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Abstract1

We consider the estimation of the relative median poverty gap (RMPG)2

at the level of Italian provinces using data from the European Survey on3

Income and Living Conditions. The overall sample size does not allow re-4

liable estimation of income distribution related parameters at the provin-5

cial level; therefore, small area estimation techniques has to be used. The6

specific challenge in estimating the RMPG is that, as it summarizes the7

income distribution of the poor, samples for estimating it for small sub-8

populations are even smaller than those available in other parameters. We9

propose a Bayesian strategy where various parameters summarizing the10

distribution of income at the provincial level are modelled by means of a11

multivariate small area model. To estimate the RMPG, we relate these12

parameters to a distribution describing income and namely the General-13

ized Beta of the second kind (GB2). Posterior draws from the multivariate14

model are then used to generate draws for the GB2 area-specific parame-15

ters and then of the RMPG defined as their functional.16

Keywords: GB2 distribution; hierarchical Bayes; income inequality; poverty;17

complex sample surveys.18

1 Introduction19

The relative median at-risk-of-poverty gap is one of the indicators endorsed by20

the European Union for the assessment of social cohesion (European Commis-21

∗Corresponding author’s address: Enrico Fabrizi, DISES, Università Cattolica del S. Cuore,
Via Emilia Parmense 84, 29122 Piacenza, Italy, e-mail:enrico.fabrizi@unicatt.it
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sion, 2004). It is defined as the median distance of the individual poor equiv-22

alized income from a threshold defined as the 60% of national median, relative23

to this threshold. The relative median at-risk-of-poverty gap (from now on,24

RMPG) is an important complement to the information provided by the head-25

count ratio measure of poverty (at-risk-of-poverty rate) as it offers an insight26

on how deep is the poverty experienced by the median poor, regardless of how27

many live below the poverty line.28

At-risk-of-poverty rates, RMPGs, as well as many other poverty and in-29

come inequality measures are annually calculated by EUROSTAT for most EU-30

member states using data from the European Survey on Income and Living31

Conditions (EU-SILC), conducted under harmonized guidelines (see Atkinson32

and Marlier, 2010, for a general introduction). Estimates of these parameters33

are published also for large regions or social groups within countries. This paper34

is about estimating RPMG in small areas, that is for a collection of population35

subsets (‘areas’) for which the subset-specific sample sizes are not large enough36

to obtain decent precision from ordinary survey-weighted estimators (that are37

labelled as direct estimators in the small area literature).38

We note that the problem of sample sizes not large enough is more severe for39

the RMPG than for other summaries of the income distribution as it is a (scaled)40

quantile of the poor income distribution whose direct estimation is based only41

on those who are poor, usually a minority of the sample units. For instance,42

if the prevalence of the poor ranges from 5% to 33% the expected area-specific43

sample sizes available to estimate the sample mean will be from 3 to 20 times44

larger than those available for the estimation of the RMPG.45

Specifically, we consider the problem of estimating the RMPG for Italian46

administrative provinces using data from the Italian section of the EU-SILC47

survey. In Italy there are 110 provinces corresponding to the NUTS 3 level48

according to Eurostat nomenclature of territorial units for statistics (Eurostat,49

2019). Provincial administrations play an important role in implementing poli-50

cies decided at higher levels (national or regional) and in co-ordinating the ac-51
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tivities of lower administrative levels (municipalities and health districts). We52

consider data from the 2013 wave of the EU-SILC survey and auxiliary infor-53

mation known at the provincial level obtained from various sources, including54

fiscal archives of the Italian Ministry of finance and population registers.55

Small area estimation is about complementing the insufficient information56

provided by area-specific samples with auxiliary information known from ex-57

ternal sources (Censuses, administrative archives,...). The complementing is58

typically achieved by using models that can be specified at either the area or59

the unit level (Pfeffermann, 2013).60

In this paper we consider area-level models (Rao and Molina, 2015, chapter61

5). These models are less demanding in terms of required information as only62

direct estimates, associated measures of uncertainty and summaries at the area63

level of the auxiliary variables are needed. They can represent the only viable64

strategy to the secondary data analysis that does not have access to the details65

of the sampling design and relevant unit-level information. Moreover, some typ-66

ical problems met when using unit-level models, such as possible inconsistencies67

in definitions and measurement techniques for auxiliary variables between the68

sample survey and the auxiliary source, are sidestepped. See Tarozzi and Deaton69

(2009) and Tzavidis et al. (2018) for more general discussions of these topics.70

In our application, we have limited access to some information on the sam-71

pling design and dispose only of area-level summary statistics for the auxiliary72

information we consider in the models.73

As it relies on area-level models, this research is different from previous74

literature on small area estimation of the RMPG (Molina and Rao, 2010; Molina75

et al., 2014) that focuses on unit-level modelling.76

The inputs of an effective area-level model are: i) a set of area-level approxi-77

mately unbiased estimates endowed with reliable sampling variability measures;78

ii) a vector of area-level auxiliary information with good predictive power for79

the parameter in question. If we denote ηd the RPMG in area d, η̂d its direct80

estimate, xd a vector of area level auxiliary information, a typical area level81
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model is not a viable strategy as direct estimators of RPMG are biased (as the82

median is) and very imprecise in small samples (see results in Appendix 1);83

moreover auxiliary variables with good predictive power are difficult to find for84

ηd.85

Our alternative strategy can be summarized as follows. We consider θd, a86

vector of additional small area parameters for which approximately unbiased87

direct estimators and predictive auxiliary information is available. As they are88

not of direct interest, we label θd as nuisance small area parameters. We specify89

a small area model for θd. The components of θd can be related functionally90

to each other via ξd, a vector of parameters characterizing a distribution we91

assume for income in area d, so that θd = θ(ξd). The solution in ξd of this92

system of equations can then be used to functionally estimate ηd = η(ξd) under93

the distribution assumed to describe income.94

A few technical comments are in order: i) we consider five nuisance small95

area parameters θkd so that θd = {θkd}, k = 1, . . . , 5; they include three head-96

count ratios based on different thresholds, a concentration index and the mean97

of the log-income; their choice is aimed at providing a description of the whole98

income distribution at the area level. More details will be given in section 2.2;99

ii) we specify a multivariate small area model for θd. Multivariate models have100

a long tradition in small area estimation dating back at least to Ghosh et al.101

(1996) and they usually lead to more efficient estimators as they exploit the102

correlation between parameters; iii) the parametric distribution we consider for103

income is the GB2 (Generalized Beta of the second kind McDonald, 1984) that104

is widely used in the literature. We also consider three distribution that are105

special cases of the GB2 distribution (Dagum, Singh-Maddala, Beta of the sec-106

ond kind) that depend on three parameters. The recourse to these special cases107

is motivated by computational sustainability; more details on this point will be108

given in sections 4.2 and 5; iv) the number of nuisance parameters is larger109

than the size of ξ characterizing the GB2 distribution: this entails a solution of110

the system θd = θ(ξd) based on the minimization of a loss function that allows111
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more flexible and numerically stable solutions.112

