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Abstract

This paper focuses on the dynamic misspeci�cation that characterizes the class of small-scale

New-Keynesian models currently used in monetary and business cycle analysis, and provides a

remedy for the typical di¢ culties these models have in accounting for the rich contemporaneous

and dynamic correlation structure of the data. We suggest using a statistical model for the

data as a device through which it is possible to adapt the econometric speci�cation of the New-

Keynesian model such that the risk of omitting important propagation mechanisms is kept under

control. A pseudo-structural form is built from the baseline system of Euler equations by forcing

the state vector of the system to have the same dimension as the state vector characterizing the

statistical model. The pseudo-structural form gives rise to a set of cross-equation restrictions

that do not penalize the autocorrelation structure and persistence of the data. Standard esti-

mation and evaluation methods can be used. We provide an empirical illustration based on U.S.

quarterly data and a small-scale monetary New Keynesian model.

JEL Classi�cation numbers: C22; C51; C52; E32; E52.

Keywords: Dynamic stochastic general equilibrium model, Expectations, New Keynesian mod-

els, State space model.
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1 Introduction

Small-scale dynamic stochastic general equilibrium models developed within the New Keynesian

tradition (henceforth NK-DSGE models) have been treated as the benchmark of much of the

monetary policy literature, given their ability to explain the impact of monetary policy on

output and in�ation. A recent generation of NK-DSGE models that feature �nancial frictions

and the �scal/monetary policy mix are currently used to evaluate macroeconomic scenarios and

to predict economic activity. It is well recognized, however, that these models capture only

stylized features of the business cycle and the monetary policy stance and display a limited

time series performance (Henry and Pagan, 2004; An and Schorfheide, 2007). Assessing the

correspondence between what these models imply and what the data tell us is a crucial step in

the process of analyzing policy options and their e¤ects.

One important source of misspeci�cation can be ascribed to the di¢ culties NK-DSGE models

display in generating su¢ cient endogenous persistence and propagation mechanisms to match

the persistence and propagation mechanisms observed in quarterly data. NK-DSGE models are

built upon the rational expectations (RE) paradigm. Under RE, agents are assumed to know

the data generating process and form their expectations consistently. Two types of restrictions

arise on the model�s reduced form solution: (i) parametric nonlinear cross-equation restrictions

(CER) that map the structural to the reduced form parameters; (ii) constraints on the lag

order and correlation structure of the variables. The restrictions in (i) are the Hansen and

Sargent�s (1980, 1981) traditional �metric�for the evaluation of models based on forward-looking

behaviour and RE, see also Hansen (2014). Instead, the restrictions in (ii) are �implicit�, and

very often, practitioners are not aware of their role and importance in the empirical performance

of NK-DSGE models.

The unique stable solution associated with NK-DSGE models can be represented as a state

space model, possibly expressed in minimal form (Komunjer and Ng, 2011), or as �nite-order

vector autoregressive (VAR) systems in the special case in which all endogenous variables are

observed. These solutions generally involve one (two) lag(s) of the endogenous variables, giving

rise to what we call throughout the paper an �omitted dynamics�issue. By this term, we denote

the situation that occurs when the constraints in (ii) con�ict with the propagation mechanisms

one detects from the data using a statistical model that does not embody all parametric con-

straints implied by the theory. Testing the validity of the NK-DSGE model through the CER

when the restrictions in (ii) con�ict with the actual autocorrelation structure of the data might

distort the overall evaluation process.

What should investigators do? The natural and obvious �x in these cases would require the
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estimation of a theoretically micro-founded model with less restrictive dynamics than the original

New Keynesian model. An excellent example is provided in, e.g., Lubik and Schorfheide (2004),

Section 5.D. These authors estimate a dynamically less restrictive version of their NK-DSGE

model as a robustness check, introducing a consumption Euler equation which features habit

formation that generalizes the previously speci�ed purely forward-looking consumption equation,

and an �hybrid�Phillips curve, as opposed to its purely forward-looking version. Examples like

this, nevertheless, are rare, because it is not always practical to microfound all propagation

mechanisms that characterize quarterly (or monthly) time series. What do practitioners typically

do? They generally follow two approaches. Either they endow the shocks of the NK-DSGE

model with more elaborate and persistent time series models like, e.g., AR or ARMA-type

processes (Smets and Wouters, 2007; Cúrdia and Reis, 2010), without (apparently) changing

the speci�cation of their structural equations, or they enrich the dynamics of the system by

adding measurement errors in the associated state space representation, see e.g. Ireland (2004)

and Zanetti (2008).

The aim of this paper is to provide an alternative approach to the dynamic misspeci�cation

of NK-DSGE models that neutralizes the extent of the restrictions in (ii). More speci�cally,

we pursue the idea that only the CER in (i) should be considered and tested to evaluate the

model, while the restrictions in (ii) should not be binding when clearly at odds with the data. Our

solution requires the use of a statistical state space model for the data which is used as the actual

agents�expectations generating mechanism, without the need to resort to the adaptive learning

framework (Evans and Honkapohja, 1999; 2001; Branch and Evans, 2006; Milani, 2007). This

leads to the de�nition of a �pseudo-structural�model that combines the structural information

subsumed by the NK-DSGE model with features of the data, as captured by the statistical

model. The pseudo-structural form is speci�ed by augmenting the original system of Euler

equations with a given number of additional lags of the variables, such that the gap between the

dimension of the state vector of the structural model and the dimension of the state vector of the

statistical model is �lled up. We denote these additional components �expectations correction�

(ExC) terms and call the so-built pseudo-structural form the �NK-DSGE model under ExC�.1

By construction, the unique stable solution associated with the NK-DSGE model under ExC

has the same time series representation as the statistical model for the data, and the implied

set of CER involves only restrictions of type (i).

1Our idea is broadly related to the concept of Quasi Rational Expectations (QRE) used by Nerlove et al.

(1979), Nelson and Blessler (1992), Nerlove and Fornari (1998) and Holt and McKenzie (2003) in di¤erent �elds

of research. Strictly speaking, QRE would require replacing expectational variables in the structural equations

with their values calculated from the �best �tting�statistical model for them. See e.g., Fanelli (2009) for an early

example in the context of NK-DSGE models.
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Frequentist and Bayesian estimation and evaluation methods can easily be applied. The

NK-DSGE model under RE is nested within the pseudo-structural model under ExC, hence,

likelihood-ratio tests can be used to select the �best�speci�cation. More generally, information

criteria or any other evaluation method can be exploited. We propose an empirical illustration

based on U.S. quarterly data, where we use the monetary business cycle model discussed in

Benati and Surico (2009) as the reference structural model. We compare and evaluate the

results obtained under RE and ExC.

It is worth stressing that we do not propose the active use of a statistical model to rectify

the speci�cation of the NK-DSGE model as an end in itself. Rather, we see our approach as

providing a useful speci�cation check for NK-DSGE models, allowing a researcher to robustify

inferences against one important dimension about the misspeci�cation of the model, while cap-

turing some important �stylized facts�. In this respect, our approach shares the viewpoint also

adopted in Franchi and Juselius (2007) and, to some extent, in Consolo et al. (2009).2 However,

a number of alternative approaches that address the omitted dynamics issue from a �theory-

based�perspective, while preserving the agents�rationality, could also be applied. For instance,

one might consider alternative timing of expectations along the lines discussed in Woodford

(2003), Ch. 3. In this respect, Mankiw and Reis (2002) propose a new way to model sluggish

macroeconomic adjustment based on the concept of �information stickiness�, which is extended

to the case of NK-DSGE models in Mankiw and Reis (2007), while Sims (2003, 2006) argues

that the concept of �rational inattention� can explain the smooth and delayed cross-variable

relationships observed among most macroeconomic time series.

Our paper has several connections with the existing literature. As already mentioned, ways to

address the poor time series performance of structural forward-looking models have been recently

popularized by Smets and Wouters (2007) and Cúrdia and Reis (2010) on the one hand, and by

Ireland (2004), among others, on the other hand. Cúrdia and Reis (2010) suggest augmenting

the overall dynamics of macro business cycle models by allowing for disturbances that have a

rich contemporaneous and dynamic correlation structure. In practice, they suggest replacing

the usual unsatisfactory autoregressive speci�cation of order one (AR(1)) of the model�s dis-

2Broadly speaking, the statistical model might potentially (but not necessarily) also exploit information �exter-

nal�to the structural model, possibly derived from large datasets, think e.g., about factor models. For instance,

Beyer et al. (2008) propose to combine factor analysis for information extraction from large data sets and gen-

eralized method of moments to estimate the parameters of systems of forward-looking equations. In principle,

factor-augmented VAR models, as in Consolo et al. (2009), might be used as the agents�expectations generating

system. In this paper, we stick to the concept of model-consistent expectations; hence, it is assumed that the

agents exploit only the information �internally�recoverable from the structural model.

