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Abstract—The present study introduces a novel methodology
that utilizes Light Gradient Boosting Regressors to predict
engine-out emissions of NOx, HC, and CO. The accuracy of
the proposed models is evaluated on different types of homolo-
gation cycles. The dataset used in this study is derived from a
set of 48 experimental driving cycles, including RDE, WLTC,
NEDC, ECE, US06, and HWFET. The experimental driving
cycles are performed on a roll bench using a spark-ignited,
naturally aspirated, V12 engine-equipped vehicle. A three-second
sliding window is incorporated in the models to capture the
dynamic behavior of pollutant emissions. The performance of the
LightGBR models is assessed using the mean absolute percentage
error (MAPE), which is found to be 5% for CO, 5.4% for HC,
and 7.4% for NOx. The results demonstrate the efficacy of the
proposed methodology, which can be used to estimate the impact
of powertrain calibration changes on pollutant emissions in a
virtual environment, thereby reducing the number and the cost
of the experimental tests.

Index Terms—Virtual sensing, Emissions modelling, Data-
driven, Machine Learning

I. INTRODUCTION

The increasing production of pollutant emissions by mod-
ern internal combustion engines in the automotive field has
prompted the implementation of more stringent rules and
regulations worldwide to minimize their impact on the en-
vironment. This has resulted in the development of homolo-
gation cycles to test the emissions and fuel consumption under
various operating conditions, requiring automakers to improve
the engine calibrations to comply with emissions limits during
a wide variety of maneuvers [1]. The resulting need for the
experimental testing has significant time and cost implications
in the development phase of the engine and after-treatment
system, influencing the overall design process.

Models and simulations can help to reduce the experimental
testing, and the 0-D modeling and the artificial intelligence
methods based on machine learning and deep learning al-
gorithms are becoming increasingly popular [2]. All these

methods are typically suitable for the implementation in real-
time hardware and they have been widely used for various
applications in autonomous driving, vehicle control, smart
connections, virtual sensing, and anomaly detection, including
the emission modeling [3]–[9]. Machine learning models based
on support vector machines (SVM) [10], ensemble of tree-
based models (random forest or gradient boosted forests)
[11], and neural networks have been largely documented in
the literature for emission forecasts [12]. This paper presents
a methodology for predicting CO, HC, and NOx emissions
using a Light Gradient Boosting Regressor [13], trained and
validated on a set of driving cycles performed on a roll bench.
An earlier study published by the authors [14], shows an
interesting application of Light Gradient Boosting Regressor-
based (LightGBR), data-driven model for the offline prediction
of NOx engine-out emissions in an internal combustion engine
using some ECU channels as inputs. It compares multiple
regressors from machine learning and deep learning algo-
rithms with LightGBR, proving the proposed methodology
represents the most accurate solution. The models are tested
by estimating the NOx emissions during two Real Driving
Emission (RDE) cycles and under steady-state conditions.
This method is a successful demonstration of the effectiveness
of data-driven models in real-world industrial applications.
However, expanding this methodology to include other pollu-
tant species and homologation cycles is needed for assessing
its broad applicability. This paper presents an application
that involves the development of engine surrogate models
to estimate pollutant emissions. The study is based on the
previous work of the authors [14], which effectively predicted
NOx emissions using a feature selection process based on
Features Importance Permutation [15] and a sliding window
approach [16] to capture the dynamic behaviour of pollutant
emissions. The current work aims to extend this methodology
to other pollutants (HC and CO) and it makes the proposed
approach more robust and reliable on different homologation



cycles, beyond the limited set of the previous study.

