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REGULARITY OF FLAT FREE BOUNDARIES FOR A
p(z)-LAPLACIAN PROBLEM WITH RIGHT HAND SIDE

FAUSTO FERRARI AND CLAUDIA LEDERMAN

ABSTRACT. We consider viscosity solutions to a one-phase free boundary prob-
lem for the p(z)-Laplacian with non-zero right hand side. We apply the tools
developed in [D] to prove that flat free boundaries are C1>*®. Moreover, we
obtain some new results for the operator under consideration that are of inde-
pendent interest.

1. INTRODUCTION AND MAIN RESULTS

In this paper we study a one-phase free boundary problem governed by the
p(x)-Laplacian with non-zero right hand side. More precisely, we denote by

Aoy = div(|VuP® 2 Tu),
where p is a function such that 1 < p(z) < 400. Then our problem is the following:
Apyu=f, inQF(u) :={zecQ:u(x)> 0},

p(z)

(1.1)
[Vu| =g, on F(u) := 90t (u) N Q.

Here Q C R" is a bounded domain, p € C*(Q), f € C(Q)NL>®(Q) and g € C*#(Q),
g=>0.

This problem comes out naturally from limits of a singular perturbation problem
with forcing term as in [LWI], where the authors analyze solutions to (I.I]), arising
in the study of flame propagation with nonlocal and electromagnetic effects. On
the other hand, (I.I]) appears by minimizing the following functional

| Vo[

(12) ew) = [ (B8 4 Qoo + s ) ds

studied in [LW3], as well as in the seminal paper by Alt and Caffarelli [AC] in the
case p(x) = 2 and f = 0. We refer also to [LW4], where (ILT]) appears in the study
of an optimal design problem.

We are interested in the regularity of the free boundary for viscosity solutions
of (LI). This problem has been already faced in [LW2] for weak solutions with the
aid of the techniques developed in [AC].

Key words and phrases. free boundary problem, singular/degenerate operator, variable expo-
nent spaces, regularity of the free boundary, non-zero right hand side, viscosity solutions.
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In the present work we are following the strategy introduced in the important
paper by De Silva [D], that was inspired by [S], for one-phase problems and linear
non-divergence operators. [D] was further extended to two-phase problems in dif-
ferent settings, see [DFS1] [DFS2, [DFS3]. The same technique was applied to the
p-Laplace operator (p(z) = p in (L)) for the one phase case, with p > 2, in [LR].
See also [LT].

In the linear homogeneous case, f = 0, (LI]) was studied for viscosity solutions
in the pioneer works by Caffarelli [CT] [C2]. The results in [CI] [C2] have been
widely generalized to different classes of homogeneous elliptic problems. See for
example [CES| [FST] [FS2] for linear operators, [AT] [ [F2] [FeTl W1l W2l [RT] for
fully nonlinear operators and [LNT| [LN2] for the p-Laplacian. See also [ART].

As already mentioned, problem (LI]) was originally studied in the linear homo-
geneous case in [AC], associated to (L2). These techniques were generalized to the
linear case with f # 0 in [GS| [Le]. In the homogeneous case, to a quasilinear uni-
formly elliptic situation [ACE], to the p-Laplacian [DP], to an Orlicz setting [MW]
and to the p(x)-Laplacian with p(z) > 2 [FMW]. Finally, (IT)) with 1 < p(z) < oo
and f # 0 was dealt with in [LW2].

In this paper we show that flat free boundaries of viscosity solutions to (L))
are C1“. In the forthcoming work we prove that Lipschitz free boundaries of
viscosity solutions to ([ILI) are C+2.

Our main result is the following (for the precise definition of viscosity solution
to (L) we refer to Section [2))

Theorem 1.1 (Flatness implies C1'®). Let u be a viscosity solution to (L) in By.
Assume that 0 € F(u), g(0) =1 and p(0) = po. There exists a universal constant
€ > 0 such that, if the graph of w is E—flat in By, in the direction e, that is

(1.3) (v, — &) <wu(z) < (zn+8)T, z€ By,
and
(1.4) IVollLeo)y <& |Ifllze) <&  [glcoss) <&

then F(u) is CY® in Bys.

In addition to the assumptions already stated above, we suppose that
(1.5) Vp e L™ (Q)
and that there exist positive numbers pumin, Pmax, sSuch that
(1.6) 1 < pmin < p(x) < Prmax < 0.

In Theorem [IT] the constants £ and « depend only on pmin, Pmax and n (the
dimension of the space).

The proof of Theorem [I.1]is based on an improvement of flatness, obtained via
a compactness argument which linearizes the problem into a limiting one. The key
tool is a geometric Harnack inequality that localizes the free boundary well, and
allows the rigorous passage to the limit.

Let us point out that carrying out, for the inhomogeneous p(x)-Laplace operator,
the strategy devised in [D] required the development of new tools. In fact, the p(z)-
Laplacian is a nonlinear operator that appears naturally in divergence form from
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minimization problems, i.e., in the form divA(x, Vu) = f(z), with

A;
AP@ -2 < 3 2

ij=1n

(z,m)&&; < Ap[P@=21¢)2, € e R™.

J

This operator is singular in the regions where 1 < p(z) < 2 and degenerate in the
ones where p(z) > 2.

Some results for this type of operators we needed to use to achieve our goals
are available in the literature for weak solutions (in the sense of Definition B1] in
Section ). These results are Harnack inequality (see [Wo]) and C*® estimates
(see [Fa] and [F7Z]). However, the program followed in [D] relies on solutions of the
corresponding equations in a viscosity sense (see [CIL]).

The equivalence between weak and viscosity solutions of Aj,yu = f was proved
in [IJ, [JLM| MQ] in the case of the p-Laplacian (i.e., for p(z) = p) and in [JLP]
in the case of the homogeneous p(x)-Laplacian (i.e., for f = 0). To our knowledge
there is no such result in the literature for the inhomogeneous p(z)-Laplacian.

Hence, in order to proceed with the arguments in [D], we prove in Theorem
that weak solutions of A, u = f are indeed viscosity solutions. This new result
is of independent interest, since it may be applied in other contexts.

On the other hand, the approach in [D] requires the use of barriers of the type
w(x) = e1|z—x0| ™7 —co, together with suitable modification of them. In the present
work we are able to employ the same kind of barriers. Showing that they are also
appropriate to deal with the inhomogeneous p(z)-Laplace operator was a nontrivial
and delicate task, that we perform in Lemma[2l Again, the difficulty relies on the
nonlinear singular/degenerate nature and = dependence of our equation and also
on the presence of the logarithmic term appearing in the nondivergence form of the
operator (see (B1])).

The results in Lemma are new even for p(z) = p in the range 1 < p < 2.
These barriers, which are novel in the p(x)-Laplace context, are different from
the ones used in the literature for this operator (see, for instance, [FMW]| [Wal
LW4]). Consequently, our results in Lemma 2] have possible applications to other
situations.