5



turbances with more general AR or ARMA-type processes, allowing for possible cross-equation

dependence, so as to maximize the best time series performance of the model. Similarly, Smets

andWouters (2007) specify ARMA(1,1)-type processes for the price mark-up and the wage mark-

up disturbances in their medium-sized estimated DSGE model, observing that for these shocks

the inclusion of the moving average terms is designed to capture the high-frequency �uctuations

in in�ation and wages. Instead, Ireland (2004) suggests adding measurement errors in the mea-

surement equations of the system in order to capture all comovement in the data not accounted

for by the structural model, see also Zanetti (2008). As is know, adding measurement errors is

also a possible remedy to the �stochastic singularity�issue, see e.g. Sargent (1989) and DeJong

and Dave (2007). Admittedly, these ways of tackling the omitted dynamics issue appear more

general than our ExC approach which is, as it stands, con�ned to linear(ized) approximations

and small-scale systems. Like Ireland (2004) and Cúrdia and Reis (2010), we let the data speak

freely about the dimension of the dynamic misspeci�cation of the system, but unlike Ireland

(2004) and Cúrdia and Reis (2010), our starting point is a statistical model which is anchored

to the theoretical model to make expectations consistent with the persistence and propagation

mechanisms found in the data. With our ExC approach, practitioners are forced to shift their

attention from modeling unobserved shocks to modeling observed time series. Moreover, Franchi

and Juselius�s (2007) concerns about the practice of adding shocks to the measurement system

do not apply in our framework.

The most common and known alternative to RE is the adaptive learning hypothesis, see

Evans and Honkapohja (1999; 2001), Branch and Evans (2006) and Milani (2007) for details.

Under adaptive learning, agents are assumed to form and update their beliefs by using forecast

models with time-varying coe¢ cients and recursive updating rules. The postulated agents�

forecasting model, or perceived law of motion, is typically (albeit not necessarily) the reduced

form solution of the system under RE. Although the adaptive learning hypothesis can induce

more persistence in the data (Branch and Evans 2006; Milani 2007; Chevillon et al. 2010), and

it permits a substantial statistical relaxation of the strength of the CER (Fanelli 2008; Fanelli

and Palomba 2011), a typical learning model focuses on the dynamic interaction between beliefs

and observed data and is not designed to solve the misspeci�cation issue with which we are

concerned in this paper.3 Our approach does not deviate from the concept of model-consistent

expectations. �Consistency�, however, refers to the statistical model that approximates the data.

Recently, Cole and Milani (2014) have investigated the ability of popular New Keynesian

models to match the data in terms of their interaction between macroeconomic variables and
3Cho and Kasa (2015) have recently proposed a model validation approach to learning, where agents operating

in a self-referential environment are aware of potential model misspeci�cation and try to detect it in real-time,

using econometric speci�cation tests.
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their corresponding expectations. First, they report the failure of NK-DSGE models under RE

to account for the dynamic interaction between macroeconomic expectations and macroeconomic

realizations. Second, they observe that alternative models of expectations formation, including,

e.g., extrapolative and heterogeneous expectations, can reconcile the NK-DSGE models with

the data. Our approach represents another contribution towards the idea of reconciling the time

series performance of NK-DSGE models with the data.

We also have some points in common with the DSGE-VAR approach of Del Negro et al.

(2007). The DSGE-VAR approach is driven by the idea of assessing how far/close a dynamic

macro model based on RE is from the data. Del Negro et al. (2007) propose a Bayesian

evaluation method. They use a VAR system for the observed variables as the statistical model

for the data, and centre the prior distribution for the VAR parameters on the CER implied

by the structural model. The dispersion of these priors from the CER is governed by a scalar

(hyper)parameter: small values of such a (hyper)parameter indicate that the VAR is far from

the theoretical model, while large values of this (hyper)parameter indicate that the theoretical

model is supported by the data. In our setup, the statistical model that describes the data

is either a VAR system or a state space model, depending on whether one can observe/proxy

all endogenous variables or not. The statistical model determines the dynamic structure of the

pseudo-structural model that is confronted with the data. Like Del Negro et al. (2007), we are

motivated by the idea of relaxing the tightness of the restrictions implied by the RE hypothesis,

without renouncing to the concept of model-consistent expectations.

The rest of the paper is organized as follows. In Section 2 we present our main idea through

a simple uni-equational example. In Section 3 we introduce our prototype structural NK-DSGE

model and discuss the omitted dynamics issue that arises under RE, and in Section 4 we present

our approach. In Section 5 we estimate a NK-DSGE model for the U.S. economy using quarterly

data: In Sub-section 5.1 we discuss the reference structural model, in Sub-section 5.2 we deal

with the statistical model for the data and, �nally, in Sub-sections 5.3 and 5.4 we address the

frequentist and Bayesian estimation and evaluation results. Section 6 contains some concluding

remarks. An Appendix S1 complements the results of the paper in several dimensions.4

2 Background

Consider a simple economy described by the uni-equational linear RE model

Zt = fEtZt+1 + bZt�1 + !t , !t �WN(0; 1) , t = 1; :::; T: (1)

4Appendix S1 is available at http://www.rimini.unibo.it/fanelli/TS_Angelini_Fanelli_DSGE.pdf
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Zt is an observable scalar generated by a covariance stationary process, Z0 is given, EtZt+1:=E(Zt+1 j
Ft) is the expectation operator conditional on the information set Ft, and !t is a scalar white
noise process with variance 1, called structural (or fundamental) disturbance (or structural

shock). We call the model in Eq. (1) �structural model�. The structural parameters are f > 0,

b > 0, and are collected in the vector �:=(f ; b)
0:

Assuming that f+ b < 1, the unique stable RE solution to the model in Eq. (1) is given

by the autoregressive model of order one (AR(1)):

Zt = ~�Zt�1 + ~ !t , t = 1; :::; T (2)

where ~� = �(�) and ~ =  (�) are reduced form parameters that depend nonlinearly on �. A

�tilde�over � and  is used to stress the fact that these parameters are forced to depend on �

under RE. In particular, ~� is the real stable root (i.e. ~� 2(0, 1)) of the second-order equation
f�

2 � �+ b = 0, and ~ =(1� f ~�)�1.
Under RE, the data generating process belongs to the class of models described by Eq.

(2). Consistent estimates of � can be obtained from the autoregressive parameter � and the

variance �2" of "t:=~ !t, by imposing the CER: �=~�, �
2
"=~�

2
", where ~� is the real stable solution

to f�
2��+ b = 0 and ~�2" = (1� f ~�)�2. Moreover, the autocorrelation structure of the time

series Z1, Z2, ..., ZT should conform to that of AR(1)-type processes.

Assume now that based on his/her speci�cation analysis, the econometrician believes the

data generating process belongs to the class of covariance stationary AR(2) processes of the

form

Zt = �1Zt�1 + �2Zt�2 + "t , "t �WN(0; �2") , t = 1; :::; T; (3)

where the autoregressive coe¢ cient associated with the second lag, �2, is such that �2 6= 0. We
call the model in Eq. (3) the statistical model for the data. The parameters of the statistical

model are � :=(�1; �2; �
2
")
0: Compared to the reduced form solution in Eq. (2), the AR(2) model

in Eq. (3) involves an additional lag of the state variable Zt. For the econometrician, the best

forecast of Zt+1 conditional on the information set available at time t will be E(Zt+1 j Ft) =
�1Zt + �2Zt�1, not E(Zt+1 j Ft) = �1Zt as predicted by the structural model under RE.

Since the model in Eq. (2) is nested in Eq. (3), the AR(2) model might be interpreted as

the reduced form solution associated with the structural model in Eq. (1) if the following set of

restrictions hold:

res-I:
�1=~�, where ~� is the stable root of f�

2 � �+ b = 0
�2"=~�

2
", where ~�

2
" = (1� f ~�)�2

res-II: �2=~�2=0:

(4)
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In principle, the structural parameters � might be estimated consistently from the model in Eq.

(3) by imposing the restrictions in Eq. (4). It is clear, however, that the restrictions res-II in

Eq. (4) con�ict with the econometrician�s �nding that �2 6= 0. If the data generating process

belongs to the class of models in Eq. (3) based on �2 6= 0, the estimator of � recovered from

model Eq. (2) imposing the CER in Eq. (4) will be distorted because of the omission of a

relevant regressor.

The natural �x to this shortcoming should be the re-speci�cation of a theory-based structural

model implying a time series representation for Zt featuring Zt�2, other than Zt�1. Yet only

seldom is that feasible. We discuss two solutions to the �omitted dynamics�issue. One is the

�conventional�approach, the other our solution.

Conventional approach

The �conventional�approach works by endowing the structural model in Eq. (1) with an

AR(1) process for the shocks, now denoted with !�t , i.e.

