
17 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Arduini T., Patacchini E., Rainone E. (2020). Treatment Effects With Heterogeneous Externalities. JOURNAL
OF BUSINESS & ECONOMIC STATISTICS, 38(4), 826-838 [10.1080/07350015.2019.1592755].

Published Version:

Treatment Effects With Heterogeneous Externalities

Published:
DOI: http://doi.org/10.1080/07350015.2019.1592755

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/715949 since: 2022-04-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1080/07350015.2019.1592755
https://hdl.handle.net/11585/715949


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Arduini, T., Patacchini, E., & Rainone, E. (2020). Treatment effects with heterogeneous 
externalities. Journal of Business & Economic Statistics, 38(4), 826-838. 

The final published version is available online at: 

https://doi.org/10.1080/07350015.2019.1592755 

 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing 
policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://doi.org/10.1080/07350015.2019.1592755




1 Introduction

Conditional cash transfers, or similar welfare programs, generate indirect effects on untreated sub-

jects in the presence of social interactions. Examining housing mobility studies in which households

in poor areas are financed to relocate to better neighborhoods, Sobel (2006) shows that ignoring

indirect effects leads to entirely wrong conclusions about the effectiveness of the program. In

recent years, an applied literature has considered experimental designs and experimental sources

of variation that allow the assumption of no interference between research subjects to be relaxed

(see, e.g. Angelucci and De Giorgi, 2009; Barrera-Osorio et al., 2011). This literature has consid-

ered the presence of externalities in treatment evaluation, but has focused on the aggregate effect

(i.e. the mean impact of the program over untreated subjects). Indirect effects, however, may be

heterogeneous across population subgroups.

The analysis of heterogeneous indirect effects is complicated because of simultaneity issues

arising from social interactions. Progress in this respect requires either improving the design of

randomized control trials (Baird et al., 2018) or a methodological infrastructure, which is not

available in the existing literature on policy evaluation.

Our paper aims to fill this gap, and to do so in a way that can be of immediate applicability

for the practitioner. Our working tools are a linear-in-means model with a group-level structure

(Lee, 2007) and a partial-population experiment (Moffitt et al., 2001). In this protocol, groups are

assigned to treatment or control, and a subset of individuals are offered treatment within clusters

assigned to treatment according to certain rules. We introduce heterogeneity both in exogenous

and endogenous spillover effects.

Our main result demonstrates that all parameters of interest can be identified from experi-

mental variation in the size of eligible individuals across groups. Our methodology exploits the

statistical properties of a spatial autoregressive model, which embeds a recursive formulation of the

endogenous regressors (representing externalities) over space. The reduced-form model provides

exclusion restrictions stemming from higher order effects which are not included in the structural

model. The fact that this property of the spatial autoregressive model can be exploited for the

identification of peer effects was first noted by Calvó-Armengol et al. (2009) and Bramoullé et al.

(2009) when network data are used. Its use is now pervasive in applied work in the social sciences,

under the assumption that characteristics of friends of friends are valid instruments for the en-
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dogenous effect (peer effects). The contribution of this paper is to bring this methodology to the

treatment evaluation literature and to note that, in this context, we do not need network data:

identification can be achieved by excluding the individual i from his or her peer group and using

variations in the shares of treated individuals across groups in partial population experiments.

Importantly, the randomization procedure guarantees that the shares of treated peers are random.

We also show how the parameters can be consistently estimated and we study the finite sam-

ple performance of the proposed estimators using Monte Carlo simulations. With the parameter

estimates in hand, we then analytically derive causal estimands (the average treatment effect and

the indirect treatment effect) in presence of heterogeneous externalities.

Our approach comes at the cost of specifying a parametric model. The main limitation in the

use of parametric methods for estimating average treatment effects is the sensitivity of the results

to misspecification of the conditional mean function. When a linear regression model is used to

predict outcomes and the averages of the covariates in the treated and control samples are very

different, the results can be sensitive to minor changes in the specification (Imbens and Woolridge,

2009). The commonly used nonparametric approach in the program evaluation literature is the

potential outcome approach. The adoption of this framework in the presence of spillovers presents

several challenges. In particular, when allowing for spillovers, the number of combinations of

potential outcomes explodes with the number of interacting units and strong assumptions need to

be made. A commonly used assumption in the existing studies in statistics imposes that spillover

effects do not depend on the identity of each treated neighbor, so that interactions are anonymous

(Sobel, 2006; Hudgens and Halloran, 2008; Tchetgen and VanderWeele, 2012; Liu and Hudgens,

2014; Rigdon and Hudgens, 2015, among others). Recently, in the context of social networks

and using observational data, Forastiere et al. (2016) assume bounded interactions, specifically no

interactions above distance one (i.e interferences are allowed only between direct friends). The

problem is exacerbated when allowing for heterogeneous externalities. The statistical framework

reduces quickly into an extremely large number of cells for which we need enough treated and

untreated units. The presence of a parametric model allows us to instead make inference on

empty cells. This comes at the cost of assuming constant functional form and parameters’ values,

even on a domain that is not used for the estimation of the structural parameters. We assume a

linear structure of the model, which is the most commonly used parametric specification in applied

work. Under this model specification, we can also decompose the estimands into spillovers due to
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the direct effect of the treatment on peers and the indirect effect due to variations in the peers’

behavior.

Our methodology is illustrated using data from one of the most-studied programs of poverty

alleviation: the Mexican conditional cash transfer program PROGRESA (Programa de Educacion,

Salud, y Alimentacion). We focus our analysis on the effects of the program on schooling deci-

sions. We find that more than 50 percent of the effects are due to externalities, which are highly

heterogeneous within and between household types. Most notably, the indirect effects on ineligi-

ble households are not entirely due to spillovers from eligible households. On the contrary, these

treatment externalities are small. The aggregate effect of the treatment on nonpoor households is

the result of a large social multiplier within nonpoor households. A 10 percentage point increase in

school enrollment of eligible students is associated with a 4 percentage point increase in ineligible

students’ school attendance, whereas this effect more than doubles (8.8 percentage points) for a 10

percentage point increase in school attendance of ineligible students. Subgroup variation in impacts

in PROGRESA has been documented by Djebbari and Smith (2008) and Lee and Shaikh (2014).

Our study contributes to understanding the mechanisms driving such heterogeneity by showing

that externalities differ within and across subgroups. The paper is organized as follows. Section

2 introduces our structural model. Section 3 shows how the model parameters are identified and

estimated. Section 4 derives and decomposes the estimands that are of interest for policy purposes.

Section 5 is devoted to the application of our framework in the case of PROGRESA. In Section 6,

we discuss the implications of our analysis for the design of experiments and identify a variety of

contexts in which our methodology can be applied. Section 6 concludes.

