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Mapping of attention mechanisms to a generalized Potts model
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Transformers are neural networks that revolutionized natural language processing and machine learning. They
process sequences of inputs, like words, using a mechanism called self-attention, which is trained via masked
language modeling (MLM). In MLM, a word is randomly masked in an input sequence, and the network is
trained to predict the missing word. Despite the practical success of transformers, it remains unclear what type of
data distribution self-attention can learn efficiently. Here, we show analytically that if one decouples the treatment
of word positions and embeddings, a single layer of self-attention learns the conditionals of a generalized Potts
model with interactions between sites and Potts colors. Moreover, we show that training this neural network is
exactly equivalent to solving the inverse Potts problem by the so-called pseudolikelihood method, well known in
statistical physics. Using this mapping, we compute the generalization error of self-attention in a model scenario
analytically using the replica method.

DOI: 10.1103/PhysRevResearch.6.023057

I. INTRODUCTION

Transformers [1] are a powerful type of neural network
that have achieved state-of-the art results in natural language
processing (NLP) [2–6], image classification [7], and even
protein structure prediction [8]. While standard neural net-
works can be thought of as functions of a single input,
transformers act on sets of “tokens,” like words in a sentence.
The key to the success of transformers is a technique called
masked language modeling (MLM), where transformers are
trained to predict missing words in a sentence [2–6]; cf.
Fig. 1(a). This technique has the advantage that it can leverage
large amounts of raw text (or images, or protein sequences)
without any annotation. By learning the conditional distribu-
tion of having a word in a specific position of the sentence,
given the other words, transformers ostensibly learn the rela-
tionships between words in a robust way.

The basic building block of transformers is the self-
attention (SA) mechanism [9,10], which transforms a se-
quence of tokens x j into another sequence h j . We illustrate
self-attention on a masked language modeling task in Fig. 1.
The sentence is first transformed into a set of representations
x j = e j + p j , where e j is a vector representing the jth word,
and the vector p j encodes its position. SA then computes a
linear transformation of the representations to yield the values
v j . The kth output vector hk is then a linear combination
of the values v j weighted by an attention matrix A, whose
elements Ak j quantify the relative importance of the jth input
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token for the kth output vector, for example based on their
semantic similarity. The functions to compute values v j and
the attention matrix A both have trainable parameters; see
Eq. (2) for a precise definition. The flexibility of self-attention
comes from the attention weights Ak j , which are not fixed, but
computed given the context, i.e., the surrounding tokens.

The practical success of transformers raises several fun-
damental questions: what are the statistical structures that
self-attention learns with MLM? More precisely, since the
MLM objective is to learn the conditional probability distribu-
tion of words given a set of surrounding words, which family
of conditional probabilities can self-attention learn? And how
many samples are required to achieve good performance?
Here, we take a step towards answering these questions by ex-
ploiting tools from the statistical physics of learning [11–14].

The first challenge is to design a data model that mimics
the structure of real sentences. While classical works mod-
eled inputs as vectors of i.i.d. random variables, recent work
has introduced more sophisticated data models for neural
networks [15–21], which allowed the study of unsupervised
learning [22,23]. To analyze the self-supervised learning of
MLM, we model sequences of words as system of spins,
interacting via a generalized Potts Hamiltonian [24,25] with
couplings between colors (=words) and positions. We sam-
ple a synthetic data set from the Potts model using Monte
Carlo, and we perform masked language modeling by train-
ing a transformer to predict masked spins in spin sequences.
While an off-the-shelf transformer requires several layers of
self-attention to learn this simple probability distribution, we
show analytically that a single layer of factored self-attention,
where we separate the treatment of positions and inputs, can
reconstruct the couplings of the Potts model exactly in the
limit of a large training set. In particular, we derive an exact
mapping between the output of the self-attention mechanism
and the conditional distribution of a Potts spin given the oth-
ers. We finally use this mapping to compute the generalization
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loss of a single layer of self-attention analytically using the
replica method.

II. A GENERALIZED POTTS MODEL
TO SAMPLE SEQUENCES

We model sentences as sequences of spins s =
(s1, . . . , sL ), with si ∈ RC taking values from a vocabulary
of C colors, which we encode as one-hot vectors. Each color
can be thought of as a word in natural text, an amino acid
in a protein, etc. In a standard Potts Hamiltonian, only spins
of the same color interact with each other via an interaction
matrix J . This is an unrealistic model for real data: it treats
all colors as orthogonal, even though words and amino acids
have varying degrees of similarity. We therefore generalize
the Potts Hamiltonian to

H(s) = −1

2

L∑
i, j=1

Ji jsT
i U s j, (1)

where J ∈ RL×L governs the interactions between spins at
different positions, and U ∈ RC×C encodes the similarities
between colors (we denote matrices by capital letters and
vectors in boldface). Without loss of generality, we set Jii =
0 and sample sequences from the Boltzmann distribution
P(s) ∝ exp[−βH(s)]. We recover the standard Potts model
by choosing U as the identity matrix.