The core of this methodology, that is the estimation of ξ by solving θd =113

θ(ξd), was introduced in Graf and Nedyalkova (2014). Here we apply it to114

a small area estimation problem in the framework of a hierarchical Bayesian115

model. Specifically, we approximate posterior distributions of θd by means of116

Markov Chains Monte Carlo (MCMC) algorithms. By solving θd = θ(ξd) for117

each MCMC draw we obtain Markov chains for the parameters characterizing118

the assumed income distribution at the area level. The ηd = η(ξd) can be119

exploited to generate a Markov Chain converging to the posterior of the target120

parameter ηd.121

Predictors of nuisance parameters are design-consistent (see section 3), i.e.122

their point predictors converge to area-specific population descriptive quanti-123

ties regardless of misspecifications of the multivariate model. Asymptotically124

the estimator of ηd converges to the functional of these population quantities125

that depends on the assumption of GB2 distributed income in the area. As a126

consequence, the dependence on the assumption of these distribution remains,127

but the estimator is robust with respect to misspecifications of the multivariate128

small area model.129

The rest of the paper is organized as follows. Section 2 introduces the data130

set we consider in this application and direct estimation of the small area pa-131

rameters involved in the study. In section 3 we introduce the multivariate small132

area estimation model that provides the basis for the estimation of the RPMG.133

Section 4 includes a short review of the Generalized Beta of the second kind134

distribution and its special cases and the illustration of our functional estima-135

tion methodology. The estimation of RMPG at the level of Italian provinces is136

illustrated in section 5, with some discussion. As the method is rather complex,137

we explore the frequentist properties of the proposed estimators by means of138

a simulation exercise, based on the same sample data (section 6). Concluding139

remarks are provided in section 7.140
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2 The data and direct estimation of small area141

parameters142

2.1 The data143

We analyze data from the 2013 wave of the EU-SILC. The survey is conducted in144

many countries across the European Union by the relevant National Institutes145

of Statistics using harmonized questionnaires and survey methodologies. Al-146

though following common guidelines, sampling designs can differ from country147

to country. In Italy, the EU-SILC is a rotating panel survey with 75% overlap148

of samples in successive years. The fresh part of the sample is drawn according149

to a stratified two-stage sample design, where municipalities (LAU 2 level, see150

Eurostat, 2019) are the primary sampling units (PSUs), while households are151

the secondary sampling units (SSUs). The PSUs are divided into strata accord-152

ing to their population size and the SSUs are selected by systematic sampling153

in each PSU.154

We target administrative provinces. The 110 Italian provinces have largely155

different populations ranging from the 4.3 million inhabitants of Rome, down to156

less 0.1 million (Medio Campidano, Isernia, Ogliastra). Provinces are unplanned157

domains for the EU-SILC survey. For the 2013 wave that we consider in this158

article, province-specific sample sizes range from 6 up to 882 in terms of house-159

holds and from 10 to 2018 in terms of individuals. The median province-specific160

sample size is 115 households (274 individuals).161

2.2 Direct estimation162

Let’s consider a population P of size N and a partition of it into D small areas163

{P1, . . . , Pd, . . . , PD} of size Nd,
∑D
d=1Nd = N . A sample of overall size n is164

drawn from the population according to a complex design such as the stratified165

multi-stage design with a rotating panel component used in EU-SILC.166

Area-specific samples sizes are denoted nd so that
∑D
d=1 nd = n. A survey167
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weight wdj is associated to each unit in the sample (j = 1, . . . , nd, d = 1, . . . , D)168

reflecting both inclusion probabilities and non-response corrections. We target169

a variable y, the equivalized disposable income, defined as the total disposable170

household income divided by the equivalized household size calculated according171

to the modified OECD scale (see Fusco et al., 2010).172

Although our ultimate focus is the estimation of the RPMG, we consider173

several population descriptive quantities at the area level that we label small174

area parameters. To avoid confusion, we denote the RPMG at the area level175

with ηd and the vector of nuisance small area parameters as θd = {θkd} with176

k = 1, . . . , 5. Whenever nd > 0 these parameters can be estimated using area-177

specific samples using Hàjek type (Hàjek, 1958) or other design based estimators178

that we can assume approximately unbiased. We label these estimators as direct179

and denote them η̂d, θ̂kd.180

The RMPG is defined as η = {pt1 − Mep(y)}/pt1, where Mep(y) is the181

median income of the poor, i.e. Mep(y) = Me(y|y ≤ pt1) and pt1 is the national182

poverty threshold, defined, in the EU-SILC framework as 60% of the national183

median of equivalized income. A survey weighted estimator of ηd is given by184

η̂d =
pt1 − m̂pd

pt1
(1)

where185

m̂pd =


1
2 (y(jd) + y(j+1,d)) if

∑j
i=1 w(i) = 0.5

∑ndp

i=1 w(i)

y(j+1,d) if
∑j
i=1 w(i) < 0.5

∑ndp

i=1 w(i) <
∑j+1
i=1 w(i)

ndp ≤ nd, is the number of poor in the sample specific to domain d, y(i) ≤ y(i+1),186

i = 1, . . . , ndp is the non decreasing sequence of poor incomes. η̂d is likely to187

be more imprecise than θ̂kd as it based only on the income of those below pt1188

in the sample, typically a minority. Moreover, in very small samples it can be189

substantially biased. A small design-based simulation exercise, based on EU-190
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SILC data and reported in Appendix 1, explores the size of bias and variance191

of this estimator in small samples.192

The nuisance parameters we consider in this application are: i) the at-risk-193

of-poverty rate, θ1 = E{1(y ≤ pt1)}, a poverty count based on the threshold pt1194

and that represent the most popular poverty measure in the EU; ii) the pro-195

portion of people living with an equivalized income below the national median:196

θ2 = E{1(y ≤ Me(y))}; ii) an affluence rate defined as the proportion of indi-197

viduals for which y > pt3 where pt3 is some high threshold, that we fix at twice198

the national sample median in line with Peichl et al. (2010): θ3 = E{1(y > pt3)}.199

Affluence rates are useful to describe the right tail of the y distribution at the200

area level; iv) the Gini concentration index, can be defined as θ4 = ∆(2E(y))−1201

where ∆ = E{|ys − yt|} with ys, yt identically distributed as y; v) the mean of202

the log-income, i.e. θ5 = E{log(y)}.203

We now present direct estimators for the nuisance parameters θkd. For204

k = 1, 2 they can be written as:205

θ̂kd =

∑nd

j=1 wdj1(ydj < ptk)∑nd

j=1 wdj
(2)

When k = 1, we have the at-risk-of-poverty rate while for k = 2 we define206

pt2 = Me(y), i.e. pt1 = 0.6pt2. We note that, when estimated at the whole207

population level θ̂2. = 0.5; in specific domains it can be read as a departure of208

the local median from that of entire population. The direct estimator of θ3d is209

defined as210

θ̂3d =

∑nd

j=1 wdj1(ydj > pt3)∑nd

j=1 wdj
(3)

We note that pt1, pt2, and pt3 rely on the estimated national median of the211

equivalized income. As this estimate is based on a very large national sample,212

we will overlook the uncertainty associated to these thresholds and threat them213

as fixed constants.214

The most popular direct estimators θ4, for instance the one considered in215

Alfons and Templ (2013), are biased in small samples. In line with Fabrizi and216
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Trivisano (2016) we consider a nearly unbiased direct estimator that accounts217

also for the fact that individuals in the same household share the same income:218

θ̂4d =
1

2 ˆ̄Yd

∑nd

j=1

∑nd

k=1 wdjwdk|ydj − ydk|
N̂2
d −

∑md

h=1 w̃
2
dh

. (4)

where ˆ̄Yd = N̂−1d
∑nd

j=1 wdjydj , N̂d =
∑nd

j=1 wdj is the Horwitz-Thompson esti-219

mator of the domain size; moreover, md is the number of households sampled220

in domain d and w̃dh =
∑nh

j=1 wdj is the sum of weights associated to the nh221

individuals living in household h (h = 1, . . . ,md).222

An approximately unbiased estimator of θ5 can be defined as223

θ̂5d =

∑nd

j=1 wdj log ydj∑nd

j=1 wdj
(5)

The direct estimators θ̂kd are nearly unbiased but their variance can be large224

when nd is small. In the case of of the EU-SILC survey, their variances will be225

larger than those we would have obtained with simple random samples of the226

same number of individuals. In the first place, the same equivalized income is227

shrared by all individuals in the same household (perfect intra-cluster correla-228

tion). Moreover, the design effect of the EU-SILC survey for Italy is larger than229

