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Leader-Following Coordination of Nonlinear Agents under
Time-varying Communication Topologies

F. Delli Priscoli, A. Isidori, L. Marconi, A. Pietrabissa

Abstract— The paper deals with the consensus problem be-
tween nonlinear agents exchanging information through a time-
varying communication network in a “leader-follower” config-
uration. Under a minimum-phase assumption on the follower
dynamics, conditions under which the outputs of the followers
track the output of the leader are presented in presence of not
necessarily connected communication topologies. The theory of
output regulation for nonlinear systems is adopted in order to
design decentralised controllers embedding an internal model
of the leader dynamics securing robust consensus between the
agents.

I. INTRODUCTION

The problem of achieving consensus (among states and/or
outputs) in a (homogeneous or heterogenous) network of
systems has attracted a major attention in the past fifteen
years. This area of research is now pretty well established
and a rather complete coverage of the original literature,
which begins with a series of seminal contributions such as
those of [1], [2], [6], [7], [8], [9] can be found, e.g., in the ex-
cellent dissertation [10]. In what follows, we limit ourselves
to quote more recent contributions, in particular those that
are closer to and/or have substantially influenced our own
approach. The case of a network of linear systems connected
through a time-invariant graph has been fully addressed in the
papers [11], [12], [13], [14], [15], [16]. In particular, [16] for
linear systems and [10] for nonlinear systems, have shown
that if the outputs of the agents of a heterogenous network
achieve consensus on a nontrivial trajectory, the trajectory in
question is necessarily the output of some autonomous (linear
or, respectively, nonlinear) system. This is the equivalent,
in the context of the consensus problem, of the celebrated
internal model principle of control theory. Motivated by this,
[15] and [16], have proposed a two-layer control structure
for achieving consensus in heterogenous network of linear
systems connected through a time-invariant graph. In their
approach, a network of identical local reference generators
is synchronized and the theory of output regulation is used
to guarantee that the outputs of the (non-identical) agents
follow the (synchronized) outputs of each local generators.
This approach has been recently extended in [18] to nonlinear
systems connected through a time-invariant graph. Consensus
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problems for a heterogeneous network of nonlinear systems
have also been successfully addressed in the very recent
paper [19]. The approach of [15] has also been extended
in [17] to the case of a switched topology.

The consensus problem in the case of systems connected
through time-varying communication graph has been suc-
cessfully addressed in the milestone paper [7], who fully
solves the problem in the case of a network of integrator
systems, under very mild connectivity conditions. This ap-
proach, though, has not been extended yet to the case of
higher-dimensional linear agents, exchanging relative (full-
state and/or partial state) information, let alone the case
of higher-dimensional nonlinear agents. The problem is
marginally easier in the so-called “leader-follower” config-
uration, where states (or outputs) of the agents are required
to asymptotically track the state (or the output) of a single
leader. The pattern of communication still consists in ex-
change of relative information, as in the case of standard
consensus problems, with the only difference that the leader
receives no information from the followers. This is reflected
in the fact that the entries of one row of the so-called
adjacency matrix of the graph (the one whose index is the
index which identifies the leader) are all zero. The problem
of consensus in such special communication setup has been
successfully addressed in [20] and in [21] for linear systems
exchanging relative full-state information.

The purpose of this paper is to extend, to the case of
nonlinear systems exchanging relative output information,
part of the results of [20] and [21]. This will be done
appealing, as in [18], to some relevant results concerning the
theory of output regulation of nonlinear systems and taking
advantage of some interesting consequences of the approach
of [21].

Notations. In the paper R and R�0 denote respectively the
set of real and nonnegative real numbers. The symbol N
denotes the set of nonnegative integers. With Rn we indicate
the n-dimensional Euclidean space. For C a closed subset of
Rn, |x|C = miny2C |x � y| denotes the distance of x from
C. For a continuous function V : Rn ! R and a vector
f : Rn ⇥ R�0 ! Rn, the upper directional derivative of V
at (x, t) along f(x, t) is defined as

D+
f(x,t)V (x) = lim sup

h!0+

1

h
[V (x+ hf(x, t))� V (x)]

In some parts of the paper we will use tools developed in
the context of hybrid dynamics systems. In those parts, this
work uses the framework and results of [3] from which also
the notation is taken.



