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Abstract

We study the bootstrapped Newtonian potential generated by a localised source in one and two
spatial dimensions, and show that both cases naturally lead to finite spatial extensions of the
outer vacuum. We speculate that this implies the necessary existence of a cosmological (particle)
horizon associated with compact sources. In view of the possible dimensional reduction occurring
in ultra-high energy processes – like scatterings at Planckian energies, the gravitational collapse
of compact objects or the end-point of black hole evaporation – one can consider such lower-
dimensional “bubbles” immersed in our Universe as describing (typically Planckian size) baby
universes relevant to those dynamics.

PACS - 04.70.Dy, 04.70.-s, 04.60.-m

1 Introduction and motivation

The prospect of studying gravitation in lower dimensions, namely (1 + 1) and (1 + 2)-dimensional
spacetimes, began as a pedagogical curiosity [1–10]. It was later noted that such solutions presented
new avenues to quantizing gravity, particularly in the (1 + 1)-dimensional case. More recently, high
energy dimensional reduction has been found to be a natural property of disparate approaches

∗E-mail: casadio@bo.infn.it
†E-mail: octavian.micu@spacescience.ro
‡E-mail: jmureika@lmu.edu
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to quantum gravity, including loop quantum gravity [11], causal dynamical triangulations [12],
asymptotically safe gravity [13, 14], noncommutative geometry [15], multi-fractal geometry [16],
and modified dispersion relations [17].

Mainly motivated by the need to remove the singularities predicted by General Relativity [18,19]
and inspired by corpuscular models of black holes and cosmology [20–22], bootstrapped Newtonian
gravity is another attempt at describing quantum features of gravity in the strong field regime where
the graviton self-interactions cannot be discarded [23–31]. In particular, this approach starts from
Deser’s conjecture [32] that it should be possible to obtain the dynamics of General Relativity from
the Fierz-Pauli action in Minkowski spacetime by adding gravitational self-coupling terms consistent
with diffeomorphism invariance. On closer inspection, this process involves fixing boundary terms
and different metric theories can consequently be reconstructed [33]. Moreover, in order to account
for large matter sources from the onset, the bootstrapped Newtonian approach starts directly from
a Fierz-Pauli-type action for the static Newtonian potential, to which several terms are added, with
coupling constants that vary from their Einstein-Hilbert values in order to effectively accommodate
for the (unknown) underlying quantum dynamics. The direct outcome of this programme is a non-
linear equation that determines the gravitational potential acting on test particles at rest, and which
is generated by a static large source, including pressure effects and the gravitational self-interaction
to next-to-leading order in Newton’s constant.

In this work, we will study solutions of the bootstrapped equation for the gravitational potential
generated by a localised source in (1+1)- and (1+2)-dimensional spacetimes. The common feature
that emerges is that the potential in the vacuum outside the compact source has finite support and
the outer space is therefore limited in size. This can be interpreted as the necessary presence of a
particle, or cosmological, horizon associated with the compact source. This result sets the (1 + 1)
and (1 + 2)-dimensional cases apart from the higher dimensional ones, in which one can instead
find solutions in the vacuum outside the compact source that asymptote to zero at infinite distance.
We should also recall that General Relativity in one and two spatial dimensions is rather different
from the standard (1 + 3)-dimensional case. For instance, there is no Newtonian limit in (1 + 2)-
dimensional spacetime, whereas this limit exists by construction in the bootstrapped Newtonian
case. The analysis in the present work is therefore also aimed at further clarifying the difference
between General Relativity and our non-linear version of Newtonian gravity.

In line with the above-mentioned idea of dimensional reduction, we conjecture that these lower-
dimensional cases could describe finite size configurations accessible by high-energy processes in four
spacetime dimensions. What we have in mind here are processes that take place near the Planck
scale, such as particle scatterings at these energies, the gravitational collapse of compact objects
forming black holes, or the end stage of black hole evaporation. We expand on these ideas in the
Conclusions.