III. MASKED LANGUAGE MODELING
WITH TRANSFORMERS

Given the generative model (1), the MLM objective
amounts to predicting the ith spin given the sequence s\i where
that spin is “masked,” i.e., si = t, the masking token. To apply
self-attention to a sequence s\i, we first compute the values
v j = V (Es j + ap j ), where the embedding matrix E ∈ Rd×C

maps Potts colors into d-dimensional representation vectors,
and V ∈ Rd×d is a weight matrix; both E and V are train-
able parameters. The scalar parameter a controls the relative
importance between the embedding and positional encoding
vectors. The output vector hi corresponding to the masked
token is a linear combination of the values, weighted by an
exponential attention function [1]:

hi(s\i) =
L∑

j=1

exp[(E t + pi )�Q�K (aEs j + p j )]∑
k exp[(E t + pi )�Q�K (aEsk + pk )]

v j . (2)

Crucially, the ith spin si in this expression has to be replaced
with the masking token t, since it is the masked input. The
matrices Q, K ∈ Rd×d are also trainable parameters of the
model. In the following, we take the embedding dimension
equal to the number of colors, d = C, in order to be able to
map the output vector hi into a probability distribution p̃i over
the colors through the softmax nonlinearity [26].

IV. TRAINING A VANILLA TRANSFORMER ON THE
GENERALIZED POTTS MODEL

For our first experiment, we emulate the setting of protein
structure prediction, so we choose a vocabulary of size C = 20
and sample a symmetric interaction matrix Ji j = {0, 1}, which

FIG. 1. Masked language modeling (MLM) with a single layer of
self-attention. The goal of MLM is to predict the masked word in a
given sentence. Self-attention first maps words into representations
e j + p j , where e j are embedding vectors representing words, and
p j encode their positions. For a given masked word, the associated
attention vector hk is computed as a linear combination of the val-
ues v j = V (e j + p j ) of all other tokens, weighted by the attention
weights Ak j . In vanilla self-attention, values and attention weights
depend on embeddings and positional vectors, while in factored
attention, attention weights depend only on positions, and values
only on the embeddings. By identifying the attention weights A with
the interaction matrix J of a Potts model (1), the value matrix V with
the color similarity matrix U , and the embedding vectors with the
one-hot spins, we get a learning model identical to a Potts model.

we show in Fig. 2(b). We draw the entries of the symmetric
interaction matrix U i.i.d. from the standard Gaussian distri-
bution. Given these parameters, we use Gibbs sampling to
generate a data set with M = 3000 sequences of length L =
20. We tune the inverse temperature β to ensure an average
Hamming distance of 0.3 between sampled sequences, typical
for protein families [27].

We then train off-the-shelf transformers consisting of
one and three layers on this data set by minimizing the
cross-entropy loss between the output distribution and the
missing spin using stochastic gradient descent (see the Ap-
pendix A for the numerical details) on the loss L(s) =
−L−1 ∑L

i=1

∑C
α=1 siα log p̃iα (s), for a sequence s. In Fig. 2,

we show the test loss

εg = Es∼P[L(s)] (3)

during training, where E s∼P denotes an average over the
generative model (1). A transformer with a single layer of
self-attention does not attain the optimal generalization error
(black dashed line). By plotting the attention matrix of the
single layer, we see that the transformer recovers the orig-
inal interaction matrix to some degree, albeit not perfectly.
Training transformers with three layers on the same data set
improves the accuracy at the cost of losing interpretability:
there is no straightforward way to collapse several layers of
nonlinear transformations of the input sequence into a single
attention map; we show the average of the final two attention
layers in Fig. 2(b).

V. FACTORED SELF-ATTENTION LEARNS THE
GENERALIZED POTTS MODEL

We now consider a variant of self-attention in which the
treatment of positions and values is decoupled. We set a = 0
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FIG. 2. A single layer of factored self-attention learns the generalized Potts model efficiently. (a) Test loss (3) for factored self-attention
and for vanilla transformers with one and three layers during training with stochastic gradient descent. The optimal generalization loss
is shown as a black dashed line. (b) Interaction matrix J of the generative Potts model (1) compared to the attention maps learned
by transformers with vanilla and factored self-attention. For the three-layer transformer, the attention map was obtained by averaging
the maps of the last two layers. (c) Reconstruction error of the interaction (J − A)2 as a function of the number of epochs for all
considered architectures. (d) Test loss as a function of perturbation level a. Decoupling the treatment between positions and colors by
decreasing a decreases the test loss. Parameters: sequence length L = 20, vocabulary size C = 20, embedding dimension d = 20, M = 3000
data points.

in Eq. (2), set the masking token t = 0, choose one-hot encod-
ings for the positions, and fix the embedding matrix at E = IC ,
so that

hiα (s\i) =
L∑

j=1

Ai j (V s j )α, (4)

where Ai j ≡ e(Q�K )i j /
∑L

k=1 e(Q�K )ik . This modified self-
attention has exactly the same form as the conditional
distribution of the generalized Potts model if one sets U = V
and βJ = A, which is

p(siα = 1|s\i ) = exp
(
β

∑L
j=1 Ji j (U s j )α

)
∑C

γ=1 exp
(
β

∑L
j=1 Ji j (U s j )γ

) . (5)

This equivalence between factored self-attention and the Potts
model is our first main result; we now discuss its ramifica-
tions.