Zt = fEtZt+1 + bZt�1 + !
�
t , t = 1; :::; T

!�t = �!�t�1 + vt , j�j < 1 , vt �WN(0; 1� �2).
(5)

In this speci�cation, � is an autoregressive parameter and vt is the structural shock (which is

normalized such that the variance of !�t is still equal to 1). The autoregressive equation for !
�
t

and the associated autoregressive parameter, �, are not generally derived from �rst principles

but from the practical purpose of improving the statistical �t of the model. Apparently, the

theoretical structural model in Eq. (1) has not been changed. Actually, by exploiting the

autoregressive structure of !�t and using simple algebra, we obtain:

Zt =
f

1 + �f
EtZt+1 +

b + �

1 + �f
Zt�1 �

�b
1 + �f

Zt�2 +
1

1 + �f
v�t , t = 1; :::; T (6)

where v�t :=�f�t + vt, and �t:=Zt � Et�1Zt is a martingale di¤erence sequence forecast error

(Et�1�t = 0). The representation in Eq. (6) recalls a well known fact from textbook econo-

metrics: Autoregressive disturbances amount to additional lagged regressors of the endogenous

variable. The unique stable RE solution associated with Eq. (6) is given by the AR(2) process

in Eq. (3), with � subject to the following set of CER: �1 = ~�1, �2 = ~�2, �
2
" = ~�

2
", where

(1� f ~�1 + �f )~�1 = (f ~�2 + b + �)
(1� f ~�1 + �f )~�2 = ��b

~�2" =

�
1��

1�f ~�1

�2
:

(7)

It can be noticed that � 6= 0 implies �2 6= 0. Instead, if � = 0, the restrictions above collapse to
those in Eq. (4).
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Suggested approach

Our suggested approach is based on a slight change of perspective. We assume that the

AR(2) model in Eq. (3) is the agents�forecast model, and introduce a �pseudo-structural�form

that combines the information provided by the structural model in Eq. (1) with the information

provided by the statistical model in Eq. (3). Our main requirement is that the reduced form

solution associated with the pseudo-structural form has time series representation consistent

with Eq. (3). The pseudo-structural form is given by

Zt = fEtZt+1 + bZt�1 + �Zt�2 + !
��
t , !��t �WN(0; 1), t = 1; :::; T; (8)

and is obtained from Eq. (1) by adding the term �Zt�2. The disturbance !��t is still a white

noise term with variance 1.

The crucial question here is: How do we interpret the �Zt�2 term in Eq. (1)? In principle,

�Zt�2 might be interpreted as a term capturing propagation mechanisms that are not directly

explained by the theoretical model, because of the omission of adjustment costs, information

delays, time-to-build e¤ects, etc. These e¤ects, however, should be modelled endogenously in

the structural speci�cation, if present. In our setup, �Zt�2 plays the role of an �expectations

correction�(ExC) term, in a sense that will be quali�ed below.

The vector of parameters associated with the pseudo-structural form is ��:=(�0; �)0=(f ; b; �)
0,

hence the determinacy of Eq. (8) will depend also on the auxiliary parameter �, other than f
and b. To leave the determinacy conditions implied by theoretical model (f + b < 1) un-

changed, we can restrict � imposing e.g. that if for a given � = �� the solution to the theoretical

model in Eq. (1) is unique and stable, the solution to the pseudo-structural model in Eq. (8)

also must be unique and stable. For instance, it is possible to prove that given f + b < 1, e.g.

the inequality �1=2<�<1� (f + b) is su¢ cient for determinacy in Eq. (8).
The speci�cation in Eq. (8) should be no more disturbing than that in Eq. (6) obtained by

adding the autoregressive disturbance to the structural theoretical model. The unique stable

solution associated with the model in Eq. (8), if it exists, is given by the AR(2) process in Eq.

(3) with parameters � subject to the following set of CER: �1 = ~�1, �2 = ~�2, �
2
" = ~�

2
" , where

(1� f ~�1)~�1 = (f ~�2 + b)
(1� f ~�1)~�2 = �

~�2" = (1� f ~�1)�2:
(9)

It can be noticed that, in this case, � 6= 0 also implies �2 6= 0. Instead, if � = 0; the restrictions
above collapse to those in Eq. (4).

Although the likelihoods associated with the AR(2) model under the restrictions in Eq. (7)
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and in Eq. (9) may be numerically di¤erent (recall that � lies in the (-1,1) interval, while � is

subject to a di¤erent requirement), at �rst glance, the two approaches seem to be equivalent.

Yet they are conceptually di¤erent. With the �conventional� approach, the practitioner does

not need to specify any statistical model for the data. He/she will specify a time series process

for the disturbance !t with the aim of improving the overall empirical �t of the model. Our

approach is instead based on the idea of treating the statistical model for the data like the

�unconstrained�version of the actual agents�expectations generating system. The term �Zt�2 in

Eq. (8) is an ExC term that gives rise to an �higher-order�hybrid LRE model that �ts the data

better than the original structural equation. The term �Zt�2 guarantees that the unique stable

solution associated with the pseudo-structural form has the same time series representation as

the agents�statistical model for the data, and that the di¤erences between these two models is

only due to the CER.

3 The NK-DSGE model under Rational Expectations and the

omitted dynamics issue

Let Zt:=(Z1;t; Z2;t; � � � ; Zn;t)0 be a n � 1 vector of endogenous variables and assume that after
log-linearization, the structural form of the NK-DSGE model can be represented in the form

�0Zt = �fEtZt+1 + �bZt�1 + C + �t , t = 1; :::; T (10)

where, �i:=�i(�), i 2 f0; f; bg are n � n matrices whose elements depend on the vector of

structural parameters �, C:=C(�) is a n�1 constant which can be non-zero when it is intended to
capture steady state values of the variables of the system, and �t is a n�1 vector of disturbances
which is assumed to be adapted to the sigma-�eld Ft, where Ft represents the agents�information
set at time t, EtZt+1:=E(Zt+1 j Ft). Without any loss of generality, �0 is assumed non-singular.
When a direct link between the process generating �t and a set of �forcing variables� is not

provided by the theory, a typical completion of system (10) is obtained through the autoregressive

speci�cation

�t = R�t�1 + !t , !t �WN(0;�!) (11)

where R is a p � p diagonal stable matrix (i.e. with its eigenvalues inside the unit disk), and

!t is a white noise term with covariance matrix �! that can be diagonal or non-diagonal. The

true value of �, �0, is assumed to be an interior point of the parameter space �.

The multivariate linear RE model in Eq.s (10)-(11) nests a large class of small-scale linearized

NK-DSGE models used in monetary policy analysis. There exists many solution methods avail-
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able in the literature by which a reduced form solution of system (10)-(11) can be computed

under RE. A solution of system (10)-(11) is any stochastic process fZ�t g
1
t=0 such that, for � 2 �,

EtZ
�
t+1 = E(Z�t+1 j Ft) exists and if Z�t is substituted for Zt into the structural equations, the

model is veri�ed for each t, for �xed initial conditions. A reduced form solution is a member of

the solution set whose time series representation is such that Zt can be expressed as a function of

!t, lags of Zt and !t and, possibly, other arbitrary martingale di¤erence sequences (MDS) with

respect to Ft, independent of !t, called �sunspot shocks�, see Fanelli (2012) and Castelnuovo
and Fanelli (2015).

Assuming that �0 lies in the determinacy region of �, the unique stable reduced form solution

associated with system (10)-(11) can be represented in the form (see Binder and Pesaran, 1995;

Uhlig, 1999; Klein, 2000) 
Zt � ~�
Zt�1 � ~�

!
xt

=

 
~�1 ~�2

In 0n�n

!
A(�)

 
Zt�1 � ~�
Zt�2 � ~�

!
xt�1

+

 
~	

0n�n

!
G(�)

!t (12)

where ~�:=(In � ~�1 � ~�2)�1~�, and we use �tildes�over the matrices of parameters to remark the
fact that �1;�2, 	 and � depend on � through the set of CER:

(�R0 � �f ~�1)~�1 � �f ~�2 + �b;1 = 0n�n (13)

(�R0 � �f ~�1)~�2 � �b;2 = 0n�n

C � (�R0 � �f ~�1 � �f )~� = 0n�1

~�" = ~	 �! ~	
0 , ~	 =

�
�0 � �f ~�1

��1
: (14)

In the expressions in Eq.s (13)-(14), �R0 = (�0+R�f ), �b;1 = (�b+R�0), �b;2 = �R�b, and ~�" is
the covariance matrix of the reduced form disturbance "t = ~	!t, see Bårdsen and Fanelli (2015)

and Castelnuovo and Fanelli (2015) for details. A convenient way to summarize the equilibrium

in Eq.s (12)-(14) is to refer to the representation

xt
2n�1

= A(�)
2n�2n

xt�1
2n�1

+ G(�)
2n�n

!t
n�1

: (15)

Let yt:=(y1;t; y2;t; � � � ; yp;t)0 be the p � 1 vector of observable variables: When all variables
in Zt are observed, yt = Zt, and the transition system in Eq. (15) along with the measurement

system: yt = Hxt, H:=(In : 0n�n), collapse to a VAR representation for Zt in which the VAR

coe¢ cients depend on � through the CER in Eq.s (13)-(14). In general, not all variables in Zt

are observed, hence we consider the measurement system

yt = Hxt + V vt (16)
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whereH is a p�2nmatrix, vt a b�1 vector (b � p) of measurement errors with covariance matrix

