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A B S T R A C T   

The increasing number of approved drugs along with next generation sequencing (NGS) technologies look out as 
potential revolution of biomolecular characterization of non-small-cell lung cancer (NSCLC). Nevertheless, 
several aspects impact on success rate of NGS in clinical practice: a multidisciplinary approach and thorough 
knowledge of strengths and limits of each technologic diagnostic tool are required. Crucial preliminary step is the 
selection of the best available sample before testing, aware of clinical condition and setting of disease. Genomic 
data should be than integrated in the clinical context and matched with available therapeutic options; Molecular 
Tumor Boards (MTB) are worldwide emerging interdisciplinary groups implemented to transfer the impact of 
precision medicine in clinical practice. In order to guarantee equity in treatment, these considerations should 
find their application widely and rapidly. 

Aim of this review is offering an overview of emerging biomarkers, relative upcoming targeted drugs, and new 
diagnostic chances with an authors’ perspective about a real-life diagnostic-therapeutic algorithm useful for daily 
clinical practice.   

1. Introduction 

Currently, alongside with the well-established predictive bio-
markers, novel alterations are ingoing the European clinical practice and 
this highlights the need for a better defined testing strategy of non-small 
cell lung cancer (NSCLC) patients. There are several testing approaches 
that can be applied, depending on tumor alterations and technical ca-
pabilities, in order to allow a time-saving process. 

Sample triage is essential for the correct management of these critical 
patients. Moreover, all considerations should take into account the 
possibility of a heterogeneous and decentralized local testing landscape, 
as in the Italian situation. The aim of this review is to give an overview 
on upcoming drug approvals and predictive markers in oncogene- 
addicted NSCLC patients, to discuss opportunities and challenges of 
next generation sequencing (NGS), including different platforms and 
panels, and finally to propose a diagnostic algorithm potentially useful 
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within a Molecular Tumor Boards. 

2. Upcoming drug approvals for oncogene-addicted NSCLC 

It has been widely demonstrated that non-squamous lung carcinoma 
is not a single disease but a cluster of distinct molecular subtypes each 
defined by an oncogenic genetic variant. Gene mutations, rearrange-
ments and amplifications have dramatically changed the treatment 
landscape of lung cancer since they have provided the rationale for 
targeted therapies. 

So far, current national and international guidelines recommend 
testing for oncogenic targets (EGFR, KRAS, ALK, ROS1, BRAF, RET, MET, 
NTRK and HER2), along with immune-checkpoint inhibitor biomarkers 
(PD-L1) in order to select advanced stage NSCLC patients for currently 
approved targeted therapies (Mosele et al., 2020). 

2.1. Mutations-targeting agents 

2.1.1. The exon 20 insertions epidermal growth factor receptor (EGFR) 
Since recommendation in 2011 by the American Society of Clinical 

Oncology/College of American Pathologists (ASCO/CAP) for all patients 
with lung adenocarcinoma, EGFR mutational assessment has become 
mandatory in the routine diagnostic practice of molecular predictive 
pathology laboratories (Beasley and Milton, 2011). In EGFR-mutant 
advanced NSCLC patients, first (gefitinib and erlotinib) (Mok et al., 
2009; Rosell et al., 2012) ; second (afatinib and dacomitinib) (Yang 
et al., 2015; Wu et al., 2017) and third generation (osimertinib) (Soria 
et al., 2018) tyrosine kinase inhibitors (TKIs) targeting EGFR mutations 
are currently approved (Papini et al., 2021); of note osimertinib showed 
to be superior to the standard EGFR TKIs in the first-line setting in the 
FLAURA trial with an improvement in progression free survival (PFS) 
(18.9 months vs. 10.2 months) and overall survival (OS) (at 18 months 
83 % vs. 71 months) respect to the other EGFR TKIs. In addition, it has 
been demonstrated the possibility to adopt a combination of first gen-
eration EGFR TKIs with chemotherapy or antiangiogenic therapies as a 
first-line treatment for patients with EGFR-mutated NSCLC patients with 
a significant improvement in clinical outcomes (Chen et al., 2021). 
Beyond EGFR deletions in exon 19 and p.L858R point mutation in exon 
21, insertions within exon 20, detected in 1–2 % of metastatic NSCLC 
patients, as well as other “uncommon” mutations in exons 18, 20 and 21 
(p.G719X, p.L861Q, p.S768I), need to be tested for an adequate treat-
ment management (Ramalingam et al., 2020). Among these, careful 
attention should be paid to EGFR exon 20 insertions. These latter, 
identified in 1.5–3.0 % of NSCLC patients, are located in tyrosine kinase 
domain of EGFR protein (Gristina et al., 2020). As a general rule, these 
alterations can be grouped as in-frame insertions and three to 21 bp 
duplications within residues D761 and C775 (Vyse and Huang, 2019). 
Overall, EGFR exon 20 insertions lead to an inward rotation position of 
the αC-helix and the stable dimerization and constitutive activation of 
EGFR protein (Eck and Yun, 2010). 