We would like to stress at this stage that partial differential equations with non-
standard growth have been receiving a lot of attention and that the p(z)-Laplacian
is a model case in this class. A list of applications of this type of operators in-
cludes the modelling of non-Newtonian fluids, for instance, electrorheological [R] or
thermorheological fluids [AR]. Also non-linear elasticity [Z1], image reconstruction
[AMS] [CLR] and the modelling of electric conductors [Z2], to cite a few.

The fact that solutions to the inhomogeneous p(z)-Laplacian are locally of class
Che plays a critical role in the analysis of this paper. A comprehensive account
for sharp conditions for regularity of solutions of some elliptic equations with non-
standard growth can be found in [AM] and [Fal.

We finally remark that our main result, Theorem[I1] is applied in the companion
paper [FL] to prove that Lipschitz free boundaries of viscosity solutions of (ILI]) are
che,

Our work is organized a follows. In Section [2] we provide notation and basic
definitions, and we also present an auxiliary result on a Neumann problem which
will be used in the proof of Theorem [[.Il In Section 3 we discuss the relationship
between the different notions of solutions to A, u = f we are using. In particular,
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we prove Theorem 3.2l which shows that weak solutions to A, u = f are viscosity
solutions of the same equation. In Section 4 we prove some auxiliary results, which
include Lemma [4.2 concerning the existence of barrier functions for A, u = f.
Next, in Section 5 we prove a geometric Harnack inequality for problem (TJ). In
Section [6] we prove an improvement of flatness lemma. Finally, in Section [7 we
prove our main result, Theorem [Tl For the sake of completeness, we also include
an Appendix at the end of the paper where we introduce the Sobolev spaces with
variable exponent, which are the appropriate spaces to work with weak solutions
of the p(z)-Laplacian.

2. BASIC DEFINITIONS, NOTATION AND PRELIMINARIES

In this section, we provide notation and basic definitions we will use throughout
our work. We also present an auxiliary result on a Neumann problem that will be
applied in the paper.

Notation. For any continuous function u : 2 C R™ — R we denote
Ot (u) == {z € Q:u(z) > 0}, F(u) == Q% (u) N Q.

We refer to the set F'(u) as the free boundary of u, while QT (u) is its positive phase
(or side).

Below we give the definition of viscosity solution to problem (II]) and we deduce
some consequences. In particular, we refer to the usual C-viscosity definition of
sub/supersolution and solution of an elliptic PDE, see e.g. [CIL].

First we need the following standard notion.

Definition 2.1. Given u,p € C(Q), we say that ¢ touches u from below (resp.
above) at xg € Q if u(zg) = p(zo), and

u(z) > p(x) (resp. u(xz) < ¢(z)) in a neighborhood O of zy.

If this inequality is strict in O \ {zo}, we say that ¢ touches u strictly from below
(resp. above).

Definition 2.2. Let u be a continuous nonnegative function in 2. We say that u
is a viscosity solution to (1)) in €2, if the following conditions are satisfied:

(i) Apyu = fin QF (u) in the weak sense of Definition BI] see Section

(ii) For every ¢ € C(Q), ¢ € C?(Q+(p)). If ¢ touches u from below (resp.
above) at xg € F(u) and Vp(zg) # 0, then

[Vo(zo)| < g(zo)  (resp. = g(xo)).
Next theorem follows as a consequence of Theorem in Section

Theorem 2.3. Let u be a viscosity solution to (I1) in Q. Then the following
conditions are satisfied:
(1) Apyu = f in QF (u) in the viscosity sense, that is:
(ia) for every o € C*(QF(u)) and for every xo € QT (u), if ¢ touches u
from above at xo and Vo(xo) # 0, then Aygay@(xo) > f(x0), that is,
u 1§ a viscosity subsolution;
(ib) for every p € C?*(Q*(u)) and for every xo € QF(u), if ¢ touches u
from below at xo and V(xg) # 0, then Ay @(w0) < f(x0), that is,
u 1§ a viscosity supersolution.
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(ii) For every ¢ € C(Q), ¢ € C*(QF(p)). If o7 touches u from below (resp.
above) at xg € F(u) and V(zo) # 0, then

IVo(xo)| < g(wo)  (resp. > g(x0)).

Remark 2.4. If p(x) = p or f = 0, then any function satisfying the conditions of
Theorem [Z3]is a solution to (L)) in the sense of Definition (see Remark B.3).

We introduce also the notion of comparison sub/supersolution.

Definition 2.5. We say that v € C'(f2) is a strict (comparison) subsolution (resp.
supersolution) to () in Q if v € C?(Q*(v)), Vv # 0 in QF(v) and the following
conditions are satisfied:

(1) Ap@yv > f (resp. < f) in QF(v);

(i) If xp € F(v), then

|Vu(zo)| > g(wo) (resp. |Vu(xo)| < g(wo))-

Notice that by the implicit function theorem, according to our definition, the
free boundary of a comparison sub/supersolution is C?.

As a consequence of the previous discussion we have

Lemma 2.6. Let u be a viscosity solution to (L)) in Q. Ifv is a strict (comparison)
subsolution to (1)) in Q and u > v in Q thenu > v in QT (v)UF(v). Analogously,
if v is a strict (comparison) supersolution to (L)) in Q2 and v > u in Q then v > u
in Q7 (u) U F(u).

Notation. From now on B,(x¢) C R will denote the open ball of radius p centered
at xo, and B, = B,(0). A positive constant depending only on the dimension n,
Pmin, Pmax Will be called a universal constant. We will use ¢, ¢; to denote small
universal constants and C', C; to denote large universal constants.

The rest of the section is devoted to the study of the linearized problem associated
with our free boundary problem (ILII). That is, the classical Neumann problem for
a constant coeflicient linear operator. Precisely, we consider the following boundary
value problem:

1) {,cpoa =0 in B,N{z, >0},

Up =0 on B, N{z, =0}.

Here 1 < pmin < po < Prmax < 00, U, denotes the derivative in the e,, direction of @
and

(2.2) Lyt := Au~+ (po — 2)Opnu.

Theorem [Tl will follow via a compactness argument combined with regularity
properties of solutions to (Z1]), namely Theorem

We use the notion of viscosity solution to (21). We recall standard notions and
a regularity result for viscosity solutions to (21I).

Definition 2.7. Let @ be a continuous function on B, N {z,, > 0}. We say that
@ is a viscosity solution to () if given a quadratic polynomial P(z) touching @
from below (resp. above) at z € B, N {z,, > 0},
(i) if z € B, N {z, > 0} then £, P < 0 (resp. Ly, P > 0), ie. L,;0=01in
the viscosity sense in B, N {z, > 0};
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(ii) if z € B, N{z,, = 0} then P, (Z) < 0 (resp. P,(Z) > 0).
Remark 2.8. Notice that in the definition above we can choose polynomials P that
touch @ strictly from above/below. Also, it suffices to verify that (i) holds for
polynomials P with £,, P > 0 (see [D]).

We will use the following regularity result for viscosity solutions to the linearized
problem (21)). For the proof we refer to Theorem 7.4 in [MS].