II. EXPERIMENTAL SETUP

For this activity, an experimental campaign is conducted
to collect the data needed for both the models training and
validation. The tests are carried out on a laboratory roll
bench on a vehicle equipped with a spark ignition, naturally
aspirated, V12 engine. The main characteristics of such engine
are listed in the Table I. For all the tests, the vehicle is automat-
ically driven to follow the speed profile imposed for different
homologation cycles, while the emissions are measured im-
mediately upstream of the catalyst through the installation of
specific measurement devices. The homologation cycles under
study are coming from different legislations (from Europe
and USA) and are in particular the Real Driving Emissions
(RDE), the Worldwide Harmonized Light Vehicles Test Cycle
(WLTC), the New European Driving Cycle (NEDC), the
Economic Commission for Europe (ECE), the Federal Test
Procedure 75 (FTP-75), the United States 2006 (US06), and
the Highway Fuel Economy Test (HWFET).

TABLE I: Engine specifications

Engine Specifications

Engine Type V12
Displacement [cc] 6495.6 cc
Aspiration Naturally Aspirated
Combustion System DI Spark-ignition
Number of cylinders 12 (6 per bank)
Valves per cyl [#] 4 (2 int + 2 exh)
Bore x Stroke [mm] 94.0 x 78.0

A. Chemiluminescent Detector analyzer

The concentration of NOx emissions is measured using a
Chemiluminescent Detector analyzer (CLD) which exploits the
reaction between nitric oxide (NO) and ozone (O3) to generate
electronically excited NO2 molecules. These molecules emit
visible radiation upon returning to equilibrium, with intensities
proportional to the concentration of NO in the gas. The CLD
can evaluate NOx levels in exhaust gases by measuring the
emitted light.

B. Flame Ionization Detector analyzer

The Flame Ionization Detector (FID) is utilized to measure
HC emissions and can be used to quantify the amount of
hydrocarbons in the exhausts. The FID relies on a process
known as hydrogen flame ionization, which generates ions
proportional to the amount of carbon atoms in a sample when
hydrocarbons are injected into a hydrogen flame. Due to its
sensitivity to nearly all HC compounds, it is frequently used to
detect exhaust gases from engines. The FID has a broad linear
range of up to seven orders of magnitude, making it useful for
samples containing a variety of different chemicals because it
generates a signal proportional to the flow of carbon atoms
through it, regardless of the chemical species’ composition.

C. Non-Dispersive Infra-Red analyzer

A Non-Dispersive Infra-Red analyzer is utilized to measure
the concentration of various gases such as CO2 and CO.
This analyzer employs the principle that a molecule absorbs
infrared light at a particular range of frequencies, which is
dependent on its bond energy and the mass of its atoms,
and the amount of energy absorbed is proportional to its
concentration. The NDIR uses this principle to detect several
molecules in exhaust gases, with CO2 and CO being measured
at wavelengths of 4.2 and 4.6 m, respectively.

III. METHODOLOGY

The inputs of the model are selected between the avail-
able Engine Control Unit (ECU) signals and actuations to
make them compatible with the on-board implementation. The
sampling frequency of ECU channels can vary. For example,
some of them are sampled at a set frequency (often 10 Hz,
100 Hz, or 1000 Hz), while others are sampled at a fre-
quency directly proportional to the engine speed. Conversely,
emissions are measured externally and sampled uniformly
at 10 Hz. Thus, the post-processing techniques are mainly
employed to resample all the channels to 10 Hz frequency.
The Feature Importance Permutation algorithm is adopted
to determine the most relevant features for the data-driven
model. This is further complemented with a manual refinement
based on the physical domain knowledge and the practical
experience. For each pollutant species, a unique set of features
is selected and reported in Table II. Given the dynamic nature
of the investigated phenomenon, the output values are not
solely determined by the current input, but also by their
previous values. A sliding window of fixed width is applied
to each input before feeding it to the model to account for
such temporal dependence. The width of the sliding window
specifies the number of contiguous samples from each input
channel that are utilized to predict emissions at a certain time.

y(n) = f(x(n), x(n− 1), ..., x(n− w)) (1)

The function in (1) defines the calculated emissions at sam-
ple n and relies on the inputs from sample n-w up to sample
n, where w denotes the window width as measured in number
of samples. The previous research [14] reported a sensitivity
analysis which demonstrated that increasing the window width
led to improve the accuracy, yet also resulted in a concomitant
increase in the computational costs. Accordingly, distinct input
channels and sliding window widths were chosen for each of
the models generated. Based on the findings of this analysis,
the optimal balance is achieved with a window width of 30
samples, which corresponds to a time frame of 3 seconds.