Decoupling positions and colors leads to a significant
improvement in the performance of a single layer, which
reaches the optimal generalization error and converges faster;
cf. Fig. 2(a). Factored self-attention recovers the interaction
matrix J perfectly, cf. Fig. 2(b) for the attention map and
Fig. 2(c) for the reconstruction error of the interaction ma-
trix. In Fig. 2(d), we show that decoupling the treatment
of positions and colors completely performs better than any
intermediate solution with a > 0.

Factored-attention layers, and thus input-independent at-
tention weights, have been already used as a building block for
deep transformers, outperforming standard attention in differ-
ent applications [28] used it to analyze protein sequences and
found that a single layer of factored self-attention performed
as well as a deep transformer, and significantly better than
a single layer of vanilla self-attention, without explicitly ex-
plaining this observation. Moreover, using factored attention
is key to obtaining state-of-the-art results in approximating
ground states of many-body quantum systems [29–31].

Intriguingly, the form of the loss for masked language mod-
eling with factored self-attention as described above exactly
matches the loss of the pseudolikelihood method, which has

been used for solving the inverse Ising problem [32–36]. The
pseudolikelihood method is statistically consistent [37–39],
i.e., its parameter estimates converge to the true parameters as
the number of samples goes to infinity. A direct consequence
of the mapping in Eq. (4) is thus that MLM with factored
self-attention enjoys the same asymptotic optimality.

VI. THE SAMPLE COMPLEXITY OF SELF-ATTENTION

A key quantity in machine learning problems is the sam-
ple complexity, namely how many samples are required to
achieve a small generalization loss εg with a given model.
The mapping introduced in this work allows us to address
this question precisely for a single layer of self-attention by
means of the replica method from statistical physics. The
main difficulty in the calculation lies in handling the non-
trivial data distribution (1). This difficulty can be mitigated
thanks to recent advances in statistical physics, which allow
us to extend the replica method of disordered systems to
structured data [18,20,40]. To perform the replica calculation,
we first relax the discrete nature of Potts spins by rewrit-
ing the generalized Potts Hamiltonian [Eq. (1)] in terms of
spin magnetization m = 〈s〉P(s) following mean-field theory.
The associated Boltzmann measure then turns into a mul-
tivariate Gaussian distribution, whose covariance matrix is
the negative inverse of the interaction matrix, i.e., � =
−J−1 [41,42]. We then draw sequences {mμ}M

μ=1 of length L
from the multivariate Gaussian with zero mean and covariance
matrix � = (�L−1/2 + νI)−1, where � is a symmetric full-
rank random matrix sampled from the Gaussian orthogonal
ensemble, while νI is a diagonal matrix centering the spec-
trum of � in ν. To ensure � is positive-definite, we set ν > 2
due to the semicircle law [43]. By fixing the location i of
the masked spin across all input sequences, solving the MLM
task is equivalent to inferring the ith row of the interaction
matrix Ji.

To accomplish this task, we train a single layer of factored
self-attention by empirical risk minimization of a square loss
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FIG. 3. The interpolation peak of factored attention in theory and practice. Left: A replica analysis predicts the test loss exactly. Test loss
of a single layer of factored self-attention as a function of the number of samples per input dimension, as computed using replica theory (solid
line). The blue points represent the outcome of numerical minimization of the square loss (6), averaged over 30 realizations, and show perfect
agreement with the theory. Error bars are smaller than point size. Right: Same plot for a single layer of factored self-attention in the setting of
Fig. 2 (L = C = 20), showing the same qualitative behavior. The simulations are averaged over n = 30 different realizations.

with 	2-regularization:

Âi = argmin
Ai

⎡
⎣1

2

M∑
μ=1

(
mμ

i − Ai · mμ

\i

)2 + λ

2
||Ai||22

⎤
⎦. (6)

Our goal is to characterize the generalization loss εg (3)
of factored attention with the parameters obtained from min-
imizing the loss (6). In the high-dimensional limit, where
the number of samples and the sequence length M, L tend to
infinity while their ratio α ≡ M/L ∼ O(1), we can express εg

using replica theory as a function of four scalar quantities:

εg = ρ + q� − 2r� + 1/ν. (7)

Here, ν is the center of the spectrum of �, ρ = tr �\i/(ν2L)
is a function of the covariance matrix �\i, where we have
removed the ith row and column, while q� and r� are the
so-called overlap parameters. They correspond to practically
measurable quantities over different realization of the training
set, involving the estimator of the ith row of the interaction
matrix:

q� = Ât
i�\iÂi

L
, r� = − (A�

i )t�\iÂi

νL
. (8)

The parameter r∗ can thus be interpreted as an overlap be-
tween the estimated attention Âi and the ground-truth value
Ai while q∗ is the overlap of the estimated attention, both
mediated by the modified covariance matrix �\i.