1 even considering variables at the household level; although the design is strat-230

ified at the first stage, clustering of households within municipalities, unequal231

selection probabilities and weighting corrections to counter non response cause232

efficiency losses (see Clemenceau and Museux, 2007; Goedemé, 2013, for more233

details).234

To estimate the variances of θ̂kd we consider a two steps approach: first a235

bootstrap algorithm, described in Fabrizi et al. (2011) is used to obtain pre-236

liminary variance estimates. These raw variances are then used to estimate237

design effects and other parameters of variance smoothing models that will be238

described in section 5. We note that the bootstrap algorithm does not incorpo-239

rate all details of the EU-SILC sample design for Italy because of limited access240
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to municipality level clustering and longitudinal tracking information; based on241

previous literature (see Goedemé, 2013; Biewen and Jenskins, 2006) we assume242

that once essential features of the designs are accounted for (stratification, clus-243

tering at the household level, unequal selection probabilities and weighting),244

good approximations to actual sampling variances can be obtained. As pointed245

out in Tzavidis et al. (2018), variance smoothing is a delicate step in building246

an area-level model, so special attention will be devoted to the assessment and247

fit quality of these smoothing models in section 5.248

3 A multivariate small area model for parame-249

ters related to equivalized income distribution250

In this section we describe a multivariate model for θkd, k = 1, . . . , 5. In line251

with the typical specification of small area models, ours has two levels: i) a252

sampling model that provides a likelihood for the direct estimators and relates253

them to the underlying population parameters; ii) a linking model that relates254

the small area parameters to auxiliary information and to each other by means255

of exchangeable random effects according to the principle of borrowing strength.256

The recourse to a multivariate model is motivated by the fact that the five257

parameters represent different aspects of the area-level distribution of the tar-258

get variable y. The estimates θ̂kd, represent summaries of the same area-specific259

samples, so it is natural to assume they are correlated, and to specify a multi-260

variate sampling model. We do this by means of a gaussian copula function in261

line with Fabrizi et al. (2016). See Souza and Moura (2016) for other applica-262

tions of copula functions in the small area context. We present the sampling263

model in two steps: first, we introduce the marginal sampling models, then the264

copula function is used to account for their dependence structure.265

For the rates θkd, k = 1, 2, 3, in line with Fabrizi et al. (2016), we speficy266

a zero-inflated Beta sampling model to account for the fact that rates range in267

the (0, 1) interval and that when md is small, the direct estimate can be zero,268
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i.e. θ̂kd = 0 even if it is assumed, as we do θkd > 0:269

f
(
θ̂kd|θ?kd, φ̂kd

)
=

(
1− θ?kd

)md1(θ̂kd = 0) (6)

+
{

1−
(
1− θ?kd

)md
}
dBeta(Akd, Bkd)1(θ̂kd > 0)

where Akd = θ?kd
(
φ̂kd − 1

)
, Bkd =

(
1 − θ?kd

)(
φ̂kd − 1

)
. See Ospina and Fer-270

rari (2012), Wieczorek and Hawala (2011) for alternative specifications of zero-271

inflated beta regression allowing also for θkd = 0.272

The quantities φ̂kd can be interpreted as an effective sample size in terms of273

individuals and are estimated using variance smoothing models. See section 5274

for more details on these models and estimation leading to φ̂kd. The parameter275

θ?kd is defined as θ?kd = E
(
θ̂kd|θ̂kd > 0, θkd, φ̂kd

)
so the parameter we are actually276

interested in is given by277

θkd = θ?kd
{

1−
(
1− θ?kd

)md
}

= E
(
θ̂kd|θ?kd, φ̂kd

)
Note that in (6) we assume that P (θ̂kd = 0) depends explicitly on the underly-278

ing rate θ?kd and the number md of households sampled from domain d.279

280

The sampling model for the Gini concentration coefficient is based on a Beta281

likelihood, with a parameterization we take from Fabrizi and Trivisano (2016):282

θ̂4d ∼ Beta

(
2φ̂4d

1 + θ4d
− θ4d,

2φ̂4d − θ4d(1 + θ4d)

1 + θ4d

1− θ4d
θ4d

)
(7)

As a consequence E(θ̂4d|φ̂4d) = θ4d, V (θ̂4d|φ̂4d) = θ24d
(
1− θ24d

)(
2φ̂−14d

)
. See 5 for283

details on variance model used to obtain the quantities φ̂4d, that will be treated284

as known.285

The sampling model for the mean of the log-incomes θ̂5d is a normal Fay-286

Herriot model:287

θ̂5d ∼ N
(
θ5d, φ̂

−1
5d

)
(8)
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Variances φ̂−15d are estimated using the bootstrap algorithm discussed in Fabrizi288

et al. (2016). The assumption of known variances for normal small area models289

is in line with most literature (see Rao and Molina, 2015, chapter 5). It is also290

consistent with (6) and (7) as we consider a two parameter distribution where291

one of the two parameters is assumed known.292

The Gaussian copula (Clemen and Reilly, 1999) used to model the direct293

estimators’ dependence structure is parametrized in terms of the correlation294

matrix R of a Gaussian multivariate distribution. In detail, we assume that:295

f(θ̂1d, . . . , θ̂kd) =
g1(θ̂1d)× · · · × gk(θ̂kd)

|R|1/2
= exp

{
− 1

2
zTk (R−1 − Ik)zk

}
(9)

with zTk =
(
Φ−1{F1(θ̂1d)}, . . . ,Φ−1{F5(θ̂kd)}

)
; the marginal densities fk(θ̂kd),296

k = 1, . . . , 5 are defined in (6)-(8) while Fk(θ̂kd) are the associated cumulative297

distribution functions. The matrix R is to be estimated from the data. For the298

specific application we consider in this paper, the estimation procedure will be299

outlined in section 5.300

The linking models for the three rates and the Gini coefficients are based on301

a logit link302

logit(θkd) = xtkdβk + vkd (10)

(k = 1, . . . , 4), while an identity link is considered for θ5d:303

θ5d = xt5dβk + v5d (11)

The vector xkd contains for each parameter and each area auxiliary information304

known at the area level. Note that xkd and βk may vary with k; but the first305

element of xkd is 1 in all cases.306

The multivariate relationship among the population parameters θkd is incor-307

porated in the distributional assumption for vd = (vkd), k = 1, . . . , 5:308

vd ∼MVN
(
0,Σv

)
(12)
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where MVN denotes the multivariate normal distribution. For Σv we specify a309

prior within the family proposed by Huang and Wand (2013) with the purpose310

of keeping the analytical and computational tractability of the inverse Wishart311

but improving the non-informativity properties:312

Σv|a1, . . . , ak ∼ Inv-Wishart
(
ν + 1, 2νdiag(a−11 , . . . , a−1k )

)
(13)

ak ∼ Inv-Gamma
(1

2
,

1

Ak

)
, k = 1, . . . , 5.