�v, and V is a p � b selection matrix. Let ut:=(!0t; v
0
t)
0 be the (n + b)-dimensional �complete�

vector of innovations. By substituting Eq. (15) into Eq. (16) and using some algebra, one

obtains the so-called ABCD representation

xt
2n�1

= A(�)
2n�2n

xt�1
2n�1

+ B(�)
2n�(n+b)

ut
(n+b)�1

yt
p�1

= C(�)
p�2n

xt�1
2n�1

+ D(�)
2n�(n+b)

ut
(n+b)�1

(17)

where B(�):=(G(�) : 02n�b), C(�):=HA(�) and D(�):=(HG(�) : V ).5

The state space system (17) summarizes the determinate (unique and stable) equilibrium

associated with the NK-DSGE model under RE. Provided � is locally identi�able, the state space

model de�ned by Eq.s (15)-(16) can be taken to the data using di¤erent estimation methods,

see e.g. Ruge-Murcia (2007). When instead � is unidenti�ed, identi�cation can be restored

by imposing suitable restrictions along the lines discussed in e.g. Iskrev (2010) and Komunjer

and Ng (2011). Estimation procedures, however, can fail to deliver consistent estimates of the

structural parameters when important propagation mechanisms are omitted from the system,

see e.g. Jondeau and Le Bihan (2008) and Fanelli (2012).

To characterize our approach, we assume that there exists a statistical model for the data

represented by the state space system0BBBBB@
Zt � �
Zt�1 � �

...

Zt�k+1 � �

1CCCCCA
x�t

=

0BBBBB@
�1 �2 � � � �k�1 �k

In 0n�n � � � 0n�n 0n�n
. . .

...
...

0n�n 0n�n � � � In 0n�n

1CCCCCA
A�(�)

0BBBBB@
Zt�1 � �
Zt�2 � �

...

Zt�k � �

1CCCCCA
x�t�1

+

0BBBBB@
In

0n�n
...

0n�n

1CCCCCA
G�(�)

"t (18)

yt = H�x�t + V
�vt (19)

where �1;�2, ....,�k, � and �":=E("t"0t) are matrices of coe¢ cients in which no theoretical

restriction is placed, �:=(In � �1 � �2 � ::: � �k)�1�, and H� and V � are matrices of suit-

able dimensions. It is assumed that �k 6= 0n�n and that the only restriction on the co-

variance matrix �" is symmetry. Collecting the parameters of system (18)-(19) in the vec-

tor � :=(vec(�1)0; :::; vec(�k)0; �0; vech(�")0; vech(�v)0)0 and de�ning the vector of innovations

5We refer to Fernández-Villaverde et al. (2007), Ravenna (2007), Franchi and Vidotto (2013) and Franchi and

Paruolo (2015) for a detailed analysis of the cases in which yt can be given a fundamental and �nite-order VAR

representation when the D = D(�) matrix in Eq. (17) is square. More generally, the state space model in Eq.

(17) will give rise to VARMA-type representations for yt, see e.g. Hannan and Deistler (1988).
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ut:=(!0t; v
0
t)
0; the statistical model above can also be summarized in the representation:

x�t = A�(�) x�t�1 + B�(�) ut

yt = C�(�) x�t�1 + D�(�) ut
(20)

that is postulated to be in �minimal form�and such that � is locally identi�able, see Komunjer

and Ng (2011).6 The state space model in Eq. (20) collapses to a stationary VAR for Zt when

yt = Zt.

Some remarks are in order. First, using the language of simultaneous system of equations,

the statistical model in Eq. (20) is intended to play the role of �unrestricted reduced form�

associated with the NK-DSGE model, i.e. the associated state space representation of the data

before any restriction stemming from the theory is imposed. Second, as is known, �nding the

�unrestricted reduced form�is not a trivial task in the context of NK-DSGE models, because of

the di¢ culties associated with �nding an identi�ed minimal form, see e.g. Schorfheide (2010),

Komunjer and Ng. (2011), Guerron-Quintana et al. (2013) and Andrews and Mikusheva (2015)

for discussions. Despite these di¢ culties, Guerron-Quintana et al. (2013) have shown that

it is generally possible to couple the ABCD form associated with a NK-DSGE model with a

state space representation that nests it. Third, the estimation of �unrestricted�(and identi�ed)

state space models in minimal form has its �natural�counterpart in the estimation problem of

identi�ed VARMA processes for yt that feature the left-coprime condition (Hannan and Deistler,

1988).

The simple comparison of systems (17) and (20) reveals that the dimension of the state

vector in Eq. (20) will be generally larger than the dimension of the state vector in system (17),

i.e. dim(x�t )�dim(xt). The condition dim(x�t )=dim(xt) is obtained with k = 2:
The CER that the NK-DSGE model in Eq.s (10)-(11) places on � can be represented in the

form

(�R0 � �f ~�1)~�1 � �f ~�2 + �b;1 = 0n�n (21)

(�R0 � �f ~�1)~�2 � �b;2 = 0n�n

C � (�R0 � �f ~�1 � �f )~� = 0n�1
~�" = ~	 �! ~	

0 , ~	:=(�0 � �f ~�1)�1 (22)

�j=��j = 0n�n , j = 3; 4; :::; k: (23)

While the restrictions in Eq.s (21)-(22) coincide with those in Eq.s (13)-(14), now we have the

additional set of n2(k�2) zero restrictions, summarized in Eq. (23), that force the dimension of
6Minimality means that the model involves a minimum (non redundant) number of state variables. In practice,

this conditions corresponds to ruling out common (cancelling) roots from VARMA-type systems.

14



the state vector x�t of the statistical model to match the dimension of the state vector xt in the

structural model. While the CER in Eq.s (21)-(22) de�ne a nonlinear mapping from � to � (res-

I), say � = g(�), where g(�) is a nonlinear di¤erentiable vector function, the zero restrictions in
Eq. (23) imply that dim(x�t )=dim(xt) (res-II). When in particular the data generating process

belongs to the class of models de�ned by system (18)-(19) (or equivalently system (20)) and

k � 3, dim(x�t )>dim(xt) and the CER in Eq.s (13)-(22) lead to the omitted dynamics issue.

4 The pseudo-structural form

Consider the NK-DSGE model in Eq.s (10)-(11) and the statistical model in Eq.s (18)-(19).

Our objective is to combine the information provided by both models, circumventing the zero

restrictions in Eq. (23). We consider the following assumptions.

Assumption 1 [Data generating process] The data generating process belongs to the class

of models in Eq.s (18)-(19) with k=kop, dim(x�t ) = nkop and �kop 6= 0n�n;
for �=� op:=(vec(�1)0; :::; vec(�kop)0; �0; vech(�")0; vech(�v)0)0 the associated state space

representation in Eq. (20) is in minimal form, and such that � op is locally identi�ed

and not a¤ected by the �weak identi�cation�issues we qualify below.

Assumption 2 [Stationarity] The matrix A�(� op) is stable.

Assumption 3 [Parameters invariance] The parameters in � op does not vary for t = 1; 2; :::; T .

Assumption 1 maintains that the data generating process belongs to the speci�ed statistical

model, and that such a model involves the minimum number of state variables necessary to

capture the propagation mechanisms at work in the data. The possibility that � op be �weakly

identi�ed� in the sense discussed in Canova and Sala (2009) is ruled out. The hypothesis of

�strong identi�cation�for � op is necessary in our setup to compute likelihood-ratio (LR) tests for

the CER. In principle, the strong identi�cation of � op can coexist with the weak identi�cation

of �, see Guerron-Quintana et al. (2013). We come back on this at the end of this section.

Assumption 2 implies that the statistical model is asymptotically stable. When yt = Zt,

the analysis can be easily extended to the case of unit roots and cointegration along the lines

discussed in e.g. Fanelli (2009), Fukaµc and Pagan (2009) and Bårdsen and Fanelli (2015).

Assumption 3 postulates that the parameters of the statistical model are time-invariant.

This assumption is debatable but is consistent with the hypothesis that the vector of structural

parameters, �, is a �xed point in our reference NK-DSGE model. Although the framework

we discuss below is general enough to cover the large majority of small-scale NK-DSGE models
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currently used in the monetary and business cycle literature, our ExC approach is not consistent,

as it stands, with structural speci�cations in which � and � op, or sub-vectors of � and � op, are

time-varying as in e.g. Cogley and Sbordone (2008) or Cagliarini and Kulish (2013), just to

mention a few. In principle, a sound econometric analysis of system Eq.s (18)-(19) might lead

the practitioner to discover possible breaks in � op (and possibly in � under the CER, see below).

In these cases, the method we discuss in this paper can be applied by considering the sample

periods in which � op is found to be time-invariant.