2 The Model

We observe a population with n agents distributed into c̄ groups. The population is indexed by

i. Groups are indexed by c with numerosity mc. If externalities are constrained to be the same

between and within groups, the outcome of interest yic is given by

yic = φȳ−ic + δtic + xicβ + x̄−icγ + εic, (1)
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where ȳ−ic indicates the mean outcome of the group (excluding individual i), xic and x̄−ic denote

vectors of individual and means of group characteristics (excluding individual i) respectively, and

εic is an error with mean zero and variance σ2 for all i and c. In model (1), φ represents the

endogenous effects, in which an agent’s choice/outcome may depend on that of his/her peers,

and γ represents the contextual effects, in which an agent’s choice/outcome may depend on the

exogenous characteristics of his/her peers, β captures the effects of individual characteristics. tic

is a dummy variable indicating whether unit i in group c is treated and δ represents its effect (the

direct effect of the treatment). In this model, we assume that a subset E of agents is eligible for

treatment. Groups of eligible agents are randomly assigned to treatment following a randomized

control trial. Let us suppose without loss of generality that all agents eligible for the treatment in

treated groups are treated. The complement N is composed of ineligible agents. Denote ec and nc

as the cardinalities of E and N in group c. If we allow externalities to be heterogeneous, treatment

spillover effects can be studied using the model:

yEic = φE ȳE−ic + φEN ȳNic + δtic + xEicβ
E + x̄E−icγ

E + x̄Nicγ
EN + εEic, (2)

yNic = φN ȳN−ic + φNE ȳEic + xNicβ
N + x̄N−icγ

N + x̄Eicγ
NE + εNic , (3)

where ȳE−ic = ec−1
mc−1

∑
j∈E,j 6=i y

E
jc

ec−1
and ȳNic = nc

mc−1

∑
j∈N yNjc
nc

with ȳE−ic+ȳ
N
ic = ȳ−ic and ȳN−ic = nc−1

mc−1

∑
j∈N,j 6=i y

N
jc

nc−1

and ȳEic = ec
mc−1

∑
j∈E y

E
jc

ec
with ȳN−ic + ȳEic = ȳ−ic, x̄

E
−ic = ec−1

mc−1

∑
j∈E,j 6=i x

E
jc

ec−1
and x̄Nic = nc

mc−1

∑
j∈N xNjc
nc

with

x̄E−ic + x̄Nic = x̄−ic and x̄N−ic = nc−1
mc−1

∑
j∈N xNjc
nc−1

and x̄Eic = ec
mc−1

∑
j∈E x

E
jc

ec
with x̄N−ic + x̄Eic = x̄−ic. φE

and φN capture the within-group externalities, while φEN and φNE capture the between-group

externalities. γE and γN are the within-group contextual effects, while γEN and γNE represent

thebetween-group contextual effects.

3 Identification and Estimation

3.1 Identification

The following proposition establishes the conditions under which the parameters in model (2)-(3)

are identified. Here, identification means that a consistent estimator of the parameters in equations

(2) and (3) exists.
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Let us assume the model (2)-(3) represents a social equilibrium, so that the reduced form can

be derived.

Proposition 1 Under a partial-population experiment, the parameters of model (2)-(3) are iden-

tified if and only if the share of eligible agents varies across groups.

The proof is given in the Appendix. The result can be easily extended to models with any finite

number of groups. The intuition is as follows. In the presence of social spillovers, the partial-

population experiment generates exogenous variations of a variety of combinations of nonlinear

functions of the share of the eligible population. If such shares vary across groups, the richness in

the combinations can be used to identify the social spillover effects, even if they are assumed to be

heterogeneous.

3.2 IV estimator

The spatial econometrics tradition builds instruments for the group average from its expected value

conditional on the exogenous variables (see Kelejian and Prucha, 1998; Kelejian and Prucha, 1999;

Lee, 2003). We follow this approach. Let Tc = {tic}i∈E. From the reduced form model (equa-

tions (33)-(34) in the Appendix), we can write the conditional expected values of the endogenous

variables as functions of the treatment vector. The expected values of the endogenous terms in

equation (2) conditional on the treatment are:

TIVEc = E(Ȳ E
−c|Tc) = R∞EcTcψ

∗, (4)

TIVENc = E(Ȳ N
c |Tc) = R∞ENcTcζ

∗, (5)

while for equation (3) they are:

TIVNc = E(Ȳ N
−c|Tc) = R∞NcTcµ

∗, (6)

TIVNEc = E(Ȳ E
c |Tc) = R∞NEcTcι

∗, (7)

where µ∗,ψ∗, ι∗ and µ∗ are convolutions of parameters from the structural equations. The vectors

Ȳ E
−c = {ȳE−ic}i∈E, Ȳ N

−c = {ȳN−ic}i∈N , Ȳ E
c = {ȳEic}i∈N and Ȳ N

c = {ȳNic }i∈E contain the endogenous
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terms. R∞ are infinite sets of matrices multiplying the treatment vector, as defined in the proof of

Proposition 1.

These vectors can be used as instruments for the endogenous terms. In fact, they are the

expected values of our endogenous variables conditional on the treatment, and thus they are corre-

lated with the endogenous variables but not with the error term since the treatment is administered

at random. As shown in the proof of Proposition 1, they are linear combinations of powers of the

shares of eligible agents in the groups, which can be approximated as follows:

TIVEc u Q∞E ψ =
∞∑
v=1

∞∑
r=0

r>0 ifs>0

∞∑
s=0

(ec − 1)v(ecnc)
s(nc − 1)r

(mc − 1)2s+r+v
1ec,1ψvrs, (8)

TIVENc u Q∞ENζ =
∞∑
r=0

∞∑
s=0

∞∑
q=0

ncec(ec − 1)q(ecnc)
s(nc − 1)r

(mc − 1)2s+2+r+q
1ec,1ζrsq. (9)

TIVNc u Q∞N µ =
∞∑
v=1

∞∑
s=0

∞∑
q=0

(nc − 1)vec(ec − 1)q(ecnc)
s

(mc − 1)2s+1+v+q
1nc,1µvsq. (10)

TIVNEc u Q∞NEι =
∞∑
r=0

∞∑
s=0

∞∑
q=0

ec(ec − 1)q(ecnc)
s(nc − 1)r

(mc − 1)2s+1+r+q
1nc,1ιrsq, (11)

where Q∞ are vectors containing infinite combinations of products of powers of the share of eligibles

and its complement. 1ec,1 and 1nc,1 are two ec × 1 and nc × 1 vectors of ones. If Proposition 1

holds, the IV vectors necessarily have full rank. To see this, let TIVS = (TIV ′S1, . . . , T IV
′
Sc̄)
′

for S = E,N,NE,EN , T = (T ′1, . . . , T
′
c̄)
′, X∗E = (X∗′E1, . . . , X

∗′
Ec̄)
′ with X∗Ec = {xE∗ic }i∈E and

xE∗ic = (xEic, x̄
E
−ic, x̄

N
ic ), and X∗N = (X∗′N1, . . . , X

∗′
Nc̄)
′ with X∗Nc = {xN∗ic }i∈N and xN∗ic = (xNic , x̄

N
−ic, x̄

E
ic).

If ec, nc and mc do not vary with c, WN = [TIVN , T IVNE] and WE = [TIVE, T IVEN , T ] do not have

full column rank, because TIVE and TIVEN are linear combinations of T . Given that the treatment

is administered at random, [WN , X
∗
N ] and [WE, X

∗
E] have full column rank if and only if the share

of eligible agents varies across the groups. Intuitively, share variation introduces nonlinearities that

allow identification and existence of valid instruments.

It appears from equations (8) - (11) that there are infinite ways to approximate TIV using

subsets of Q∞. Observe also that these IV vectors are infeasible since they involve the unknown

parameters, µ, ψ, ι and ζ. Following the approach used in the literature on spatial econometrics

(Kelejian and Prucha, 1998), we use a subset of the vectors in Q as empirical instruments. In
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practice, we use the following empirical IVs (EIV),

QEc =

[
ec − 1

mc − 1
,

(ec − 1)2

(mc − 1)2
,
ncec(ec − 1)

(mc − 1)3
,
(ec − 1)ecnc(nc − 1)

(mc − 1)4

]
1ec,1, (12)

QENc =

[
ncec

(mc − 1)2
,

(ncec)
2

(mc − 1)4
,
(nc − 1)ecnc
(mc − 1)3

,
(nc − 1)2ecnc

(mc − 1)4

]
1ec,1, (13)

QNc =

[
ec(nc − 1)

(mc − 1)2
,
ec(nc − 1)(ec − 1)

(mc − 1)3
,
ec(nc − 1)2

(mc − 1)3
,
ec(nc − 1)3

(mc − 1)4

]
1nc,1, (14)

QNEc =

[
ec

mc − 1
,
ec(ec − 1)

(mc − 1)2
,
ec(ec − 1)2

(mc − 1)3
,
e2
c(ec − 1)nc
(mc − 1)4

]
1nc,1. (15)

The specific vectors used in the approximation are not relevant in terms of identification, provided

that QEc, QNc, QNEc and QENc have full column rank. The behavior of the estimator with the

instruments (12)-(15) in terms of efficiency is shown in the Monte Carlo experiments in Section

3.3. More details about the asymptotic behavior of this type of IV estimator can be found in Lee

(2007).