This prior marginally induces σk ∼ half − t(ν,Ak). The choice ν = 2 allows313

for a diffuse prior, close to the popular half-Cauchy (ν = 1); moreover it in-314

duces a marginal uniform prior on the correlations between the random effects.315

We choose Ak = 1 after careful consideration of the scale of the parameters’316

distribution and some sensitivity analysis.317

For all parameters the point predictor of the small area mean is obtained318

summarizing the posterior distribution of θkd using quadratic loss, so that θ̃kd =319

E(θkd|d), k = 1, . . . , 5 and d where shortcut notation for the data.320

It can be shown that conditionally on Σv, θ̃kd, k = 1, . . . , 5 is design con-321

sistent provided that θ̂kd are. For the definition of design consistency we refer322

to Fuller (2009), p. 41. For a proof of this design consistency property see323

Appendix 2.324

4 The proposed estimation strategy for the rel-325

ative median poverty gap326

4.1 The generalized Beta of the second kind distribution327

and its special cases328

The generalized beta distribution of the second kind (GB2; McDonald, 1984) is a329

four parameter distribution which is acknowledged as an excellent descriptor of330

income distributions (Dastrup et al., 2007; Jenkins, 2009; Graf and Nedyalkova,331
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2011). The GB2 density can be written as:332

f(x; a, b, p, q) =
a

bB(p, q)

(x/b)ap−1(
1 + (x/b)a

)p+q 1(x > 0) (14)

where a, b, p, q > 0 and B(p, q) is the Beta function. With the exception of b333

which is a scale parameter, the other three parameters are all shape parameters:334

a can be interpreted as an overall shape parameter, p rules the right tale, while q335

the left one. For a general description of the properties of the GB2 distribution336

see Kleiber and Kotz (2003, chapter 6.1), Graf et al. (2011a).337

In the economy of this study we are interested in the expression of the small338

area parameters ηd,θd introduced in Section 2.2 when the equivalized income339

variable is assumed to be GB2 distributed. We use the notation θkd|GB2, ηd|GB2340

to the denote the expression of θkd under the GB2 assumption:341

θ1d|GB2 = F
(
pt1, ad, bd, pd, qd) (15)

θ2d|GB2 = F
(
pt2, ad, bd, pd, qd) (16)

θ3d|GB2 = 1− F
(
pt3, ad, bd, pd, qd) (17)

θ4d|GB2 =
B(2pd + 1/ad, 2qd − 1/ad)

B(pd + 1/ad, 2qd − 1/ad)
(18)

×
{
p−1d G1(ad, pd, qd) + (pd + 1/ad)

−1G2(ad, pd, qd)
}

(19)

θ5d|GB2 =

{
ψ(pd)− ψ(qd)

}
ad

+ log(bd) (20)

ηd|GB2 = 1−
F−1

(
θ1d|GB2/2, ad, bd, pd, qd

)
F−1

(
θ1d|GB2, ad, bd, pd, qd

) (21)

Note that F in (15)-(17) is the cumulative distribution function while in (19)342

G1(.) and G2(.) are generalized hypergeometric series (see McDonald, 1984, for343

a detailed definition) depending on all the distribution parameters except the344

scale bd while ψ(.) in (20) is the di-gamma function.345

The GB2 distribution encompasses several special cases. In this research346

we consider the Beta of the second kind (B2) distribution (a = 1) the Dagum347

distribution (q = 1) and the Singh-Maddala distribution (p = 1). For these348
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special cases the expressions (15) - (21) are simpler and notably so for the Gini349

coefficient (19) that reduces to:350

θ4d|B2 =
B
(
2pd, 2qd − 1

)
2pB2(pd, qd)

(22)

θ4d|Dagum =
Γ(pd)Γ(2pd + 1/ad)

Γ(2pd)Γ(pd + 1/ad)
(23)

θ4d|SM = 1− Γ(qd)Γ(2qd − 1/ad)

Γ(2qd)Γ(qd − 1/ad)
(24)

where Γ(.) is the Gamma function. The considered special cases of the GB2351

are also those identified by McDonald et al. (2013) as the ones characterized352

by skewness-kurtosis spaces encompassing the largest portion of income data353

set in their cross-country analysis of the Luxembourg Income Study database.354

Kakamu (2016), using a simulation study based on data generated from GB2355

distributions, characterizes parameters regions in which the fit of the Dagum356

distribution is superior to that of the SM distribution and vice-versa. Intu-357

itively, data with a heavy right tail should be better fit by SM and those with a358

more moderate skewness by the Dagum distribution. Kleiber (1996) expects the359

Dagum distribution to fit better than the SM in most real data set; actually its360

skweness-kurtosis space includes that of the SM in the direction of more mod-361

erate and even negative skewness. The B2 distribution is considered especially362

for its popularity in the literature (Chotikapanich et al., 2012).363

4.2 Indirect estimation of the RMPG364

Let ξd = (ad, bd, pd, qd) denote the parameters of the GB2 distribution we as-365

sume to describe the income distribution in area d. As areas are many, this366

description would imply a very large set of parameters to be estimated; this367

cannot be done using area-specific samples, as they are typically small. We use368

the multivariate model to accomplish this task. Under this GB2 assumption:369

θd = θ (ξd)
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according to formulas (15) - (20). Using the multivariate model of section 3370

we can draw from p(θd|d). For each draw θrd, r = 1, . . . , R we can solve371

θrd = θ (ξrd) in ξrd thus obtaining a draw from p(ξd|d). We can then use372

ηd = η (ξd)

defined according to (21) to simulate from p(ηd = η(ξd)|d), by drawing ηrd =373

η (ξrd).374

Several technical details about the implementation of this approach now375

follow. We note that p(θkd|d) depends on the way we modelled the direct376

estimators θ̂kd but not on the GB2 we assume for the income distribution in the377

areas. If the size of θd and ξd were the same, a solution to the system θd = θ(ξd)378

can be slow or even impossible to find with numeric methods. In line with Graf379

and Nedyalkova (2014), section 5, we use a vector θd of five elements to solve380

for the four parameters characterizing the GB2 distribution by minimizing a381

relative quadratic loss function:382

L(θrd, ξrd) =

5∑
k=1

{
θkrd − θkrd|GB2(ξrd)

θkrd

}2

(25)

With respect to Graf and Nedyalkova (2014) we select a different set of383

nuisance parameters and namely the θkd, k = 1, . . . , 5 discussed in section 3.384

Except for θ5d all parameters have approximately the same scale (as they range385

between 0 and 1), while the latter is much bigger in scale. For this reason386

when solving the system we consider the scaled values θ?r5d = θr5d − log(K)387

where K is a suitably chosen constant that makes scales of all parameters more388

homogeneous. The solution of the system with the original set of parameters389

ξrd = (ard, brd, prd, qrd) can be obtained from ξ?rd = (ard, b
?
rd, prd, qrd) using390

a property of the GB2 distribution as brd = Kb?rd. In line with Graf et al.391

(2011a) and Graf and Nedyalkova (2014) we set the constraints ardprd > 1 and392

ardqrd > 2 which ensure that the implicitly definedXrd ∼ GB2(ard, brd, prd, qrd)393
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are such that E(X−1rd ) < +∞ and E(X2
rd) < +∞.394

The minimum is searched using numerical methods and namely the popular395

Levenberg-Marquardt algorithm. Theoretical properties and efficient implemen-396

tations of this algorithm have been studied in many papers (e.g. Moré, 1978).397

Kanzow et al. (2004) show global convergence properties of the algorithm when398

the constraints set is a convex set as in our problem.399

Because of the mathematical complexity of (19) the solution leading to the400

indirect estimation of the GB2 parameters can be slow to find, making the whole401

method impractical. For this reason we consider three special cases of the GB2:402

Beta of the second kind, Dagum and Singh-Maddala distributions, characterized403

by three parameters and much simpler formulas for the Gini coefficient (see 22,404

23, 24). We keep the same set of five small area parameters and a loss function405

analogous to (25), i.e. L(i)(θrd, ξrd), i = 1, 2, 3 for the indirect estimation of406

the three distribution parameters.407

For each draw θrkd, r = 1, . . . , R, we estimate three parallel non-linear sys-408

tems: one for each of the three special cases of the the GB2, thus generating409

separate chains for the three set of distribution parameters. Although the three410

systems are solved instead of one, this strategy is computationally much more411

efficient than the one based on the GB2 distribution. If we denote with ξ̂rd a so-412

lution to (25) the distribution that minimizes
∑R
r=1 L

(i)(θrd, ξ̂rd) in i is chosen,413

separately for each area, as the income distribution model. As a consequence,414

we adapt possibly different models to the data from different areas.415

A point predictor for ηd can be obtained summarizing the posterior distribu-416

tion p(ηd|d); if quadratic loss is adopted it will be given by the posterior mean417