II. PRELIMINARIES

In what follows we consider N nonlinear agents, all
having relative degree r, modeled in normal form as

żk = fk(zk, ⇠k)
⇠̇k1 = ⇠k2

· · ·
⇠̇k,r�1 = ⇠kr
⇠̇kr = qk(zk, ⇠k) + bk(zk, ⇠k)uk

yk = ⇠k1

(1)

in which zk 2 Rnk , ⇠k 2 Rr denotes the vector ⇠k =
col(⇠k1, ⇠k2, . . . , ⇠kr) and uk 2 R. Note that the assumption
that all agents have the same relative degree is not restrictive,
since it is always possible to achieve such property by adding
a suitable number of integrators on the input channel of each
agent.

The outputs yk of all such agents are requested to asymp-
totically track the output y0 of a (single) leader

ẇ = s(w)
y0 = h0(w)

(2)

in which w 2 W , with W a compact set, invariant for the
dynamics of (2).

The (decentralized) control structure consists of a set of k
local feedback controllers of the form

&̇k = 'k(&k, ⌫k)
uk = %k(&k, ⌫k)

(3)

exchanging information through a time-varying communica-
tion graph. Specifically, the input ⌫k of each of such con-
trollers, which represents exchange of relative information
between the leader and the individual agents, is assumed to
be the form

⌫k(t) = ak0(t)(#0(t)� #k(t)) +
NX

j=1
j 6=k

akj(t) (#j(t)� #k(t))

(4)
k = 1, . . . , N , in which #0 and the #j’s, j = 1, . . . , N
represent information taken at the leader and, respectively, at
each agent, while the akj(t) are positive functions modelling
the weight of the communication link between the k-th and
the i-th agents. In the simple case in which r = 1,

#i = yi for all i = 0, 1, . . . , N.

All functions/maps considered in these models are as-
sumed to be smooth. It is also assumed that, for some fixed
pair of real numbers 0 < b  b the so-called “high-frequency
gain” coefficient bk(zk, ⇠k) of the k-th agent satisfies

0 < b  bk(zk, ⇠k)  b . (5)

The basic assumption on each of the agents (1) is that of
being strongly minimum phase, formally specified as follows.
Define

⇠ss(w) =

0

BB@

h0(w)
Lsh0(w)

· · ·
Lr�1
s h0(w)

1

CCA

and observe that, if perfect tracking is achieved,

⇠k(t) = ⇠ss(w(t)) .

Assumption 1. There exists a smooth map ⇡k : W ! Rnk

satisfying

Ls⇡k(w) = fk(⇡k(w), ⇠ss(w)) 8w 2 W ,

and the system

ẇ = s(w)
żk = fk(zk, ⇠ss(w) + u)

(6)

is input-to-state stable (ISS) to the invariant set 1

Ak = {(w, zk) 2 W ⇥ Rnk : zk = ⇡k(w)} .

with a linear gain function and with an exponential decay
rate. In particular, there exists a locally Lipschitz function
Vk : W ⇥ Rnk ! R such that the following holds:

• there exist positive ak and āk such that

akk(w, zk)kAk  Vk(w, zk)  ākk(w, zk)kAk

for all (w, zk, u) 2 W ⇥ Rnk ⇥ R ;
• there exist positive ck and dk such that for all

(w, zk, u) 2 W ⇥ Rnk ⇥ R

D+
col(s(w),f(w,zk,u))

Vk(w, zk)  �ckVk(w, zk) + dk|u|

Remark. The existence of ISS Lyapunov function with the
properties detailed in the previous assumption implies that
for all (w(0), z(0)) 2 W ⇥ Rnk and all bounded u(t), the
resulting trajectory (w(t), z(t)) of (6) satisfies

k(w(t), zk(t))kAk 

max{�ke�cktk(w(0), zk(0))kAk , g
�
kku(·)k1}

(7)

with �k = 2āk/ak and g�k = 2dk

Z 1

0
e�c(t�s)ds/ak, for all

t � 0. /

Remark. The assumption that the gain function of (6)
is linear could be weakened, requiring only linearity in a
neighborhood of the origin, in which case a bound similar
to the bound (7) would hold, so long as it can be guaranteed
that – for some compact set U – the input function u(·)
of (6) satisfies |u(t)|  U for all t � 0, with g�k a
parameter depending on the set U . This would entail weaker
convergence results, as remarked later in the paper. /

1See [22] for an introduction to the concept of input-to-state stability.