Let QS = (Q′S1, . . . , Q
′
Sc̄)
′ for S = E,N,NE,EN , Y E = (Y E′

1 , . . . , Y E′
c̄ )′, Ȳ E = (Ȳ E′

−1 , . . . , Ȳ
E′
−c̄ )′,

Ȳ N = (Ȳ N ′
1 , . . . , Ȳ N ′

c̄ )′ with Y E
c = {y−ic}i∈E, Ȳ E

c = {ȳ−ic}i∈E, Ȳ N
c = {ȳic}i∈N and ZE = (Ȳ E, Ȳ N , T,X∗E).

The IV estimator for model (2) is

κ̂E = (Z ′EPEZE)−1Z ′EPEY
E, (16)

where κE = (φE, φEN , δ, βE′, γE′, γEN ′)′ and PE = Q̃E(Q̃′EQ̃E)−1Q̃′E,

where Q̃E = (QE, QEN , T,X
∗
E). We can define in the same fashion the estimator for equation

(3). Observe that while we split the equations in model (2)-(3) into two groups according to their

treatment status, we could have split the model according to other types. Technically, Proposition

1 holds true for any two types of agents and any number of types (up to a finite number). The

challenging task is to prove that the share of each specific type of agents varies randomly across

groups.

Three features of this methodology are worth noting. First, the exclusion of the contextual

effects of the treatment in our model specification (2)-(3) (that is 1
mc−1

∑
j 6=i tjc = ec−1

mc−1
) is not

a crucial restriction for the identification of the model. The intuition is that the vectors of in-

struments are vast arrays of (nonlinear) transformations of the share of eligibles. The inclusion of
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the contextual effects decreases the number of valid instruments, but the model remains (over-)

identified. We formally prove that our model is identified when contextual treatment effects are

included in the model specification in Proposition 2 in the Supplementary Appendix S. Second,

identification is not stemming from the fact that the externalities are assumed to be heterogeneous.

The model is still identified if the peer effects are homogeneous. The intuition is that the effects

of the four endogenous variables are not identified because the same instruments are multiplied

by different parameters, but rather from the fact that we have different instruments for each of

them. As a result, even if the parameter is the same across the four endogenous variables, the

model remains identified. The presence of heterogeneous externalities can be tested using a stan-

dard Wald test. To test for differences in peer effects in different equations, one would need to

pool our model and jointly estimate both equations. Notice that if the hypothesis of homogeneity

cannot be rejected and a constrained model is estimated, then inference should take into account

the sequential structure of the testing procedure. We formally prove that our model is identified

when externalities are constrained to be equal (i.e. φE = φN = φNE = φEN ) in Proposition 3 in

the Supplementary Appendix S. Third, observe that the intuition of our strategy is similar in spirit

to Lee (2007) and subsequent empirical papers (see e.g., Boucher et al., 2014). However, while the

model in Lee (2007) is designed for studying observational data, our model is designed for ana-

lyzing experimental data. The fact that we propose a model for policy evaluation of randomized

experiments changes the modeling and estimation strategy in Lee (2007) along three main lines.

First, in Lee (2007) identification requires variation in group size. We do not need it. Even if the

groups have the same size, we can still identify our model parameters provided that the share of

treated varies across groups. Second, in Lee (2007) the underlying identifying assumption is that

the size of the group is not correlated with the error term (conditional on observed characteristics

and unobserved group fixed effects). In our case, the randomization procedure guarantees that the

share of treated peers is random, and thus by construction is orthogonal to the error term. Thus, it

is not essential to include a full set of contextual effects (observed peer characteristics) and control

for correlated effects (group fixed effects) since we do not need to deal with troubling unobserved

factors. Third, Lee (2007) deals with one endogenous variable. Our model is able to deal with

two (or more) of them because it is designed to estimate heterogeneous externalities. This is not

a trivial extension because it implies different conditions for identification.
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3.3 Monte Carlo Experiments

In this section, we use simulated data to investigate the performance of the proposed estimator in

finite samples. We conduct a Monte Carlo simulation based on the following model

yEic = φE ȳE−ic + φEN ȳNic + δtic + εEic, (17)

yNic = φN ȳN−ic + φNE ȳEic + εNic , (18)

where εEc , ε
N
c ∼ N(0, σ) with σ = 1. We generate c̄ groups with size mc = k; we then split

each group c into two sub-populations of eligibles (E) and ineligibles (N). The share of eligibles is

allocated at random across groups and according to a uniform distribution. Specifically, we draw

ec from an interval [emin, emax], where emin and emax are two parameters such that emin > 0 and

emax < mc. The group treatment status tc is generated by a Bernoulli distribution with probability

P (tc = 1) = p = 0.7. Following the design of PROGRESA, every eligible is treated if the village

is drawn, i.e. tic = tc. We estimate model (17)-(18) 3,000 times for each experiment. In equation

(17) the set of empirical IVs is (QE, QEN), while in equation (18) this set is (QN , QNE). We report

the mean point estimate, the relative standard error, and the root mean square error for the EIV,

TIV, and OLS estimators.

Table 1 shows how the estimators are affected by the variation in the share of the eligible

population. We set mc = 50 and c̄ = 60, having 3,000 observations in each experiment, and

gradually decrease the variability of the share of the eligible population, narrowing the interval

[emin, emax] from [1, 49] (which covers about 96 percent of the possible shares in a population of 50

individuals) to [24, 27] (which covers about 6 percent). In one experiment we also use the range

of the share of eligibles in the PROGRESA program, that is [6, 49] (84 percent coverage). Table 1

shows that the performance of the estimators improves as the variability increases (from the fourth

to the first panel). Indeed, the root mean square error of φE increases more than tenfold for both

the TIV and EIV when the share interval shrinks, while it increases by more than twofold for the

OLS. It is worth noticing that the bias generated by limited variation in the share of eligible agents

is more severe for the parameters of the eligible outcome equation. This is because the treatment

is not excluded from the eligible outcome equation. Thus, all of the instruments rely only on the

variation in the share of eligible agents to identify the effects of externalities.
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In the Supplementary Appendix S, we study the performance of the estimators for different

sample sizes and different values of the parameters. In Panel (a) of Table S.1, we study the

performance of the estimators as the sample size increases from 500 to 3,000, holding constant the

numerosity of each group at k = 50. The performance of the EIV is close to the TIV, and both

the standard errors and mean squared errors significantly decrease as the number of observations

increases. The IV point estimates are very close to the real parameter values even in small samples.

The OLS is biased regardless of the sample size. This evidence shows that the chosen EIV (with

the IV vectors in (12)-(15)) performs well, even if the number of terms used for the approximation

is low. We also ran simulations in which we varied the combination and number of instruments

used in the approximation of the theoretical IVs. The performance remains remarkably stable,

thus showing no specific efficiency loss when using a limited set of IVs. In Panel (b) of Table

S.1, we vary the values of the parameters. The IV point estimates always remain close to the

real parameter values, while the OLS estimators are always biased. This evidence shows that the

performance of the estimators does not depend on the specific set of parameter values.