More recently, approvals and ongoing trials are targeting exon 20 
insertions, with mobocertinib (TAK-788) receiving in April 2020 the 
Food and Drug Administration (FDA) breakthrough therapy designation 
for patients with EGFR exon 20 mutant NSCLC that have progressed 
following platinum-based chemotherapy (Takeda, 2021). Moreover, the 
ZENITH20− 20 study is also evaluating safety and efficacy of poziotinib 
(HM781− 36B) in patients with previously treated NSCLC and EGFR 
exon 20 insertions. The phase 2 study data show that the overall 
response rate (ORR) has been met as primary endpoint with durable 
responses (Socinski et al., 2020). These two compounds may be 
considered as a potential option for EGFR exon 20 mutant patients 
although the safety profile appears not easily manageable. Finally, 
amivantamab, a bispecific antibody targeting both EGFR and MET, 
received FDA accelerated approval for patients harboring EGFR exon 20 
insertions previously treated NSCLC, based on the multicenter 
non-randomized study CHRYSALIS. This study showed an ORR of 40 %, 

with a median Duration of Response (DoR) of 11.1 months, with 
acceptable safety profile (Park et al., 2021). 

2.1.2. The Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C 
mutations 

KRAS exon 2 p.G12C mutation are identified in about 12 %–14 % of 
NSCLC patients (Malapelle et al., 2021). KRAS is a G-protein with 
GTPase activity (Gimple and RAS, 2019). KRAS mutations determine the 
constitutive activation of KRAS protein and the subsequent signal 
transduction (Takács et al., 2020). KRAS mutations in NSCLC are more 
frequently reported in smokers (30 % vs. 10 %), and after years of failed 
efforts to target KRAS in lung cancer, positive results have been emerged 
from several recent clinical studies. The CodeBreaK 100 with the 
administration of sotorasib (AMG-510) showed a positive ORR for KRAS 
exon 2 p.G12C-mutant advanced NSCLC patients that failed a median of 
two treatments lines with chemo- and/or immunotherapy (FierceBio-
tech, 2021). A global Phase 3 clinical trial has recently reached the 
recruitment target of patients for comparing sotorasib to docetaxel in 
KRAS exon 2 p.G12C-mutant NSCLC patients (CodeBreaK 200 study). 
Additionally, a compassionate use program is currently open for sotor-
asib in pretreated patients. Another promising drug, adagrasib 
(MRTX849) has showed responses in 45 % of NSCLC patients from phase 
1/1b and phase 2 clinical trials; but phase 2 is still enrolling to increase 
the target population and better assess drug safety. Some trials are 
evaluating combinatory approaches between the novel KRAS drugs and 
other inhibitors targeting different molecules (SHP-2 inhibitor 
TNO-155) with encouraging results in anti-tumor activity in some solid 
tumors in the pre-clinical phase. In September 2020, it has been 
announced the combination strategy of BI 1701963, a SOS1 pan-KRAS 
inhibitor, and adagrasib in solid tumors patients with KRAS exon 2 p. 
G12C mutation (Mirati, 2021). 

2.1.3. The Mesenchymal-epithelial transition factor (MET) 
c-MET receptor tyrosine kinase (MET) gene alterations have been 

reported in about 4.3 % of NSCLC patients (Cancer Genome Atlas 
Research Network, 2014a). These latter may lead to aberrant activation 
of downstream pathways (RAS/ERK/MAPK, PI3K/AKT, 
Wnt/beta-catenin, and STAT). 

Among these, MET exon 14 skipping (METex14), that may occur 
mutually exclusive or in conjunction with MET amplification, has ac-
quired a high relevance (Malapelle et al., 2020). METex14 are charac-
terized by the loss of exon 14 that determines a decreased degradation of 
the MET protein and increased activation of downstream signaling 
pathways (Yang et al., 2020; Drusbosky et al., 2021; Moosavi et al., 
2021). Currently, testing for METex14 in advanced or metastatic dis-
ease, either for adenocarcinoma or squamous cell carcinomas is rec-
ommended by National Comprehensive Cancer Network (NCCN) 
guideline in order to administrate the FDA-approved drug capmatinib 
(Ettinger et al., 2021; Novartis, 2021). More recently, the GEOMETRY 
mono-1 trial evaluated highlighted the efficacy of capmatinib in 
advanced stage NSCLC harboring METex14 or MET amplifications. 