Moreover, we will see that the size of such “baby universes” turns out to depend on the ADM
mass [34] and the value of the effective gravitational coupling. Although the exact value of the
lower (and higher) dimensional gravitational constant is unknown, several generic forms for the
(1 + d)-dimensional one have been proposed. One such expression derived from entropic principles
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is given by [35] 1

G(d) = 2π1− d
2 Γ

(
d

2

)
`d−1
p

~
= 2π1− d

2 Γ

(
d

2

)
`d−2
p

mp
, (1.1)

in which the presence of ~ is reminiscent of its quantum nature. Using these expressions, we
estimate that the typical order of magnitude for the size of the lower-dimensional “baby universes”
is Planckian for similar ADM mass.

The paper is organised as follows: in Section 2 we review the equation for the bootstrapped
Newtonian potential in d ≥ 1 spatial dimensions; the cases for d = 1 and d = 2 are then analysed
in detail in Sections 3 and 4, respectively (the outer vacuum in d ≥ 3 is briefly discussed in
Appendix A); finally, we draw our conclusions in Section 5.

2 Bootstrapped gravitational potential in d spatial dimensions

We start by briefly reviewing the bootstrapped gravitational potential of Refs. [26, 27], which we
want here to extend to the case of d spatial dimensions. This potential V = V (r) is supposed to
describe the gravitational pull on test particles generated by a spherically symmetric and static
matter density ρ = ρ(r) and is obtained from the Newtonian Lagrangian

LN[V ] = Ω(d)

∫ ∞
0

rd−1 dr

(
(V ′)2

2 Ω(d)G(d)
− ρ V

)
, (2.1)

where V ′ ≡ dV/dr, Ω(d) is the surface area of a d-dimensional unit sphere, given by

Ω(d) =
2πd/2

Γ
(
d
2

) , (2.2)

and G(d) is Newton’s constant in d spatial dimensions. The corresponding equation of motion is
the Poisson equation for the d-dimensional Newtonian potential V = VN, i.e.

r1−d
(
rd−1 V ′

)′
≡ 4(d)V = Ω(d)G(d) ρ . (2.3)

We can then include the effects of gravitational self-interaction by noting that the Hamiltonian
HN[V ] = −LN[V ], computed on-shell by means of Eq. (2.3), yields the Newtonian potential energy

UN(r) =
Ω(d)

2

∫ r

0
r̄d−1 dr̄ ρ(r̄)V (r̄)

= − 1

2G(d)

∫ r

0
r̄d−1 dr̄

[
V ′(r̄)

]2
, (2.4)

where the boundary terms can be discarded through integration by parts (see Appendix A in
Ref. [26]). One can view UN as representing the interaction of the matter distribution enclosed in

1We will set c = 1 throughout the paper and usually denote G(3) = GN = `p/mp, with `p and mp the four-
dimensional Planck length and mass, respectively. Therefore, the Planck constant ~ = `p mp has dimensions of
length times mass and G(d) of inverse mass times lengthd−2.
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a sphere of radius r with the gravitational field. Following Ref. [24] (see also Ref. [36]), we then
define a self-gravitating source proportional to the gravitational energy UN per unit volume, that is

JV '
dUN

dV
= −2 [V ′(r)]2

Ω(d)G(d)
. (2.5)

In Refs. [23,25,26] we also included the source term

Jρ = −2V 2 , (2.6)

which comes from the linearisation of the volume measure around the vacuum [23] and couples
with the matter source according to General Relativity. The corresponding interaction term can
be viewed as a gravitational one-loop correction to the matter density. In Ref. [25], we found that
the pressure p becomes very large for sources with large compactness R ∼ GNM , and we must
therefore add a corresponding potential energy Up such that

p = −dUp
dV

. (2.7)

Since the latter contribution just adds to ρ, it can be easily included by simply shifting ρ→ ρ+qp p.
Following this we obtain

L[V ] = −Ω(d)

∫ ∞
0

rd−1 dr

[
(1− 4 qV V ) (V ′)2

2 Ω(d)G(d)
+ V (1− 2 qρ V ) (ρ+ qp p)

]
, (2.8)

where the non-negative coefficients qV , qρ and qp play the role of coupling constants for the graviton
current JV , the matter current Jρ and the pressure p. The Euler-Lagrange equation for V is then
given by

4(d)V = Ω(d)G(d)
1− 4 qρ V

1− 4 qV V
(ρ+ qp p) +

2 qV (V ′)2

1− 4 qV V
. (2.9)

For simplicity, we set qV = qρ = qp from here on. 2 Finally, the conservation equation that
determines the pressure reads

p′ = −V ′ (ρ+ p) . (2.10)