4 Treatment Effects with Heterogeneous Externalities

Let us now highlight the importance of our framework for the analysis of treatment response with

spillovers. In our model, the Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1986)

does not hold because (i) spillovers are at work, and (ii) spillovers are heterogeneous. To the best

of our knowledge, there are no studies that consider violations of the SUTVA because of (ii). In

this section, we map our model to Rubin’s potential outcomes model. The detailed derivation of

the estimands defined in this section is contained in the Supplementary Appendix S. The aim is

to show how our structural model enables us to not only estimate treatment effects, but also to

obtain a policy relevant decomposition of these effects.

Average Treatment Effect Let Yi,c(1) and Yi,c(0) be the potential outcomes of an eligible

unit i in group c when it receives the treatment and when it does not respectively. Given that the

SUTVA does not hold, the potential outcomes of unit i depend on the treatment status of other

units. Let T i,c,1 and T i,c,0 be two ec × 1 treatment vectors such that T i,c,1i = 1 and T i,c,0i = 0 and
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Table 1: Monte Carlo simulations - variance of group size

(1) (2) (3)
TIV EIV OLS

ec ∈ [1, 49] on mc = 50 (96% span)

φE = 0.8 0.800(0.014)[0.014] 0.803(0.014)[0.014] 0.832(0.011)[0.034]
φEN = 0.9 0.898(0.047)[0.047] 0.910(0.045)[0.046] 1.016(0.029)[0.120]
δ = 1.7 1.704(0.134)[0.134] 1.667(0.130)[0.134] 1.353(0.087)[0.358]
φN = 0.8 0.799(0.025)[0.025] 0.804(0.024)[0.024] 0.848(0.020)[0.052]
φNE = 0.9 0.901(0.015)[0.015] 0.899(0.015)[0.015] 0.884(0.014)[0.022]

ec ∈ [6, 49] on mc = 50 (84% PROGRESA design)

φE = 0.8 0.799(0.021)[0.021] 0.806(0.020)[0.021] 0.832(0.018)[0.036]
φEN = 0.9 0.900(0.011)[0.011] 0.898(0.011)[0.012] 0.892(0.011)[0.014]
δ = 1.7 1.706(0.153)[0.153] 1.604(0.136)[0.167] 1.275(0.088)[0.434]
φN = 0.8 0.799(0.015)[0.015] 0.808(0.013)[0.016] 0.836(0.010)[0.037]
φNE = 0.9 0.898(0.052)[0.052] 0.931(0.046)[0.055] 1.040(0.028)[0.143]

ec ∈ [13, 37] on mc = 50 (48% span)

φE = 0.8 0.797(0.023)[0.023] 0.808(0.018)[0.020] 0.822(0.014)[0.026]
φEN = 0.9 0.874(0.151)[0.153] 0.976(0.101)[0.126] 1.113(0.034)[0.216]
δ = 1.7 1.773(0.399)[0.406] 1.499(0.270)[0.336] 1.127(0.091)[0.580]
φN = 0.8 0.800(0.029)[0.029] 0.804(0.028)[0.028] 0.834(0.026)[0.042]
φNE = 0.9 0.900(0.018)[0.018] 0.898(0.017)[0.018] 0.886(0.016)[0.022]

ec ∈ [24, 27] on mc = 50 (6% span)

φE = 0.8 0.814(0.204)[0.205] 0.814(0.204)[0.205] 0.813(0.086)[0.087]
φEN = 0.9 1.168(0.582)[0.641] 1.168(0.582)[0.641] 1.143(0.092)[0.260]
δ = 1.7 1.000(1.513)[1.668] 1.000(1.513)[1.668] 1.049(0.119)[0.662]
φN = 0.8 0.772(0.186)[0.189] 0.812(0.175)[0.176] 1.083(0.099)[0.300]
φNE = 0.9 0.918(0.125)[0.127] 0.892(0.118)[0.118] 0.714(0.067)[0.198]

Notes. Point estimate (standard error) [root mean squared error]. σ = 1, number of replications = 3000, number
of observations = 3000, group size = 50, probability of being in a treated group = 0.7. In PROGRESA the share
of elibgibles varies between 13 and 97 percent, which translates into 6 and 49 eligibles when the population is 50
people.

T i,c,0j = T i,c,1j = 1, 0, ∀j 6= i. The treatment effect of unit i is thus given by

E[Yi,c(1)− Yi,c(0)] = E[Yi,c(1)]− E[Yi,c(0)] = E[Yi,c(T
i,c,1)]− E[Yi,c(T

i,c,0)]. (19)

Given (2)-(3) and from the derivations in the proof of Proposition 1, it follows that

E[Yi,c(T
i,c,1)]− E[Yi,c(T

i,c,0)] u (20)

δ

[
1 +

(
(ec − 1)(φE)2

(mc − 1)2
+
ncφ

ENφNE

(mc − 1)2

) ∞∑
v=0

∞∑
s=0

∞∑
r=0

[(ec − 1)φE]v(ecncφ
ENφNE)s[(nc − 1)φN ]r

(mc − 1)2s+v+r

]
.
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Let EC [.] denote the expectation operator across groups and units. The average treatment effect

is

ATE = EC [Yi,c(1)]− EC [Yi,c(0)] = δ(1 + EC [gec,mc,nc ]), (21)

where gec,mc,nc is a function of (ec,mc, nc, φ
E, φN , φEN , φNE) that is approximated in the second

addend of (20). The ATE can be decomposed into two parts

ATE = δ︸︷︷︸
DTE

+ δEC [gec,mc,nc ]︸ ︷︷ ︸
FLTE

. (22)

The first part is the Direct Treatment Effect (hereafter DTE), while the second part is the effect of

the treatment due to the interactions among agents, i.e. the effect of i’s treatment that impacts i

through other agents. We denote the latter effect as the Feedback Loop Treatment Effect (hereafter

FLTE). This decomposition highlights that the program impact for unit i can be large if she/he

is in a group with a high level of social interaction (i.e. if φE and ec
mc

are high), even if the

direct treatment effect (δ) is low. Observe that, while φE, φN , φEN , φNE are constant parameters,

ec,mc, nc vary across groups. Even if δi = δ (i.e. the direct treatment effect is homogeneous), the

ATE can be heterogeneous because of the different group composition.

The FTLE can be further decomposed into three parts: (i) wec,mc,φE = (ec−1)(φE)2

(mc−1)2

∑∞
r=0(φE ec−1

mc−1
)r,

the pure loop effect within the treated (WTE); (ii) bnc,ec,mc,φNE ,φEN = ncφENφNE

(mc−1)2

∑∞
r=0(φENφNE ecnc

(mc−1)2 )r,

the loop effect between the treated and the untreated (BTE); and (iii) jec,nc,mc,φE ,φN ,φNE ,φEN =

gec,mc,nc − (wec,mc,φE + bnc,ec,mc,φNE ,φEN ), the residual effect (RTE). The first component is gener-

ated by loops within same-type agents and reflects both the strength of interactions among them

and their relative share in the population. The second component is proportional to the intensity

of between-group interactions weighted by the relative shares of the groups. The third term is a

residual component. The ATE can thus be decomposed as

ATE = δ︸︷︷︸
DTE

+ δEC [wec,mc,φE ]︸ ︷︷ ︸
WTE

+ δEC [bnc,ec,mc,φNE ,φEN ]︸ ︷︷ ︸
BTE

+ δEC [jec,nc,mc,φE ,φN ,φNE ,φEN ]︸ ︷︷ ︸
RTE

. (23)

Indirect Treatment Effect Let Yi,c(1) and Yi,c(0) be the potential outcomes of an ineligible

unit i in group c when the treatment is administered to all eligibles in her group and administered
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to no eligibles if she is not in the treated group. According to (2)-(3) and the derivations in the

proof of Proposition 1, the treatment effect of unit i is given by

E[Yi,c(1)− Yi,c(0)] = E[Yi,c(1)]− E[Yi,c(0)] (24)

u δ

(
1 +

(nc − 1)φN

(mc − 1)

) ∞∑
v=0

∞∑
s=0

∞∑
q=0

ec(ecncφ
ENφNE)s[(ec − 1)φE]q[(nc − 1)φN ]v

(mc − 1)2s+q+v+1
.