III. STANDARD RESULTS ON ASYMPTOTIC TRACKING

A. Reduction to relative degree 1

It is well known that - if r > 1 - the output of system (1)
can be redefined, so as to lower the relative degree down to
1 while keeping the property of being strongly minimum
phase. This is achieved by picking as “new output” the
function

#k = ⇠kr +
r�1X

j=1

cj⇠kj (8)

in which the cj’s are such that the polynomial p(�) = �r�1+
cr�1�r�2 + · · ·+ c2�+ c0 is Hurwitz. A trivial calculation
shows that the dynamics of (1), with ⇠kr replaced by #k, can
be seen as a system in normal form having relative degree
1 between input u and output #k

żk = fk(zk, `(⇠k1, . . . , ⇠k,r�1,#k))
⇠̇k1 = ⇠k2

· · ·
⇠̇k,r�1 = �

Pr�1
j=1 cj⇠kj + #k

#̇k = qk(zk, `(⇠k1, . . . , ⇠k,r�1,#k))

+
Pr�2

j=1 cj⇠k,j+1 + cr�1[�
Pr�1

j=1 cj⇠kj + #k]

+ bk(zk, `(⇠k1, . . . , ⇠k,r�1,#k))uk

in which

`(⇠k1, . . . , ⇠k,r�1,#k) = col(⇠k1, . . . , ⇠k,r�1,�
r�1X

j=1

cj⇠kj+#k) .

Having set

#ss(w) = Lr�1
s h0(w) +

r�1X

j=1

cjL
j�1
s h0(w) ,

it is readily seen, as a standard consequence of the property
that the cascade of two ISS systems is an ISS system, that
the system

ẇ = s(w)
żk = fk(zk, `(⇠k1, . . . , ⇠k,r�1,#ss(w) + u))
⇠̇k1 = ⇠k2

· · ·
⇠̇k,r�1 = �

Pr�1
j=1 cj⇠kj + #ss(w) + u

(9)

is ISS to the invariant set

A0
k = {(w, zk, ⇠i1, . . . , ⇠i,r�1) : w 2 W,

zk = ⇡k(w), ⇠i1 = h0(w), . . . , ⇠i,r�1 = Lr�2
s h0(w)} .

Hence, if (1) is strongly minimum phase (in the sense of As-
sumption 1), so is the system obtained after the replacement
of the original output yk by means of the re-defined output
#k. Note also that, since system (6) is ISS, to the set Ak,
with a linear gain function, then (9) is ISS, to the set A0

k,
with a linear gain function.

In view of this, from now on we restrict our analysis to
the case in which all agents have relative degree 1. In this

respect, it should also be observed that #k(t) is a linear
combination of higher derivatives of yk, i.e.

#k(t) = yr�1
k (t) +

r�1X

j=1

cjy
j�1
k (t) .

Classical results (see [24]) can be used to prove that a
“partial state information” such as #k can be replaced –
with appropriate precautions – to the purpose of establishing
the desired tracking results, by a “rough” approximation
provided by a high-gain observer, driven by the actual output
yk. We will return on this issue at the end of the paper.

B. The standard internal model for each agent

Consider now the case of agents having relative degree 1.
To simplify matters, we also assume that the “high-frequency
gain” coefficient is independent of the state variables. In
other words, we consider the case of agents modeled by
equations of the form

żk = fk(zk, yk)
ẏk = qk(zk, yk) + bkuk

(10)

in which bk is a (possibly unknown) positive number.
Define  k : W ! R via

Lsh0(w) = qk(⇡k(w), h0(w)) + bk k(w) .

Based on the results of [23] it is known that there exist
an integer mk, a Hurwitz matrix F 2 Rmk⇥mk , a vector
G 2 Rmk⇥1 such that the pair F,G is controllable, a function
�k : Rmk ! R and a map �k : W ! Rmk , satisfying

Ls�k(w) = F�k(w) +G�k(�k(w))
 k(w) = �k(�k(w))

8w 2 W .

This makes it possible to design, for the k-th agent, an
“internal model” of the form2

⌘̇k = F⌘k +G�k(⌘k) +Gkvk
uk = �k(⌘k) + vk .

(11)

Note that the function �k(·) is only known to be continuous.
However, in what follows, for convenience it will be assumed
that the function in question is locally Lipschitz.

Define a tracking error at the k-th agent as

ek = yk � y0 .

The composition of (10) and (11), viewed as a system with
input vk and output ek having relative degree 1, can be put
in normal form by changing ⌘k into

⇣k = ⌘k � 1

bk
Gek .