In all spatial dimensions, the mass is simply modelled as a spherically-uniform density distribu-
tion of radius R,

ρ = ρ0 ≡
M0

V(d)(R)
Θ(R− r) , (2.11)

where Θ is the Heaviside step function, and

V(d)(R) =
π
d
2 Rd

Γ (1 + d/2)
(2.12)

2As we will see in the following Sections, the main results in the present work consider only the potential in the
region outside localised sources, where the values of qρ and qp do not matter.
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is the volume of a d-dimensional sphere. The proper mass is given by

M0 = Ω(d)

∫ R

0
rd−1 dr ρ(r) . (2.13)

Regularity conditions in the centre are required to be met by the solutions, specifically

V ′in(0) = 0 (2.14)

and they must also satisfy matching conditions with the exterior solution at the surface,

Vin(R) = Vout(R) ≡ VR (2.15)

V ′in(R) = V ′out(R) ≡ V ′R , (2.16)

where we defined Vin = V (0 ≤ r ≤ R) and Vout = V (R ≤ r). These conditions allow us to solve for
the pressure in Eq. (2.10) in terms of the potential, which yields the general differential equation

4(d)V =
Ω(d)G(d)M0

V(d)(R)
eVR−V +

2 qV (V ′)2

1− 4 qV V
. (2.17)

In the vacuum (ρ = p = 0), Eq. (2.10) is trivially satisfied and Eq. (2.9) reads(
rd−1 V ′

)′
rd−1

=
2 qV (V ′)2

1− 4 qV V
. (2.18)

For qV > 0, we can rescale Ṽ = qV V so that Eq. (2.18) can be written(
rd−1 Ṽ ′

)′
rd−1

=
2
(
Ṽ ′
)2

1− 4 Ṽ
, (2.19)

where it becomes apparent that Ṽ does not depend on qV but only on d.
In the following sections, we will consider in detail the cases d = 1 and d = 2, for which we also

briefly reference the geometric pictures for comparison.

3 One-dimensional case

An early study of (1+1)-dimensional Schwarzschild-like black holes found that a proper Newtonian
limit could be obtained, giving the expected equations of motion [8]. From the action

S = −
∫

d2x
√
|g|ψ

(
R− Λ

8πG(1)
− Lm

)
, (3.1)

the Euler-Lagrange equations yield a metric that is independent of the dilaton field ψ. The matter
Lagrangian is directly related to the stress-energy tensor via its trace Lm = Tαα = T . Here, G(1)

is the one-dimensional gravitational constant 3 and we included a cosmological constant Λ for a
reason that will become apparent shortly.

3Note that G(1) has dimensions of the inverse of mass times length, therefore G(1) ~ is dimensionless.
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For a point-like source of mass M located at x = x0,

ρ = M δ(x− x0) , (3.2)

the metric reads [8]

ds2 =
(
1− 2G(1)M r + r2/`2

)
dt2 − dx2

1− 2G(1)M r + r2/`2
, (3.3)

where r ≡ |x − x0| and we assumed ` =
√

2/Λ > 0. Note that this metric depends only on the
relative coordinate r with respect to the location of the source, and becomes linear in r in the limit
` → ∞ (equivalently, Λ → 0). In this limit, one also finds that the one-dimensional version of the
Newtonian potential is linear,

VN = 1− gtt/2 = G(1)M r . (3.4)

The equations of motion of a test particle can be derived from the geodesic equation, and reveal
the expected (1 + 1)-dimensional kinematic equations.

Note that for sufficiently large `, the metric (3.3) admits both a black hole horizon with size

RH = `
(
`G(1)M −

√
`2G2

(1)M
2 − 1

)
(3.5)

and a cosmological horizon with size

RΛ = `
(
`G(1)M +

√
`2G2

(1)M
2 − 1

)
' 2 `2G(1)M . (3.6)

In the limit `� (G(1)M)−1, one obtains

RH '
1

2G(1)M
, (3.7)

which scales as the inverse of the mass, and

RΛ ' 2 `2G(1)M =
`2

RH
. (3.8)

Comparing this to the general expression for (1 + d)-dimensional black holes,

RH =
(
2G(d)M

) 1
d−2 , (3.9)

it can be seen that the result (3.7) in the limit `→∞ can be recovered with the naive substitution
d = 1. This is also true for the generalized Newtonian potential