The indirect treatment effect is

ITE = EC [Yi,c(1)]− EC [Yi,c(0)] = δEC [hec,mc,nc ], (25)

where hec,mc,nc is a function of (ec,mc, nc, φ
E, φN , φEN , φNE) that is approximated in (24). This

implies that, when interactions are at work, the ITE can be heterogeneous because of the different

group compositions. For example, under the assumption that the number of treated units is

constant, when ineligible agents have greater within-group social interactions than eligible agents

(φN > φE), and ineligible agents have greater within-group than between-group interactions (φN >

φNE,φN > φEN) the ITE is increasing in nc/mc.

As for the ATE, an analog further decomposition can be made for the ITE

ITE = δφNE
ec

mc − 1︸ ︷︷ ︸
DSE

+ δEC [hec,mc,nc ]︸ ︷︷ ︸
ISE

(26)

where the DSE represents the direct spillover from treated to untreated and the ISE accounts for

the indirect spillover effect generated by the DSE. The ISE can also be further decomposed into

three parts: (i) the pure loop effect within the untreated population (WUE), (ii) the loop effect

between untreated and treated populations (BUE), and (iii) the residual loop effect (RUE). The

ITE can thus be decomposed as

ITE = δφNE
ec

mc − 1︸ ︷︷ ︸
DSE

+ δEC [rnc,mc,φN ]︸ ︷︷ ︸
WUE

+ δEC [qnc,ec,mc,φNE ,φEN ]︸ ︷︷ ︸
BUE

+ δEC [zec,nc,mc,φE ,φN ,φNE ,φEN ]︸ ︷︷ ︸
RUE

, (27)

where rnc,mc,φN = δφNE ec
mc−1

∑∞
r=1(φN

nc−1
mc−1

)r, qnc,ec,mc,φNE ,φEN = δφNE ec
mc−1

bnc,ec,mc,φNE ,φEN , and

zec,nc,mc,φE ,φN ,φNE ,φEN = hec,mc,nc − (rnc,mc,φN + qnc,ec,mc,φNE ,φEN ).
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5 Empirical Application

5.1 The PROGRESA program

PROGRESA was a partial-population experiment which was implemented in Mexico in 1998. The

program offered conditional cash transfers to the rural poor in exchange for sending their children

to school and for regular visits at health clinics and health talks. The education component of

PROGRESA consisted of providing subsidies, ranging from 70 to 255 pesos per month (depending

on the child’s gender and grade level), to children attending school in grades 3 to 9. PROGRESA

was targeted in two stages: (1) the selection of villages where PROGRESA operated; (2) the selec-

tion of eligible households within the selected villages. Stage (1) was implemented by identifying

communities with high scores on a “village marginality index” based on the socioeconomic infor-

mation collected in a pre-program survey in 1997. A total of 506 communities across seven states

were selected. Among these communities, 320 were randomly assigned into a treatment group, with

the remaining 186 communities serving as a control group. Stage (2) was implemented by selecting

poor households on the basis of a “household poverty index” constructed from the baseline survey

in 1997. A cutoff value of the poverty index defined poor families eligible for PROGRESA. While

household eligibility was determined within all (treatment and comparison group) communities,

only households classified as eligible and within the 320 villages assigned to treatment became

program beneficiaries. Our focus is on the effects of PROGRESA on school enrollment decisions.

5.2 Empirical model

The reduced form effect of the PROGRESA status of the village on school enrollment of children

whose families are not part of the program using a peer effect model has been estimated by Bobonis

and Finan (2009) and Lalive and Cattaneo (2009). Lalive and Cattaneo (2009) further improves

upon Bobonis and Finan (2009) in four important respects. First, they refine the peer group by

considering as peers all children in the same village and grade. Second, they consider changes in

school attendance rather than levels, thus controlling for time-invariant unobserved heterogeneity

in children. Third, they refine the IV strategy by using the share of treated households in a village

rather than a dummy indicating the PROGRESA status of a village. Fourth, they decompose

the average treatment effect into a direct effect that arises due to financial incentives (DTE in

15



our equation (22)) and a residual effect due to the presence of social interactions (FLTE in our

equation (22)).

We replicate the analysis performed by Lalive and Cattaneo (2009) when including hetero-

geneous externalities. In the parlance of our model (2)-(3), Lalive and Cattaneo (2009) use the

following specification:

∆yNigv = φ∆ȳ−igv + xNigvβ + εNigv. (28)

The dependent variable is the change in school enrollment between October 1997 and October

1998. School enrollment is a binary indicator taking value 1 if the child attends school at the

date of the interview and 0 otherwise. The peer group (c) of child i is defined as all children in

the same grade g and village v, excluding i. They identify φ using egv
mgv

Tgv as an instrument for

∆ȳ−igv. This empirical framework allows for the identification of the total effect of PROGRESA

on the schooling attendance of eligible and ineligible children under the assumption that social

interactions are equally important among poor and nonpoor households. Our framework relaxes

this assumption, and further allows social interactions to be different both within and between

groups. Specifically, our empirical model (2)-(3) takes the form:

∆yEigv = φE∆ȳE−igv + φEN∆ȳNigv + δtv + xEigvβ
E + εEigv, (29)

∆yNigv = φN∆ȳN−igv + φNE∆ȳEic + xNigvβ
N + εNigv. (30)

5.3 Data description

The data from the PROGRESA program consists of repeated observations (panel data) for 24,000

households from 506 villages (320 in the treatment group and 186 in the control group) across

seven states over five rounds of surveys (baseline surveys in October 1997 and October 1998 and

follow-ups in May 1999, June 1999, and November 1999). We thus have information on enrollment

during three consecutive academic years (1997-1998, 1998-1999, and 1999-2000). Following the

sample selection used by Lalive and Cattaneo (2009), we focus on information in the first two years

and select children living with their mother who had completed grades 3 to 6 of primary school

in October 1997, and for whom there is complete information on school attendance in 1997-1998
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and 1998-1999. In order to allow for the presence of heterogeneous externalities, we then restrict

our sample to children in peer groups (village-grade groups) with at least 2 poor households and

2 nonpoor households. We end up with a sample of 8,682 children, of whom 5,076 live in treated

villages and 3,606 live in untreated villages. Table S.2 in the Supplementary Appendix S provides

the descriptive statistics for the characteristics of the children in our sample. Panel (a) shows the

raw evidence on the effects of the cash subsidy on school enrollment. We report school enrollment

for children in eligible and ineligible households before and after the treatment, distinguishing

between treated and untreated villages. In October 1997, school attendance of children in poor

households is roughly the same in control and treated villages (roughly 78 percent vs 79 percent,

respectively, with an insignificant difference). One year later, school attendance is 6 percentage

points lower for eligible children in control villages (roughly 72 percent), whereas in treated village

it remains roughly unchanged. This means that the program increased school enrollment by 6

percentage points. The data also indicate that the program had an effect on children in untreated

households in treated villages. On average, about 77 percent of ineligible children in grades 3 to 6

attend school in control villages in October 1997. In treated villages, school attendance for ineligible

children is about 80 percent, but the difference between the treated and untreated villages is not

statistically significant. By October 1998, school attendance for ineligible children dropped by 5

points in control villages but only by roughly 3 points in treated villages. However, this difference

is not statistically significant. This suggests that the spillover effect is at the most weak. Panel

(b) in Table S.2 compares characteristics of eligible and ineligible children between treatment and

control villages at baseline. Consistent with the random assignment of villages in the PROGRESA

program, there are no statistically significant differences in the observed characteristics of children

on all dimensions. This evidence resembles the descriptive analysis in Lalive and Cattaneo (2009),

Table 2. We show the comparison in the Supplementary Appendix S. Table S.3 replicates the

content of Table S.2 when using the sample in Lalive and Cattaneo (2009). The means of all

variables are remarkably close. A formal comparison of our sample with the one used by Lalive

and Cattaneo (2009) is in Table S.4, showing no relevant difference.

