128.

[28] D. A. Cox and S. Zucker, Inventiones Mathematicae 53, 1
(1979); S.-J. Lee, D. Regalado, and T. Weigand, J. High
Energy Phys. 11 (2018) 147; S.-J. Lee and T. Weigand,
Phys. Rev. D 100, 026015 (2019).

[29] M. Cvetič and L. Lin, J. High Energy Phys. 01 (2018) 157.
[30] F. Denef and M. R. Douglas, Ann. Phys. (Amsterdam) 322,

1096 (2007); M. Cvetič, I. Garcia-Etxebarria, and J.
Halverson, Fortschr. Phys. 59, 243 (2011); J. Halverson
and F. Ruehle, Phys. Rev. D 99, 046015 (2019); J.
Halverson, M. Plesser, F. Ruehle, and J. Tian, Phys. Rev.
D 101, 046010 (2020).

[31] H. Ooguri and C. Vafa, Nucl. Phys. B766, 21 (2007); T. W.
Grimm, E. Palti, and I. Valenzuela, J. High Energy Phys. 08
(2018) 143; S.-J. Lee, W. Lerche, and T. Weigand, arXiv:
1910.01135.

CVETIČ, HALVERSON, LIN, and LONG PHYS. REV. D 102, 026012 (2020)

026012-10

https://doi.org/10.1088/1126-6708/2007/07/049
https://doi.org/10.1007/JHEP02(2010)054
https://doi.org/10.1007/JHEP08(2015)087
https://doi.org/10.1002/prop.201400072
https://doi.org/10.1016/j.nuclphysb.2016.09.008
https://doi.org/10.1016/j.nuclphysb.2016.09.008
https://doi.org/10.1007/JHEP09(2018)089
https://doi.org/10.1103/PhysRevLett.123.101601
https://doi.org/10.1103/PhysRevLett.123.101601
https://doi.org/10.1007/JHEP01(2015)086
https://doi.org/10.1007/JHEP01(2015)086
https://doi.org/10.1007/JHEP05(2015)080
https://doi.org/10.1007/JHEP09(2015)086
https://doi.org/10.1007/JHEP09(2015)086
https://doi.org/10.1007/JHEP01(2016)137
https://doi.org/10.1007/JHEP01(2016)137
https://doi.org/10.1007/JHEP12(2015)164
https://doi.org/10.1007/JHEP01(2018)111
https://doi.org/10.1103/PhysRevD.96.126006
https://doi.org/10.1007/JHEP02(2018)113
https://doi.org/10.1007/JHEP02(2018)113
https://doi.org/10.1007/JHEP05(2020)043
https://doi.org/10.1007/JHEP05(2020)043
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1088/1126-6708/2005/03/007
https://doi.org/10.1007/JHEP04(2020)138
https://doi.org/10.1007/JHEP04(2020)138
https://doi.org/10.1103/PhysRevD.100.106010
https://doi.org/10.1103/PhysRevD.100.106010
https://arXiv.org/abs/1806.01854
https://arXiv.org/abs/1806.01854
https://arXiv.org/abs/1809.00012
https://doi.org/10.1016/j.nuclphysb.2010.11.018
https://doi.org/10.1007/3-540-58453-6
https://doi.org/10.1007/3-540-58453-6
https://doi.org/10.1016/0550-3213(91)90292-6
https://doi.org/10.1007/JHEP03(2020)021
https://doi.org/10.1007/JHEP03(2020)021
https://doi.org/10.1103/PhysRevD.95.043527
https://doi.org/10.1103/PhysRevD.95.043527
https://doi.org/10.1103/PhysRevD.99.086014
https://doi.org/10.1103/PhysRevD.99.086014
https://doi.org/10.1103/PhysRevLett.121.101602
https://doi.org/10.1103/PhysRevLett.121.101602
https://doi.org/10.1007/JHEP09(2012)019
https://doi.org/10.1007/JHEP07(2013)150
https://doi.org/10.1007/JHEP07(2013)150
https://doi.org/10.1007/JHEP05(2014)001
https://doi.org/10.1007/JHEP05(2014)001
https://doi.org/10.4310/ATMP.1998.v2.n4.a5
https://doi.org/10.4310/ATMP.1998.v2.n4.a5
https://arXiv.org/abs/1712.04946
https://doi.org/10.1103/PhysRevLett.117.251801
https://doi.org/10.1103/PhysRevLett.117.251801
https://doi.org/10.1007/JHEP01(2015)142
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1007/JHEP01(2012)093
https://doi.org/10.1007/JHEP10(2012)128
https://doi.org/10.1007/JHEP10(2012)128
https://doi.org/10.1007/BF01403189
https://doi.org/10.1007/BF01403189
https://doi.org/10.1007/JHEP11(2018)147
https://doi.org/10.1007/JHEP11(2018)147
https://doi.org/10.1103/PhysRevD.100.026015
https://doi.org/10.1007/JHEP01(2018)157
https://doi.org/10.1016/j.aop.2006.07.013
https://doi.org/10.1016/j.aop.2006.07.013
https://doi.org/10.1002/prop.201000093
https://doi.org/10.1103/PhysRevD.99.046015
https://doi.org/10.1103/PhysRevD.101.046010
https://doi.org/10.1103/PhysRevD.101.046010
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.1007/JHEP08(2018)143
https://doi.org/10.1007/JHEP08(2018)143
https://arXiv.org/abs/1910.01135
https://arXiv.org/abs/1910.01135