VN = −
G(d)M

rd−2
, (3.10)

except that the overall sign must be reversed for d = 1. In this sense, the (1 + 1)-dimensional
spacetime follows the same general pattern as do the quantities in higher dimensions.
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3.1 Bootstrapped vacuum

Equation (2.19) in one spatial dimension (d = 1) yields the solution

V =
Ṽ

4 qV
=

1

4 qV

[
1−

(
C̃1 − C̃2 x

)2/3
]
, (3.11)

which does not contain an exact linear term. In order to compare this potential with the classical
geometry described above, we need to relate the two integration constants C̃1 and C̃2 to M and `
(or, equivalently, RH and RΛ). This can be done by requiring that the limit qV → 0 reproduces the
Newtonian potential obtained from the geometry.

We first notice that the limit qV → 0 yields a finite potential only provided C̃2 = qV /L and
C̃1 = 1 + qV x0/L, where L and x0 are constants to be determined. In this case, we have

V =
1

4 qV

[
1−

(
1− qV

x− x0

L

)2/3
]
, (3.12)

and we can identify x0 with the location of the point-like source (3.2), so that

V ′(x0) =
1

6L
= G(1)M = V ′N(r = 0) , (3.13)

where we used Eq. (3.4) for the expected Newtonian behaviour in the limit qV → 0. The above
relation uniquely determines

L−1 = 6G(1)M , (3.14)

so that we finally obtain

V =
1

4 qV

[
1−

(
1− 6 qV G(1)M r

)2/3]
=

1

4 qV

[
1−

(
1− 6 qV X

r

R

)2/3
]
, (3.15)

where the dimensionless quantity playing the role of the “outer” compactness in this case is given
by X = G(1)M R, and r ≡ x− x0 > 0. 4

Since V (0) = 0, the black hole horizon can be obtained from the Newtonian condition 2V (rH) =
1, or

rH =
1− (1− 2 qV )3/2

6 qV G(1)M
, (3.16)

so that, for 0 < qV � 1, we have

rH ' RH − qV RH/2 , (3.17)

and the expected geometric result (3.7) is precisely recovered for qV → 0. Unlike in d = 3, however,
the black hole horizon exists only for qV < 1/2.

The compactness value for which the size of the object equals the horizon size is

XH =
1− (1− 2 qV )3/2

6 qV
, (3.18)
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0.0 0.1 0.2 0.3 0.4 0.5
qV

0.35

0.40

0.45

0.50
XH

Figure 1: Compactness XH as a function of qV .

and, as expected only depends on the coupling qV . A plot showing this dependence is presented in
Fig. 1.

In fact, the solution (3.12) exists only for

0 < r ≤ L/qV . (3.19)

By assuming the upper limit is the cosmological horizon,

RΛ =
L

qV
=

1

6 qV G(1)M
, (3.20)

we can identify a cosmological constant as

Λ = 24 qV G
2
(1)M

2 . (3.21)

The radius of this cosmological horizon diverges in the limit qV → 0 for finite M , which is also in
agreement with the result in Eq. (3.17).

A curious feature is that the black hole horizon and the cosmological horizon scale in the same
way with the mass M , and their ratio

RH

RΛ
= 1− (1− 2 qV )3/2 (3.22)

only depends on the coupling qV . This behaviour differs significantly from the classical case de-
scribed by Eqs. (3.5) and (3.6), in that the cosmological constant Λ and the mass M cannot be
varied independently. That is, whenever there is a localised source M , there is also a cosmological
horizon determined by the gravitational self-coupling qV . Upon requiring RΛ > rH, we again obtain
qV < 1/2, which explains why there cannot be a black hole horizon for qV > 1/2. A few examples
are plotted in Fig. 2. As expected from the above expression, the plots show that the black hole
horizon coincides with the cosmological horizon for qV = 1/2 (solid line).

4The mirror region x− x0 < 0 can be obtained by replacing L→ −L in Eq. (3.12).
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qV=1/2

qV=1/4

qV=1/8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.5

1.0

1.5

2.0

G(1)M r

V

Figure 2: Potential V in d = 1. The intersections with the thin horizontal line mark the locations
of the black hole horizons.