Table S.5 reports the effect of PROGRESA on eligible and ineligible children’s change in school

enrollment using a regression analysis that allows us to control for the observable characteristics

of children (within-individual difference-in-difference analysis). The results confirm the descriptive

evidence, showing that PROGRESA decreases the downward trend in school attendance for the
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treated children by 5.5 percentage points. They also show an estimated increase (i.e. decrease of

downward trend) of 2.1 percentage points for untreated children in treated villages. The estimate

is now statistically significant, indicating the existence of spillover effects.

5.4 Estimation results

We begin our analysis by providing evidence in support of our identification strategy. We show in

Section 3 that heterogeneous treatment externalities can be identified if there is variation in the

share of eligible households. Figure S.1 in the Supplementary Appendix S depicts the distribution

of peer groups by the share of eligible households. The graph reveals the presence of significant

variation in group size. For each endogenous variable, the proposed IVs are combinations of four

vectors, which are (nonlinear) functions of eligible group size. Figure S.2 shows that those vectors

are not collinear. In fact, for both equations (29) and (30) one can see a relationship between

vectors that is markedly nonlinear. This guarantees that the instrumental matrix has full rank

in our empirical application. The share of eligible females in the same group is also used in the

instrumental variable set for the eligible outcome equation to increase the power of the instruments.

In PROGRESA, the grants awarded to females are higher than the ones awarded to males. Thus,

attendance rates are plausibly correlated with the share of females in the group. Details on the

construction of the empirical IVs can be found in the Supplementary Appendix S.

Table 2 displays our main results. It reports IV estimates which are obtained using a subset of

the vectors (12)-(15) as instrumental variables (EIV). Panel (a) collects the parameter estimates

of model (29), whereas Panel (b) collects the parameter estimates for model (30). We report the

results for the entire set of control variables in Table S.6. In the Supplementary Appendix S, we

show that the evidence on the existence of heterogeneous effects in the estimation of the externality

persists if we use a different subset of instruments (Table S.7), when contextual treatment effects

are added to the model specification (Table S.8), when other contextual effects are included (Table

S.9), and when the contextual effects are allowed to be different for eligible and ineligible individuals

(Table S.10).

The central result is that the IV estimates in Panel (b) reveal that the indirect effect on ineligible

households is not entirely due to spillovers from eligible households. On the contrary, this spillover

effect is small when compared to the externality produced within ineligible households. A 10

percentage point increase in school enrollment of eligible students is associated with a 4 percentage
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point increase in ineligible students’ school attendance, whereas this effect more than doubles (8.8

percentage points) for a 10 percentage point increase in school attendance of ineligible students.

The difference between the two parameters is statistically different from zero at the 10 percent

level. A standard Wald test is used. We performed weak instrument F-tests in models with

multiple endogenous variables as described in Sanderson and Windmeijer (2016). The complete

set of first stage results, together with the reduced form estimates, are reported in Tables S.11 and

S.12 of the Supplementary Appendix S. The first stage F-statistics show that the instruments are

informative, although not extremely strong for model (29). This is perhaps not surprising given

that the treatment is not excluded from model (29). For this reason, we also report the Limited

Information Maximum Likelihood (LIML) results in the second column of each panel. The results

remain qualitatively unchanged, and the point estimates are similar. The LIML estimates thus

lend credibility to the IV estimates by eliminating a suspected weak instrument bias (see Flores-

Lagunes, 2007 or Angrist and Pischke, 2008, pages 209-216, for further details). While there may

be several mechanisms underlying differences in peer effects across groups, our data does not allow

us to pin down the exact channel.

Table 2: Externalities of PROGRESA for eligible and ineligible children

Panel (a) Panel (b)

Dependent variable: change in attendance for Eligible children Ineligible children

IV LIML IV LIML
(1) (2) (3) (4)

Change in peer group attendance for

Ineligible children 0.8874** 1.0761** 0.8750*** 0.8536***
(0.4117) (0.4404) (0.3001) (0.3067)

Eligible children 0.7343* 0.7290* 0.3966* 0.3781*
(0.4077) (0.4286) (0.2376) (0.2242)

Individual and family characteristics Yes Yes Yes Yes
State fixed effects Yes Yes Yes Yes

F-tests
Peer group attendance of ineligible children 6.23 8.25
Peer group attendance of eligible children 6.61 9.37

Observations 5,387 5,387 3,295 3,295

Notes. Standard errors are clustered at the village level. * : p < 0.10; **: p < 0.05; ***:
p < 0.01. The controls are listed in Table S.6. The Sanderson-Windmeijer (SW) multivariate
first-stage F statistics are reported for both the endogenous terms. The instrumental variables
used in Panel (a) are qEf1, qEf3, qEN3, and qEN4, in Panel (b) are qNE3, qN1, and qN4.
The subscript f denotes the IVs based on the share of eligible girls. The construction of the
instrumental variables is detailed in Appendix S1.

19



5.5 Estimands decomposition

When heterogeneous interactions among units are allowed, the total effects of a program depend

on the estimates of the endogenous social interactions and on the share of the eligible population.

In Panel (a) of Table 3 we show the total effects of PROGRESA when externalities are allowed

to be heterogeneous. The estimands are derived in Section 4. The ATE is equal to 0.0546, while

the ITE is 0.0213 (see Table S.5). More than half of the ATE is due to externalities (that is to

effects coming from other eligible and ineligible households directly or indirectly affected by the

treatment). The main novelty of our empirical framework is that it allows us to investigate the

nature of such externalities. It appears that, for eligible students, the externalities are mostly

within eligible households (WTE is equal to 30 per cent and BTE is equal to 4 percent). For

ineligible students, the externalities generated by the program within this group (WUE) and

between eligibles and ineligibles (BUE) are roughly the same (11 percent), although the estimate of

the social interaction parameter within ineligibles is much larger than the one capturing interactions

between groups (Table 2, Panel (b)). This is due to the fact that the average share of eligible

children in PROGRESA is very high (roughly 60 percent). In the majority of other conditional

cash transfer programs, the share of the eligible population is much lower. For example, the target

population in the World Bank programs in Latin America varies from less than 10 percent in

Bolivia, Costa Rica, Paraguay, and Peru, to about 25 percent in Brazil, Colombia, Guatemala,

and Mexico (Grosh et al., 2014). In the partial population program in Bangladesh that transfers

livestock assets and skills to the poorest women described in Bandiera et al. (2017), the share

of eligible women is about 6 percent. The decomposition of the ITE in Panel (b) of Table 3

shows that, if the average share of eligible children in PROGRESA were 20 percent, the treatment

externalities generated within nonpoor households (WUE) would be more than double the spillover

from poor to nonpoor households (DSE).
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Table 3: Estimands decomposition

Panel (a): average share of eligible children = 60%

ATE 0.0546 ITE 0.0213
DTE 0.0232 42% DSE 0.0058 27%
FLTE 0.0314 58% ISE 0.0155 73%

WTE 0.0165 30% WUE 0.002 11%
BTE 0.0025 4% BUE 0.002 12%

Panel (b): average share of eligible children = 20%

ATE 0.0274 ITE 0.0090
DTE 0.0232 42% DSE 0.0020 22%
FLTE 0.0042 8% ISE 0.0070 78%

WTE 0.0017 3% WUE 0.0042 46%
BTE 0.0017 3% BUE 0.0017 19%

Notes. The estimates of the social interactions parameters are in Table 2. ATE
and ITE are reported in Table S.5. DTE is reported in Table S.6.