As we show in the Appendix B, the values of these order
parameters for a given training set of size α can be obtained
by solving the optimization problem,

fβ = extr
q,r,δq,q̂,r̂,δq̂

[
−1

2
(q̂δq − qδq̂) + νrr̂ + lim

L→∞
1

L
�s + α�e

]
,

(9)

which yields the typical value (over the data) of the free
energy density associated with a Gibbs measure at inverse
temperature β whose Hamiltonian corresponds to the loss
function in (6). Note that the optimization only involves the
scalar parameters q, r, δq and their conjugates q̂, r̂, and δq̂,
with δq = q − qs, δq̂ = q̂ + q̂s, and qs being the self-overlap

among replicas. The so-called entropic potential �s is a func-
tion of the input covariance �\i:

�s = lim
L→∞

r̂2

2L
tr((�\i)

t�\i(νI + δq̂�\i )
−1)

+ lim
L→∞

q̂

2L
tr(�\i(νI + δq̂�\i )

−1), (10)

while the energetic potential �e only depends on the specific
choice of the loss function. As shown in the Appendix B, for
the optimization problem in Eq. (6), �e is given by

�e = − 1

2(1 + δq)

(
1

ν
+ ρ + q − 2r

)
. (11)

Using this approach, we estimated analytically the general-
ization loss in Eq. (7) as a function of the rescaled number of
samples α = M/L (see the Appendixes for details). The result
is shown in the right panel of Fig. 3. As can be noticed, the
test loss increases in the small data regime, before peaking at
α = 1. This value corresponds to the interpolation threshold,
which is the largest number of samples that the neural network
can perfectly fit, which in fact happens at M = L. Below this
threshold, the model overfits to its training data; beyond this
threshold, the generalization error decreases monotonically
with the training set size; for large α, we found εg ∼ α−1/2.
A similar peak in the generalization loss has been observed in
supervised learning [44] and it is connected to the well-known
“double descent” curve observed in deep neural networks in
the presence of label noise [45]. There, the peak is a conse-
quence of overfitting induced by the noise in the labels, and
it appears after an initial decay of the test loss at small α. In
the self-supervised learning regime explored in this work, we
find instead that the peak appears naturally as a consequence
of the intrinsic stochasticity of the inputs. Indeed, in masked
language modeling, the labels are a part of the input itself.
The noise affecting the labels is thus highly correlated to that
affecting the input. If the noise in the input is too high, the
model starts immediately overfitting and the initial descent is
not observed. The absence of the initial descent can therefore
be ascribed to the high level of the noise in the input.
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We verify the predictions of the replica theory by plotting
the generalization loss of a single layer of factored self-
attention trained on the generalized Potts model in the setting
of Fig. 2 at small regularisation (right side of Fig. 3). We see
the same qualitative behavior as predicted by replica theory,
even though in this case we did not apply any of the assump-
tions required for the replica analysis (the mean-field limit,
and the usage of a full-rank J matrix and of a U matrix fixed to
the identity). In particular, the test loss increases when adding
more data for small α. The only difference between the plots is
the location of the peak. For the square loss that we analyzed
with replicas, as we already commented, the peak is at the in-
terpolation threshold M = L. For the simulations with logistic
loss, the peak appears at the linearly separability threshold,
which is the largest number of points a linear classifier can
classify correctly, and which can be larger than 1 [11,18].

VII. CONCLUDING PERSPECTIVES

In this work, we have characterized the probability distri-
butions that a single layer of self-attention can learn when
trained on a masked language modeling task, considered as
a simple prototype of self-supervised learning. In particular,
we have shown analytically and numerically that with a single
factored-attention layer, it is possible to exactly reconstruct
the couplings of a generalized Potts model with two-body
interactions between both sites and colors. More precisely,
we showed that training factored self-attention on the MLM
objective is equivalent to solving the inverse Potts problem
using the pseudolikelihood method [32–36], and therefore it
yields consistent estimators of the parameters. These find-
ings make factored attention a powerful, theoretically driven
building block for deep transformers. Our replica analysis of
self-attention enabled us to compute the generalization loss
of the model exactly and yielded a nontrivial generalization
behavior.

Learning higher-order interactions will require additional
layers: a detailed study of how this can be achieved is an
interesting direction for future research. It will be interesting
also to study the learning dynamics of self-attention using
methods from statistical physics [46–49], both on MLM and
on supervised tasks [50–53]. In short, our work clarifies the
limits of standard self-attention trained on data where two-
body interactions dominate, and it highlights the potential of
factored attention as a component of transformer models.
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APPENDIX A: NUMERICAL DETAILS

The numerical simulations were performed using
JAX [54]. Both the factored attention layer and the vanilla
transformer architecture were optimized using SGD with
a minibatch size of 100 and a cosine annealer as the
learning rate decay scheduler, both standard choices in
the literature. The initial learning rate was adjusted to the

specific simulations, choosing between 0.1 and 0.01. The
vanilla transformer code has been taken from Ref. [55], with
no modifications made. In particular, as already pointed out in
the main text, each element si of a sequence s = (s1, . . . , sL )
is first transformed into a token xi = ei + pi, with ei being
the embedding of si, and pi being the positional encoding.
The tokenized sequences are then fed to a layer made of
two distinct sublayers. The first sublayer is composed of a
single-head attention, while the second sublayer contains
a two-layer fully connected neural network. The inputs
of both sublayers are connected to their outputs through
skip-connections, and layer normalization is then applied.