Regarding the size RΛ of these “universes”, we first note that the general expression (1.1) for the
gravitational coupling for d = 1 reduces to

G(1) =
2π

~
, (3.23)

indicating that G(1) is truly a quantum constant and thus (1 + 1)-dimensional gravity is similarly
quantum. Vis-à-vis the cosmological horizon (3.20), one can estimate

RΛ =
~

12π qV M
=

`p
12π qV

mp

M
. (3.24)

Since we must have qV < 1/2, this is about an order of magnitude short of `p for M ∼ mp, and
suggests that there can be “baby Planck universes” that nucleate around such objects.

In the above analysis of the vacuum generated by matter, we made use of a point-like source in
order to fix arbitrary coefficients and compare with the geometric description. However, a regular
source is part of the bootstrapped picture and we are therefore going to consider that case next.
The purpose of the following analysis is merely to show the existence of regular interior solutions
without the pretence of being exhaustive. For that reason we will simply consider uniform sources
whose energy density is given by Eq. (2.11) with d = 1. Any more realistic case would indeed
require numerical methods beyond the scope of this work.

3.2 Bootstrapped interior

For d = 1, Eq. (2.17) reads

V ′′ =
G(1)M0

R
eVR−V +

2 qV (V ′)2

1− 4 qV V
. (3.25)

In the small compactness regime where X . XH, we find the approximate solution

V ' V0 +
G(1)M0 e

VR−V0

2R
r2 , (3.26)
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and after requiring continuity between inner and outer solutions at r = R, we obtain

2VR ' 2V0 +G(1)M0Re
VR−V0

(3.27)
V ′R ' G(1)M0 e

VR−V0 ,

which gives

V0 '
1

4 qV

[
1− (1− 6 qV X)2/3

]
+ ln

[
M0

M
(1− 6 qV X)1/3

]
. (3.28)

The mass constraint yields

M0 '
M e

− X

2(1−6 qV X)1/3

(1− 6 qV X)1/3
, (3.29)

and so the approximate potential is found to be

V ' 1

4qV

[
1− (1− 6 qV X)2/3

]
− X

2 (1− 6 qV X)1/3

(
1− r2

R2

)
. (3.30)

Since the Newtonian potential in (1 + 1)-dimensions grows linearly with distance, one expects
non-compact objects (stars) have a surface potential that satisfies 2VR > 1. For a given M , the
above expression can be solved for R to give

R ' 1− (1− 4 qV VR)3/2

6 qV G(1)M
. (3.31)

This imposes a constraint on VR that depends on qV , namely

VR ≤
1

4 qV
. (3.32)

Comparing this expression to Eq. (3.16), we find

R

rH
' 1− (1− 4 qV VR)3/2

1− (1− 2 qV )3/2
. (3.33)

In the limit 2VR = 1 (i.e. a black hole), the ratio is unity. It can be seen from the above expression,
however, that R > rH for any VR > 1/2. This is displayed in Figure 3.

4 Two-dimensional case

General Relativity in (1 + 2)-dimensions is quite non-intuitive. The best known solution is the
BTZ metric for a rotating black hole with angular momentum J in a spacetime with cosmological
constant Λ [6],

ds2 =

(
−G(2)M + Λ r2 +

J2

4 r2

)1/2

dt2 − dr2(
−G(2)M + Λ r2 + J2

4 r2

)1/2

−r2

(
dφ+

J2

2 r2
dt

)2

. (4.1)
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VR=0.7

VR=1

VR=1.5

0.0 0.1 0.2 0.3 0.4

1.5

2.0

2.5

3.0

qV

R
/r
H

Figure 3: Ratio (3.33) of the size R of a star with mass M with surface potential VR to the horizon
size rH of an equal-mass black hole. The curves are for VR = 0.7 (solid), 1.0 (dashed), and 1.5
(dotted). The right-hand cutoff is for the value of qV determined by (3.32).

In this case, the gravitational constant G(2) has dimensions of inverse mass. When J = 0 (i.e. static
black holes), it is clear that horizons exist only for negative Λ,

R(2) =

√
−
G(2)M

Λ
. (4.2)

That is, (1 + 2)-dimensional black holes can only exist in AdS spacetimes. Furthermore, there is
no Newtonian limit in this case and gravity is purely topological. Note also that the form of the
horizon does not follow the pattern established in Eq. (3.9) when d = 2 since the expression is not
defined at this point.