Of note, limited efficacy has been observed in pretreated patients 
with MET amplifications and gene number copies less than 10, whereas a 
stronger increase in the ORR (from 7 to 12% to 40 %) in naïve patients 
has been reported (Wolf et al., 2020). Beyond capmatinib, another type 
Ib MET inhibitor, tepotinib, has received FDA accelerated approval for 
advanced NSCLC harboring METex14 basing on data from phase II 
VISION clinical trial [https://www.fda.gov/drugs/resources-informatio 
n-approved-drugs/fda-grants-accelerated-approval-tepotinib-metastatic 
-non-small-cell-lung-cancer]. 

In this trial, tepotinib has been administered in monotherapy in 
patients with advanced NSCLC METex14 assessed on liquid and/or tis-
sue biopsies (Paik et al., 2020). 

2.1.4. The human epidermal growth factor receptor 2 (HER2) 
HER2 exon 20 insertions have a high grade of similarity with those in 
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EGFR and are related to the same two major structural regions, the αC- 
helix and the loop region (Friedlaender et al., 2021). 

Three different alterations have been described for HER2 in NSCLC: 
gene amplification, overexpression and HER2 point mutations, ac-
counting overall for about 5–7 % of naive lung alterations. Nevertheless, 
HER2 mutations, particularly YVMA 776–779 insertions within exon 20, 
are emerging as a druggable target for targeted therapies in lung cancer 
and account for 80 %–90 % of all HER2 mutations (Yoshizawa et al., 
2014; Zhao and Xia, 2020). 

In May 2020, as a result of the interim analysis of the Phase II global 
DESTINY-Lung01 clinical trial, trastuzumab deruxtecan received the 
FDA breakthrough designation for the treatment of patients with met-
astatic HER2-mutant NSCLC with disease progression on or after 
platinum-based therapy (Enhertu, 2021). The same trial failed to show 
effectiveness of the designed treatment in HER2 positive (IHC 3+ pro-
tein overexpressing or IHC 2+ with gene amplification) neoplasms, and 
clinically meaningful tumor response was only achieved in the mutant 
cohort. The mechanism of action of the drugs relies on the combination 
of trastuzumab, directed against HER2, with a cytotoxic payload called 
deruxtecan so that the compound is classified as Antibody Drug Con-
jugate. As the antibody seeks out and binds to HER2-expressing cancer 
cells, deruxtecan is then released to inhibit DNA replication, leading to 
cell death of the target and the immediately proximal cells (Smit et al., 
2020). 

Several trials have been set up in order to provide insight on the use 
of small HER2 TKI molecules in NSCLC. Some of these therapeutic 
agents have been used in HER2 mutant or amplified patients, with 
controversial data and underline the great variability of clinical efficacy 
of HER2 therapeutic options in these NSCLC molecular subtypes (Kris 
et al., 2015; De Grève et al., 2015). 

2.2. Gene fusions-targeting agents 

2.2.1. The proto-oncogene tyrosine-protein kinase receptor (RET) 
About 2% NSCLC patients harbor RET gene fusions leading to the 

production of abnormal RET proteins that can act as oncogenic drivers 
(Cancer Genome Atlas Research Network, 2014b). These gene rear-
rangements involves the carboxy terminal region of RET and various 
upstream gene partners, resulting in the constitutive activation of the 
fused protein (Drilon et al., 2018a). The initial treatment strategy 
developed for RET-rearranged NSCLC was based on a multi-targeted 
tyrosine kinase inhibitor (Drilon et al., 2016) while more recently 
novel next-generation selective RET inhibitors have been investigated 
and received the FDA approval for their highly selectivity. 

The international, phase I/II LIBRETTO-001 trial led to the approval 
of selpercatinib in adult patients with metastatic RET fusion-positive 
NSCLC. Selpercatinib is a highly selective oral TKI with a profound 
anti-kinase activity against RET rearranged tumors that has shown a 64 
% ORR in patients previously treated with at least a platinum-based 
chemotherapy and an 85 % ORR among untreated patients and highly 
effective also on intracranial metastasis (Drilon et al., 2020). 