Theorem 2.9. Let @ be a viscosity solution to 2.1I) in By N {x, > 0}. Then,
i€ C*(Byjs N{zn > 0}) and it is a classical solution to (ZT)).

Moreover, if ||i|loo < 1, then there exists a constant C > 0, depending only on
7, Pmin ONd Pmax, Such that

(2.3) |i(z) — @(0) — Va(0) - 2| < Cr? in B, N {x, >0},
forall r <1/4.
3. DIFFERENT NOTIONS OF SOLUTIONS TO p(z)-LAPLACIAN

In this section we discuss the relationship between the different notions of solu-
tions to A, u = f we are using, namely weak and viscosity solutions.

We start by observing that direct calculations show that, for C? functions u such

that Vu(x) # 0,
(3.1) Apyu = div(|Vu[P®)~2vy)
= Vu@)P 7 (Au - (p(2) - 2)A%u + (Vp(a), Vu(@)) log |Vu()])

where

Vu(z)  Vu(x) >
Vu@)] ' V(@)
denotes the normalized co-Laplace operator.

First we need (see the Appendix for the definition of Sobolev spaces with variable
exponent)

ANy = <D2u(x)

Definition 3.1. Assume that 1 < ppin < p(2) < Pmax < 00 with p(x) Lipschitz
continuous in Q and ||Vpl||pe < L, for some L > 0 and f € L*°(12).

We say that u is a weak solution to Ay yu = f in Q if u € W20 (Q) and, for
every ¢ € C§°(Q2), there holds that

-/ |Vu(z) [P 2V - Vo de = /Q o f(x)dx.

We next prove

Theorem 3.2. Let p and f be as in Definition [31l Assume moreover that [ €
C(Q) and p € C1(Q).

Let u € WP (Q) N C(Q) be a weak solution to Apyu = f in Q. Then u is a
viscosity solution to Apyu = f in Q.

Proof. Let us show that u is a viscosity supersolution to A, u = f in Q.

Step I. We will first prove the result under the extra assumption that f €
Wheo(Q) and p € CHP(9), for some 0 < B < 1.

In fact, let v € C?*(Q) such that v touches u from below at zyp € €, with
Vu(zg) # 0. We will show that

(3.2) Ap(mo)v(xo) < f(xo).
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Let us fix 7 > 0 such that B,(zo) C Q. From Theorem 1.1 in [Fa] we know that
u € CH® in B, (z0), for some 0 < a < 1. We can assume that o < 3.
Since v touches u from below at g, we know that Vu(zg) = Vo(zg) # 0. Then,

we can choose r small enough so that
1 < |Vu(z)| <Oy in B.(xg), (c1,Ch positive constants).

Now, arguing as in Theorem 3.2 in [CL] we deduce that u € Wlif (B, (z0)) and
it is a solution to the linear uniformly elliptic equation

n

Apyu =3 aij(@)ue, + 3 bil@)us, = f  in By(ao)
=1

i,j=1
where
s @) = [Vl 72 (5 + () = 2750y )
and
bilw) = [Vul? @2 (p,, (x) log |Vul),
with

n

BilE]? < Y ay(@)&&; < Balé?,  VE € RN, Va € B(xo),
ij=1
for 31, 32 positive constants. It follows (see, for instance, Theorem 9.19 in [GT])
that u € C*% in B,(zo).
Since v touches u from below at zg, we have Vu(zo) = Vo(z¢) and D?*u(zg) >
D?v(z0) and then,

f(‘TO) = Ap(mo)u(xo)

= Z V(o) [P(70)~2 (5ij + (p(x0) — 2)%)%1@ (o)

i,j=1

+ > [Vul0) P72 (s, (o) log [Vu(wo)| ), (w0)

=1
> Ap(mo)v(xo).

That is, (8.2]) holds.

Step II. We now assume that f and p are as in the statement and we will show
that u is a viscosity supersolution to A,yu = f in .

Again, let v € C?(2) such that v touches u from below at zo € , with Vu(zg) #
0. We will show that

(3.3) Ap(ze)v(T0) < f(20)-

Assume that Ap . v(zo) > f(20). Then, there exist r > 0 and o > 0 small such
that
|[Vo(z)| >0 in B,(z),

(3.4) Ap(z)’U(«T) > f(;p) +0 in BT(CCO).
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We now take pr € CV8(B,(z0)), for some 0 < B < 1, with %(1 + Prin) <
Pk(2) < Pmax, Pk < p in Br(z0) and ||Vpi||lp~ < 2L, and fi, € WH(B,(20)),
[|fellne < 2||f]|Le, such that

(3.5) fr — [ uniformly on B, (),
- pr — p and Vp, — Vp uniformly on B, (zo).

Let uy, € WhPx()(B,.(x9)) be the (weak) solutions to
Ap, (o)uk = fr in B (o),
ug = u on 9B, (xp).
Using Theorem 4.1 in [FZ] and Theorem 1.2 in [Fal, we get that ux € C1® in

BT(I()), for some 0 < a < 1, ||’uk||cla(m) < C and

(3.6) up — u uniformly on B, (z).

Moreover, from the results in Step I we know that, for every k, uy is a viscosity
supersolution to Ay, yux = fi in By.(2o).
We fix € > 0 and define

o(z) = v(x) — elr — 20|
Since there holds ([B4), we can choose £ small enough so that
[Vo(z)| > 7 i B, (z0),
2
(3.7) N _
Apyv(x) > f(x) + 5 in B, (o).
Now, from B3] and 1), we get
(3.8) Apy@)0(x) > firlz) + % in B,(zo), if k> ko.
We now take 0 < § < £r2. Recalling (B8], we can choose k > ko such that

lup —u| <d in B,(zo),

so that we have

ug+06>v in B.(xg),
up(zo) — 9§ < V(xg).
We now take

f:inf{tER/uk—i-tzT) in BT(xo)}.
Then, |t| < ¢ and

up >0 —1t in By(xg),

(3.9) _
up(z) =0(z) —t, for some T € B,(xp).

Suppose T € 0B, (xg). Then,
up(Z) =0(z) =t =v(x) —er? —t < w(z) —er® + 5 < up(x) + 26 — er?,

a contradiction since we have chosen § < £72.
Then Z € B,(zo) and ([B9) says that v — ¢ touches u;, from below at Z. Since
Vo(Z) # 0, we get
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This contradicts (38) and we conclude that (33) holds. So u is a viscosity super-
solution to A, yu = f in €2

The proof that u is a viscosity subsolution to A, u = f in  follows similarly.
O

Remark 3.3. As already mentioned in the Introduction, the equivalence between
weak and viscosity solutions to the p(z)-Laplacian with right hand side f = 0 was
proved in [JLP]. On the other hand, this equivalence, in case p(x) = p and f # 0
was dealt with in [JJ] and [MO]. See also [JLM] for the case p(z) = p and f = 0.

We also obtain the following result that will be used in the proof of Lemma [5.]]