Given the structural form in Eq.s (10)-(11) and the statistical model in Eq.s (18)-(19), we

build a �pseudo-structural�form given by:8<: �0Zt = �fEtZt+1 + �bZt�1 +
�Pkop�1

j=2 �jZt�j
�
Ifkop�3g + C + �t

�t = R�t�1 + !t
(24)

where If�g is the indicator function, and the n� n matrices �j , j = 2; :::; kop � 1 contain, when
kop � 3, additional auxiliary parameters associated with kop � 2 additional lags of Zt that we
denote ExC terms. Let � be the vector collecting the ExC parameters contained in the matrices

�j , j = 2; :::; kop � 1, and �� = (�0; � 0)0 the vector containing all parameters associated with the
pseudo-structural form in Eq. (24). The true value of ��, ��0, is assumed to be an interior point

of the parameter space ��. When kop � 2, there are no ExC terms and the pseudo-structural
form coincides with the �conventional�NK-DSGE model in Eq.s (10)-(11).7 It turns out that

the NK-DSGE model in Eq.s (10)-(11) is nested within system (24). To keep the number of

auxiliary parameters as small as possible, the matrices �js can be speci�ed diagonal.

It is tempting to interpret the ExC terms
�Pkop�1

j=2 �jZt�j
�
Ifkop�3g in Eq. (24) as a com-

ponent summarizing the e¤ects of propagation mechanisms that are present in the data but

are omitted by the baseline structural speci�cation, such as length of real contracts, adjust-

ment costs, delays in information �ows, decision lags, etc., see e.g. Kozicki and Tinsley (1999),

Rudebusch (2002a, 2002b) and Fuhrer and Rudebusch (2004) for examples. However, if actu-

ally important, these e¤ects should be micro-founded and incorporated directly in the structural

speci�cation. In our setup, the quantity
�Pkop�1

j=2 �jZt�j
�
Ifkop�3g in Eq. (24) de�nes an �higher-

order�hybrid structural model and forces the reduced form solution associated with system (24)

to be consistent with Assumptions 1, as Proposition 1 below will clarify.

To fully understand the nature of system (24), we focus on its i-th Euler equation for kop � 3,
which is given by

Zi;t = 0i;0Z
�
i;t + 

0
i;fEtZt+1 + 

0
i;bZt�1 +

0@kop�1X
j=2

� 0i;jZi;t�j

1A+ Ci + �i;t
7 In our setup the case kop = 1 coincides with the situation where R = 0n�n in Eq. (11).
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�i;t = Ri�i;t�1 + !i;t , i = 1; :::; n:

In this equation, the (n�1)�1 vector Z�i;t denotes Zt with its i-th entry suppressed, the (n�1)�1
vector i;0 collects the structural parameters that enter the i-th row of �0, the n� 1 vector i;f
collects the structural parameters that enter the i-th row of �f , the n � 1 vector i;b contains
the structural parameters that enter the i-th row of �b, � 0i;j is the i-th diagonal element of �j ,

j = 1; :::; k � 1; Ci is the i-th element of C and, �nally, �i;t and !i;t are the i-th elements of the

vectors �t and !t, respectively, where the autoregressive parameter -1<Ri<1 is the i-th diagonal

component of R.

The determinacy of system (24) depends on whether ��0 lies in the determinacy region of

��, therefore it also depends on the auxiliary parameters �, other than �. Our �nal assumption

ensures that the presence of the ExC terms in system (24) does not alter the determinacy

conditions that characterize � in the baseline structural model in Eq.s (10)-(11).

Assumption 4 [Determinacy] Given the pseudo-structural form in Eq. (24), the ExC para-

meters in � are restricted such that for any � = �� 2 � for which a determinate solution for
the NK-DSGE model in Eq.s (10)-(11) exists, it is possible to �nd a �� = ��

�
= (��

0
; ��
0
)0 2 ��

such that a determinate solution to system (24) also exists.

We do not have a formal proof that it always exists a � that satis�es the condition in

Assumption 4. A practical way to check that Assumption 4 is respected in empirical analysis is

discussed in the estimation procedure presented next.

The proposition that follows derives the model-consistent reduced form solution and the

CER implied by the pseudo-structural form in Eq. (24).

Proposition 1 [The CER under ExC] Under Assumptions 1-4, if a unique stable reduced

form solution exists for the model in Eq. (24), it can be represented as in the form (18)-

(19) with the parameters in � op subject to the following set of CER: �j=~�j , j = 1; :::; kop,

�=~�, �" = ~�", where8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(�R0 � �f ~�1)~�1 � (�f ~�2 + �b;1) = 0n�n
(�R0 � �f ~�1)~�2 � (�f ~�3 + �b;2 +�2) = 0n�n
(�R0 � �f ~�1)~�3 � (�f ~�4 +�3 �R�2) = 0n�n

...

(�R0 � �f ~�1)~�kop +R�kop�1 = 0n�n
(�R0 � �f ~�1 � �f )~�� (In �R)C = 0n�1
~�" � ~	 �! ~	

0 = 0n�n , ~	:=(�R0 � �f ~�1)�1:

(25)

and �R0 :=(�0 +R�f ):
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Proof : Technical Supplement.

The interesting feature of the restrictions in Eq. (25) is that there are no zero restrictions

that reduce the length of the vector x�t in system (18)-(19).8

A frequentist econometric procedure for the estimation and testing of the NK-DSGE under

ExC can be based on the following steps:

Step 1 Fit the statistical model in Eq.s (18)-(19) to the data, and use information criteria or

likelihood-ratio tests to determine the dimension of the state vector, dim(x�t ) = nkop.

This can be done by estimating the state space model through maximum likelihood and

Kalman �ltering. The speci�c procedure we use to �nd a global maximum for � op is the

CMAES algorithm, see Andreasen (2010). For each estimated model, we check whether the

minimality (controllability and observability) and local identi�cation conditions discussed

in Komunjer and Ng (2011) are satis�ed in correspondence of the maximum likelihood

estimate �̂ op. If it is found that kop �2, the NK-DSGE model is estimated and evaluated
in the �conventional�way, i.e. under RE. If it is found that kop �3, consider the next step;

Step 2 Given k=kop and dim(x�t ) = nkop, estimate �� = (�0; � 0)0 from system (18)-(19) under a

numerical approximation of the CER in Eq. (25), and verify that Assumption 4 is respected

in correspondence of the point estimate �̂
�
= (�̂

0
; �̂
0
)0.9 Then test the CER through a

likelihood ratio test that compares the likelihood obtained in the previous step, logLT (�̂ op),

and the likelihood associated with ��, logLT (�̂
�
), obtaining LRCERT :=�2(logLT (�̂

�
) �

logLT (�̂
op)). The log-likelihood maximization is also achieved through Kalman �ltering

and CMAES algorithm.

Under standard regularity conditions, the estimator of �� (hence the estimator of �) derived in

the Step 2 is consistent and asymptotically Gaussian, and LRCERT is asymptotically �2(d), with

8A natural concern here is whether the CER in Eq. (25) allow to identify ��. A convenient way to summarize

the CER derived in Proposition 1 is by the distance function f(�op; ��) = 0a�1, where f(�; �) is a nonlinear
continuos vector di¤erentiable function and a = n2kop + n + 1

2
n(n + 1). By the implicit function theorem, the

CER can be represented in explicit form �op = g(��), where g(�) is a nonlinear continuos di¤erentiable vector
function. Although an analytic expression for the function g(�) is not generally available, the Jacobian of the
relationship can be computed with minor adaptations either analytically or numerically.

9This can be done by verifying the stability of the matrix S(�̂) estimated under RE, where �̂ is the maximum

likelihood estimate of � obtained with the �conventional�approach, and the stability of the matrix S(�̂
�
) estimated

under ExC, where �̂
�
is the maximum likelihood estimate of ��. The matrix S(��) is introduced in the proof

of Proposition 1, see the Technical Supplement and Binder and Pesaran (1995) and Bårdsen and Fanelli (2015).

The matrix S(�) is the RE analogue of S(��). If both S(�) and S(��) are stable, the condition in Assumption 4

is respected. If S(�̂) is stable but S(�̂
�
) has unstable eigenvalues, it is necessary to impose proper restrictions on

the auxiliary parameters � to restore stability.
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d =dim(� op)-dim(��). In this situation, the possible rejection of the CER can not be ascribed

to the omitted dynamics issue. Standard regularity conditions might not hold in the NK-DSGE

model when � (and ��) are weakly identi�ed, see e.g. Andrews and Mikusheva (2015). In these

cases, it is in principle possible to adapt the Step 2 of the procedure by using the �full-information�

identi�cation-robust methods discussed in e.g. Dufour et al. (2013), Guerron-Quintana et al.

(2013) and Castelnuovo and Fanelli (2015). This requires inverting (numerically) the LRCERT

test, obtaining asymptotically valid identi�cation-robust con�dence sets for ��. As explained

in Guerron-Quintana et al. (2013), the computation and inversion of the test LRCERT requires

the strong identi�ability of the state space model estimated in the Step 1, which motivates our

Assumption 1. It turns out that a sound (mis)speci�cation analysis of the statistical model

estimated in the Step 1 is a key aspect of approach.