Finally, there is an output layer consisting of a linear trans-
formation from d- to C-dimensional space in order to obtain
a probability distribution over the colors through the softmax
nonlinearity. For a graphic visualization of the transformer en-
coder architecture, reference can be made to the original paper
of Vaswani et al. [1]. The list of transformer hyperparameters
used for the simulations of Fig. 2 is as follows: embedding
dimension, 20; number of heads, 1; number of layers, 1–3;
dropout probability, 0.0; number of classes, 20.

The data set was generated using Gibbs sampling, starting
from a random sequence of L = 20 sites and C = 20 Potts
colors and cyclically sampling the spins by exploiting the
knowledge of the exact conditional probabilities, Eq. (5). To
decorrelate the samples, 10 000 Gibbs sweeps were made
between each of the two saved configurations.

The simulations in the left panel of Fig. 3 have been
performed by sampling the input data points from a multi-
variate Gaussian distribution and the masked token from the
same distribution, conditioned on the other elements in the
sequence. The optimization problem in Eq. (6) is then solved
in closed form thanks to the Moore-Penrose inverse, as in
Ref. [18].

APPENDIX B: REPLICA ANALYSIS OF SELF-ATTENTION

In this Appendix, we discuss in detail the replica analy-
sis of factored single-layer self-attention. The computation
builds upon the recent advances in the statistical physics of
learning with regard to the extension of replica theory to
structured data [18,20,40]. In the following, we will show
how to slightly modify this new approach in order to deal
with masked language modeling tasks, under the following
simplified assumptions: mean-field limit, full-rank J matrix,
and U matrix fixed to the identity and thus not learned.

1. Statistical physics formulation of machine learning problems

In statistical physics, learning is considered as a dynamical
and exploratory process across the space of the learnable
parameters. At equilibrium, these parameters are assumed to
follow a Boltzmann-Gibbs distribution, where the role of the
Hamiltonian is actually played by the loss function:

πβ (Ai,D) = P(Ai )

Zβ

e−β
∑M

μ=1 	

(
mμ

i ,
Ai ·mμ

\i√
L

)

= PA(Ai )

Zβ

M∏
μ=1

PG

(
mμ

i |Ai · mμ

\i√
L

)
, (B1)
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with β being the inverse temperature and D the training set.
In the zero-temperature limit (i.e., β → ∞), the Boltzmann-
Gibbs distribution concentrates around the minima of the loss
function, which are merely the solutions of the optimization
problem in Eq. (6):

Âi =
β→∞

Eπβ
[Ai]. (B2)

Up to this point, reframing a machine learning prob-
lem in terms of statistical physics did not seem to be
very advantageous since sampling from a high-dimensional
Boltzmann-Gibbs distribution is known to be impracticable.

This is where the replica theory comes into play. In partic-
ular, it states that, in the high-dimensional limit [i.e., M, L →
∞ with α ≡ M/L ∼ O(1)], the free energy of a learning sys-
tem concentrates around its typical value over the input data
distribution:

fβ = − lim
L→∞

1

L
E{mμ

\i,m
μ
i }[logZβ]. (B3)

As we will see in the next section, this expectation can be
tackled by means of the replica trick. From this quantity, all
the high-dimensional metrics of interest can be computed as
a function of simple scalar quantities. This is the case, for
instance, of the generalization loss in Eq. (7). In particular,
the overlap parameters m� and q� correspond to practically
measurable quantities over different realization of the training
set, involving the estimator of the ith row of the interaction
matrix:

q� = Ât
i�\iÂi

L
, r� = −Jt

i�\iÂi

νL
. (B4)

In the next section, we will outline the main steps of the
replica trick leading to the generalization loss formula in
Eq. (7).

2. Replica calculation

As anticipated in the previous section, the replica trick
allows us to compute the typical value of the free-energy
density in Eq. (B3) by expressing this quantity as a function
of the solely replicated partition function Zn

β , obtained by
constructing n > 0 different and independent copies of the
same learning system:

fβ = − lim
n→0+

d

dn
lim

L→∞

[
1

L
E{mμ

\i,m
μ
i }Zn

β

]
. (B5)

a. Average over the training set

As a first step, the replica calculation focuses on the expec-
tation of the replicated partition function over the training set,
which, written in a more explicit form, looks like

E{mμ
\i,m

μ
i }Zn

β =
∫ n∏

a=1

dAa
i

n∏
a=1

PA
(
Aa

i

)

×
M∏

μ=1

Emμ
i |mμ

\i
Emμ

\i

[
PG

(
mμ

i | Aa
i · mμ

\i√
L

)]
,

(B6)

with PG and PA being, respectively, the Gibbs and the Gaussian
measure associated with the ith row of the attention matrix

as in Eq. (B1). Indeed, as already pointed out in the main
manuscript, the interaction matrix is drawn from the Gaussian
orthogonal ensemble, therefore its rows will correspond to
Gaussian random vectors. At this point, we can notice an
important aspect of MLM tasks. In this case, the labels are
not provided by a teacher vector as in standard teacher-student
settings. On the contrary, the masked tokens are directly sam-
pled from the input distribution by conditioning over all the
other elements composing the sequence:

mμ
i ∼ PJ (Ji )√

2πν−1
e− 1

2ν−1

(
mμ

i + Ji ·mμ
\i

ν
√

L

)2

= PJ (Ji )P0

(
mμ

i | Ji · mμ

\i

ν
√

L

)
.