Proposition 3.4. Let p and f be as in Definition 31l Let Ba,(xo) CC Q.
Let u € WHPO(Q) N L>(Q) be a weak solution to Apzyu = f in Q such that

a1 < |Vu(z)| <C;1  in Bay(xg), c1,Cy positive constants.

Then, uw € W2™(B,(z0)) and it is a strong solution to the linear uniformly
elliptic equation

n

Z Qi (T) U0, + sz(x)uz =f in B.(x)
i=1

ij=1
where
iy (@) = [Vl (6 + (pla) = D5 )
and
bi(z) = |[Vu[P@—2 (pwi (x)log |Vu|),
with

n

Bilel? < > aij(2)&&; < Bal€l?, VE RN, Va € Br(xo),
for By, B2 positive cozjstalnts, depending only on c1,C1, Pmin, Pmax-
Proof. We take fr, € W12 (Ba,.(20)), || fellz < 2||f]|Le, such that

fr — f in L*(Ba,(20)).

Let uy € WHP()(By,(20)) be the (weak) solutions to
Apyur = fr in Ba,(x0),
ur = u on 0Ba,.(x0).

Using Theorem 4.1 in [FZ] and Theorem 1.2 in [Fal, we get that ux € Ch* in
BQT(.IO), for some 0 < a < 1, ||uk||clya(m) < (C and

ug — u, Vup — Vu uniformly on Ba,.(z0).
Then, for k large,
5 < V(@) <201 in By (o).
Now, arguing as in Theorem 3.2 in [CLJ], we deduce that, for k large, uj, € W22 (Ba, (o))

and it is a solution to the linear uniformly elliptic equation

n

3 ab(@) (ur),,,, + D 0E @) (ur),, = fi in Bas(xo)
=1

i,j=1
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where (). (u0)
Uk ), Uk ), .
k x)—2 X X j
ag;(x) = |Vuy ") (6ij + (p(z) — 2)w)
and
b (@) = [V (pa (@) log [Veue] ).
with

n

Bilel? < > afi(2)&& < Bol€?, VE € RN, Va € Bay (),
i,j=1
for B, B2 positive constants, depending only on ¢1, C1, Pmin, Pmax- Moreover, afj S
C(Bar(w0)) and |[bF]| Lo (B, (z)) < C.
It follows (see, for instance, Lemma 9.16 and Theorem 9.11 in [GT]) that
ur, € Wiot' (Bar(29)) N L (Bay(20))  and  [[urlwzn (5, (z0)) < C,

for some positive constant C. Then, passing to the limit k& — oo, we get the desired
result. (]

4. AUXILIARY RESULTS

In this section we prove some results that will be of use in our main theorem.
Namely, a Harnack inequality for an auxiliary problem of p(z)-Laplacian type and
an existence result of barrier functions for the p(z)-Laplacian operator.

In the next result we assume for simplicity that ||f|[z~q) < 1, but a similar
result holds for any f € L*°(€2). We have

Lemma 4.1. Assume that 1 < pmin < p(2) < Pmax < 00 with p(x) Lipschitz
continuous in Q and |Vp||p~ < L, for some L > 0. Let x9 € Q and 0 < R <1
such that Bygr(z0) C Q. Let v € WHPO(Q) N L>®(Q) be a nonnegative solution to

(4.1) div(|Vo 4 e[P®"2(Vo4e)) = f  inQ,

where f € L>(Q) with ||f||=@) <1 and e € R™ with |e| = 1. Then, there exists
C such that

1
4.2 <C| inf R o0 o)) "t + O
( ) Bilgc)o)v N [B}lzr(lwo)v * (||f||L (Bar(wo)) " * )}

The constant C' depends only on n, pmin, Pmax; ||V||L (Big(zo)) and L.
Proof. We define A : Q x R" — R”

A(z,€) =[¢ + el 2 (e +e).
Then equation [I) takes the form

div A(z, Vo) = f(x) in Q.

We first observe that, for every £ € R™,
A, €)| = € + e[ < gD + Oy,
where C7 depends only on ppax. On the other hand, for every & € R™,
(A(x,€),6) =€ + el D72 + e,€)
(4.3) =€+ el — €+ P 2E + eye)
> [¢+ P — € 4 P
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Now, if |£ + ¢| < 2, we get from (@3
(A(x,£),6) > [¢ + e[P®) — 27071
> Cy|¢[P™) — Cs,

where Cy and C3 depend only on ppax. If [€ + e] > 2, we obtain from (3]

(A@@,€),6) 2 [¢ + e[ — ¢ + P
(4.5) =€+ eI (1 |e+el™h)

> %I& +eP™) > Culglrt™ — %
where Cy depends only on ppax. Then, from ([@4]) and [@H) we deduce
(A(,€),€) = G5 g™ = G,

where C5 and Cy depend only on ppax. Now the result follows from Theorem 1.1

in [Wa. O

We now continue with a technical result concerning the existence of barrier
functions for the p(z)-Laplacian operator.

(4.4)

Lemma 4.2. Let xp € By and 0 < 71 < 7o < 1. Assume that 1 < ppin < p(x) <
Pmax < 00 and ||Vp|lp= < e*?, for some 0 < 6 < 1. Let co,c1,co be positive
constants and let and c3 € R.

There exist positive constants v > 1, ¢, eg and 1 such that the functions

w(z) = e1|lz — xo| 7 — co,

¢
v(z) = q(x) + ga(w(x) 1), q@)=z,+c3
Satisfy7 fOT ’Fl S |:Z7 - $0| S 7:27

(4.6) Apmyw > ¢,  for 0 <e < e,

1
(4.7) 5 SIVUI <2, Apgyu> g2, for 0 <e<e.
Here v = V(nupmimpmax); c= E(pminapmaxacl)7 €0 = EO(napmimpmaxaflacl)y €1 =
El(napminvpmaxa 1, Co, C1, 9)

Proof. Without loss of generality we can assume that zop = 0. We will divide the
proof into five steps.

Step 1. For simplicity, we assume first that ¢; = 1. Let us fix p € R, 1 < ppin <
P < Pmax < 00 and v > 0. Let us consider z € R™ \ {0}.