The Step 2 of the procedure can easily be adapted to the Bayesian approach. Given the

statistical model built in Step 1, it is possible to specify a prior distribution for ��, p(��), and

then compute the posterior given the observations y1; :::; yT , p(�� j y1; :::; yT ). This can be

done by using e.g. the Random Walk Metropolis (RWM) algorithm along the lines of An and

Schorfheide (2007). In our framework, it seems �natural�to specify priors for the expectations

correction parameters � that are centered on zero, i.e. on the RE solution, such that the extent

of the misspeci�cation, if any, is determined by the data, see the next sections. Moreover, the

selection between the NK-DSGE model under RE and ExC can be based on Bayesian information

criteria or odds-ratios, etc. More details are provided in Sub-section 5.4.

5 Empirical analysis

In this section, we estimate and empirically evaluate a small-scale monetary NK-DSGE model

on U.S. quarterly data, applying the ExC methodology discussed in the previous section. We

also compare our approach with the �conventional�RE case. In Sub-section 5.1 we introduce the

reference structural model. In Sub-section 5.2 we describe the data and discuss the speci�cation

of the statistical model. In Sub-section 5.3, we estimate and evaluate the NK-DSGE model

under ExC using a frequentist maximum likelihood approach, while in Sub-section 5.4 we repeat

the same exercise using the Bayesian approach.
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5.1 Structural model

Our reference NK-DSGE model is taken from Benati and Surico (2009) and is based on the

following three equations:

~ot = Et~ot+1 + (1� )~ot�1 � �(Rt � Et�t+1) + �~y;t (26)

�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t�1 + �~ot + ��;t (27)

Rt = �Rt�1 + (1� �)('��t + '~o~ot) + �R;t (28)

where

�x;t = �x�x;t�1 + !x;t , -1<�x<1 , !x;t �WN(0; �2x) , x = ~o; �;R: (29)

The variables ~ot:=ot�opt , �t, and Rt stand for the output gap (ot is output and o
p
t the natural rate

of output), in�ation, and the nominal interest rate, respectively;  is the weight of the forward-

looking component in the intertemporal IS curve; � is the price setters� extent of indexation

to past in�ation; � is households�intertemporal elasticity of substitution; � is a discount factor

which is �xed at the value �:=0.99 and treated as known; � is the slope of the Phillips curve; �,

'�, and '~y are the interest rate smoothing coe¢ cient, the long-run coe¢ cient on in�ation, and

that on the output gap in the monetary policy rule, respectively; �nally, �~o;t, ��;t and �R;t in

Eq. (29) are the mutually independent, autoregressive of order one disturbances and !~o;t, !�;t

and !R;t are the structural (fundamental) shocks with variances �2x, x = ~o; �;R.

This and similar small-scale models have successfully been employed to conduct empirical

analyses concerning the U.S. economy. Clarida et al. (2000) and Lubik and Schorfheide (2004)

have investigated the in�uence of systematic monetary policy over the U.S. macroeconomic dy-

namics; Boivin and Giannoni (2006) and Benati and Surico (2009) have replicated the U.S. Great

Moderation, while Castelnuovo and Fanelli (2015) have tested the determinacy/indeterminacy

properties of the implied equilibria controlling for identi�cation failure. It is worth noting that

Benati and Surico�s (2009) model is �hybrid�, in the sense that given the policy rule, both the IS

curve and the NKPC feature lags of ~ot and �t other than future expectations. In this respect, it

seems particularly suited to serve as a reference structural model in the estimation/evaluation

exercise with which we are concerned in this paper.

The three-equation system (26)-(29) can be cast in the form in Eq.s (10)-(11) by setting

Zt:=(~ot; �t; Rt)0, (n = 3), �t:=(�~o;t; ��;t; �R;t)
0, !t:=(!~o;t; !�;t; !R;t)0 and

�0:=

0BB@
1 0 �

�� 1 0

�(1� �)'~o �(1� �)'� 1

1CCA , �f :=
0BB@

 � 0

0 �
1+�� 0

0 0 0

1CCA , �b:=
0BB@
1�  0 0

0 �
1+�� 0

0 0 �

1CCA :
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R:=dg(�~o; ��; �R) , �!:=dg(�
2
~o; �

2
�; �

2
R),

where the operator dg(�) denotes a diagonal matrix and the entries are in the argument. �:=(; �; �; �; �; '~y; '�; �~o; ��; �R; �2~o; �2�; �2R)0

is the 13�1 vector of structural parameters. The constant C is, in this case, set to zero because
estimation is based on demeaned variables, see below.

As in Bårdsen and Fanelli (2015), we complete the speci�cation of the model in Eq.s (26)-

(29) by assuming that the natural rate of output opt captures the e¤ects of technology shocks

through the Random Walk process:

opt = opt�1 + �op;t , �op;t �WN(0; �2op). (30)

Using Eq. (30) and the de�nition of ~ot:=ot � opt , we obtain the relationship

~ot � ~ot�1 = �ot � �op;t (31)

where �ot:=ot � ot�1, which will be exploited in the measurement system below.

5.2 Data and statistical model

We employ quarterly data relative to the �Great Moderation�sample 1984q2-2008q3. The start-

ing date of our estimation and evaluation sample, 1984q2, is justi�ed by McConnell and Pérez-

Quirós (2000), who �nd a break in the variance of the U.S. output growth in 1984q1. The ending

date is instead motivated by the fact that, with data after 2008q3, it would be hard to identify

a �conventional�monetary policy shock with our structural model during the well known zero

lower bound (ZLB) episodes. We have three observable variables, yt:=(�ot; �t; Rt)0 (p = 3),

where �ot is related to the unobservable output-gap ~ot through Eq. (31).10 Output, ot, is the

log of real GDP. The in�ation rate, �t, is the quarterly growth rate of the GDP de�ator. For

the short-term nominal interest rate, Rt, we consider the e¤ective Federal funds rate expressed

in quarterly terms (averages of monthly values). The source of the data is the website of the

Federal Reserve Bank of St. Louis. The three variables are demeaned.11

10We have also considered the case in which ~ot is proxied by a measure of the output-gap computed by using

the measure of potential output released by the Congressional Budget O¢ ce (CBO). In that case, estimation does

not necessarily require the use of Eq. (31). Results are available upon request to the authors.
11Before demeaning and estimating the model, we run a preliminary check for stationarity of yt:=(�ot; �t; Rt)0.

We compute Johansen�s (1996) cointegration rank test using a VAR model for yt with restricted (to the cointegra-

tion space) and unrestricted constants, respectively. Results does not clearly rule out the possible presence of unit

roots in the system. On economic grounds, it is di¢ cult to justify the occurrence of unit roots in yt:=(�ot; �t; Rt)0:

The poor �nite sample power of the employed cointegration rank test is a reasonable explanation of our �ndings.

We therefore treat the vector yt as generated by an highly persistent, covariance stationary process.
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Step 1 of our estimation and evaluation procedure (Section 4) requires �tting the state-

space model in Eq.s (18)-(19) to the data, and selecting the optimal length of the state vector,

i.e. k=kopand dim(x�t )=nk
op. Starting from a maximum lag order of kmax = 6, the �largest�

statistical model which is taken to the data is given by

0BBBBB@
Zt

Zt�1
...

Zt�(kmax�1)

1CCCCCA
x�t

=

0BBBBB@
�1 �2 � � � �kmax�1 �kmax

I3 03�3 � � � 0n�n 03�3
...

. . .
...

...
...

03�3 03�3 I3 03�3

1CCCCCA
A�(�)

0BBBBB@
Zt�1

Zt�2
...

Zt�kmax

1CCCCCA
x�t�1

+

0BBBBB@
"t

03�3
...

03�3

1CCCCCA
G�(�)

(32)

0BB@
�ot

�t

Rt

1CCA
yt

=

0BB@
1 0 0 �1 0 � � � 0

0 1 0 0 0 � � � 0

0 0 1 0 0 � � � 0

1CCA
H

0BBBBBBBBBBBBB@

~ot

�t

Rt
...

~ot�(kmax�1)

�t�(kmax�1)

Rt�(kmax�1)

1CCCCCCCCCCCCCA
x�t

+

0BB@
1

0

0

1CCA
V

v1;t
vt

(33)

where Zt:=(~ot; �t; Rt)0, !t:=(!~o;t; !�;t; !R;t)0, and vt:=v1;t=�op;t from Eq. (31).

We estimate the space state model in Eq.s (32)-(33) on the period 1984q2-2008q3, varying

k from 2 to 6=:kmax, using a Kalman �lter-based maximum likelihood approach in conjunction

with the CMAES algorithm (see Andreasen, 2010). For each estimated model, we check whether

the minimality (controllability and observability) and local identi�cation conditions discussed

in Komunjer and Ng (2011) are satis�ed in correspondence of the parameter values delivered

by the likelihood maximization algorithm. We then select the optimal lag kop computing the

Akaike, Hannan-Quinn and Schwarz information criteria and the LR test. The results of this

speci�cation analysis are summarized in Table 1.