2 It follows from the results of [23], since the number of agents is finite, it
is possible to pick a single pair F,G for all agents, as the notation suggests.



The normal form in question is

żk = fk(zk, h0(w) + ek)

⇣̇k = F ⇣k +G�k(�k(w))�
1

bk
[qk(zk, h0(w) + ek)

�qk(⇡k(w), h0(w))� FGek]

ėk = qk(zk, h0(w) + ek)� qk(⇡k(w), h0(w))

+bk[�k(⇣k +
1

bk
Gek)� �k(�k(w)] + bkvk .

(12)
Having assumed that the agent is strongly minimum-phase,
and bearing in mind the fact that F is a Hurwitz matrix, it
is easy to check (using again the property that the cascade
of two ISS systems is an ISS system) the system

ẇ = s(w)
żk = fk(zk, h0(w) + ek)

⇣̇k = F ⇣k +G�k(�k(w))�
1

bk
[qk(zk, h0(w) + ek)

�qk(⇡k(w), h0(w))� FGek]
(13)

viewed as a system with input ek, is input-to-state stable to
the invariant set

Aa
k = {(w, zk, ⇣k) : w 2 W, zk = ⇡k(wk), ⇣k = �k(wk)} .

If, in addition, it is assumed that the function [qk(zk, h0(w)+
ek)�qk(⇡k(w), h0(w))], which vanishes if k(w, zk)kAk = 0
and ek = 0, satisfies a bound of the form

|qk(zk, h0(w) + ek)� qk(⇡k(w), h0(w))| 
czk(w, zk)kAk + ce|ek|

(14)

for some pair (cz, ce) of positive numbers independent of
!, it can be concluded that (13) is ISS to the invariant set
Aa

k with a linear gain function and and exponential decay
rate. In particular, there exists a locally Lipschitz function
V a
k : W ⇥ Rnk ⇥ Rmk ! R such that the following holds:
• there exist positive aak and āak such that

aakk(w, zk, ⇣k)kAa
k
 V a

k (w, zz, ⇣k)  āakk(w, zz, ⇣k)kAa
k

for all (w, zz, ⇣k) 2 W ⇥ Rnk ⇥ Rmk ;
• there exists positive cak and dak such that for all

(w, zz, ⇣k) 2 W ⇥ Rnk ⇥ Rmk

D+
(13)V

a
k (w, zz, ⇣k)  �cakV

a
k (w, zz, ⇣k) + dak|ek| .

Finally, note the the “coupling term” in the last equation
of (12), namely

qk(zk, h0(w) + ek)� qk(⇡k(w), h0(w))

+bk[�k(⇣k +
1

bk
Gek)� �k(�k(w)]

vanishes if k(w, zk, ⇣k)kAa
k
= 0 and ek = 0. Thus, if it were

possible to pick vk = ��ek, the problem of steering ek to
zero would be trivially solved by taking a large enough �,
as the theory of output regulation predicts (see e.g. [23]).

This mode of control may not be the feasible, though,
because the k-th agent may not have access to the k-th
tracking error. Thus the whole structure of exchange of
information must be taken into account.

C. The overall control structure

As seen in the previous sub-section, the k-th control loop
can be seen as a SISO system having relative degree 1,
modeled by equations of the form

żak = fa
k (z

a
k, ek, w)

ėk = qak(z
a
k, ek, w) + bkvk .

Stacking all such systems together, we obtain a system
with N inputs and N output modeled by equations of the
form

ż = f(z, e, w)
ė = q(z, e, w) +Bv

(15)

in which

z = col(za1 , z
a
2 , . . . , z

a
N )

e = col(e1, e2, . . . , eN )

v = col(v1, v2, . . . , vN )

f(z, e, w) = col(fa
1 (z

a
1 , e1, w), . . . , f

a
N (zaN , eN , w))

q(z, e, w) = col(qa1(z
a
1 , e1, w), . . . , q

a
N (zaN , eN , w))

B = diag(b1, b2, . . . , bN )

Note that, in view of the whole construction, if – for all
k = 1, . . . , N – Assumption 1 and the bound (14) hold and
the function �k(·) is locally Lipschitz, then:

(i) the system

ẇ = s(w)
ż = f(z, e, w) ,

(16)

viewed as a system with input e, is input-to-state stable,
with a linear gain function and exponential decay rate,
to a compact invariant set A⇤. In particular, there exist
�z , cz , gz > 0 such that,

k(w(t), z(t))kA⇤

 max{�ze�cztk(w(0), z(0))kA⇤ , gzke(·)k1}
(17)

for all t � 0;
(ii) there exists a pair (K1,K2) of positive numbers
such that

|q(z, e, w)|  K1|e|+K2k(w, z)kA⇤ (18)

for all w, z, e.
Item (i) above, in particular, implies the existence of

a locally Lipschitz function Vz : W ⇥ Rn ! R, n =PN
k=1(nk +mk), such that the following holds:
• there exist positive a and ā such that

ak(w, z)kA?  Vz(w, z)  āk(w, z)kA?

for all (w, z) 2 W ⇥ Rn ;
• there exists positive c and d such that for all (w, z) 2

W ⇥ Rn

D+
col(s(w),f(z,e,w))

Vz(w, z)  �cVz(w, z) + d|e| .



IV. THE COMMUNICATION PROTOCOL

A. The setup
We assume the reader is familiar with the major re-

sults about consensus of networked systems exchanging
information over communication graphs and, therefore, we
refrain from repeating well established definitions concerning
graphs. As anticipated in section II, the exchange of infor-
mation between leader and followers has the expression (4),
which in the present context (agents having relative degree
1) takes the form

⌫k(t) = ak0(t)(y0(t)� yk(t)) +
NX

j=1
j 6=k

akj(t) (yj(t)� yk(t)) ,

(19)
for k = 1, . . . , N , where akj(t) is the element on the k-
th row and j-th column of the so-called adjacency matrix
A(t) of the underlying communication digraph. All akj(t)’s
are piecewise-continuous and bounded functions of time,
akj(t) � 0 and akk(t) = 0, for all t 2 R. Note that, in this
specific case of a leader-followers configuration, a0j(t) ⌘ 0
for all j = 1, . . . , N .

Recalling the definition of tracking errors, the information
⌫k can be expressed as

⌫k(t) =
NX

j=1
j 6=k

akj(t)ej � [ak0(t) +
NX

j=1
j 6=k

akj(t)]ek ,

and, in compact form, as

⌫(t) = M(t)e(t) (20)

in which
⌫ = col(⌫1, ⌫2, . . . , ⌫N )

and M(t) 2 RN⇥N is a matrix defined as

mkj(t) = akj(t) for k 6= j

mkk(t) = �
NX

i=0
j 6=k

akj(t) .
(21)

Remark. Note that the off-diagonal elements of M(t) are
non-negative, and, for each k = 1, . . . , N , the sum of all
elements of the k-th row is equal to �ak0(t). As a matter
of fact, the negative of M(t) coincides with the lower-right
N ⇥N block of the so-called Laplacian matrix L(t) of the
graph induced by the matrix A(t). /

The purpose of this paper is to show that the target of
asymptotic tracking can be achieved by means of a control
law of the form

v(t) = �⌫(t) ,

in which � > 0 is a gain parameter. This choice, in view of
(20), yields an overall controlled network which, augmented
with the dynamics of the leader, reads as

ẇ = s(w)
ż = f(z, e, w)
ė = q(z, e, w) + �BM(t)e .

(22)

Of course, the possibility of achieving this goal depends
on the connectivity properties of the communication graph,
which are reflected in properties of the matrix M(t) which, in
turn, influences the asymptotic properties of the time-varying
linear system

ė = BM(t)e . (23)

B. A digression on a Theorem of Moreau

In order to analyze the asymptotic properties of system
(23), it is convenient to recall a fundamental result of L.
Moreau, who has determined connectivity assumptions under
which the state x 2 RN+1 of a network of N +1 first-order
agents

ẋk = uk k = 0, . . . , N (24)

controlled by

uk =
NX

j=0
j 6=k

akj(t)(xj � xk) (25)

asymptotically converges to the equilibrium subspace A =
{x 2 RN+1 : x0 = x1 = . . . = xN}.

In the present context of a leader-followers configuration,
u0 = 0 and hence

ẋ0 = 0 .

Thus, without loss of generality, one can assume x0(t) = 0
for all t 2 R and describe the network in equivalent form in
terms of the relative differences ek = xk � x0 as

ėk =
NX

j=1

mkj(t)ej k = 1, . . . , N, (26)

in which the mkj(t) are the coefficients defined in (21).
The connectivity property, determined in [6], under which

the convergence of (24) – (25) to the equilibrium subspace
takes place, can be described – in the present context of a
leader-followers configuration – as follows.