In the phase I/II ARROW trial, pralsetinib, another strong FDA- 
approved RET inhibitor has been found to have an ORR of 56 % in 
advanced RET fusion-positive NSCLC, irrespective of prior treatment or 
RET fusion types (Oxnard et al., 2018). Currently, the phase III ran-
domized clinical trial AcceleRET is ongoing with the primary aim of 
comparing pralsetinib with the standard of care in first line treatment of 
metastatic NSCLC (NCT04222972). 

2.2.2. Neurotrophic tyrosine kinase (NTRK) 
NTRK1, NTRK2 or NTRK3 genes, which encode the neurotrophin 

receptors TRKA, TRKB and TRKC, have been described as undergoing 
fusion events leading to carcinogenesis in various adult and pediatric 
solid tumors. NTRK gene fusions can be found with different frequencies 
across several cancer types, with the challenge of their identification due 
to the higher incidence described in rare cancer, while a lower one is 

detected in the more frequent big killer type of tumors (Roviello et al., 
2020). NTRK gene fusions were first identified in NSCLC in 2013 
(Vaishnavi et al., 2013), and the frequency of these fusion events is low 
and specifically, NTRK1 gene fusions are detected in about 3% of NSCLC 
cases while NTRK2 and NTRK3 in about 1% of cases, across all types 
(Rolfo and Raez, 2017). 

The attempt of targeting these alterations across all tumor types has 
successfully led to the first approval of such agnostic therapeutic 
approach in Europe with the European Medicine Agency (EMA) 
licensing larotrectinib in September 2019 both in adult and pediatric 
metastatic or unresectable cancers (EMA, 2021). Efficacy was then 
confirmed based on pooled data from three major clinical trials: 
LOXO-TRK-14001, SCOUT, and NAVIGATE (Drilon et al., 2018b). 

However, the identification of NTRK gene fusions for the clinical 
trials was prospectively determined in local laboratories using next 
generation sequencing or fluorescence in situ hybridization (Moosavi 
et al., 2021). ESMO recommendations on the standard methods to detect 
NTRK fusions in daily practice propose, for low recurrence unselected 
population, an immunohistochemical screening followed by 
RNA-sequencing for positive case (Marchiò et al., 2019). NGS panel for 
significant lung gene could be considered an upfront valid option. 

The national drug agencies are indeed facing the new challenge of 
evaluating an agnostic drug (NICE, 2021; IQWIG, 2021). 

The pivotal phase II STARTRK-2, phase I STARTRK-1 and phase I 
ALKA-372− 001 trials, and data from the phase I/II STARTRK-NG study 
helped for EMA approval of entrectinib of adult and pediatric patients 
with NTRK fusion-positive solid tumors and for people with ROS1-pos-
itive advanced NSCLC. Tumor shrinkage happened in more than half of 
people with NTRK fusion-positive, locally advanced or metastatic solid 
tumors with an overall response rate of 63.5 % and an objective re-
sponses was observed across 13 tumor types (Rozlytrek, 2021). 

3. Clinical algorithm: role of NGS, opportunity and pitfalls 

3.1. Clinical power of the best choice, the magic triangle: sample, 
technique and panel 

Tissue still represents the “gold standard” starting material for mo-
lecular analysis, including NGS. Nevertheless, tissue remain an issue in 
advanced stage NSCLC patients. In the vast majority of these patients the 
only available material for molecular analysis is represented by scant 
tissue samples (small histological biopsies and/or cytological speci-
mens) (Aisner et al., 2016). Formalin fixed and paraffin embedded 
(FFPE) tissue samples (histological samples or cytological cell blocks) do 
not require an additional validation process before routine imple-
mentation for NGS analysis respect to cytological preparations (such as 
direct smears and liquid based cytology samples) (Lindeman et al., 
2013). However, even these non-FFPE samples acquired a relevant role 
in the correct diagnostic molecular management of advanced stage 
NSCLC patients, as stated in the updated version of the molecular testing 
guideline from the CAP/IASLC/AMP (Lindeman et al., 2018). In fact, 
non-FFPE samples yield higher quality nucleic acids compared to FFPE 
specimens, which suffer from formalin fixation and lead to C > T arti-
facts that may determine false negative or false positive molecular re-
sults (Cree et al., 2014). Conversely, non-FFPE samples may be affected 
by the limited quantity of available material (Bellevicine et al., 2017). 