6 Discussion

In this section, we discuss the implications of estimating heterogeneous externalities for the design

of experiments and highlight the relevance of our methodology by identifying other contexts where

our methods can be applied.

We begin by illustrating the importance of introducing heterogeneity in the externalities in

terms of aggregate outcomes. In model (2)-(3) we have added heterogeneity to the linear-in-means

model proposed by Lalive and Cattaneo (2009). To demonstrate the importance of this addition,

we perform a numerical simulation and show how the estimated treatment response is biased when

heterogeneity in the spillover effects is ignored.

We use the setting of the Monte Carlo simulation described in Section 5. Following the PRO-

GRESA design, the share of eligibles is randomly chosen from a uniform [0.13, 0.97], as in one

experiment reported in Table 1. We then set the model parameters equal to our IV estimates

in Table 2 (complete set of estimates in Table S.6), and generate outcomes. The blue line in

Figure 1 represents the average outcome at the village level by the village’s share of treated popu-

lation, with 95 percent confidence intervals. Next, using the simulated data, we estimate the model

without heterogeneity. In doing so, we implicitly set φN = φNE = φEN = φE = φ. We obtain

an estimate of φ equal to 0.557, which resembles the estimate presented by Lalive and Cattaneo

(2009), γN = 0.542. Lalive and Cattaneo (2009) estimate this value using equation (30) only and

aggregating peers’ outcome at the village level, that is considering the treatment response of the
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ineligibles in treated villages. We follow their approach here to estimate φ. They also present an

estimate of φ from a pooled model, that is when including the eligibles. This estimate, however,

is very close (equal to 0.505). The predicted average percentage increase in the outcome at the

village level by the village’s share of eligible population is plotted on the yellow line in Figure 1,

with 95 percent confidence intervals. In Figure 1, the difference between the blue line and the

yellow line represents the difference in the estimated treatment effects at the village level with and

without heterogeneity of the peer effects. Perhaps unsurprisingly, it appears that the estimated

treatment effects without heterogeneous externalities are biased downward, and the bias increases

with the share of treated population in the village. It can be as large as one third of the real

value. Intuitively, this is because the large within-treated externalities are attenuated when all of

the spillovers are constrained to take a common value. In Figure 1 we plot the bias in the average

treatment effect regardless of the eligibility status. The treatment effects conditional on eligibility,

that is the ATE and ITE defined in Section 4, show a similar pattern. Being able to differentiate

the magnitude of the spillovers between treated and untreated units is thus crucial for deciding

how many treated units are needed to reach a certain goal. For example, Figure 1 reveals that

if the policy maker aims to increase the aggregate outcome by 5 percent, then our model (blue

line) would suggest assigning to treatment about 70 percent of the population in each village to

treatment. The predictions of the model without heterogeneous externalities (yellow line) would

instead suggest treating about 85 percent of the population in each village, a possible waste of

resources.
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Figure 1: Average outcome at the village level by village’s share of eligible households

Notes. PROGRESA experiment design: εEc , ε
N
c ∼ N(0, σ), σ = 1, tc ∼ bernoulli(p), p = 0.64: the probability of beign treated for a

village in PROGRESA, c = 100 villages with size mc = k = 60. The shares of eligibles is randmoly chosen from a uniform U [0.13, 0.97]
to replicate the support of PROGRESA, every eligible is treated. The blue line is generated using the model with heterogeneous peer
effects, when setting the coefficients equal to our IV estimates in Table 2 (and Table S.6). The yellow line depicts the estimated values
with a model without heterogeneity in the peer effects.
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7 Concluding remarks

In this paper, we develop an empirical framework to identify and estimate the effects of treatment

when the potential outcome of a unit depends on the eligibility status of other units. Although

there is a clear conceptual innovation in the way the model parameters are identified, the proposed

framework is intentionally built on a combination of existing tools that make the implementation of

the methodology easy for the applied practitioner. The empirical relevance of our methodology is

illustrated in the evaluation of the effects of the program PROGRESA on schooling enrollment. We

show that the average indirect effect that is estimated in the existing literature hides information

that is crucial for understanding the mechanisms underlying the policy impacts. We find that

this aggregate statistic is only partially due to spillovers from eligible to ineligible households,

as commonly assumed. Strong interactions within the ineligible population generate a large social

multiplier that is able to generate the indirect treatment effect that is estimated in previous studies.
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Appendix

In order to list our set of assumptions we need to introduce some matrix notation and the reduced

form of the model in matrix form. Let Y E
c = {yic}i∈E, Y N

c = {yic}i∈N , XE
c = {x−ic}i∈E, and

XN
c = {xic}i∈N . Let 1a,b be a matrix of ones of dimension a×b. The adjacency group based matrices

can be expressed as G̃E
c = {gEcij} = 1

ec−1
(1ec,ec − Iec), G̃

EN
c = {gENcij } = 1

nc
1ec,nc , G̃

N
c = {gNcij} =

1
nc−1

(1nc,nc − Inc) , G̃NE
c = {gNEcij } = 1

ec
1nc,ec . Let us define the share matrices as SEc = ec−1

mc−1
Iec ,

SENc = nc

mc−1
Inc , S

N
c = nc−1

mc−1
Inc , S

NE
c = ec

mc−1
Iec .

Using these matrices, model (2)-(3) can be written in matrix form as

Y E
c = φEG̃E

c S
E
c Y

E
c +φENG̃EN

c SENc Y N
c +XE

c β
E + δTc+ G̃E

c S
E
c X

E
c γ

E + G̃EN
c SENc XN

c γ
EN + εEc , (31)

Y N
c = φNG̃N

c S
N
c Y

N
c + φNEG̃NE

c SNEc Y E
c +XN

c β
N + G̃N

c S
N
c X

N
c γ

N + G̃NE
c SNEc XE

c γ
NE + εNc . (32)

Let us define the following vectors

Acθ
E = XE

c β
E +GE

c X
E
c γ

E +GEN
c XN

c γ
EN + εEc ,

Bcθ
N = +XN

c β
N +GN

c X
N
c γ

E +GNE
c XE

c γ
NE + εNc ,

and set G = G̃S. Let us suppress the c index to ease the notation. The reduced form of model

(31)-(32) is thus

Y E = ME(−1)(φENGENJNθNB + θEA+ δT ), (33)

Y N = MN(−1)(φNEGNEJE(θEA+ δT ) + θNB), (34)

where ME = (IE − φEGE − φENφNECE), CE = GENJNGNE, JN = (IN − φNGN)−1, MN =

(IN − φNGN − φENφNECN), CN = GNEJEGEN , JE = (IE − φEGE)−1, IE and IN are identity

matrices of dimensions e and n, respectively.