Table 1 shows that using the 5% nominal level of signi�cance, the LR tests selects the model

based on k = kop=4 lags. The Akaike information criterion selects 5 lags, while Schwarz and

Hannan-Quinn select 2 lags. That di¤erent criteria lead to di¤erent lag orders in small samples

is not surprising; see e.g. Lütkepohl (1993) for the case of �nite-order VARs. In the Technical

Supplement, we run a Monte Carlo experiment to envisage to what extent the uncertainty

that characterizes the lag length selection in Table 1 is �admissible�. Monte Carlo evidence

suggests that the speci�cation analysis summarized in Table 1 is perfectly consistent with what

a practitioner can obtain with samples of size T=100 when the data generating process is given
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by our pseudo-structural form. Moreover, the LR test proves to be the �best�selection criterion

in small samples relative to the Akaike, Hannan-Quinn and Schwarz criteria, and is not biased

towards the case of RE. Driven by these facts, we select kop=4 lags (dim(x�t )=nk
op = 12) as

suggested by the LR test. In this case, the vector of parameters associated with the statistical

model is given by � op:=(vec(�1)0; vec(�2)0; vec(�3)0; vec(�4)0; vech(�")0; �2op)
0:

5.3 Frequentist estimation and empirical evaluation

Assuming that the statistical model that �ts the data is based on kop=4 lags, i.e. dim(x�t )=nk
op =

12 > dim(xt)=n2 = 6, the pseudo-structural form associated with our NK-DSGE model is given

by

~ot = Et~ot+1 + (1� )~ot�1 � �(Rt � Et�t+1) + �~o;2~ot�2 + �~o;3~ot�3 + �~y;t (34)

�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t�1 + �~ot + ��;2�t�2 + ��;3�t�3 + ��;t

Rt = �Rt�1 + (1� �)('��t + '~o~ot) + �R;2Rt�2 + �R;3Rt�3 + �R;t

�x;t = �x�x;t�1 + !x;t , -1<�x<1 , !x;t �WN(0; �2x) , x = ~o; �;R (35)

where �~o;2, ��;2 ,�R;2,�~o;3; ��;3 and �R;3 are the expectations correction parameters that enter the

(supposed diagonal) matrices �2 and �3, see Eq. (24). System (34)-(35) de�nes an higher order

�hybrid�NK-DSGE model that recti�es the baseline structural speci�cation. Thus, �:=(�~o;2; ��;2,

�R;2; �~o;3; ��;3; �R;3)
0 = (diag(�2)0; diag(�3)0)0 and �� = (�0; � 0)0:=(; �; �; �; �; '~o; '�; �~o; ��; �R;

�2~o; �
2
�; �

2
R; �~o;2; ��;2, �R;2; �~o;3; ��;3; �R;3)

0 is the 19�1 vector containing the truly structural and
ExC parameters.

Step 2 of the procedure summarized in Section 4 requires estimating �� = (�0; � 0)0 from the

state space model (32)-(33) by imposing the CER derived in Proposition 1. We obtain: �i = ~�i,

i = 1; 2; 3; 4, �"=~�", where8>>>>>>><>>>>>>>:

(�R0 � �f ~�1)~�1 � (�f ~�2 + �b;1) = 03�3
(�R0 � �f ~�1)~�2 � (�f ~�3 +�2 �R�b) = 03�3
(�R0 � �f ~�1)~�3 � (�f ~�4 +�3 �R�2) = 03�3
(�R0 � �f ~�1)~�4 +R�3 = 03�3
~�" � ~	 �! ~	

0 = 0n�n , ~	:=(�R0 � �f ~�1)�1:

(36)

Estimation results for �� = (�0; � 0)0 are reported in Table 2. In the upper panel of Table 2, we

summarize the estimate of � obtained under RE, i.e. taking the structural model in Eq.s (26)-

(29) to the data in the �conventional way�, and the corresponding estimate obtained from the

pseudo-structural form (34)-(35). We label the estimates obtained from the pseudo-structural
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form with the acronym �ExC�, see fourth column of Table 2. Observe that in order to obtain

the CER under RE (kop=2), it is su¢ cient to set the matrices �2 and �3 to zero in Eq. (36),

leading to ~�3 = ~�4 = 03�3 (under these restrictions agents�expectations coincide with RE).

The lower panel of Table 2 summarizes the Akaike, Hannan-Quinn and Schwarz information

criteria and a battery of LR tests through which it is possible to select the �best�speci�cation.

All three information criteria favour the model estimated under ExC. The LR test for the null

�=06�1 (RE) against the alternative � 6= 06�1 (ExC) strongly rejects the null hypothesis. In

both cases, the CER are strongly rejected.

Coming back to the estimated parameters in the upper panel of Table 2, we notice that

the large majority (four out of six) of the ExC parameters �:=(�~o;2; ��;2, �R;2; �~o;3; ��;3; �R;3)
0

(forth column) are signi�cant at conventional signi�cance levels. This con�rms that there is a

mismatch between agents�expectations as implied by the statistical model and the case of RE.

Focusing on the truly structural parameters �, we notice that the main di¤erences between the

estimates obtained under RE and ExC involve the intertemporal elasticity of substitution � and

the forward-looking parameter  in the IS curve, the slope � and shock persistence parameter ��
in the NKPC, and the Fed�s long run response to output gap '~o and shock persistence parameter

�� in the policy reaction function.

The magnitude and precision of the estimated � is considerably higher under ExC, whereas �

does not seem to be empirically identi�ed under RE. Conversely, the magnitude and precision of

the estimated  is lower under ExC relative to RE, suggesting a lesser extent of forward-looking

behaviour once we account for the whole dynamics of the system. This result can be clearly

explained in light of the more ��exible�expectations generating system we assume. The slope

parameter of the NKPC is poorly estimated in both cases, con�rming a traditional di¢ culty in its

empirical identi�cation. The magnitude of the estimated indexation parameter of the NKPC, �,

is the same in the two cases; we observe that precision is considerably higher under ExC relative

to RE. However, the estimated � obtained under ExC is comparatively more precise than the

estimate obtained under RE. Overall, our maximum likelihood estimates seems to suggest that

the NKPC can be more precisely empirically identi�ed by relaxing some constraints on the

autocorrelation structure of the data.

As concerns the policy rule, we notice that the Fed�s long run response to output gap is

remarkably higher relative to the case of RE (1.5 as opposed to 0.336) and more precisely

estimated under ExC. As it known, the empirical literature on the identi�ability of the policy

parameters '~o and '� in New Keynesian models is huge and has not yet reached a consensus.

The recent empirical literature, which makes increasing use of identi�cation-robust methods,

suggests that it is di¢ cult to estimate '~o (and '�) precisely on the Great Moderation era, see,
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among others, Mavroeidis (2010) and Castelnuovo and Fanelli (2015) and references therein.

As already explained in Section 4, if the researcher suspects that �� = (�0; � 0)0 or some of

its components are weakly identi�ed, our approach can be potentially adapted to the case of

identi�cation-robust methods. We do not pursue this important check here. The lesson we learn

from Table 2 is that a sound dynamic speci�cation analysis of the New Keynesian model can

aid the empirical identi�cation process of monetary policy parameters.

5.4 Bayesian estimation and empirical evaluation

In the Bayesian approach, Step 1 is exactly as in Sub-section 5.2; hence, the estimated pseudo-

structural form in Step 2 is given by system (34)-(35). The priors used for the truly structural

parameters, �, are taken from Benati and Surico (2009), while the priors used for the ExC

parameters, �, are centered at the RE equilibrium. More precisely, for each �i;j , i = ~o; �;R

, j = 2; 3 in Eq.s (34)-(35), we use a Gaussian distribution centered on 0 with variance 0.25.

Table 3 summarizes the modes and standard deviations of the prior distributions for all structural

parameters. The RWM algorithm delivers the posterior distributions reported in Table 4.

As expected, the DIC information criterion favours the NK-DSGE model estimated under

ExC, relative to the case of RE. The estimates in Table 4 are quantitatively di¤erent from their

counterparts in Table 2 obtained with the frequentist maximum likelihood approach. Similarly to

the frequentist estimation approach, we observe that the mismatch between agents�expectations

and RE seems to be relevant. The magnitude of estimated persistence parameters, �~o, �� and

�R, is considerably larger in the pseudo-structural form compared to the case of RE, suggesting

that other than capturing omitted propagation mechanisms, the pseudo-structural model does

not penalize the persistence of the data, given the chosen priors.

The main di¤erences between the estimates obtained under RE and by the pseudo-structural

form involve the forward-looking parameter of the IS curve, , and the policy reaction of the

Fed to the output gap, '~o. Contrary to what is reported in Table 2, the magnitude of the

estimated  is considerably larger under ExC, pointing towards a greater extent of forward-

looking behaviour. Obviously, the di¤erence in the estimates of  in Table 2 and Table 4 can

solely be ascribed to the role of the prior distributions. On the other hand, we notice that in

the Bayesian approach as well, the Fed�s long run response to output gap is remarkably higher

relative to the case of RE (1.054 as opposed to 0.449) and more precisely estimated under ExC.