4.1 Bootstrapped vacuum

In two spatial dimensions, the solution to Eq. (2.19) is

V =
Ṽ

4 qV
=

1

4 qV

{
1− [C1 − C2 ln(r/`)]2/3

}
, (4.3)

where ` is an arbitrary length scale. The expected Newtonian behaviour is given by

VN = G(2)M ln(r/`) . (4.4)

If we set C1 = 1 and

C2 = 6 qV G(2)M , (4.5)

we thus obtain

V =
1

4 qV

{
1−

[
1− 6 qV G(2)M ln(r/`)

]2/3}
. (4.6)
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In the limit ln(r/`)� 1, i.e. for r ' `, this can be written as

V ' G(2)M ln(r/`) + qV G
2
(2)M

2 [ln(r/`)]2 . (4.7)

We can find the location of the black hole horizon by imposing the Newtonian condition
2V (rH) = −1, which yields

rH ' ` exp

[
1− (1 + 2 qV )3/2

6 qV G(2)M

]
. (4.8)

Note that for positive values of the self-interaction coupling qV and mass M , the solution (4.6)
only exists for

0 <
r

`
≤ exp

(
1

6 qV G(2)M

)
, (4.9)

which means that a cosmological horizon can be assumed to be present at

RΛ = ` exp

(
1

6 qV G(2)M

)
. (4.10)

In analogy with the (1 + 1)-dimensional case, and to emphasise the difference with the classical
solutions, we note that the ratio between the black hole and cosmological horizons is given by

rH

RΛ
' exp

[
−(1 + 2 qV )3/2

6 qV G(2)M

]
, (4.11)

which is now completely determined by the mass M and the coupling qV . A few examples for the
potential are plotted in Fig. 4.

To estimate the size of the horizons, we again appeal to the expression (1.1), which now gives

G(2) =
2 `p
~
∼ 1

mp
. (4.12)

The cosmological horizon will then scale as

RΛ ∼ ` exp

(
mp

6 qV M

)
. (4.13)

Unlike in d = 1, this result depends also on the arbitrary scale `. Thus, the value of ` can be
constrained by placing an upper limit on the possible size of such horizons. If these are taken to be
roughly Planck scale as well, then ` ∼ `p is a reasonable assumption.

4.2 Bootstrapped interior

Repeating the analysis of Section 3, we are now going to show that mathematically regular solutions
for the interior of the source can also be found for d = 1. The form of the interior solution depends
on the compactness of the source, which is now given by

X = G(2)M , (4.14)
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so the derivation must be handled in different ways depending on the relative size of this quantity.
For small compactness, X � 1, the differential equation (2.17) can be solved as a series and we find
to order r2

V (r) ' V0 +
G(2)M0 e

VR−V0

2R2
r2 , (4.15)

The form of the above potential is identical to the standard (1+3)-dimensional case, up to the power
of R in the denominator of the second order term. That is, the dependence on r is consistently r2.

The matching conditions (2.15) and (2.16) imply

2 (VR − V0) ' G(2)M0 e
VR−V0

(4.16)
RV ′R ' G(2)M0 e

VR−V0 .

The equation that ensures continuity of the first derivatives of the potentials across the boundaries
in the two cases can be used to first obtain

V0 '
1

4 qV

{
1−

[
1− 6 qV X ln

(
R

`

)]2/3
}

+ ln

{
M0

M

[
1− 6 qV X ln

(
R

`

)]1/3
}

. (4.17)

Again using the equations which ensure the continuity of the potentials, one can write M0 in terms
of M as

M0 '
M e

− X

2[1−6 qV X ln(R/`)]1/3

[1− 6 qV X ln (R/`)]1/3
. (4.18)

This allows one to find the approximate inner potential

V (r) ' 1

4 qV

{
1−

[
1− 6 qV X ln

(
R

`

)]2/3
}
− X

2 [1− 6 qV X ln (R/`)]1/3

(
1− r2

R2

)
. (4.19)

As with the (1+1)-dimensional interior solution, we can solve the above potential at the surface
r = R for a given mass M , which gives

R ' ` exp

[
1 + (1− 4 qV VR)3/2

6 qV G(2)M

]
, (4.20)

which reduces to the horizon (4.8) when 2VR = −1. The ratio of the two is

R

rH
' exp

[
(1− 4 qV VR)3/2 − (1 + 2 qV )3/2

6 qV G(2)M

]
(4.21)

and so for VR < −1/2 the black hole horizon will be smaller than R for a given mass.
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Figure 4: Potential V(2) for qV = 1/2 (dotted line), qV = 1 (solid line) and qV = 2 (dashed line).