(B7)
Note that the noise in the labels arises as a consequence of the
one already affecting the input data points, meaning that its
intensity cannot be chosen independently from the intrinsic
stochasticity of the input. Due to these considerations, by
explicitly expressing the outer expectation in Eq. (B6), we
then obtain

E{mμ
\i,m

μ
i }Zn

β =
∫

dJi PJ (Ji )
n∏

a=1

(∫
dAa

i PA(Aa
i )

)

×
M∏

μ=1

{∫
dmμ

i Emμ
\i

[
P0

(
mμ

i | Ji · mμ

\i

ν
√

L

)

×PG

(
mμ

i | Aa
i · mμ

\i√
L

)]}
. (B8)

To compute the expectation over the input sequences with a
masked element at position i, we first define the preactivations
as

hμ
a = Aa

i · mμ

\i√
L

, zμ = −Ji · mμ

\i

ν
√

L
, (B9)

and then we express these definitions in terms of Dirac deltas
and their corresponding integral representation:

1 ∝
∫ M∏

μ=1

n∏
a=1

dhμ
a dĥμ

a

2π

M∏
μ=1

eiĥμ
a (hμ

a − Aa
i ·mμ

\i√
L

)
,

1 ∝
∫ M∏

μ=1

dzμdẑμ

2π

M∏
μ=1

eiẑμ(zμ+ Ji ·mμ
\i

ν
√

L
)
. (B10)

By plugging these factors into Eq. (B8), we then obtain

E{mμ
\i,m

μ
i }Zn

β

=
∫

dJi PJ (Ji )
∫ n∏

a=1

dAa
i

n∏
a=1

PA
(
Aa

i

)

×
∫ M∏

μ=1

dmμ
i

∫ M∏
μ=1

dzμdẑμ

2π

M∏
μ=1

eiẑμzμ

M∏
μ=1

P0
(
mμ

i | zμ
)

×
∫ M∏

μ=1

n∏
a=1

dhμ
a dĥμ

a

2π

M∏
μ=1

n∏
a=1

eiĥμ
a hμ

a

M∏
μ=1

n∏
a=1

PG
(
mμ

i | hμ
a

)

×
n∏

μ=1

Emμ
\i

[
eiẑμ

Ji ·mμ
\i

ν
√

L

n∏
a=1

e−iĥμ
a

Aa
i ·mμ

\i√
L

]
. (B11)
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The expectation over the masked input sequences is a simple
multivariate Gaussian integral, whose solution is given by

Emμ
\i

[
eiẑμ

Ji ·mμ
\i

ν
√

L

n∏
a=1

e−iĥμ
a

Aa
i ·mμ

\i√
L

]

= e− 1
2

Jt
i �\iJi
ν2L

(zμ )2

e
∑n

a=1
Jt

i �\iAa
i

νL ĥμ
a ẑμ− 1

2

∑n
a,b=1

(Aa
i )t

�\iAa
i

L ĥμ
a ĥμ

b ,

(B12)

where, as already pointed out in the main text, �\i corresponds
to the covariance matrix of the masked input sequences, that
is, the input covariance matrix without the contribution of the
row and column associated with the ith masked token. By
replacing the solution of the expectation in Eq. (B11), we
then obtain

E{mμ
\i,m

μ
i }Zn

β

=
∫

dJi PJ (Ji )
∫ n∏

a=1

dAa
i

n∏
a=1

PA
(
Aa

i

)

×
∫ M∏

μ=1

dmμ
i

∫ M∏
μ=1

dzμdẑμ

2π

M∏
μ=1

eiẑμzμ

M∏
μ=1

P0
(
mμ

i | zμ
)

×
∫ M∏

μ=1

n∏
a=1

dhμ
a dĥμ

a

2π

M∏
μ=1

n∏
a=1

eiĥμ
a hμ

a

M∏
μ=1

n∏
a=1

PG
(
mμ

i | hμ
a

)

×
n∏

μ=1

e− 1
2

Jt
i �\iJi
ν2L

(zμ )2+∑n
a=1

Jt
i �\iAa

i
νL ĥμ

a ẑμ− 1
2

∑n
a,b=1

(Aa
i )t

�\iAa
i

L ĥμ
a ĥμ

b .

(B13)

b. Rewriting the averaged replicated partition function
in terms of saddle-point integrals

As a consequence of the average over the training set,
the different replicas are now interacting among each other
through the following set of overlap parameters:

ρ = Jt
i�\iJi

ν2L
, ra = − (Aa

i )t�\iJi

νL
, qab = − (Aa

i )t�\iAb
i

L
.