This evidence con�rms the �nding obtained with the frequentist approach in Sub-section 5.3.

All other estimates in Table 4 are roughly the same as in Table 2.
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6 Concluding remarks

In this paper, we have focused on the poor time series performance that characterizes the

class of small-scale NK-DSGE models currently used in monetary policy and business cycle

analysis. Under RE, NK-DSGE models give rise to a set of nonlinear CER and constraints on

the lag order of the system that may con�ict with the actual autocorrelation structure that

characterizes quarterly (or monthly) time series. In these cases, the investigator should re-

formulate the structural model by specifying a less restrictive, possibly microfounded, dynamic

structure that accounts for the previously omitted propagation mechanisms. This is not always

feasible. Practitioners typically react to this type of misspeci�cation by postulating ad hoc

time series models for the shocks, or adding measurement errors in the associated state space

representation. We rationalize these practices by using a data-driven procedure based on a

statistical model for the data, which is combined with the original structural form without

abandoning the logic and concept of model-consistent expectations. Our approach is illustrated

empirically by focusing on the �hybrid�NK-DSGE monetary model by Benati and Surico (2009)

as the reference system.
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TABLE 1. Lag length selection in the statistical model in Eq.s (32)-(33).

Estimation sample: 1984q2 - 2008q3

LR tests Information criteria

lag Likelihood LR p-value Akaike Hannan-Quinn Schwarz

2 151.42 74.71 0.000 -240.84 -208.57� -161.03�

3 161.08 55.40 0.001 -242.15 -200.69 -139.58

4 176.99 23.57 0.167� -255.98 -205.42 -130.84

5 186.44 4.68 0.861 -256.87� -197.29 -109.36

6 188.78 - - -243.55 -175.04 -73.87

NOTES: The log-likelihood is maximized by a Kalman-�ltering approach and the CMAES algo-

rithm (Andreasen, 2010). The LR tests are computed by comparing the log-likelihoods obtained with

k = 2; ::; 5=:kmax�1 lags with the log-likelihood obtained with kmax= 6. Asterisks denote the optimal
lag selection according to the test/information criterion.
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TABLE 2. Estimated structural parameters of the model in Eq.s (26)-(29).

Estimation sample: 1984q2 - 2008q3

Parameters Interpretation RE ExC

� IS: inter. elast. of substitution 0.010(0.057) 0.079(0.055)

 IS: forward looking term 0.572(0.062) 0.269(0.207)

� NKPC: indexation past in�ation 0.035(0.230) 0.035(0.039)

� NKPC: slope 0.041(0.121) 0.0267(0.043)

� Policy rule: smoothing term 0.908(0.054) 0.889(0.034)

'~o Policy rule: reaction to output gap 0.336(0.963) 1.500(0.248)

'� Policy rule: reaction to in�ation 1.650(0.974) 1.650(0.803)

�
~o

IS: shock persistence 0.908(0.034) 0.801(0.190)

�� NKPC: shock persistence 0.100(0.342) 0.775(0.082)

�R Policy rule: shock persistence 0.539(0.080) 0.192(0.157)

�2~o IS: variance of shock 0.001(0.001) 0.006(0.002)

�2� NKPC: variance of shock 0.025(0.003) 0.053(0.010)

�2R Policy rule: variance of shock 0.011(0.002) 0.006(0.001)

�2op Variance of potential output 0.045(0.009) 0.031(0.006)

�~o;2 IS: ExC (�2) - -0.061(0.191)

��;2 NKPC: ExC (�2) - -0.444(0.176)

�R;2 Policy rule: ExC (�2) - 0.057(0.061)

�~o;3 IS: ExC (�3) - 0.047(0.016)

��;3 NKPC: ExC (�3) - 0.065(0.131)

�R;3 Policy rule: ExC (�3) - -0.192(0.058)

Likelihood 115.09 129.79

Akaike -202.18 -219.57*

Hannan-Quinn -187.54 -198.66*

Schwarz -165.99 -167.88*

LR(RE vs ExC)=29.40
[0.00]

; LR(CER model with RE)=72.66
[0.00]

; LR(CER model with ExC)=94.40
[0.00]

NOTES: The log-likelihood is maximized by a Kalman-�ltering approach and the CMAES algorithm

(Andreasen, 2010), using the bounds: [0.010-0.200] for �; [0.100-0.999] for ; [0.035-0.100] for �; [0.025-

1] for �; [0.001-0.999] for �; [0.001-1.500] for '~o; [1.650-5.500] for '�; [0.001-0.999] for �~o, �� and �R,
leaving all remaining parameters, including �:=(�~o;2; ��;2; �R;2; �~o;3; ��;3; �R;3)�, free on condition that

model�s determinacy is met (see footnote 8). Standard errors in parentheses have been calculated by

adapting the �hessian.m�function available in Matlab. P-values in brackets. Asterisks denote the selected

models..
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TABLE 3. Bayesian approach, prior distributions used for the structural parameters of the model

in Eq.s (26)-(29).

Parameter Interpretation Density Mode Standard Deviation

� IS: inter. elast. of substitution Inverse Gamma 0.06 0.04

 IS: forward looking term Beta 0.25 0.20

� NKPC: indexation past in�ation Beta 0.75 0.20

� NKPC: slope Gamma 0.05 0.01

� Policy rule: smoothing term Beta 0.75 0.20

'~o Policy rule: reaction to output gap Gamma 0.15 0.25

'� Policy rule: reaction to in�ation Gamma 1.00 0.50

�
~o

IS: shock persistence Beta 0.25 0.20

�� NKPC: shock persistence Beta 0.25 0.20

�R Policy rule: shock persistence Beta 0.25 0.20

�2~o IS: variance of shock Inverse Gamma 0.25 0.25

�2� NKPC: variance of shock Inverse Gamma 0.50 0.50

�2R Policy rule: variance of shock Inverse Gamma 0.25 0.25

�2� Variance of potential output Inverse Gamma 0.25 0.25

�i;j Auxiliary, i = ~o; �;R ; j = 2; 3 Normal 0 0.25

NOTES: The prior distributions for the truly structural parameters, �, are taken from Table 1 in

Benati and Surico (2009). The parameter � corresponds to ��1 in Benati and Surico (2009), hence we

use an Inverse-Gamma distribution in place of a Gamma.
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TABLE 4. Bayesian approach, estimated structural parameters of the model in Eq.s (26)-(29).

Estimation sample: 1984q2 - 2008q3

Parameters Interpretation Posterior RE Posterior ExC

Mean [5%, 95%] Mean [5%, 95%]

� IS: inter. elast. of substitution 0.183[0.156,0.199] 0.185[0.158,0.199]

 IS: forward looking term 0.136[0.102,0.200] 0.829[0.649,0.951]

� NKPC: indexation past in�ation 0.056[0.036,0.088] 0.062[0.037,0.093]

� NKPC: slope 0.053[0.038,0.072] 0.053[0.038.0.071]

� Policy rule: smoothing term 0.783[0.682,0.870] 0.733[0.584,0.902]

'~o Policy rule: reaction to output gap 0.449[0.116,0.805] 1.054[0.167,1.478]

'� Policy rule: reaction to in�ation 2.107[1.682,3.043] 1.801[1.658,2.120]

�
~o

IS: shock persistence 0.529[0.341,0.714] 0.845[0.681,0.952]

�� NKPC: shock persistence 0.484[0.175,0.771] 0.783[0.637,0.903]

�R Policy rule: shock persistence 0.470[0.204,0.717] 0.641[0.233,0.916]

�2~o IS: variance of shock 0.041[0.030,0.054] 0.047[0.034,0.063]

�2� NKPC: variance of shock 0.232[0.193,0.278] 0.249[0.204,0.301]

�2R Policy rule: variance of shock 0.112[0.092,0.135] 0.115[0.094,0.139]

�2op Variance of potential output 0.048[0.035,0.063] 0.054[0.039,0.073]

�~o;2 IS: ExC (�2) - -0.082[-0.364,0.209]

��;2 NKPC: ExC (�2) - -0.638[-0.913,-0.370]

�R;2 Policy rule: ExC (�2) - 0.125[-0.176,0.439]

�~o;3 IS: ExC (�3) - 0.011[-0.249,0.263]

��;3 NKPC: ExC (�3) - -0.247[-0.538,0.055]

�R;3 Policy rule: ExC (�3) - -0.053[-0.307,0.213]

DIC 42.41 3.26�

NOTES: �RE�means that the model in Eq.s (26)-(29) is estimated in the �conventional�way under

rational expectations; �ExC�means that the estimated model is the pseudo-structural form in Eq.s (34)-

(35). The prior distributions are reported in Table 3. Posterior distributions are computed using the

Random Walk Metropolis algorithm. �Mean [5%, 95%]�denotes a 90% credible set. The posteriors satisfy

the standard convergence criteria and the acceptance ratio is 22.94% for the model estimated under RE

and 36.79 for the model estimated under ExC. DIC is the Deviance Information Criterion.
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