Then, w(z) = |z|™7 — ¢z and Vw = —v|z| =722, so that
Vw
Vol faf
Moreover
Dw =y + D] 7P n @ = el R
(4.8)

=lal 2 ((+2 e =~ 1)
o]~ fal
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As a consequence

(4.9) Tr(D*w) = ~|z[ 7772 ((y +2) —n).
Thus

(4.10)

Ay = [Vaw|=2 (Aw +(p—2)(Dyr Y >)

[Vl [V

= 77|V |12 (w +2)=nt -2+ @ o - I i>)

|| || || ||
=" M2 PP (y k2 —nt (p - 2) (v + 1))
=" Ha| TP (y(p— 1) + p — )
> 7p—1|gc|—"y(p—1)—p (Y(Pmin — 1) + Prain — n) > 7p—1|$|—v(p—1)—p
if v > 0 is such that
(4.11) Y(Pmin — 1) + Pmin — 1 > 1.
On the other hand,

D%y = %OEDQM
Then, for x such that Vou(z) # 0,
(4.12)

Vv  Vw

_ p—2 o 2

Apv = |V (Av +(p—2)(D v—|vv|, |Vv|>>
_ O gulr-2 (A oD Y VU
2elvop=2 (Aw+ (- 2(DP0 T 2

co 9y g T T Vv  Vu
= Daetvep a2 {9 —nt - 26+ 9D e L - T
? o el o )

= DoyelFop2a] - 2{ 12—t p-2) [“*Mﬁ |§v|> 1”

_— P=2|g| =72 2) 1 ) o
wrelvul 22 { (742 |14 - 25 S| = n w2

We also observe that

xz Vo
(4.13) 0< (= =7 <

|lz| " [V
Hence, in case pmin < p < 2, it follows from (T2
(4.14)

Bpv > el Vol T2 {(y +2) 1 +p—2) —n—p+2}
& _ e~y
= ZEl Vol 2 P {(r + )0 - 1) —n - p+ 2}
C _ o~ C _ e~
> Do Volr=21a 72 {(3 + 2)(puin — 1) = 0} 2 Dye[Volr2la] 72,

if v > 0 is such that
(415) (7+2)(pmin_ 1) -n2>1
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Moreover, in case 2 < p < Pmax, it follows from (@I2)

Apv > Frel Vol e[ 2 (1 +2—n—p+2)
(4.16)

> 29el Vol o] 772 (3 + 4 = 1 = pnae) = Sl V0 a2,
if v > 0 is such that
(4.17) Y+4—n—ppax > 1.

We now fix
(4.18)
1+n-— Pmin 1+n

) —2, N+ Pmax — 3 ¢ -
pmin_l pmin_l

Then, v = ¥(7, Pmin, Pmax) > 1 and ~ satisfies (L11]), (@.I5) and (IT). Hence we
obtain from (@I0), (1)) and [@I6) that for every p € [Pmin, Pmax] and z € R™\ {0}

(4.19) Apw > |z| PP

Y= FY(n)pminvpmax) = max {1,

(4.20) Ay > %swm*urﬂ, if V() # 0.

Step 2. We now assume that ¢; > 0 is arbitrary. We fix v = (%, Pmin, Pmax) > 1
as above, given by (ZI8). It is not hard to see that similar computations as those
in Step 1, but with ¢; > 0 arbitrary, imply that for every p € [Pmin, Pmax] and
x e R"\ {0}

(4.21) Apw > clp*1|$|w(pfl)fp7
(4.22) Apv > %0015|Vv|p_2|:1c|_v_2, if Vu(z) # 0.
Step 3. We now observe that there holds
Vv=e,+ %OEVw.

Then, for 71 < |z| < 7o,

1901 = 1| = [ 1901 = fe)

< ‘Vv—en

€o
\2510
C

0 —y—1 Co -1 1
= —cievy|x < —cievr < —
5 el S gaen <5,

if we let € < &1 = &1(n, Pmin, Pmax, T1, Co, ¢1) and therefore,
1

(4.23) 3 <|Vu| <2, for e <éy.

So the first assertion in ([@.7) follows.

Step 4. We now consider p(x) a Lipschitz continuous function such that 1 <

Pmin < P(T) < Pmax < 00.
We first observe that, for any R > 1,

70" logt| < tPe= | logt| < Cy(pmin), i 0 <t <1,
@)~ logt| < tPme—t logt| < RP»>"'log R if 1<t <R,
so that
(4.24) P logt| < Co(pmin, Pmax: B), i 0<t < R.
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It then follows from [@23)) and ([E24) that, for 7 < |x| < 7o,
(4.25) Vol log V|| < C3(Pmin, Pmax),  if € < &1
We also have, for 71 < |z| < 7o,

IVw| = e1y]z| ™77t < ey 77,
so using again (£24)), we get, for 7 < |z| < 7o,
(4.26) [Vw[P®) = log [Vw|| < Ci(n, Prin, Pmax, 71, €1).

Step 5. We now assume that p(z) satisfies moreover that ||Vp| -~ < e!'*? for
some 0 < 6 < 1. Then, from (£20]) we obtain, for 7 < |z| < 7,

(4:27) ||Vol")=2(Tp(a), Vo) log |Vl | < Vo] 1og | V]| Vp| o= < £+'Cs,

if e < &;. Hence, from (22),[E27) and [@23), for 7 < |z| < 7o,
(4.28)

Apiays = [Vl 2(Av + (p(x) — 2)(D*0 L, YV

IVl [Vl

C3001(5|VU|7”(I)72|9c|7"72 — ety

)+ (Vp(z), Vv) log [ Vo))

Y

C o~ C C
Z 5001€C5|:E| 72 €1+003 Z 5001805 — 81+GC3 = 6(500105 — 6003),

if ¢ < &1, where we have used that 72 < 1 and C5 = Cj5(Pmin,Pmax); Cs5 =
min{ (4 )Pmax=2 2Pmin=2}  We conclude that, for 71 < |z| < 7,

Apzyv > 5(%00105 — 5‘903) > 5%00105 > g2,

if moreover € < &1 = &1(Pmin, Pmax, €0, ¢1,0). That is, the second assertion in (1)
follows.

Finally, from (£26) we obtain, for 7, < |z| < 7,
(4.29)

|Vw|P®=2(Vp(z), Vw) log [Vuw|| < |Vw|p(””)_1‘ log |[Vw||||Vp]| e < '0Cy.

Hence, from (@21 and [@29), for 71 < |z| < 7o,
(4.30)

Aoy = V"2 (Aw + (pla) - 2) (Do Y

[Vw|” [Vuw|
> Cﬁ?(w)—1|z|w(p(r)*1)*p(z) — ety > 26 — eCy,

) + (Vp(x), Vw) log [Vuwl))

if e < 1. Here we have used that 72 < 1 and we have denoted ¢ = &(Pmin, Pmax, C1) =
%min{clpm‘"_l, c1Pmax=11 We conclude that, for 7 < |z < 7o,

A

pa)W = G

if e < &g = €0(N, Prin, Pmax, 71, ¢1). This proves ([@0]) and finishes the proof. O



REGULARITY OF FLAT FREE BOUNDARIES FOR THE p(z)-LAPLACIAN 15

5. GEOMETRIC REGULARITY RESULTS

In this section we prove a Harnack type inequality for a solution u to problem
(1), following the approach in [D]. We will argue assuming that

(5.1)
WAl < €% Mg —lie@) <% IVpllre@ <0 lp—poll=(o) <&,

holds, for 0 < € < 1, for some constant 0 < 6 <1.

The proof of Harnack inequality is based on the following lemma.

Lemma 5.1. Let u be a solution to (LI)-EI) in By. There exists a universal
constant € such that if 0 < e < & and u satisfies

(62) @@ <ule) <)+ TEB, @) =rto, lo] <o,

and in xg = %en,

u(z0) > (q(z0) + =),

2
then
(5.3) u>(g+ce)t in E%,
for some universal 0 < ¢ < 1. Analogously, if
(5.4) ulwo) < (alwo) +5)".
then
(5.5) u<(g+ (1-c))t in E%.