Regarding molecular testing, different molecular assays are currently 
available, including NGS (Vigliar et al., 2015a). This latter enables, 
through a “sequencing by synthesis” approach, the analysis of different 
biomarkers for different patients, simultaneously (Vigliar et al., 2015b). 
As a general rule, NGS platforms can adopt one of the three following 
sequencing approaches: by synthesis, by hybridization, and by ligation 
(Reuter et al., 2015). Briefly, despite different platforms are currently 
commercially available, NGS workflows follow the same steps: (1) li-
brary preparation; (2) clonal amplification of single generated frag-
ments; (3) massive parallel sequencing, and (4) data analysis (Vigliar 
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et al., 2015a). Regarding library preparation, Ion Torrent platforms 
(Thermo Fisher Scientific, Waltham, MA) employ a polymerase chain 
reaction (PCR) approach adopting multiple primer pairs that allow to 
select specific genomic targets (Rothberg et al., 2011), whereas the 
Illumina ones (Illumina, San Diego, CA) implement a 
hybridization-capture approach (Loman et al., 2012). The second step is 
represented by clonal amplification that allows the generation from a 
single fragment of hundreds of thousands of copies. This phase is ob-
tained with an emulsion PCR on beads when considering the Ion Torrent 
platforms (Merriman et al., 2012), or with an emulsion PCR on a solid 
support on a flat glass microfluidic channel (flow cell) when adopting 
Illumina platforms (Mardis, 2013). The third phase is performed on solid 
chips able to identify the pH changes determined by the release of a 
hydrogen ion (H+) originated from the incorporation of non-labeled 
nucleotide by DNA polymerase by Ion Torrent platforms (Slatko et al., 
2018). The Illumina platforms, instead, adopted labeled nucleotide to 
identify the incorporation by DNA-polymerase (Mardis, 2013). Finally, 
all generated data requires specific bioinformatics pipelines to be 
adopted for clinical purposes (Gargis et al., 2012). 

Another crucial step for NGS analysis is the choice of gene panels 
able to satisfy diagnostic purposes. Currently different gene panels are 
commercially available (Hynes et al., 2017a). In this setting, there is the 
possibility to employ: narrow gene panels, covering up to 10–15 
actionable genes; broad and clinically relevant panels, covering up to 50 
genes, useful to enroll patients in clinical trials; tumor comprehensive 
panels, covering up to 150 cancer specific genes for translational 
research; human cancer comprehensive panels, covering up to 400 
cancer relevant genes (Hynes et al., 2017b). 

In the experience of an Italian molecular predictive laboratory, NGS 
workflow has been optimized to process tissue and liquid biopsy speci-
mens for DNA- and RNA-based clinically relevant biomarkers by using 
two narrow, custom NGS panels (Malapelle et al., 2017; De Luca et al., 
2021). In this setting, DNA-based approach is fundamental for point 
mutations, insertions and deletions detection, whereas may be limited 
when gene fusions are considered, due to the presence of intronic re-
gions involved in the gene rearrangements. This limitation may be 
overcomes by a RNA-sequencing approach, however, pre-analytical is-
sues, due to RNA less stability than DNA, may arise (Bruno and Fonta-
nini, 2020). 

In summary, as represented in Fig. 1, the most appropriate NGS 
result can be obtained combining the choice of the most suitable sample 
in terms of quality and quantity of DNA/RNA yield with a technical 

approach able to maximize the clinical sensitivity in the specific analytic 
context coupled to the most appropriate panel within the respective 
clinical context. 

3.2. What, when and how: a proposed diagnostic algorithm 

Despite the agreement on the importance of broad molecular testing 
approach for patients with lung cancer, there is still some difficulties in 
its full applicability in worldwide clinical practice. A recent interna-
tional survey conducted by the International Association for the Study of 
Lung Cancer (IASLC) revealed that almost globally, the adoption of 
molecular testing for lung cancer is suboptimal with molecular testing 
rates of less than 50 % in more than 60 % of survey responders. 
Furthermore, most patients with molecular data provided, had only 
EGFR and ALK tested. The study also highlighted major barriers in 
testing cost, access, quality, turnaround time, and lack of awareness 
(Smeltzer et al., 2020). 