5 Conclusions

We have studied the bootstrapped potential generated by compact sources in d = 1 and d = 2
spatial dimensions and compared the associated characteristics with more standard descriptions. It
appears that the lower-dimensional cases remain at odds with those at d ≥ 3, perhaps even more
so in the bootstrapped description of gravity. In particular, the emergence of a compact spacetime
associated to these sources is intriguing, and we interpret these lower-dimensional configurations
as “bubbles” possibly generated by ultra high-energy processes in our d = 3 Universe. Examples
of such processes could be particle scatterings at Planckian energies, the gravitational collapse of
compact objects leading to unbounded energy densities near the centre of mass, or the end stage of
black hole evaporation according to Hawking’s prediction that the black hole temperature should
increase steadily as the mass decreases. Although several parameters are involved, the size of these
“baby universes” can naturally be on the order of the Planck length for similarly scaled masses.

Furthermore, the bootstrapped Newtonian potentials for d = 1 and d = 2 contain a “cosmological
horizon” at r = RΛ given respectively in Eq. (3.20) and Eq. (4.10). The size of the horizon (3.20),
however, is solely determined by the localised mass M in d = 1, whereas the cosmological hori-
zon (4.10) in d = 2 is independent of M . The origin of this difference is the appearance of an
arbitrary length scale ` in the logarithm of the Newtonian limiting solution (4.4). One should then
further recall that in d ≥ 3 dimensions the “cosmological horizon” does not need to be present at all,
since the bootstrapped potential is defined for all values of r > 0. 5 Moreover, Newton’s constant
in d = 1 equals the inverse of Planck’s and the radius RΛ therefore entails a quantum nature in one
spatial dimension, clearly displayed in Eq. (3.24).

One of the interesting consequences of these baby universes is that they would replicate the pro-
cess of dimensional reduction, in which the dimensionality of spacetime decreases as one approaches
higher energies (equivalently, smaller length scales) [38–40] and the system becomes more and more
quantum in nature. This is a shared feature of many different approaches to quantum gravity. Here,
the d = 1 phase could be enveloped within the d = 2 bubble, particularly since the estimated scales

5It is nonetheless interesting to investigate how an effective cosmological constant would appear in bootstrapped
Newtonian gravity. Preliminary results can be found in Refs. [37] and a more detailed analysis is being performed.
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in this work are within an order of magnitude of each other.
Finding a novel test of a theory whose fundamental energy scale is in the Planck range is

problematic, given today’s technological limitations. The highest energies that are possible to
probe in laboratory experiments reach the TeV scale at best, as the recent LHC runs demonstrate.
Nature, however, has no such constraints and the available energies are much higher. For example,
ultrahigh energy cosmic rays have been measured in the ∼ 1020 eV range [41]. Although they are
still far from the Planck scale, these processes mark a considerable improvement over accelerator
technology.

The most promising window of opportunity to observe Planck scale physics, and by association
quantum gravity effects, currently rests in the realm of black holes. With the detection of gravi-
tational waves from compact binary coalescence by the LIGO/Virgo collaboration [42] comes the
possibility of identifying “echoes” in the ring-down phase of the merger [43]. This is predicated on
the idea that there exists a near-horizon structure on the Planck scale that generates periodic grav-
itational wave reflections which, if detected, would mark the first clear signal of quantum gravity.

Apart from gravitational waves, the advent of the Event Horizon Telescope and its triumphant
imaging of the supermassive black hole in M87 [44] has introduced the possibility of studying near-
horizon physics on macroscopic scales in the electromagnetic spectrum. Since quantum gravity
effects are expected to become important in this regime, precision measurements of the black hole
shadow’s size and morphology will yield crucial information about the nature of the spacetime in
that vicinity. Planck scale metric fluctuations [45] are expected to be amplified in such a way as to
produce measurable deviations from General Relativity [46].