Proof. The proof follows the original one in [D] adapted by the dichotomy discussed
in [LR]. We will prove the first statement.

From (B.2) we have that u > ¢ in By.

We also notice that By aq(zo) C By (u). Then,

(56) Ap(m)u = f in Bl/Qo(JIQ).

Thus, by Theorem 1.1 in [Fal], u € C** in By 49(20), where & = a(Pmins Pmax: 1) €
(0,1) and ||u||01,a(§1/40(%)) < C, with C = C(Pmin; Pmax, ) > 1. Here we have
used (BJ) and also that (5.2]) implies that ||u|[z~(5,) < 3.

We will consider two cases:

Case (i). Suppose |[Vu(zg)| < i. We choose r1 > 0, r1 = 71 (Pmin, Pmax, ) <
1/40 such that [Vu(z)| < % in By, (z0). In addition, there exists a constant 0 <
ro = r2(r1) = r2(Pmin, Pmax; ) < 71 such that (x — ree,) € By, (x0), for every

x € By, /2(w0). We observe that © = u — ¢ satisfies
(5.7) div([VE + e, ") 72 (Vi + €,)) = f in By (o).

We now apply Lemma 1] to the function & = u — ¢ in By, (zg), where r3 =

min{ 7, 2 }. In particular we obtain from (&2)) that

ul@) —q() = O (ulao) — qla0) — 73 > 5 — 7.

for x € By,(xg9). Here C = C(n,Pmin,Pmax) 1S a universal constant because
1|z (B < €%, see BI), and |[9]|z(5,) < 2-
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On the other hand, for all x € B,,(z) we obtain
€
% —73< ’U,(LL‘) - Q(‘T) = u((;v - r2€n) + r2en) - Q((‘T - r2€n) + r2en)

,
=u((z —raepn) + m2epn) — q(x — roe,) — ro < ulx — ree,) — q(z —raen) + 2 oy

2
As a consequence, denoting co = C~1 and T := z9—7rae,, we get for all z € B, (Zo)
Co £ 15 79 € r2
: e < — ().
(5.8) 5= 30573 T3+2 50 '3 2+T2_u(:1:) q(z)

Let us define the function w: D — R, D := Ba(z0) \ B,, (%) as

ww) = (le=a = (3)7),

for v = FY(napminapmax) > 1 given in Lemma (See (m)) We choose ¢ =
¢(N, Pmin, Pmax) > 0 in such a way that

o 0, on 8B§(:f0)
v 1, on 9B, (ZTo).

As usual, we define for every z € B 1 (Zo)

€
v() = q(2) + coz(w(z) — 1)
and for t > 0 we set
v(x)=v(r)+t, z€ B%(:Z“O).
We extend w to 1 in By, (Zo), so that it results
vo(z) =v(z) < qx) <ulz), z€ B% (Zo).
Let
t=sup{t >0: v <wuin B%(jo)}.
Claim: t > <=,
Assuming that the previous Claim holds, we obtain from the definition of v that,
in B (Zo), the inequality

is satisfied.
On the other hand, B1 C B (Zo) and since

c((3)77=(5)7"), Ba(@0)\ B, (20),
) BTs(jO)v

—_

w(z) > {

we conclude that, in B%,
u(z) —q(z) > ce,

with 0 < ¢1 = ¢1(n, Pmin, Pmax) < 1 universal, as desired.
We now have to prove the Claim. We argue by contradiction assuming that
t < %= Let yo € B% (Zo) be the contact point between vz and w, where

vE(Yo) = u(yo)-
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We will prove that yo € B, (Zo). In fact, recalling that w vanishes on 9B 1 (Zo)
and from the definition of vz, we obtain

Ie _
vg:q—§€+t<u on 83%(1_70),

because u > ¢ and £ < £,

We can apply Lemma to v. Hence, there exists €1 = €1(n, Pmin, Pmax, 0) a
universal constant such that

1
5 S |va| = |V1}| S 25

Ap(m)’ug = Ap(w)v > g2 > f,

for every 0 < ¢ < 7 and for every x € D = B%(a_:o) \ B, (Z0)-

On the other hand, from the definition of vz, we have

co

(5.9) Voi| 2 [(ve)n] = 1+ ewnl,
where (vg), and w, denote the partial derivatives with respect to x,, of vy and w.

Let us show that w, > ¢ in {v; <0} N D, for ¢ > 0 universal.

In fact, whenever 0 < e < g4, for g5 universal, we have

5
(r<NDCc{g< ) =12, < o) {an < 2 ).
2 2 80
On the other hand,
Vw = —ye|x — To| 77 (2 — Zo) = —yclw — 9’00|_7_1L;fo.
|z — Zo|
Moreover, denoting v, = I;c:;gl’ we observe that, in {v; < 0} N D, we have
—(Vg, €n) > 0 since
1 1 5
Ty — (To)p = Ty, — E—f—?‘g < ~ %0 in {z, < %}
In particular, there holds in {v; <0} N D
154
n:vun:_ zyEn - _’Y_l> ____I_V:A>O-
W = (Vi e0) = (v, exele — 7ol 0 2 ey D(3) 1T = e

Thus, from (59) we deduce that
[Voz| > 1+ %Oswn >1+ %Oés
in {vz <0} N D, which implies, for ¢ sufficiently small,
|Vog| > 1+62 > g,

on F(vz) N D. Then vy is a strict subsolution to (L)) in D touching u at yo. Hence
Yo € By, (To) and this generates a contradiction with (B.8]), because

u(yo) = ve(yo) = v(yo) +t = q(yo) + 1 < q(yo) + coc.

Case (ii). Now suppose |Vu(zg)| > 1. By exploiting the C1* regularity of u in
B 1 (w0), we know that u is Lipschitz continuous in B ﬁ (x0), as well as there exist
a constant 0 < 19 = 70(n, Pmin, Pmax ), With 8rg < %, and C' = C(n, pmin, Pmax) > 1
such that

S |VU| S C in Bgro (Io)

| —
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In addition, since (5.6]) holds, it follows by PropositionB4 that u € W™ (By,, (o))
and it is a solution to the linear uniformly elliptic equation

Lh=f in Ba,(x0),

where
Lh = Tr(A(z)D?*h(z)) + (b, Vh(z)),
A(x) == |Vu|7”(9”)72 (I+ (p(z) —2) |§ZE3| ® |§ZE3|) '
and

b(z) == |VuP® 2 log |Vu(z)|Vp(z).
Hence A € C%*(Byy,(70)), b € C(Buy,(70)) and £ has universal ellipticity con-
stants (depending only on n, pmin, Pmax). Moreover, |[b]|Le=(B,, (z0)) < Celt? C
universal, because ||Vp||(p,) < ' (see ).
In this way, we conclude that u — ¢ satisfies
Tr(A(z)D?h(x)) + (b, Vh(z)) = f — (b,en)  in Bay,(w0).