In this context, pathologists and molecular biologists are central 
figures in what can be called the “lung cancer sample triage”. The 
importance of a strict and continuous communication between all the 
professionals involved in the entire process, (pathologists, biologists and 
clinicians) is crucial. Indeed, the adoption of reflex biomarker testing 
required by pathologist at diagnosis, may potentially increase testing 
rate and shortening time to results (Anand et al., 2020). Since most 
pathology laboratories have been equipped in the last decade with 
platforms for single-gene analysis, technology update along with 
maintenance of equipment and expertise on orthogonal methods, could 
represent crucial aspects. Particularly, single-gene test strategy cannot 
be entirely considered outdated. It remains a valid option when rapid 
turnaround time is required or sample is not suitable to pass quality and 
quantity controls prior to NGS testing. In patients with deteriorating 
conditions the adoption of a rapid testing may be a rescue option and 
could be of crucial importance to save patient’s life. 

Whereas a broader genomic assessment should be always performed 
in NSCLC patients whenever possible, there is now a broad consensus 
about role of liquid biopsy as a complementary approach to tissue based 
analysis (Reita et al., 2021). Even if it may be not yet considered totally 
an alternative to tissue testing, molecular profiling on liquid biopsy in 
NSCLC is recommended at the time of initial diagnosis in patients with 
advanced NSCLC, when tumor tissue is scarce and/or unavailable, or 
finally for those patients in whom invasive procedures may be harmful 
(Rolfo et al., 2018; IASLC, 2021). These data are supported by the NILE 

Fig. 1. NGS is fundamental for a wide molecular profiling of NSCLC and precision oncology. Its clinical power in is strictly related to the best choice of sample, 
technique and panel for each patient, as a magic triangle. 
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study, showing an optimal concordance of plasma versus tissue geno-
typing adopting NGS approaches (Leighl et al., 2019). 

Another crucial point is represented by turnaround time. Interna-
tional guidelines by CAP/IASLC/AMP as well as local guidelines (Lin-
deman et al., 2018) recommend that molecular testing turnaround times 
should not exceed 10 working days. However, in real-world clinical 
practice, some delays in NGS turnaround time have been observed and 
are usually related to logistic factors (Hagemann et al., 2015). 

In order to reduce time testing, in a recent retrospective study 
involving an Asian NSCLC cohort, authors demonstrated that upfront 
NGS had better time to results compared to sequential strategies (Tan 
et al., 2020) and similar results have been reported by Pennel et al. 
(Pennell et al., 2019). Interestingly, another study highlighted that 
sequential testing remains cost-effective only when limited to EGFR, 
ALK and ROS1 analysis (Layfield et al., 2019). Ideally, comprehensive 
upfront DNA- and RNA- based NGS methods able to assess both muta-
tions, rearrangements and amplifications seem the most preferable 
approach, in terms of time consumption and cost restraint (Drilon et al., 
2015; Han et al., 2014; Tuononen et al., 2013). Concerning turnaround 
time, logistics is furthermore relevant as much as analytics workflows. 
Test ordering time, tissue collecting and selection of the most suitable 
sample for analysis is essential for an efficiently defined process, even in 
an outsourcing model of testing or if NGS testing is performed in house. 

If NGS testing is performed locally, sharing equipment technology 
platforms among laboratories of the same institution or availability of 
dedicated personal equipment become crucial points to be accurately 
managed for optimizing reporting time and outcomes. 

Delay in molecular testing may expose NSCLC patients to symp-
tomatic progression and clinical deterioration, thus resulting in worst 
outcome (Blanc-Durand et al., 2021). Consequently, the adoption of 
“rapid” or “on demand” genotyping through single gene approach whilst 
running NGS parallelly, has been demonstrated to survive as a valid tool 
(Dagogo-Jack et al., 2018). Single gene approaches, although offering 
limited spectrum of mutation/rearrangements coverages, could likewise 
remain a rescue approach for those samples where NGS would fail due to 
pre-analytical tissues characteristics. 

Thus, it is conceivable that molecular laboratories must be equipped 
with different platforms, that prove themselves to be useful also for 
orthogonal confirmation tests in case of challenging and rare NGS results 
and different assessed workflows adaptable to different clinical settings. 

A decision analytic model by Pennel et al. model illustrated that 
moving from sequential single-gene tests or even panels of tests to 
broader NGS testing for patients with advanced NSCLC is the best 
strategy and will only become more relevant as the list of tests grows, 
suggesting stakeholders to consider moving to NGS as the preferred 
method for biomarker testing (Pennell et al., 2021). 

Define the cost-effectiveness of a broad implementation of an NGS- 
based strategy in a specific clinical setting is still a challenging issue 
since case mix, throughput, expertise, logistic asset, local reimburse-
ment, centralized laboratories policies as long as organizational impact, 
data confidentiality issues, availability of suitable treatments should be 
considered and contextualized. (Mosele et al., 2020) (Table 1). 