η̃d = E(ηd|d).418

The small area estimator obtained in this way is not design-consistent as419

it depends on assuming the GB2 as a description of income within the areas420

even in large samples. Nonetheless it is robust with respect to misspecifications421

of the small area model as θ̃d is design consistent and thus converging to θd422

regardless of model misspecifications. Asymptotically the posterior distribution423
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p(ηd|d) will collapse on the solution of ηd = η(ξd): the dependence on the GB2424

does remain, but that on the multivariate model does not.425

5 An application to Italian EU-SILC data: esti-426

mation of RMPG in Italian provinces427

In this section we illustrate the estimation of the RMPG ηd and the nuisance428

parameters θkd for the Italian administrative provinces. Input data come from429

the 2013 EU-SILC survey sample for Italy and consist of (θ̂kd, φ̂kd,R), k =430

1, . . . , 5, d = 1, . . . , D. We obtain an estimate of R starting from Spearman431

correlations ρr(., .) among the θ̂kd. Rough estimates of ρr(θ̂kd, θ̂k′d) can be432

obtained using the bootstrap algorithm output (see section 2.2). We denote433

these estimates as corboot(θ̂kd, θ̂k′d). As most of the areas are small, to get stable434

estimates, we first assume that correlations ρr(θ̂kd, θ̂k′d) are constant across435

areas i.e. ρr(θ̂kd, θ̂k′d) = ρr(θ̂k, θ̂k′) and propose averaged estimates ρ̂r(θ̂k, θ̂k′) =436

(
∑D
d=1 wd)

−1∑D
d=1 wdcorboot(θ̂kd, θ̂k′d) with wd = nd. To obtain even more437

stable results, we then restrict the average to the set of the largest areas and438

namely to those with a sample size above the median, thus assuming wd =439

nd1{nd > Me(nd)}. As the matrix R describes the dependence structure of θ̂kd440

on a transformed scale, we finally exploit the invariance of Spearman correlation441

under non decreasing monotone transformations and the sin transformation to442

switch from Spearman to Pearson correlations (see Elfadaly and Garthwaite,443

2013, for details).444

The parameters φ̂kd are estimated using variance smoothing models. Specif-445

ically, for the rates θ̂kd, k = 1, 2, 3 the variances estimated using the bootstrap446

algorithm vboot(θ̂kd) are smoothed using the models:447

θ̂kd(1− θ̂kd)
vboot(θ̂kd)

= νknd + ekd

where, for the residuals ekd we assume E(ekd) = 0 and V (ekd) = %k. For the448
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Gini concentration coefficient, a different smoothing model is adopted:449

θ̂24d(1− θ̂24d)
vboot(θ̂4d)

= ν4nd + e4d

See Fabrizi and Trivisano (2016) for a motivation of this model. The least450

squares estimators ν̂k are then used to compute φ̂kd = νknd, = 1, . . . , 4. For451

our data the squared correlations describing the fit of these models equal 0.82,452

0.95, 0.78, 0.78 for k = 1, . . . , 4 respectively.453

These data are complemented by auxiliary information from administrative454

archives. A description of auxiliary variables, defined at the provincial level can455

be found in Appendix 3. The candidate auxiliary variables are many, some are456

highly correlated with each other, so selection is needed. Although the model is457

multivariate, we selected covariates to be used in equations (10) and (11) from458

the univariate models. Auxiliary variable selection is based on the methodology459

introduced in George and McCullogh (1993). Details on the variable selection460

process can be found in Appendix 3 as well.461

462

All codes used in the estimation exercise are written in R. Posterior distri-463

butions for the multivariate model are based on Metropolis-Hastings type of464

MCMC algorithms. Specifically we used the software jags called through the465

R package rjags (Plummer et al., 2016). For all parameters single Markov466

Chains of length 50,000 are run. To assess the convergence of each chain, beside467

visual inspection of the chains, we use the Heidelberg-Welch diagnostics (Hei-468

delberg and Welch, 1983; Carlin and Cowles, 1996) that reduces to testing the469

null hypothesis of a stationary path using the Cramer-von-Mises statistic. A470

conservative burn-in of 10,000 is used before calculating these statistics. The471

Heidelberg-Welch diagnostics are based on a single chain; a multichain approach472

was not advisable in our problem as a careful setting of the initial value is needed473

to speed up the convergence. In the overwhelming majority of chains the p-value474

associated to the Heidelberg-Welch diagnostics is above 0.05; for the chains of475
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the parameters θ1d, θ2d, θ4d, θ5d in more than 98% of the cases, for θ3d slightly476

more than 95% of the cases. In calculating posterior summaries, one every477

30th draw is kept. This severe thinning of the chains is partly motivated by478

their relatively poor mixing; this depends on the fact that nuisance parameters479

are strongly correlated, as they are all summaries of the same distributions.480

Moreover, we want to keep the posterior sample size small as its size defines481

the number of times the non-linear system discussed in section 4.2 needs to be482

solved. The overall sample from the posterior is of size R = 3, 000.483

Each draw from the posterior distribution of θkd, k = 1, . . . , 5 is used to484

solve the constrained non-linear system discussed in section 4.2. Specifically485

we work with the Levenberg-Marquardt nonlinear least-squares algorithm as486

implemented in the nlsLM function of the R package minpack.lm (Elzhov et al.,487

2016). Initial values are set solving the system on the ensemble of the posterior488

means E(θkd|d) with a precision 1.0× 10E− 10, while a precision 1.0× 10E− 5489

is used to assess convergence of solutions for the systems based on individual490

draws.491

The application run in about 2 hours using a 4 cores 5500u processor (2.44GhZ,492

8GB ram memory). We tried to run the same application using the GB2 in-493

stead of its special cases as the reference distribution: the computing times rise494

to about 40 hours. This motivates our choice of considering a solution based on495

the three parameters special cases of the GB2.496

A special case of the GB2 distribution is chosen separately for each area497

according to the methodology illustrated in section 4.2. The Dagum distribution498

is chosen in the large majority of areas (95 times), the Singh-Maddala for 14499

areas and the B2 only in one area. This result is in line with expectations from500

the literature (Kleiber, 1996; McDonald et al., 2013) as discussed in section 4.1.501

For the purposes of the analysis of this data set the methodology could then be502

simplified and the only Dagum distribution considered. Nonetheless this may503

depend on specific features of our data and it is not necessarily a general result504

(see Kakamu, 2016).505
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Markov chains for ηd (RMPG) are generated from those of the parameters506

of the chosen distributions. The Heidelbergt-Welch diagnostics computed for507

the chains ηd result in p-value greater than 0.05 in 96% of the cases. As this508

percentage are in line with the type-I error of the test, we can conclude that the509

convergence is satisfying also for these chains.510

As a further check we apply the functional approach used to generate pos-511

terior chains for ηd to the nuisance parameters θkd and compare the posterior512

obtained in this way to those directly obtained from the multivariate model de-513

scribed in section 3. We focus our comparisons on posterior means and standard514

deviations calculating ratios of the posterior summaries obtained according to515

the two methods. These ratios show some variation across areas. For posterior516

means we have that for all parameters and all areas the difference is less than 5%517

with the exception of θ4 (Gini concentration coefficient) for which the difference518

is between 5% and 10% in 20% of the areas; posterior means obtained with the519

functional being slightly smaller (3% on average). For all parameters, posterior520

standard deviations are very close on average (less than 2%) with the exception521

of θ4 and θ5 for which the posterior standard deviations based on the functional522

approach are 5% larger on average. In the large majority of areas the difference523

is less than 10% and for θ1, θ2 and θ3 less than 5%.524

In table 1 we present how efficient is our approach in reducing the standard525

errors associated to the estimators. We define526

ser(ηd) =
sd(ηd|d)

se(η̂d)
(26)

where se(η̂d) is computed according to the bootstrap algorithm of Fabrizi et527

al. (2011). We calculate also ser(θkd) that are defined similarly; se(θ̂kd) is528

calculated according to the methodology illustrated in section 2.2. We rec-529

ognize that this comparison involve two quantities that are logically different530

as the numerator is a posterior sd and the denominator a se with respect to531

the randomization distribution induced by sampling. Nonetheless this type of532
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comparisons are common in small area literature.533

The improvement in precision allowed by η̃d with respect to η̂d is dramatic;534

on average the posterior standard deviation is slightly more than one quarter of535

that of the direct estimator. Only in large areas, and especially so if located in536

the Sourth of the country where poverty prevalence is higher sd(ηd|d) is more537

than one half of se(η̂d). The posterior standard deviations sd(θkd|d) are on538

average half the size of the standard error se(θ̂kd) of direct estimators; different539

reduction levels in different areas can be explained by different area-specific540

sample sizes.541

Parameter η θ1. θ2. θ3. θ4. θ5.