Then, applying Harnack’s inequality (see, for instance, [GT], Chap. 9) and recalling

again (B.I]), we obtain

u(@) = q(z) = Cr(w(@o)=q(20)) = Co[[f]|2¢(Barg (@) T [1bllLo (Bary (20)))
5.10
(5:10) > C15 = Gy + 010 = e,

for every x € B, (x9), for 0 < & < e5. Here 3, C1, C and ¢( are positive universal
constants. At this point, we can repeat the same argument of Case (i) around the
point @, considering the annulus B (x¢) \ By, (20). This completes the proof. [

The next result is the main tool in Theorem [I.11

Theorem 5.2 (Harnack inequality). There exists a universal constant &, such that
if w solves (LI)-EJ)), and for some point xo € Q1 (u) U F(u),

(5.11) (zy, +a0)" <u(x) < (xn+bo)"  in Be(zo) C 9,
with

by —ap <er, e <§,
then

(2 +a1)t <u(x) < (zn +b1)" in B, jao(z0),
with
ap < ap <by <by, bi—ai <(1—cer,

and 0 < ¢ < 1 universal.

Proof. Assume without loss of generality that zo = 0,r = 1.
We call ¢(x) = 2, + ag. Assumption (BII) gives that

(5.12) ¢t (@) < ule) < (g@) +o)T i By,
since by < ag + €. We distinguish three cases.
Case 1. |ag| < 1/20. We now distinguish two cases: u(Zo) > (q(&0) + 5)T or

u(o) < (q(Zo) + 5)T, where Zo = 1-e5.

Assume that
. ~ 9 .
u(ko) > (q(Zo) + )", @0 =

~—6€n,
2 10
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(the other case is treated similarly). Then, by Lemma [51] if € < &,
(q(z) + o)t <w(x) in F%,

for 0 < ¢ < 1 universal, which gives the desired improvement.

Case 2. ap < —1/20. In this case it follows from (&I2) that, for ¢ < 1/40, 0
belongs to the zero phase of (q(x) + &)™, which implies that 0 belongs to the zero
phase of u. A contradiction.

Case 3. ag > 1/20. In this case it follows from (&.IT]) that
By /20 C By (u).
Then, denoting 4 = u — ag, we have
(5.13) Apyt = Appyt = [ in By .

Observing that ||| (p,) < 2 and recalling (5.I)), we obtain from the application of
Theorem 1.1 in [Fa] to @, that u € C** in By /49, where & = (Pmin, Pmax, n) € (0, 1)
and ||Vu||ca(§1/40) < C, with C = C(pmin; Pmax, 1) > 1.
We now distinguish two cases: u(0) — ¢(0) > § or u(0) — ¢(0) < 5.
Assume that
5
u(0) —q(0) > 5,

(the other case is treated similarly). We will proceed as in the proof of Lemma 511
If [Vu(0)] < I, we argue as in Case (i) of Lemma[E.1] taking Zo = —rae,. Here
ro > 0 is universal, chosen as in that lemma, and such that we also have

B 40 CC By, (Zo) CC By /a0,

for an appropriate chosen universal r4 > 0. We now take r3 universal as in Lemma

B let

D := B,,(Z0) \ By, (o),

and define w in D as in that lemma. Then, arguing as in that proof, we obtain
(5.14) u(z) —q(r) > c1e in By,

with 0 < ¢; < 1,if e <&, € and ¢y universal.
If |[Vu(0)] > %, we proceed as in Case (ii) of Lemma [E.1] and we consider the
barrier w in

D := By \ By,
with 79 > 0 universal and small. We obtain again (5I4]), thus completing the
proof. 1

From Theorem [5.2] with the same arguments employed in [D], we obtain the
following estimate that will be crucial in the improvement of flatness procedure.

Corollary 5.3. Let u be as in Theorem [52 satisfying (&I1)) for r = 1. Then in

Bi(xo), @e(z) = m has a Hdélder modulus of continuity at xq, outside the

ball of radius /g, z'.e.,gfor all z € (Q(u) U F(u)) N By(xo), with |z — x| > ¢/&,
8e(z) — ie(wo)| < Clz — ol

Here & is as in Theorem[52Z, and C and 0 < v < 1 are universal.
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6. IMPROVEMENT OF FLATNESS

In this section we present the main improvement of flatness lemma. Theorem
[CT will then be obtained by applying this lemma in an iterative way.

Lemma 6.1 (Improvement of flatness). Let u satisfy (1) in By and

(6.1)

HfHLOO(Bﬂ < 525 ||g_1||L°°(B1) < 525 ||Vp||L°°(B1) < €1+97 ||p_p0||L°°(Bl) <,
for 0 <e <1, for some constant 0 < 8 < 1. Suppose that

(6.2) (xy, — )t <wu(z) < (w, +6)T in By, 0¢€ F(u).

If 0 < r <rg for rg universal, and 0 < e < gg for some g¢ depending on r, then
(6.3) (x-v—re/2)T <ulz) < (v-v+re/2)T in By,

with |v] =1 and |v — e,| < Ce for a universal constant C.

Proof. We divide the proof of this lemma into 3 steps. We will use the following

notation:

Q,(u) == (Bf (v) UF(u)) N B,.

Step 1: Compactness. Fix r < ro with o universal (the precise ro will be given
in Step 3). Assume by contradiction that we can find a sequence g — 0 and a
sequence uy, of solutions to ([(II)) in By with right hand side f, exponent p; and
free boundary condition gy, satisfying (61) with € = e, such that uy, satisfies ([62)),
ie.,

(6.4) (2, — k)T <up(z) < (xn +er)™ forz € By, 0 € Flug),

but uy does not satisfy the conclusion ([G3]) of the lemma.

Set
iy () = “’“(”27_“ € D (up).
Then, ([64) gives '
(6.5) —1<ag(z) <1 forz € Q(ug).

From Corollary (5.3] it follows that the function 1, satisfies
(6.6) |k (z) — uk(y)| < Clz —yl7,
for C' and 0 < v < 1 universal and
|$—y| ZE}C/E_‘, xvyEQI/Q(uk)'

From (64) it clearly follows that F'(uy) converges to ByN{x, = 0} in the Hausdorff
distance. This fact and (6:6) together with Ascoli-Arzela give that, as e, — 0, the
graphs of the 4y over € /5(u) converge (up to a subsequence) in the Hausdorff
distance to the graph of a Hélder continuous function @ over By, N {x, > 0}.

Step 2: Limiting Solution. We now show that @ solves the following linearized
problem

67 {Lma —0 in By N {z, > 0},

ﬁn:O on Bl/gﬂ{xn:()},
in the sense of Definition 27 Here £,, is as in (2.2]).
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Let P(x) be a quadratic polynomial touching @ at € By N {x, > 0} strictly
from below. We need to show that
(i) if # € Byjp N {x, > 0} then L, P < 0;
(ii) if # € By /5 N {x, = 0} then P, (z) < 0.
Since @ — @ in the sense specified above, there exist points xx € €y /5(ug),
zr —  and constants ¢, — 0 such that

(68) ﬂk(xk) = P(Ik) + ¢
and
(6.9) Ur > P+ ¢, in a neighborhood of x.