In what follows we list the set of assumptions we need to prove Proposition 1.
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Assumptions

1. Assignment mechanism: partial population design.

2. The ME and MN matrices are nonsingular.

Assumption 1 is needed in order to have that our instrument vectors, i.e. vectors of nonlinear

functions of the share of eligibles, vary randomly across groups. Regarding Assumption 2, our

model represents an equilibrium equation so M matrices are assumed to be invertible. In practice,

this condition allows us to derive the reduced form of the model. Sufficient conditions for the

nonsingularity of ME and MN are |φE| + |φNEφEN |||JN ||∞ < 1 and |φN | + |φNEφEN |||JE||∞ < 1

where || · ||∞ is the row-sum matrix norm. To see this, let us consider a sufficient condition for

nonsingularity (see, e.g. Liu, 2014) |φE|||GE||∞ + |φNEφEN |||GENJNGNE||∞ < 1. Using the fact

that sociomatrices are row-normalized and applying the Schwarz matrix inequality, we obtain that

|φE|||GE||∞ + |φNEφEN |||GENJNGNE||∞ ≤

|φE|+ |φNEφEN |||GEN ||∞||JN ||∞||GNE||∞ = |φE|+ |φNEφEN |||JN ||∞.

Proof of Proposition 1. From the reduced form of the model (33) and (34), we have

GNEY E = GNE(ME(−1)(φENGENJNθNB + θEA+ δT )),

GNY N = GN (MN(−1)(φNEGNEJE(θEA+ δT ) + θNB)).

if we use a series expansion we can write

GNEY E = GNE

(
∞∑
j=0

(φEGE + φENφNECE)j(φENGEN

∞∑
j=0

(φNGN)jθNB + θEA+ δT )

)
, (35)

GNY N = GN

(
∞∑
j=0

(φNGN + φNEφENCN)j(φNEGNE

∞∑
j=0

(φEGE)j(θEA+ δT ) + θNB)

)
. (36)
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Using the binomial theorem, we can express equations (35)-(36) as

GNEY E = GNE

(
∞∑
j=0

j∑
p=0

((
j

p

)
(φEGE)j−p(φENφNECE)p

)

×

(
φENGEN

∞∑
j=0

(φNGN)jθNB + θEA+ δT

))
, (37)

GNY N = GN

(
∞∑
j=0

j∑
p=0

((
j

p

)
(φNGN)j−p(φNEφENCN)p

)

×

(
φNEGNE

∞∑
j=0

(φEGE)j(θEA+ δT ) + θNB

))
. (38)

E(GNEY E|T ) and E(GNY N |T ) are valid instruments for GNEY E and GNY N since they are

correlated with the endogenous terms but not with the error terms. Given (37)-(38), these two

vectors can be represented as products of Gs and Ss times the treatment vector

E(GNY N |T ) = R∞N Tµ
∗ =

∞∑
r=1

∞∑
s=0

∞∑
q=0

{
(GN)r[GNE(GE)qGEN ]sGNEηrsq

}
T,

E(GNEY E|T ) = R∞NETι
∗ =

∞∑
r=0

∞∑
s=0

∞∑
q=0

{
GNE[(GE)qGEN(GN)rGNE]sιrsq

}
T,

where R∞N and R∞NE are two sets of matrices containing all the combinations of products of powers

of the adjacency matrices, and µ∗ and ι∗ are vectors containing the relative parameters, ηrsq ιrsq,

that in turn are products of δ and the endogenous effects (for each specific combination of r, s and

q ). It is easy to show that in the linear-in-means case these products of powers of the adjacency

matrices are functions of products of the number of eligible agents, ineligible agents, and population

size. We prove this by induction. Let us consider E(GNY N |T ). (The proof remains valid for the

other endogenous terms.) Given our definition of G, we can write

E(GNY N |T ) =
∞∑
r=1

∞∑
s=0

∞∑
q=0

{
(G̃NSN)r[G̃NESNE(G̃ESE)qG̃ENSEN ]sG̃NESNEηrsq

}
T.
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To ease the notation, let us define ηrsq = η. Without loss of generality let us also assume that

c = 1. If p = 0, q = 0 and T = 1e,1, every eligible is treated and we have

G̃NSN G̃NESNETη =
1

n− 1
(1n,n − In)In

n− 1

m− 1
1n,e

1

e
Ie

e

m− 1
Tη

=
1

n− 1
(1n,n − In)In

n− 1

m− 1

1

m− 1
1n,eTη

=
1

n− 1
(1n,n − In)In

n− 1

m− 1

e

m− 1
1n,1η

=
e

(m− 1)2
(1n,1n− 1n,1)η =

(n− 1)e

(m− 1)2
1n,1η,

(G̃NSN )2G̃NESNETη =
1

n− 1
(1n,n − In)In

n− 1

m− 1

(n− 1)e

(m− 1)2
1n,1η

=
(n− 1)2e

(m− 1)3
1n,1η,

(G̃NSN )kG̃NESNETη =
1

n− 1
(1n,n − In)In

n− 1

m− 1

(n− 1)k−1e

(m− 1)k
1n,1η

=
(n− 1)ke

(m− 1)k+1
1n,1η.

If we allow q to be different from zero we then have

(G̃NSN)kG̃NESNE(G̃ESE)lTη =
(n− 1)ke(e− 1)l

(m− 1)k+l+1
1n,1η.

Finally, if we allow s to be greater than one we have

(G̃NSN)k[G̃NESNE(G̃ESE)lG̃ENSEN ]vG̃NESNETη =
(n− 1)kev+1(e− 1)lvnv

(m− 1)[v(l+2)+k+1]
1n,1η.

It follows that the expected value of GNY N conditional on treatment can be approximated by

E(GNY N |T ) u Q∞N µ =
∞∑
v=1

∞∑
s=0

∞∑
q=0

(nc − 1)vec(ec − 1)q(ecnc)
s

(mc − 1)2s+1+v+q
1n,1µvrsq, (39)

where we use a more flexible combination of sums of nonlinear functions of the shares. Applying
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the same procedure, we can compute the same approximations for all the endogenous terms

E(GNEY E|T ) u Q∞NEι =
∞∑
r=0

∞∑
s=0

∞∑
q=0

ec(ec − 1)q(ecnc)
s(nc − 1)r

(mc − 1)2s+1+r+q
1n,1ιrsq, (40)

E(GEY E|T ) u Q∞E ψ =
∞∑
v=1

∞∑
r=0

r>0 ifs>0

∞∑
s=0

(ec − 1)v(ecnc)
s(nc − 1)r

(mc − 1)2s+r+v
1e,1ψvrsq, (41)

E(GENY N |T ) u Q∞ENζ =
∞∑
r=0

∞∑
s=0

∞∑
q=0

ncec(ec − 1)q(ecnc)
s(nc − 1)r

(mc − 1)2s+2+r+q
1e,1ζrsq. (42)

Observe that these terms are approximations of the optimal instruments for the endogenous vari-

ables. It is straightforward to see that if ec, nc, and mc vary across c (groups), E(GNY N |T ),

E(GNEY E), E(GEY E), and E(GENY N) are linearly independent to T and thus E(ZE) and E(ZN),

where ZE = [GEY E, GENY N , A, T ] and ZN = [GNY N , GNEY E, B] have full column rank.

SUPPLEMENTARY MATERIAL

Further theoretical results: In Appendix S1, we provide identification conditions for alternative

specifications of model (2)-(3) and the detailed derivation of the instrumental variables and

the estimands defined respectively in Sections 3.2 and 4.

Additional tables and figures: In Appendix S2, we collect additional results on the application

of our methodology described in Section 5.2.

Matlab and Stata codes: This appendix contains the Matlab and Stata codes to implement our

methodology, perform the simulations described in Section 3.3, and additional simulation

results.
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