Definition. The digraph associated with the adjacency matrix
A(t) is uniformly connected if there is a threshold value ✓
and an interval length T > 0 such that, for all t 2 R, in the
✓-digraph 3 associated with the adjacency matrix

Z t+T

t
A(s)ds

all nodes may be reached from node 0. /

Theorem 1 of [6] proves that, if the digraph associated
with the adjacency matrix A(t) is uniformly connected, the
equilibrium e = 0 of (26) is exponentially stable. Such result
can be easily used also to determine the asymptotic properties

3The ✓-digraph associated to an adjacency matrix A0(t) is a digraph with
an arc from j to k (k 6= j) if and only if the element (k, j) of A0(t) is
strictly larger than ✓ for all t 2 R.



of system (23). In fact, it suffices to observe that the k-th
row of system (23) reads as

ėk = bk

NX

j=1

mkj(t)ej ,

and hence system (23) can be interpreted as a system of
the form (26) corresponding to an adjacency matrix Ã(t)
in which ãkj(t) = bkakj(t). Since bk is bounded as in
(5), it is readily seen that if the digraph associated with
the adjacency matrix A(t) is uniformly connected so is the
digraph associated with the adjacency matrix Ã(t). Thus, as
an immediate Corollary of Theorem 1 of [6], it is observed
that if the digraph associated with the adjacency matrix A(t)
is uniformly connected, the equilibrium e = 0 of (23) is
exponentially stable.

Theorem 1 of [6] is proven by showing the existence of
a (time-independent) positive definite function of e which
asymptotically decreases along trajectories. The function
in question, in the present context of a leader-followers
configuration and hence of a system described as in (26),
is the function

V (e) = max{e1, . . . , eN , 0}�min{e1, . . . , eN , 0} . (27)

This function is continuous but not continuously differen-
tiable. However, it can be seen that this function can be
bounded as

ae|e|  V (e)  ae|e| 8e 2 RN , (28)

from which it is also seen that V (e) is globally Lipschitz.
The proof of Theorem 1 of [6] shows that, if the digraph

associated with the adjacency matrix A(t) is uniformly
connected, along any trajectory e(t) of (26):

(i) the function V (e(t)) is non-increasing,

(ii) for some class K1 function �(·)

V (e(t0 +NT ))� V (e(t0))  ��(|e(t0)|) (29)

for any t0 (where the number T is the parameter appearing
in the definition of uniform connectivity).

C. Asymptotic Coordination
Motivated by the result of [6], we assume in what follows

that the adjacency matrix A(t) which characterizes the
communication between agents is such that the following
assumption holds.

Assumption 2. There exists a globally Lipschitz function
Ve : RN ! R, bounded as in

ae|e|  Ve(e)  āe|e| 8 e 2 RN

for some positive ae, āe, such that

D+
BM(t)eVe(e)  0 8 (e, t) 2 RN ⇥ R�0 . (30)

Moreover, there exist a time T0, a number a > 0 and a
countable sequence of closed intervals {Ik}k2N ⇢ R�0 of

the form Ik = [tk,1, tk,2], with tk,1  tk,2  tk+1,1 and
tk+1,1 � tk,2  T0, such that

D+
BM(t)eVe(e)  �aVe(e) 8 (e, t) 2 RN ⇥ Ik . (31)

As a matter of fact, using the results of [6], it is possible
to check the following result.

Proposition 1. Suppose that the digraph associated with
the adjacency matrix A(t) is uniformly connected. Then,
Assumption 2 holds.

Proof. As observed above, the digraph associated with the
adjacency matrix BA(t) is uniformly connected. Therefore,
along the trajectories of (23), the function V (e) defined in
(27) is non-increasing and property (29) holds. The fact that
V (e) is non-increasing implies (30). From the inequality
(29), it is easy to deduce the existence of a closed interval
It0 ⇢ [t0, t0 +NT ] of positive measure such that

D+
BM(t)eV (e)  � 1

2NT
�(|e(t0)|) 8t 2 It0 .

This inequality, in turn, using the estimate (28) for V (e) and
the property that V (e(t)) is non-increasing, can be further
elaborated as

D+
BM(t)eV (e)  � 1

2NT
�(

V (e(t0))

ae
)  � 1

2NT
�(

V (e(t))

ae
) .