Min. 0.064 0.102 0.113 0.122 0.078 0.169
1st Qu. 0.168 0.380 0.413 0.303 0.303 0.549
Median 0.265 0.482 0.493 0.398 0.362 0.627
Mean 0.284 0.483 0.511 0.414 0.383 0.627

3rd Qu. 0.358 0.586 0.601 0.506 0.467 0.745
Max. 0.711 0.904 0.93 0.885 0.831 0.926

Table 1: Distribution of the standard error reduction (serkd) defined in equation
(26) across the 110 provinces (areas); η = RMPG, θ1 = at-risk-of-poverty rate,
θ2 = share of population with income below the median, θ3 = affluence rate,
θ4 = Gini concentration coefficient, θ5 = mean of log-income.

Statistics Canada (2007) suggests that estimates whose associate coefficient542

of variation (CV ) is less than 16.6% are reliable enough for general use, those543

with a CV between 16.6% and 33.3% can be published but accompanied by a544

warning to users while those with even larger CV should be deemed as com-545

pletely unreliable and not published. In figure 1 we plot the histograms of546

CV (ηkd|d), CV (θkd|d), using the thresholds suggested by Statistics Canada547

(2007). We note that, although popular, these criteria can be too exigent for548

the estimation of small proportions when a high coefficient of variation can be549

the effect of a small estimate; in this case, that encompasses our θ1 and θ3,550

alternative criteria in terms of standard errors can be used (see European Com-551

mission, 2013, page 13). We keep the Statistics Canada criteria as, from figure552

1 it is apparent that for all parameters the small area estimates we produce553
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are suitable for publication with few problematic cases for the affluence rate554

θ3, attributable the low point estimates. Notably the posterior coefficients of555

variation are acceptable in all cases for the RMPG.556
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Figure 1: Histograms of the posterior coefficient of variations over the 110
provinces. The breaks in the histograms plot coincide with those suggested
by Statistics Canada (2007)

6 A simulation exercise557

The methodology we presented for the estimation of the RMPG is complex as it558

involves a multivariate hierarchical Bayesian model and, for each MCMC draw,559

the solution of a non-linear system based on a parametric assumption on the dis-560

tribution of equivalized income in the areas. The good performances in terms of561

posterior coefficient of variation that appears in figure 1 can be misleading if the562

point estimates were heavily biased. In this section, we introduce a simulation563

study to assess the frequentist properties of the RMPG predictor. Specifically564

we focus on bias, mean square error and the frequentist coverage of probability565

intervals based on posterior quantiles. These properties will be evaluated also566

for the predictors of nuisance parameters θkd.567

The simulation exercise is based on the same EU-SILC sample considered in568
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our application. We assume it as a synthetic population, from which we repeat-569

edly draw stratified samples and estimate the small area parameters for areas570

larger than those considered in the application. As the synthetic population is571

held fixed, the simulation can be labeled as design based.572

We target administrative regions as areas of interest, an higher level admin-573

istrative body with respect to the provinces considered in the application; each574

region includes several provinces; the two exceptions, Valle d’Aosta and Molise,575

that include only 1 and 2 provinces respectively, are excluded from the syn-576

tethic population. Administrative regions are planned domain of the EU-SILC577

survey in Italy. We draw stratified samples from the synthetic population with578

strata defined by these regions. The size of the 18 administrative regions in the579

synthetic population ranges, in terms of households from 386 to 1846 with a me-580

dian size of 998. Stratified samples, drawn without replacement, are allocated581

proportionally with a sampling rate of 0.115, chosen so that the median size of582

region-specific samples in the simulation matches the median of province-specific583

samples in the application. With respect to the application, sample sizes are584

less variable as they range from 44 to 212 (and not from 6 to 882 as in the case585

of province-specific samples in the application).586

For each of the S = 1000 samples drawn from the synthetic population we587

replicate the methodology illustrated in section 5; also the details related to588

MCMC computation and the non-linear system remain the same.589

Let’s denote with Pθd, P ηd the syntethic population target parameters,590

where Pθd = {P θkd} k = 1, . . . , 5, while the Bayes estimators based on quadratic591

loss are denoted as sθ̃d = E
(
P
θd|ds

)
, sη̃d = E

(
P
ηd|ds

)
where ds denotes the592

data from the s− th replicated sample. If we use the shortcut .θ̃kd to denote the593
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Bayes estimator for θkd when averaged over the S replications we can define:594

RRMSE
(
θ̃kd
)

=
1

S

S∑
s=1

√(
s
θ̃kd −P θkd

)2
P θkd

(27)

RBIAS
(
θ̃kd
)

=
1

S

S∑
s=1

(
s
θ̃kd −P θkd

)
P θkd

(28)

COV
(
θ̃kd; 1− α

)
=

1

S

S∑
s=1

1
(
s
qα/2 ≤s θkd ≤s q1−α/2

)
(29)

where sqα/2, sq1−α/2 are the α and 1−α quantiles of p(P θkd|ds). Specifically we595

consider α = 0.05. Definitions for RRMSE
(
η̃d
)
, RBIAS

(
η̃d
)
, COV

(
η̃d, 1− α

)
596

follow accordingly.597

In Table 2 we present results for the indicators (27)-(29): we show the three598

quartiles (Q1, Me, Q3) of the distribution of these three indicators across the599

18 regions considered in the simulation.600

Direct estimators θ1 θ2 θ3 θ4 θ5 η

RBIAS Q1 -0.005 -0.002 -0.006 -0.005 0.000 0.016
Me -0.002 0.000 -0.001 -0.003 0.000 0.035
Q3 0.003 0.002 0.007 -0.002 0.000 0.123

RRMSE Q1 0.205 0.090 0.250 0.072 0.005 0.320
Me 0.257 0.116 0.329 0.081 0.006 0.426
Q3 0.283 0.124 0.486 0.092 0.009 0.466

Bayesi estimators θ1 θ2 θ3 θ4 θ5 η

RBIAS Q1 -0.057 -0.023 -0.046 -0.029 -0.002 -0.054
Me 0.019 0.003 0.073 -0.004 0.000 0.012
Q3 0.101 0.027 0.108 0.028 0.002 0.101

RRMSE Q1 0.093 0.043 0.139 0.034 0.002 0.108
Me 0.115 0.055 0.156 0.041 0.003 0.141
Q3 0.160 0.074 0.241 0.066 0.006 0.205

COV (., 0.95) Q1 0.904 0.880 0.933 0.871 0.904 0.911
Me 0.977 0.983 0.975 0.985 0.955 0.937
Q3 0.987 0.985 0.986 0.995 0.979 0.953

Table 2: First, third quartiles and median of RRMSE, RBIAS, COV (., 0.95)
with respect to the 18 regions considered in the simulation. θ1 = at-risk-of-
poverty-rate, θ2 = share of population with income below the median, θ3 =
affluence rate, θ4 = Gini concentration coefficient, θ5 = mean of log-income,
η = RMPG.
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The RRMSE associated to RMPG has the same magnitude of those of the601

at-risk-of-poverty rate (θ̃1d) and affluence rate (θ̃3d), a good result if we read it602

considering the little information the direct estimation of the RMPG provides.603