A. Dataset description

The dataset used for this study is selected from a wider
group of 47 experimental tests. From those acquisitions, the
ECU channels shown in Table II and the corresponding
measured emissions are collected and arranged in a tabular
form.



TABLE II: List of features used for each pollutant species
estimation

NOx CO HC

Engine rpm
Engine load
AFR (both banks)
Spark advance (SA)
IVO angle
EVC angle
Injection pressure
Exhaust temperature

Engine rpm
Engine load
AFR (both banks)
Spark advance (SA)
Injection time
Injection pressure
Water temperature
Exhaust temperature

Engine rpm
Engine load
AFR (both banks)
Spark advance (SA)
Injection time
Injection pressure
Water temperature
Exhaust temperature

The whole list of cycles is presented in Table III, and as
can be seen, it is made up of several sorts of homologation
cycles, such as RDE, WLTC, NEDC, ECE, HWFET, US06,
and FTP75. A special mention should be made for RDE cycles,
because, as representative of real driving conditions, they
should be conducted on real roads. Nevertheless, in this case,
the speed profiles acquired under real-world driving conditions
are reproduced by a "virtual driver" on the roll bench. This is
done for two major reasons:

• The emission measuring instruments in a laboratory en-
vironment are more accurate than the Portable Emission
Measurement Systems (PEMS)

• Only at the roll bench the emissions upstream of the
catalyst (engine-out) can be measured.

In this study, three different pollutant species are considered,
and three separate LightGBR-based models are developed, one
for each species. These models are trained using the features
listed in Table II and a subset of 15 cycles is selected for
training. NEDC, US06, and HWFET cycles are intentionally
excluded from the training set. However, such cycles are later
considered in the test set.

The remaining 32 cycles are being selected to validate the
models by handling diverse homologation cycles and including
those that were not considered in the training set. These cycles
are being chosen to verify the robustness of the models and
evaluate their performance under operating conditions that
have not been encountered during the training phase. Table
III provides a summary of the cycles in the dataset and the
split between the train and the test sets.

TABLE III: List of driving cycles in the dataset, divided in
training set and test set

Driving
Cycle Legislation Duration Number in

Training Set
Number in
Test Set

RDE Europe 90 min 3 6
WLTC Europe 30 min 5 9
NEDC Europe 20 min 0 2
ECE Europe 15 min 1 0
FTP75 America 40 min 6 7
US06 America 20 min 0 4
HWFET America 25 min 0 4

IV. RESULTS

The results of the model predictions are reported for all the
three considered pollutant species (HC, CO and NOx). The

models’ output is in the form of a time series representing the
concentration (expressed as ppm) of each pollutant during the
driving cycle.

The results are initially presented in terms of the corre-
lation between the cumulated, experimental emissions and
the corresponding calculated values to give an overview of
the results on the many experimental driving cycles. This
provides a comprehensive assessment of the overall accuracy
and reliability of the model. The calculated emissions are
calculated as shown in (2):

mp =

∫ tend

tstart

ṁp(t) dt (2)

where mp is the mass of pollutant, tstart and tend are the time
instants when the driving cycle begins and ends respectively,
and ṁp is the pollutant mass flow computed as:

ṁp(t) = ρp kp(t)Qexh(t)Cp(t) (3)

where the subscript p is referred to each pollutant species
(CO, HC, NOx), ρp is the density of pollutant, kp is the
dry to wet emission correction factor, Qexh is the exhaust
volumetric flow calculated by the ECU, and Cp is the pollutant
concentration in the exhausts either measured experimentally
or predicted by the LightGBR-based model.