The other avenue of testing quantum gravity is black hole evaporation. Unlike the previous
cases, these effects emerge only when the black hole horizon itself reaches the Planck scale at
the end of its life. The standard Hawking picture is expected to break down at this stage, and
quantum gravity effects – however they might manifest themselves – will take over. Searching for
observational (electromagnetic or gravitational) evidence of the final stages of a primordial black
hole is thus important here. Fast Radio Bursts (FRBs), for example, may be a result of the end
stage of black hole evaporation, which could again reveal fingerprints of the underlying quantum
gravity theory [47].

None of the above processes can be detected directly in a laboratory, but instead would produce
signals that travel through space to our detectors on or around Earth. Knowledge of signal propaga-
tion is therefore a preliminary step for any phenomenological analysis. In this respect, the effective
metric outside a compact spherical source derived from the bootstrapped Newtonian potential in
four spacetime dimensions in Ref. [48] is the simplest example of what is necessary in order to
confront with General Relativistic predictions. Other cases are currently under investigation.

Dimensional reduction offers novel phenomenology in many of these situations. The small-mass
“catastrophe” that plagues Hawking evaporation is replaced by a smooth, thermodynamically-stable
decay to a zero-mass remnant [49]. In fact, beyond gravitational physics, particle physics could also
provide intriguing fingerprints. The energy dependence of Drell-Yan scattering processes is modified
as (energy)−3 in d = 2 spatial dimensions, as compared to (energy)−2 in d = 3, and the quadratic
divergence of perturbative Higgs mass corrections in d = 3 spatial dimensions are tamed to linear
and logarithmic ones in d = 2 and d = 1 respectively [50]. In fact, pursuant to the current work
underway with the effective bootstrapped Newtonian metric [48], a lower-dimensional version is
currently in preparation [51].

We stress that, like many current candidate quantum gravity theories, detecting these effects is
problematic at best. Presently, there are no clear-cut predictions that single out the bootstrapped
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Newtonian approach, but we stress that the results in this paper – namely the cascading of dimen-
sions and nested baby universes – is reminiscent of existing work in the literature. The novelty
herein is that this behaviour has now been proposed in a non-linear Newtonian framework, instead
of the fully general relativistic one, but is nonetheless consistent with the demand that quantum
gravity naturally emerges as the number of spatial dimensions approaches one.

Acknowledgments

R.C. is partially supported by the INFN grant FLAG and his work has also been carried out in the
framework of activities of the National Group of Mathematical Physics (GNFM, INdAM) and COST
action Cantata. O.M. is supported by the grant Laplas VI of the Romanian National Authority for
Scientific Research. J.M. thanks the Department of Physics and Astronomy at the University of
Bologna for its generous hospitality during the initial stages of this project.

A Outer vacuum in d ≥ 3

In d ≥ 3 spatial dimensions, the vacuum field equation (2.18) is exactly solved by

V(d≥3) =
Ṽ

qV
=

1

4 qV

[
1−

(
C1 +

C2

rd−2

)2/3
]
, (A.1)

where the integration constants must be fixed in order to recover the Newtonian behaviour at large
distances,

VN = −
G(d)M

rd−2
, (A.2)

that is C1 = 1 and

C2 = 6 qV G(d)M . (A.3)

These expressions finally yield

V(d≥3) =
1

4 qV

[
1−

(
1 +

6 qV G(d)M

rd−2

)2/3
]
. (A.4)

Note that we can now take the limit qV → 0 and precisely recover the Newtonian potential (A.2),
as one would expect by first considering this limit in Eq. (2.18). We also note that the large r
expansion of the solution (A.4) reads

V(d≥3) ' −
G(d)M

rd−2
+ qV

G2
(d)M

2

r2 (d−2)
, (A.5)

so that qV always affects the post-Newtonian order. All solutions for d ≥ 3 show essentially the
same qualitative behaviour, with no restriction on the range of possible values of r. In Fig. 5 we
plot the case d = 3 and d = 6 for different values of qV around one.
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Figure 5: Potential V(3) (left panel) and V(6) (right panel) for qV = 1/2 (dotted line), qV = 1 (solid
line) and qV = 2 (dashed line).
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