(B14)
Once again, to proceed further in the calculation, we can
insert their definition by means of Dirac δ’s and their integral
representation:

1 ∝
∫

dρd ρ̂

2π
eiρ̂(ν2Lρ−Jt

i �\iJi ),

1 ∝
∫ n∏

a=1

dradr̂a

2π

n∏
a=1

eir̂a (−νLra−(Aa
i )t �\iJi ), (B15)

1 ∝
∫ ∏

a�b

dqabdq̂ab

2π

∏
a�b

eiq̂ab(qab−(Aa
i )t �\iAb

i ).

By substituting the overlap definition in Eq. (B13), plug-
ging in the corresponding factors, and performing the change
of variables—iρ̂ → −ρ̂, ir̂a → r̂a, and iq̂ab → q̂ab—we can
rewrite the averaged replicated partition function in terms of

saddle-point integrals over the overlap parameters:

E{mμ
\i,m

μ
i }Zn

β =
∫

dρd ρ̂

2π

∫ n∏
a=1

dradr̂a

2π

×
∫ ∏

a�b

dqabdq̂ab

2π
eL� (n)

, (B16)

where the action � (n) is a nontrivial function of the overlap
parameters:

� (n) = −ν2ρρ̂ + ν

n∑
a=1

rar̂a −
∑
a�b

qabq̂ab + 1

L
�s + M

L
�e,

(B17)
where �s and �e are the so-called entropic and energetic
potential, and, in the specific case of a single-layer factored
attention, they are given by

�s = log

[∫
dJiPJ (Ji )

∫ n∏
a=1

[
dAa

i PA
(
Aa

i

)]

× eρ̂Jt
i �\iJi+

∑n
a=1 r̂a(Aa

i )
t
�\iJi+

∑
a�b q̂ab(Aa

i )
t
�\iAb

i

]
,

�e = log

[∫
dmi

∫
dzdẑ

2π
e− ρ

2 ẑ2+iẑzP0(mi|z)

×
∫ n∏

a=1

dhadĥa

2π
e− 1

2

∑n
a,b=1 qabĥaĥb−ẑ

∑n
a=1 raĥa

×ei
∑n

a=1 ĥaha PG(mi|ha)

]
. (B18)

Note that we have dropped the dependency of �e on the μ

index since all the μ-dependent terms decouple with respect
to μ.

c. Replica symmetric assumption

To proceed further in the calculation, we need to as-
sume a specific replica structure. Since all replicas have been
introduced independently from each other with no specific dif-
ferences among them, it seems natural to assume that replicas
should all play the same role and that, therefore, the overlap
parameters should not depend on the specific replica index. In
particular, under the replica symmetric ansatz, we assume

qab =
{

g if a = b,
q otherwise, − iq̂ab =

{− ĝ
2 if a = b,

q̂ otherwise,

ra = r, −ir̂a = r̂ ∀a. (B19)

By plugging the replica symmetric assumption in Eqs. (B17)
and (B18) and applying the following Hubbard Stratonovich
transformations:

e
q̂
2

∑
a�b (Aa )t �\iAb =

∫
Dξ exp

(
n∑

a=1

(Aa
i )t (q̂�\i)

1/2ξ

)
,

e− q
2

∑n
a,b=1 ĥaĥb =

∫
Dξ exp

(
i
√

q
n∑

a=1

ĥ2
a ξ

)
, (B20)
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with ξ ∼ N (0, 1), we then get the expression for the replica
symmetric action:

� (n) = −ν2ρρ̂ + νrr̂ + n

2
(δq + q)(δq̂ − q̂) − n(n − 1)

2
qq̂

+ 1

L
�s + M

L
�e, (B21)

where we have defined δq̂ = ĝ + q̂ and δq = g − q. The
replica symmetric potentials �s and �e are are given by

�s = log

[∫
dJiPJ (Ji )e

ρ̂Jt
i �\iJi

∫
Dξ

×
(∫

dAiPA(Ai )e
r̂At

i�\iJi− l̂
2 At

i�\iAi+At
i (q̂�\i )1/2

ξ

)n]
,

�e = log

[∫
dmi

∫
dzdẑ

2π
e− ρ

2 ẑ2+iẑzP0(mi|z)
∫

Dξ

×
(∫

dhdĥ

2π
e− l

2 ĥ2+i
√

qξ ĥ−mẑĥ+iĥhPG(mi|h)

)n]
.

(B22)

d. Zero replica limit

By taking the limit of n → 0 in Eqs. (B21) and (B22) and
solving the integrals with respect to the ẑ and ĥ variables, we
then get the following expression for the action potential:

� (n→0) = νrr̂ + 1

2
(l + q)

(
l̂ − q̂

) + 1

2
qq̂ + 1

L
� (n→0)

s

+ M

L
� (n→0)

e (B23)

with the entropic and energetic potentials in the zero replicas
limit given by

� (n→0)
s =

∫
Dξ

∫
dJiPJ (Ji )

× log

[∫
dAiPA(Ai )e

r̂At
i�\iJi− l̂

2 At
i�\iAi+At

i (q̂�\i )1/2
ξ

]
,

� (n→0)
e =

∫
Dξ

∫
dmi

∫
dz√

2π
(
ρ − r2

q

) e
−

(
z+ r√

q ξ

)2

2

(
ρ− r2

q

)

× P0(mi|z)log

[∫
dh√
2π l

e− (h+√
qξ )2

2l PG(mi|h)

]
.