Finally, is it observed that the estimates provided in [6]
show that the function �(·) on the left-hand-side of (29)
can be bounded as a0|e|  �(|e|) for some a0 > 0. As
a consequence, it is seen that

D+
BM(t)eV (e)  � a0

2NTae
V (e) 8 (e, t) 2 RN ⇥ It0 ,

from which it is seen that also property (31) holds.

It is seen from this Proposition that Assumption 2 is actu-
ally weaker than the assumption of uniform connectivity. As
such, Assumption 2 may not be strong enough to guarantee
exponential stability of (23), for the simple reason that no
lower bound is prescribed on the measure of the intervals Ik.
In view of this, it is convenient to strengthen this Assumption
by requiring, for instance, that the Ik’s (which, we recall, are
intervals of the form [tk,1, tk,2]) satisfy, for some n0 2 N,
n0 � 1, and some ⌧ 2 R>0,

i�1X

k=j

(tk,2 � tk,1) � (i� j � n0)⌧ .

This inequality essentially expresses the property that, in
the average, the intervals Ik have a guaranteed length, so
as to secure – in view of (31) – that the solutions of (23)
asymptotically decay to zero. The time ⌧ , in particular, can
be seen as an average length of the intervals of the intervals
Ik, while n0 represents the number of interval Ik of zero
duration that can occur in a row. As a whole, the condition
can be regarded as a “average dwell-time” condition (see
[4]). If this condition holds for some ⌧ and n0, then the
solutions of (23) exponentially decay to zero. Moreover, as
it will be shown in a moment, if ⌧ is sufficiently large, then



also the solutions of (22) are such that e(t) exponentially
decays to zero, provided that the value of � is large enough.

Proposition Consider system (22) under Assumption 1
and 2. There exist �? > 0 and ⌧? > 0 such that for all � � �?

and ⌧ � ⌧? the set A?⇥{0} is globally asymptotically stable
for system (22).

Proof. With Vz(w, z) and Ve(e) the Lyapunov functions
introduced respectively at the end of Section III-C and in
Assumption 2, let Vcl : W ⇥Rn ! R be the candidate Lya-
punov function for the closed-loop defined as Vcl(w, z, e) =
Vz(w, z)+�Ve(e) with � > 0 yet to be chosen. By taking the
upper directional derivative of Vcl(·) along (22), one obtains

D+
col(ẇ,ż,ė)

Vcl(w, z, e) = D+
col(ẇ,ż)

Vz(w, z) + �D+
ė Ve(e)

We develop separately the two terms. Regarding the deriva-
tive of Vz(·) we have

D+
col(ẇ,ż)

Vz(w, z) = �cVz(w, z) + d|e|

 �cVz(w, z) +
d

ae
Ve(e) .

Regarding Ve(·), we have

D+
ė Ve(e) =

lim sup
h!0+

1

h
[Ve(e+ hė)� Ve(e)] 

lim sup
h!0+

1

h
[Ve(e+ hė)� Ve(e+ h�BM(t)e)

+ lim sup
h!0+

1

h
[Ve(e+ h�BM(t)e)� Ve(e)] 

�D+
BM(t)eVe(e) + lim sup

h!0+

1

h
L|hq(·)| 

�D+
BM(t)eVe(e) + LK1|e|+ LK2k(w, z)kA? 

�D+
BM(t)eVe(e) + L

K1

ae
Ve(e, t) + L

K2

az
Vz(w, z)

having denoted by L the Lipschitz constant of Ve(·), namely,
by bearing in mind (30) and (31),

D+
ė Ve(e)  �(�a� L

K1

ae
)Ve(e) + L

K2

az
Vz(w, z)

for all t 2 {Ik} and for all (w, z, e) 2 W ⇥ Rn ⇥ R, and

D+
ė Ve(e)  L

K1

ae
Ve(e) + L

K2

az
Vz(w, z)

for all t /2 {Ik} and and for all (w, z, e) 2 W ⇥ Rn ⇥ R.
Thus, choosing � so that

c� �L
K2

az
� c

2

and �? so that

��?a� �
LK1

ae
� d

ae
� c

2
�

we have that, for all t 2 {Ik}, for all (w, z, e) 2 W⇥Rn⇥R,
and for all � � �?,

D+
col(ẇ,ż,ė)

Vcl(w, z, e) 