Smaller RRMSE can be either attributed to a size effect (θ̃2d has an MSE similar604

to that of θ̃1d but a larger denominator) or to the more power auxiliary variables605

have for some parameters (specifically this is the case of the mean of the log-606

incomes, θ̃5d). The relative bias is, in all cases, when averaged across areas,607

close to 0, that is the shrinkage does not imply a systematic tendency to over-608

or under-estimate the corresponding population parameters. As far as RMPG609

is concerned, the relative bias is, despite their indirect estimation, small in most610

of the areas. Negative or positive biases on individual areas is due to a shrinkage611

effect that is more pronounced when the sample size is small.612

Interval estimates based on posterior quantiles (qα/2, q1−α/2) usually have613

an approximate 1 − α frequentist coverage if the bias of the posterior mean is614

small and posterior standard deviation is close to the frequentist standard error.615

Table 2 shows that in some cases the coverage is below the frequentist nominal616

level; these cases are those characterized by relatively higher bias levels. In617

some other cases we have a coverage above the nominal (frequentist) level; this618

is due to a tendency of posterior standard deviations to be slightly larger than619

the frequentist standard errors (we can estimate from MC replications).620

To complete the comparison, for ηd, we simulated also an estimator associ-621

ated to a standard Fay-Herriot type of model assuming approximate normality622

of η̂d, var(η̂d) as known and set equal to their actual values resulting from MC623

replications. We selected auxiliary variables from those described in Appendix 3624

and namely the variables x1 , the anti-logit of x6 and x9 that proved to be those625

providing the best fit. The ARRMSE results equal to 0.249 and the ARBIAS626

to 0.059. ACOV (0.95) is very close (slightly above) the nominal level; nonethe-627

less some of the intervals are so wide that the lower bound is negative. This628

estimator is therefore effective in improving the efficiency of the direct estimator629

but clearly inferior to η̃d; this finding is in line with our expectation: not only630
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the η̂d are very unreliable but it is difficult to auxiliary variables with a good631

predictive power.632

7 Conclusions633

In this research we focused on the estimation of the relative median poverty634

gap (RMPG), a popular measure of poverty severity, motivated by the need to635

estimate it at the small area level using Italian data from the EU-SILC survey.636

We present a small area estimation method based on area-level modelling,637

that requires only survey based direct estimators and area-level summaries from638

auxiliary sources. Area-level modelling is therefore less data demanding with639

respect ot unit-level models that, when applied to the estimation of non-linear640

functional of the target variable population values, require knowledge of indi-641

vidual level values of the auxiliary variables, a requirement that implies non642

trivial data quality and disclosure problems.643

The specific nature of the RMPG, for which direct estimators are in most644

cases completely unreliable, led us to consider a functional estimation method.645

We build on a method of using summary statistics to estimate parameters of646

an underlying income distribution due to Graf and Nedyalkova (2014), apply it647

within the framework of MCMC based Bayesian inference, and we use it in the648

opposite direction to estimate the RMPG (i.e. using estimated income distri-649

bution parameter to obtain an estimate of a population descriptive quantity).650

Our methodology implies a number of choices, some of them driven by com-651

putational reasons. Specifically we propose to use three-parameters special cases652

of the GB2 to describe income distribution in the small area as this choice re-653

duced computational times by a factor of 20. This computational gain was654

crucial, especially in view of the simulation exercise we introduced in section 6,655

to assess frequentist properties of the introduced Bayesian predictors.656

Simulation results confirm that the method we propose can produce reliable657

small area estimates of the RMPG. The proposed methodology can be applied658
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to the estimation of other parameters with problems similar to those of the659

RMPG, such as the quintile share ratio. More details on the estimation of this660

parameter can be found in Appendix 4.661
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Supplementary material819

Appendix 1: small sample properties of the RMPG direct820

estimator821

To assess the bias of the relative median poverty gap (RMPG) in small sample we822

run a design based simulation based on the 2013 EU-SILC sample we considered823

in section 5. We use the sample as synthetic population and we use the 21824

NUTS2 adiminstrative regions of Italy as domains. The Monte Carlo experiment825

consist in drawing repeatedly stratified samples with proportional allocation and826

a 5% sampling rate. We consider households as the sampling units; in line with827

the definitions of the EU-SILC survey all individuals in the same household828

share the same income and the RMPG is defined at the individual level. We829

obtain very small samples (the sample household range from 3 to 18) similar in830

size to the poor household sub-samples that we meet in our application. Results,831

summarizing 5, 000 Monte Carlo replication are reported in table 3.832

Sample size (md) Rel. Bias CV
3 ≤ md ≤ 5 23.12 69.33
6 ≤ md ≤ 10 13.60 55.09
11 ≤ md ≤ 18 3.88 36.78

Table 3: Average relative bias and average coefficient of variation (in percentage)
in the estimation of RMPG

When the poor households in the sample is less than 10 the bias is large and833

cannot be overlooked if the estimate is going to be used as an input for a small834

area estimation model. A large portion of the province-specific sample sizes we835

deal with in our application are below this threshold, especially in view of an836

overall poverty rate of 18% at the national level.837
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Appendix 2: Robustness of the proposed small area esti-838

mator839

Let’s first consider the rates θkd, k = 1, 2, 3. We note that for largemd, θ
?
kd
∼= θkd840

so that841

f(θ̂kd|θkd) = Beta
(
θkd(φ̂kd − 1), (1− θkd)(φ̂kd − 1)

)
This Beta likelihood can be approximated by a Normal, as the conditions stated842

in Gil et al. (2007), section 10.5, for this approximation are satisfied provided843

we assume θkd/(1− θkd) is bounded away from 0, consistently with (6). Conse-844

quently845

f(θ̂kd|θkd) ∼= N

(
θkd,

θkd(1− θkd)
φ̂kd

)
We now study the posterior distribution of θkd, k = 1, 2, 3 conditional on846

Σv and the rest of the parameters assuming, without loss of generality that847

xtkdβk = 1 and setting to 1 also the relevant element of Σv848

g(θkd|t̂dk, φ̂dk) =
1√
2π

√
2φ̂kd

θkd(1− θkd)
exp

{
− φ̂kd

2θkd(1− θkd)
(θ̂kd − θkd)2

}
×

× exp

{
− 1

2

(
log

θkd
1− θkd

− µ
)2}

For all x ≤ θ̂kd we have that849

∫ x

0

g(θkd|θ̂dk, φ̂dk)dθkd ≤

√
φ̂kd
π

exp

{
− φ̂kd

2x(1− x)
(θ̂kd − x)2

}
× (30)

×
∫ x

0

{θkd(1− θkd)}
1
2 exp

{
− 1

2

(
log

θkd
1− θkd

− µ
)2}

dθkd

as 1√
2π

√
2φ̂kd

θkd(1−θkd)
exp

{
− φ̂kd

2θkd(1−θkd)
(θ̂kd − θkd)2

}
is monotonically increasing850

in θkd on (0, x). Since the integral appearing in (31) is finite and

√
φ̂kd

π exp
{
−851

φ̂kd

2x(1−x) (θ̂kd − x)2
}
→ 0 as φ̂kd → +∞ we have that

∫ x
0
g(θkd|θ̂dk, φ̂dk)dθkd → 0852

when φ̂kd → +∞, a condition that is equivalent to md → +∞.853
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Similarly, for all x ≥ θ̂kd we have that854

∫ 1

x

g(θkd|θ̂dk, φ̂dk)dθkd ≤

√
φ̂kd
π

exp

{
− φ̂kd

2x(1− x)
(θ̂kd − x)2

}
× (31)