About these topics, Pruneri et al. published a recent analysis aimed to 
discuss and generate evidence on one of the key drivers of decision- 
making in healthcare. In particular, the authors emphasized that an 
NGS-based approach may be less costly than a single gene testing based 
approach (Pruneri et al., 2021). 

In terms of quality of data, the issue on pre-analytical procedures and 
need of standardized fixation procedures remain a key point in NGS data 
interpretation and diagnostic efficacy. These steps require strict internal 
laboratory controls (Jennings et al., 2017; Kuwata et al., 2020), along 
with awareness of preanalytical conditions to be managed before 
referring a sample to NGS testing and during NGS data analysis and 
reporting. 

Thus, in our opinion NGS testing should be preferred over single gene 
testing in order to optimize tissue availability, turnaround time and costs 

of molecular testing. 
However, single gene testing approaches may be adopted as 

orthogonal techniques useful to confirm challenging cases. A strategy for 
reflex molecular analysis in routine practice is proposed in algorithm in 
Fig. 2. 

3.3. Going beyond the tissue: the role of liquid biopsy in NSCLC 

As mentioned above, “tissue is the issue” for molecular analysis in 
advanced stage NSCLC patients. (Pisapia et al., 2019). In order to avoid 
leaving any patient behind, liquid biopsy represents a valid alternative 
source of tumor nucleic acids when tissue specimens are not available 
(Trombetta et al., 2016) and tumors are reasonably shedding. To date, 
from a clinical point of view, circulating tumor DNA (ctDNA) extracted 
from plasma is the most extensively studied and widely adopted in 
clinical practice (Crowley et al., 2013). However, ctDNA suffer from a 
limited concentration into the bloodstream (<0.005 % of the total 
circulating cell free DNA) and a very short half-life (about 15 min) 
(Pisapia et al., 2019). To this end, the IASLC established the principal 
role for handling this precious material (Rolfo et al., 2018). 

It has been widely demonstrated the usefulness of ctDNA analysis in 
the analysis of clinically relevant genes in advanced stage NSCLC pa-
tients (Pisapia et al., 2017; Mezquita et al., 2020; Iaccarino et al., 2020). 
Regarding liquid biopsy adoption in advanced stage NSCLC patients, 
two different approaches have been proposed. Liquid biopsy may be 
adopted in association with tissue in particular in cases featuring small 
tissue samples with uncertain adequacy for tumor genotyping (Aggarwal 
et al., 2021). In alternative, it has been proposed a “blood first” 
approach, characterized by the adoption of liquid biopsy as the first 
samples for molecular analysis, in order to adopt tissue material for 
immunohistochemical or fluorescent in situ hybridization analysis and 
to confirm negative results on ctDNA samples (Leighl et al., 2019). 

Currently, the term “liquid biopsy” has been extended to other bio-
logical fluids (saliva, urine, cerebral-spinal fluid, effusions) (Siravegna 
et al., 2017). In addition, even supernatants, usually discarded during 
cytological samples preparation demonstrated the presence of high 
quality tumor nucleic acids that can be useful for diagnostic molecular 
purposes (Roy-Chowdhuri et al., 2018; Guibert et al., 2018). 

4. MTB: a new opportunity for interdisciplinarity 

The unregulated use of NGS test application and new targeted drugs 

Table 1 
Overview of topics to be considered in implementing NGS in clinical practice.  

Point of Strengths of NGS Points of weakness of NGS  

• Comprehensive analysis (mutations, 
amplifications, fusion genes) in 2 
reactions (DNA-RNA- based) for 
targeted genes included in the panel  

• More necessity of human resources 
and dedicated expertize required 
(some non-automated protocols, bio-
informatics analysis of data and clin-
ical translation of biological finds) 

• Rare mutations and co-occurring al-
terations in emerging resistance 
potentially druggable, not otherwise 
identified in standard testing  

• Pre-analytic: potential pitfall and 
source of failure rate (especially for 
RNA)  

• Applicability in small clinically 
relevant panels or wide translational 
research panel.  