From the definition of ay, (G8) and (G3]) read
ug(2x) = Qr(zk)

and
up(z) > Qr(x) in a neighborhood of z,
where
Qr(z) = er(P(x) + ck) + Tn.
For notational simplicity we will drop the sub-index &k from Qj.
We first notice that

(6.10) VQ =erVP + ey,
thus,
(6.11) VQ(xg) #0, for k large.

We now distinguish two cases.

(i) If z € Byjo N {xy > 0} then xy, € BDQ(uk) (for k large). Since @ touches uy

from below at z, and VQ(zx) # 0, we get
en > fr(xr)
> Ay () Qzk)

= [VQ(x) P AQ + [V Qi) [P~ (p(r) = 2) Y Qu (1) Qu, (1) Qv

ij=1

+ [VQ(ay) [P* R "2 (Vpy (), VQ (1)) log |V Q (k) |

= ek VQ(ax)|P* " TP AP + £4 [V Q) [P 8 " (k) = 2) D Qu, (1) Qu, (25) Pry,

ij=1
+[VQ(a) [P =2 (Vi (1), VQ(ar)) log [VQ(a) .
Using that |Vpg(xy)| < ek, we obtain

ek > [VQ(ar)[PF T2 AP + [VQ(4) [P " (pr(ax) — 2) Y Qu (04)Qu, (k) Pryr,

i,j=1
= [VQx) ™)~ log [VQ ().
Now, passing to the limit £ — oo and recalling that
VQ(zr) — en, pr(zK) = Po, e — 0,

we conclude that £, P < 0 as desired.
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(ii) If z € By N {w, = 0}, as observed in Remark 2.§ we can assume that
Ly, P > 0. We claim that for k large enough, xx € F(ug). Otherwise xy, €
Bf'/2(ukj) for a subsequence k; — oo and as in case (i), passing to the limit, we get

L, P <0,

a contradiction. Thus, x € F(uy) for k large.
Since QT touches uy, from below at x € F(uy) and (E1I) holds

IVQ(zx)| < gr(zx) < 1+¢f,
which, by (6.10), gives
IVQ(zk)|* = eR|VP(zk)|? + 1+ 264 Po(2x) < 1+ 3¢5,
Thus, after division by ey,
ex|VP(x1)|> — 3ep + 2P, (zx) <0.
Passing to the limit as kK — oo, we obtain P,(Z) < 0 as desired.

Step 3: Improvement of flatness. From the previous step, @ solves (6.7) and from

(m)u

—1<da(x) <1 in By n{z, >0}
From Theorem and the bound above we find that, for the given r,
|i(x) — @(0) — Via(0) - x| < Cor? in B, N {z, > 0},

if ro < 1/4, for a universal constant Cy. In particular, since 4(0) = 0 and also
U, (0) = 0, we obtain

2 —Cor? <i(z) <2’ -0+ Cor® in B,.N{x, >0},

where 2’ = (21, ,Zn-1), ¥ = Vx4(0) and || < Cy. Therefore, for k large
enough we get

-0t < ag(r) <a' -+ Cir? in Q-(ug),
for a universal constant Cy. From the definition of @y the inequality above reads
(6.12)  epax’ U+ a, —exCrr? <up(x) < epa’ - U+ x, +eCrr? in Q(ug).
We next set
(en + ek (7,0)).

1
Vp = ————
SN I 7E

lvk| =1, v — en| < Cey,

Then,

and 3

Vk:en+5k(ﬁao)+EiT7 |T| ch
with C universal. We now deduce from (G.12)

T v — aié'r —epCir? <up(x) <z -vp + siér +exCir?  in Q. (up).
If we fix 7 satisfying C17o < 1/4 and we take k large enough so that £,C < 1/4 ,
we get
x-vp —epr/2 <up(x) <x-vp+epr/2 in Qp(ug).
Recalling (64), we obtain for large k
(w-vp —err/2)T <up(z) < (z-vp +e,7/2)" in B,,

thus wuy, satisfies the conclusion ([G3]) of the lemma, a contradiction. O
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7. REGULARITY OF THE FREE BOUNDARY

In this section we finally prove our main result, namely, Theorem [I.1]

Proof of Theorem [I.3l Let u be a viscosity solution to (ILI]) in By with 0 € F(u),
g(0) =1 and p(0) = pg. Consider the sequence

1
ug(x) = p—ku(pkx), x € By,

with pp =7, k=0,1,---, for a fixed 7 such that
7 <1/4, <,

with 7 the universal constant in Lemma Gl taking § = 1 in (61)).

Each uy, is a solution to ([L]) with right hand side fi(z) = pr f(prx), exponent
pr(x) = p(prx), and free boundary condition gi(x) = g(prx). For the chosen 7, by
taking & = £o(7)2, the assumption (G.I) holds for ¢ = e = 2 ¥eo(7). Indeed, in
By, in view of (L4),

|fe(@)] < || flloo pr < EF* < ¢F,
gk () — 1] = lg(prx) — 9(0)| < [glo.s pi” < &7 < &3,
k()| < [|Vplloo pi < &7" < €3,
pr(2) = po| = |p(pr) — p(0)] < [|Vplloo pr < EFF < ej.

The hypothesis (L3) guarantees that for &k = 0 also the flatness assumption (6.2))
in Lemma is satisfied by ug. Then it easily follows, by applying inductively
Lemma [6.1] that each uy is e, —flat in By in the sense of ([6.2]), in the direction vy,
with |vg] = 1, vk — veya| < o (vo = en). Now, a standard iteration argument
gives the desired statement. O

APPENDIX A. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENT

Let p: Q — [1,00) be a measurable bounded function, called a variable exponent
on 2, and denote pyax = esssup p(x) and pin = essinf p(x). The variable exponent
Lebesgue space LP() () is defined as the set of all measurable functions u : Q@ — R
for which the modular o,.)(u) = [, [u(z)[?®) dx is finite. The Luxemburg norm
on this space is defined by

lull Locr ) = llullpy = Inf{A > 0 gpy(u/A) < 1}

This norm makes LP()(2) a Banach space.
There holds the following relation between gp,.)(u) and [Jul|zsc):

1/ min 1/ max
i { ([ @ dz) ([ ap® de) " < o
Q Q
l/pmin 1/pmax
Smax{(/ |u [P dCL’) ,(/ |u|P(®) d:v) }
Q Q

Moreover, the dual of LP()(Q) is L' ()(Q) with ﬁ + ﬁ =1

W1P()(Q) denotes the space of measurable functions u such that u and the
distributional derivative Vu are in LP() (). The norm
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lullipey = llellpe) + 1V ulllpey
makes W1P()(Q) a Banach space.

The space Wol’p(')(Q) is defined as the closure of the C§°(Q2) in WhP()(Q).
For further details on these spaces, see [DHHRI, [KR], [RR] and their references.
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