�cVz(w, z) +
d

ae
Ve(e)� �(�a� LK1

ae
)Ve(e)+

�
LK2

az
Vz(w, z) 

�(c� �
LK2

az
)Vz(w, z)� (��a� �

LK1

ae
� d

ae
)Ve(e) 

�(c� �
LK2

az
)Vz(w, z)�

(��a� �LK1/ae � d/ae)

�
�Ve(e) 

� c

2
(Vz(w, z) + �Ve(e)) =

� c

2
Vcl(w, z, e) :=

�↵cVcl(w, z, e)

Similarly, for all t /2 {Ik}, for all (w, z, e) 2 W ⇥ Rn ⇥ R,
and for all � � 0

D+
col(ẇ,ż,ė)

Vcl(w, z, e) 

�cVz(w, z) +
d

ae
Ve(e) + �L

K1

ae
Ve(e) + �L

K2

az
Vz(w, z) 

(�L
K2

az
� c)Vz(w, z) + (

d

ae
+ �L

K1

ae
)Ve(e) 

↵dVcl(w, z, e)

with ↵d := max{(�LK2/az � c) , (d/ae + �LK1/ae)/�}.
In the time intervals in which the topology is not connected,
namely t 2 [tk,2, tk+1,1], we have that the growth of the
Lyapunov function can be estimated as

Vcl(tk+1,1)  e↵d(tk+1,1�tk,2)Vcl(tk,2)  e↵dT0Vcl(tk,2)

We will continue the analysis by considering the closed-loop
system as an hybrid system flowing during the time intervals
in which the topology is connected, and ”instantaneously”
jumping in the intervals in which the topology is discon-
nected. During flows the closed-loop Lyapunov function
satisfies D+

col(ẇ,ż,ė)
Vcl(·)  �↵cVcl(·), while, during jumps,

the jump of the Lyapunov function satisfies Vcl(·)+ 
e↵dT0Vcl(·). The fact that the intervals Ik satisfy an average
dwell-time condition expressed above allows one to say (see
[5]) that flow and jump times of the hybrid system can
be thought of as governed by a clock variable �c flowing
according to �̇c 2 [0, 1/⌧ ] when �c 2 [0, n0], and jumping
according to �+c = �c�1 when �c 2 [1, n0]. We thus endow
the closed-loop system with the clock variable and study the
resulting hybrid system whose Lyapunov function flows and
jumps according to the following rules

�̇c 2 [0, 1/⌧ ]
D+

col(ẇ,ż,ė)
Vcl  �↵cVcl

)
(�c, Vcl) 2 [0, n0]⇥ R

�+c = �c � 1
V +
cl  e↵dT0Vcl

�
(�c, Vcl) 2 [1, n0]⇥ R

For this hybrid system we consider the Lyapunov function

Vh(�c, w, z, e) = eN�cVcl(w, z, e)



with N 2 (↵dT0,↵c⌧), by taking

⌧? =
↵dT0

↵c
.

During flows we have that

D+
col(�̇c,V̇cl)

Vh = N �̇ceN�cVcl + eN�cD+
V̇cl

Vcl

 N

⌧
eN�cVcl � ↵ce

N�cVcl

 N

⌧
Vh � ↵cVh

 �↵0
cVh

where ↵0
c = ↵c�N/⌧ > 0. On the other hand, during jumps,

V +
h = eN�+

c V +
cl

 eN(�c�1)e↵dT0Vcl

= e�(N�↵dT0)eN�cVcl

= ✏Vh

with ✏ := e�(N�↵dT0) < 1. This Lyapunov function is thus
decreasing both during flows and during jumps and it is
positive definite with respect to the set [0, n0] ⇥ A? ⇥ {0}.
From this the result follows.

V. CONCLUSIONS

In this paper, we have extended to the case of nonlinear
agents, exchanging only output information (as opposite to
the case in which agents exchange full state information), the
coordination result proven in Theorem 2 of [21] for a net-
work of linear agents exchanging full state information, in the
presence of time-varying communications between agents.
Our result reposes on a connectivity property expressing the
guaranteed decay, on fixed time intervals, of a candidate
Lyapunov function associated to an auxiliary network of
integrator systems. In this context, our result encompasses
not only the connectivity properties discussed in [21], but
can also be used to analyze leader-followers coordination
problems in the presence of time-varying communication
protocol that satisfy the (weaker) connectivity properties
considered in [6].
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