• Incidental genomic finding to be 
handled (properly informed consent)   

• Reduced sensitivity for DNA-based 
NGS compared to RT PCR 
technologies 

Potential point of Strengths of NGS – to 
be proved in the specific context of 
application  

• Still need of some orthogonal 
confirmation or fast track test  

• Shorter cumulative TAT compared to 
Single-gene strategy  

• Amount of DNA/RNA required for 
large panels, not always available  

• Cost-effectiveness  • Number of patients tested in a single 
run: volume needed for economic 
impact  
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prescription may compromise the appropriateness of novel treatments 
compared with standard therapies and determine a process of 
economical unsustainability. In order to rationalize available resources 
and warrant a cost-benefit ratio, an effort should be made using tests 
covering a minimum set of genes with sufficient sensitivity and speci-
ficity. To date, no evidence has shown a clinical benefit when wide 
molecular screening is offered to unselected patients, because of a 
moderate actionability level of molecular aberrations and because of 
rapid clinical worsening of the tested patients (Le Tourneau et al., 2015). 

Available data underline some critical issues in the precision 
oncology model. Indeed, both in clinical trials (Flaherty et al., 2020) and 
in the real-world practice (Bonanno et al., 2020), presence of an 
actionable druggable target is observed in about 40 % of the overall 
tested population; more important, the access to the specific targeted 
drug was observed in about 15 % of patients. Therefore, selection 
criteria both for eligible patients and for molecular alterations to be 
tested should be identified and applied. Such alterations have been 
recently identified by actionability criteria according to ESCAT-ESMO 
(Mosele et al., 2020) and OncoKB (Chakravarty et al., 2017). 

In this complex scenario, Molecular Tumor Boards (MTB) have been 
proposed as a governance instrument which aims to bring some “sun into 

the storm” of the new mutational model in oncology (Table 2). 
MTBs should be composed by medical oncologists, hematologists, 

genetists, molecular biologists, pathologists, pharmacists, experts of 
genomic repositories and privacy rules, and upon specific request of core 
MTB for specific case, surgeons and radiotherapists in order to manage 
clinical processes, appropriateness and economical sustainability. 

MTBs discussion should include a whole patient clinical history re-
view in presence of different medical specialties to allow the establish-
ment of a patient-customized diagnostic and treatment plan with the 
ultimate goal of allocating the right diagnostic and treatment available 
resources for each patient (Kato et al., 2020). 

Different drugs access are currently available, such as named patient 
use, expanded access program or off-label indications, and these may be 
eligible or not to MTB discussion according to institutional procedures of 
reference compared to second-level centers. 

The interdisciplinary nature of MTB also allows for a comprehensive 
education on clinically relevant emerging molecular biomarkers, asso-
ciated treatments and potential strategies for early access, to the whole 
board. Moreover, topics like samples type, availability and manage-
ment, choice of the test for the specific clinical indication are critical for 
predictive biomarkers testing and can be addressed thus leading to a 

Fig. 2. Proposed algorithm for reflex molecular analysis in routine practice. Integrating sample characteristic data, knowledge about limitation and pitfall of 
available analytic techniques along with clinical information plays a key role in the molecular test decision. 
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testing protocol that takes into considerations all aspects of samples 
management and testing methodologies to provide the clinicians an 
actionable result. 

Probably artificial intelligence tools will become fundamental for big 
data management in genomics, along with interrogation of several da-
tabases for multiple clinical data correlation and therapy options, 
worldwide available. 

Considering NGS testing reporting, despite emerging issue of stan-
dardization (Lubin et al., 2017; Li et al., 2017), significant differences 
exist across laboratories with no consistency on which alterations need 
to be reported to the requesting physicians. Even if a common practice, 
this needs to be discussed in a multidisciplinary forum where all aspects 
of treatment management are taken into considerations for the 
maximum benefit for the patients and the right investment of the Na-
tional Health System resources. It is paramount then to offer extensive 
NGS profiling to evaluate all possible molecular alterations in light of 
nationally approved drugs, of the possibility of early access strategies 
and of the presence of clinical trials in the country and/or elsewhere 
where the patients can be easily enrolled. 

This allows offering molecular profiling only to those suitable can-
didates meeting specific criteria (life expectation, tumor rarity, 
responsiveness to prior treatments and sample availability) (Luchini 

et al., 2020). 

5. Conclusion 

In the era Precision Medicine era, NSCLC represents one of the more 
challenging and rich playground both for clinical therapeutic chances 
and for biological and technical aspects. Opportunities, pitfalls and gray 
areas of innovative diagnostic approaches could be overcome and 
handled in the near future within the context of new organizational 
models such as MTBs. As long as these new arrangements catch on and 
spread, continuous discussion between pneumologist, pathologist, mo-
lecular biologist and oncologist should be promoted and implemented in 
NSCLC patients management. 
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