×
∫ 1

x

{θkd(1− θkd)}
1
2 exp

{
− 1

2

(
log

θkd
1− θkd

− µ
)2}

dθkd

as 1√
2π

√
2φ̂kd

θkd(1−θkd)
exp

{
− φ̂kd

2θkd(1−θkd)
(θ̂kd− θkd)2

}
is monotonically decreasing855

in θkd on (x, 1).856

It easily follows that857

∫ 1

0

g(θkd|θ̂dk, φ̂dk)dθkd → 0 (32)

as the sample size grows large, and E(θkd|d,Σv) → θ̂kd from which design858

consistency follows.859

A parallel argument follows the small area estimator of the Gini coefficient,860

i.e. θ4d. In this case as well, using the general results from Gil et al. (2007),861

section 10.5 we can approximate the Beta likelihood:862

f(θ̂4d|θ4d) ∼= N

(
θ4d,

θ24d(1− θ4d)2

2φ̂kd

)

Proof of desing consistency follows along the same lines we have seen for θkd,863

k = 1, 2, 3. The parameter θ5d is modelled using a Normal likelihood for t̂5d and864

the proof is even more simple.865

The posterior distribution involved in the minimization (25) converges to866

the design-consistent direct estimators θ̂kd k = 1, . . . , 5 as the sample size grows867

large. It is easy to note that estimators θ̂kd, k = 1, 2, 3, 5 are in fact methods868

of moments estimators; θ̂4d can be also seen as an estimator in the same class869

(see Giorgi and Gigliarano, 2016). Thereby, in large samples, (25) converges870

to a function of θ̂kd, k = 1, . . . , 5 that can be viewed as a generalized method871

of moments criterion function. Assuming the GB2 is an adequate description872

of the income distribution in the area, consistency of η̃d follows from the arg-873
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max (arg-min) continous mapping theorem (van der Vaart and Wellner, 1996,874

chapter 3).875

This result implies that η̃d enjoys design-consistency type of robustness with876

respect to mis-specifications of the multivariate small area model discussed in877

section 3. Nonetheless we cannot talk of design-consistency as the assmption of878

GB2 distribution for income is still playing a role.879

A design-consistent estimator for ηd can be obtained using composite esti-880

mation881

η̃dcd = γdη̂d + (1− γd)η̃d (33)

where γd ∈ (0, 1) is some weight going to 0 when var(η̂d) → 0 and to 1 when882

the information provided by the direct estimator is much larger with respect to883

that proposed by the model. We propose884

γd =
|Σ̃d|1/5

|Σ̃d|1/5 + var(η̂d)
(34)

where Σ̃d = E(Σ|d) and Σd, the random effects covariance matrix is defined885

(12). |Σ̃d|1/5 summarize the information provided by the multivariate model886

and generalizes the variance of the random effects ordinarily used in Fay-Herriot887

model. An hierarchical Bayes version of (33) can be obtained by drawing sam-888

ples from its posterior distribution, that can be easily expressed as a function889

of that of |Σ̃d|1/5. In principle we can replace var(η̂d) with |V̂d|1/5, where890

V̂d is the covariance matrix of the nuisance parameters variance estimators, as891

|Σ̃d|1/5 and |V̂d|1/5 are more directly comparable; nonetheless this would lead892

to an unjustified large γd as var(η̂d) is much larger than |V̂d|1/5 in practical sit-893

uations. We do not insist on (33) for two reasons: first, we think that assuming894

the GB2 for income is not a particularly strong assumption, especially as the895

left tail, the one involved in the definition of the RMPG is concerned; secondly896

the low efficiency of η̂d leads in practice to composite estimators dominated by897

η̃d, i.e. the estimator we proposed.898
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Appendix 3: Auxiliary information used in the estimation899

Auxiliary information is obtained from publicly available archives at the mu-900

nicipal level, and then aggregated to obtain province level variables. Literature901

on poverty and income inequality determinants within regional communities is902

vast; a review of it is out of the scope of this paper. See European Commis-903

sion (2010), Perugini and Martino (2008) among other references. In small area904

estimation, we do not aim to obtain an explanatory model for the target vari-905

able, rather, we use auxiliary information as a tool to improve the precision of906

estimators. Since auxiliary information should be accurately known at the area907

level, the choice is severely limited by this requirement.908

A preliminary selection of variables was based on results from previous stud-909

ies (Fabrizi et al., 2016; Fabrizi and Trivisano, 2016). Although several sources910

were initially considered the most powerful auxiliary variables are obtained from911

the fiscal archives held by the Italian Ministry of Finance. The variables we di-912

rectly consider in this study are: percentage of residents aged more than 15913

filling tax forms (x1), total taxable income claimed by private residents divided914

by the overall population size (x2), the share of population aged 65 or more (x3),915

the mean log income (x4), the logit transform of the Gini index (x5), headcount916

ratio poverty rate (x6), share of people with income below the median (x8) and917

affluence rate (x7). Variables x4-x8 are approximations calculated from fiscal918

income distributions published at the municipal level by the Ministry of Fin-919

cance. The rates are not only approximated but also based on approximated920

thresholds.921

In variable selection we consider univariate models. Specifically sampling922

models are those described in (6), (7) and (8). Also linking models are the same,923

i.e., (10) and (11), but we assume independent random effects: vkd ∼ N(0, τ2k ),924

τk ∼ Unif(0, Ck) for some large Ck instead of (12).925

For the βk in (10) and (11), in line with George and McCullogh (1993)926

we assume a spike and slab prior on the coefficients associated to candidate927
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Parameter θ1 θ2 θ3 θ4 θ5

x1 X X X X X
x2 X X X X X
x3 X X X
x4 X X
x5 X X X X
x6 X X X
x7 X X X
x8 X X X X

Table 4: Summary of the variable selection procedure. Checkmark is used to
indicate when a variable is selected into a model

auxiliary variables:928

βkj ∼ N(0, ζkj), j = 1, . . . , p = 8

ζkj = (1− γkj)× 0.001 + γkj ×M

γkj ∼ Ber(0.5)

We set M = 10 after a careful sensitivity analysis. This value is conservative in929

allowing the selection of a relatively large number of regressors in the models.930

The resuls of variable selection are summarized in table 4.931

We also consider more severe M , leading to more parsimonious models, but932

the effect on posterior distribution of θd is negligibile.933

Appendix 4: estimation of the quintile share ratio934

The quintile share ratio is defined as the sum of incomes in first quintile divided935

by the sum of incomes in the last. This measure of income inequality is not of936

direct interest in this research, but it is considered as it offers the opportunity to937

illustrate how the indirect methodology introduced to estimate the RMPG can938

be applied to estimate other summaries of the equivalized income distribution.939

A direct estimator of the quintile share ratio can be defined as follows:940

κ̂d =

∑nd

j=1 wdjydj1{ydj ≥ q̂0.8(d)}∑nd

j=1 wdjydj1{ydj ≤ q̂0.2(d)}
(35)
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where q̂0.2, q̂0.8 are the 20th and 80th percentiles of the equivalized income941

distribution estimated from the d − th area-specific sample. See Langel and942

Tillé (2011) for more details.943

We note that when the sample size is small, q̂0.2, q̂0.8 can be substantitally944

biased and κ̂d as well. Moreover summations in (35) involve only 40% of the945

sample observations nd, so the estimator κ̂d is very likely to be very imprecise946

in small samples.947

The quintile share ratio (κd) under the GB2 assumption is given by:948

κd|GB2 =
1− F(1)

(
x80, ad, bd, pd, qd

)
F(1)

(
x20, ad, bd, pd, qd

) (36)

where F(1)(x80, . . . ) = E(X|X ≤ x80)/E(X) is the incomplete moment of order949

1 for the distribution truncated in the 80th percentile and F(1)(x20, . . . ) is defined950

analoguously for the 20th percentile.951

An indirect estimator of κd can be obtained in the line illustrated in section952

4.2.953
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