The scatter plots in Fig. 1 compares the experimental and
the estimated cumulative mass of emissions for CO (Fig.
1a), HC (Fig. 1b) and NOx (Fig. 1c). Regardless of the
pollutant species considered, the model is consistent with the
experimental mass of emissions as can be seen looking at the
dotted line that indicates the boundary for the 15% of relative
error. The scatter plot represents all the cycles in the dataset,
including both the training set and the test set. As expected,
the correlation between experimental and calculated masses of
pollutants is higher for the cycles included in the training set.
This can also be seen in Fig. 2, where a bar plot reports the
Mean Average Percentage Error (MAPE) of the three models
on the training set and on the test set, calculated as the relative
error between the actual value At and the forecast Ft averaged
on the total number of samples n (4).

MAPE =
1

n

n∑
i=1

∣∣∣∣At − Ft

At

∣∣∣∣ (4)

Specifically, for the test set results, the MAPE is 5.0% for
CO, 5.4% for HC, and 7.4% for NOx. It is interesting to note
that the error is slightly higher for NOx compared to HC and
CO. Further analysis may be necessary to better understand
this difference in performance.

The relative errors for each type of driving cycle, as pre-
sented in Fig. 3, demonstrate that the models’ error is generally
higher on the RDE cycles. This is likely due to the fact that
RDE cycles represent a more realistic driving scenario that
involves a wider range of maneuvers performed under highly
dynamic conditions.

The HWFET and US06 cycles, which are not included in
the model training, also exhibit slightly higher relative errors



(a) CO cumulated emissions

(b) HC cumulated emissions

(c) NOx cumulated emissions

Fig. 1: Comparison between modeled and experimental cumu-
lated emissions over different cycles (data normalized)

than the other cycles. This is not unexpected, since the models
have not been specifically trained on these types of driving
cycles, and therefore may not perform as well on them as on
the cycles included in the training.

It is important to note that these observations hold true for
all three models.

V. CONCLUSIONS

The ultimate objective of this study was to assess the
viability of a data-driven approach as an alternative technique
for reducing the duration and expenses involved in the engine
development phase and for enabling the real-time estimation

Fig. 2: MAPE of the LightGBR models applied to the train
and the test set, divided per pollutant species.

of emissions in scenarios where physical sensors cannot be
installed. The primary focus of this investigation was to
determine whether this approach could reduce the number of
experimental tests required to calibrate the engine for emission
purposes by replacing them with simulated cycles. The study
extended a previously introduced methodology that involved
the use of a LightGBR model to estimate pollutant emissions
by testing the model on multiple homologation driving cycles
of various types. The results showed that the LightGBR model
provided accurate predictions of emissions mass for all the
three pollutant species examined (HC, CO, and NOx) with a
relative error on cumulated emissions lower than 20% even in
the worst cases.

When comparing various pollutant species, it was found
that the error is slightly greater for NOx (MAPE = 7.5%) in
contrast to HC (MAPE = 5.4%) and CO (MAPE = 5.0%). On
the other hand, when taking cycle types into account, the error
is generally higher for the RDE cycles. This is because RDE
cycles involve a wider range of maneuvers performed under
highly dynamic conditions. Moreover, the HWFET and US06
cycles, which are not included in the model training, show
slightly higher relative errors. This outcome was expected as
the models have not been specifically trained for these types of
driving cycles. Nonetheless, the overall accuracy of the models
also in this complex and challenging scenario is an indication
of the good robustness of the results.

The primary implication is that the methodology presented
in the study can effectively estimate pollutant emissions on
different homologation driving cycles with a high degree
of confidence in the results. Consequently, the impact on
pollutant emissions of the engine calibration procedure can be
modeled and calculated in a virtual environment, eliminating
the need for a specific experimental campaign or reducing the
number of tests required. Moreover, the availability of models
suitable for the real-time calculation of pollutant emissions
represents a strategic tool for future on-board estimations.



(a) Relative error of CO model

(b) Relative error of HC model

(c) Relative error of NOx model

Fig. 3: Relative error distribution on each model grouped by
driving cycle
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