(B24)

Note that, as in standard teacher-student settings [18], in order
to avoid divergent terms in this limit, the overlap ρ and its
conjugate ρ̂ need to be constrained to EJi [J

t
i�\iJi]/ν2 and 0,

respectively.

e. Typical free-energy density

Having determined the expression for the replicated par-
tition function in the zero-temperature limit, we can actually

compute the typical free-energy density as

fβ = − lim
n→0+

d

dn
lim

L→∞

[
1

L
E{mμ

\i,m
μ
i }Zn

β

]

= lim
L→∞

1

L

∫
dρd ρ̂

2π

∫
drdr̂

2π

∫
dqdq̂

2π
eL� (n→0)

. (B25)

In the high-dimensional limit, we can solve the integrals
over the overlap parameters by saddle-point, thus obtaining

fβ = extr
q,r,δq,q̂,r̂,δq̂

[
νrr̂ + 1

2
(δq + q)(δq̂ − q̂) + 1

2
qq̂

+ lim
L→∞

1

L
� (n→0)

s + α� (n→0)
e

]
, (B26)

where the values of the overlap parameters extremizing the
typical free-energy density can therefore be determined by
solving the following system of coupled saddle-point equa-
tions:

q = −2
∂� (n→0)

s

∂δq̂
, q̂ = 2

∂� (n→0)
e

∂δq
,

δq̂ = −2
∂� (n→0)

e

∂q
, δq = 2

∂� (n→0)
s

∂ q̂
. (B27)

r = −1

ν

∂� (n→0)
s

∂ r̂
, r̂ = −1

ν

∂� (n→0)
e

∂r
,

Up to this point, we have performed the replica calculation in
full generality, without specifying either the interaction matrix
or the loss function. In the next section, we will evaluate
the typical free-energy density for the specific MLM task of
Eq. (6) under the simplified assumptions of Sec. VI of the
main text.

f. Zero-temperature limit and Gaussian priors

As already pointed out in the main text, the interaction
matrix J is sampled from the GOE. It is then natural to assume
a Gaussian prior on the ith row of the attention matrix:

PA(A) = 1√
2π

eβλAt
i Ai , (B28)

with β being the inverse temperature parameter, while λ is
the L2 regularization strength. Moreover, the optimization
problem in Eq. (6) optimizes a square loss to solve the cor-
responding MLM task. This means that the Gibbs measure of
Eq. (B1) associated with this task is

PG(mi|h) ∝ e− β

2 (mi−h)2

. (B29)

By plugging these two specific forms of both the prior
and the Gibbs measure in Eq. (B6) and taking the zero-
temperature limit as exemplified in [18,40], we get the
following expression for the typical free-energy density in the
zero-temperature limit:

f =
β→∞

extr
q,r,δq,q̂,r̂,δq̂

[
νrr̂ − 1

2
(δqq̂ − qδq̂)

+ lim
L→∞

1

L
� (n→0)

s + α� (n→0)
e

]
, (B30)
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with the entropic and energetic potential given by

�n→0
s =

β→∞
1

2
[r̂2tr(�\i)

t�\i(βλI + δq̂�\i)
−1

+ q̂tr�\i(βλI + δq̂�\i)
−1],

�n→0
e =

β→∞
−1

2

ν−1 + ρ + q − 2r

1 + δq
, (B31)

and ρ = tr�\i/(ν2L). Note that this functional form of the
typical free-energy density corresponds exactly to that of
supervised learning with the noisy label and the Gaussian
structured data [40]. However, we should point out again
that the variance of the noise in the labels, controlled by
the shift factor ν, is a direct consequence of the intrinsic
noise already affecting the input. Therefore, it cannot be tuned
independently from it. This is also reflected in the slightly dif-
ferent functional forms of the saddle-point equations in (B27),
which, in the zero-temperature limit with Gaussian priors and

square loss, are given by

q = tr[(q̂�\i + r̂2�\i(�\i)
t )�\i(λI + δq̂�\i )

−2],

δq = tr[(λI + δq̂�\i)
−1�\i],

r = − r̂

ν
tr[�\i(�\i)

t (λI + δq̂�\i)
−1],

q̂ = ν−1 + ρ + q − 2r

(1 + δq)2
,

δq̂ = 1

1 + δq
,

r̂ = − 1

ν(1 + δq)
. (B32)

As in the case of supervised learning settings [18,40], the
solution of this system of coupled saddle-point equations in
the zero-temperature limit allows us to express the general-
ization loss as shown in the main text [Eq. (7)], with the
exception that the noise in the labels is the direct consequence
of the intrinsic noise of the inputs.
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