
A&A 645, A89 (2021)
https://doi.org/10.1051/0004-6361/202038500
c© ESO 2021

Astronomy
&Astrophysics

Unveiling the rarest morphologies of the LOFAR Two-metre Sky
Survey radio source population with self-organised maps

Rafaël I. J. Mostert1,2, Kenneth J. Duncan1,3, Huub J. A. Röttgering1, Kai L. Polsterer4, Philip N. Best3,
Marisa Brienza5,6, Marcus Brüggen7, Martin J. Hardcastle8, Nika Jurlin2,9, Beatriz Mingo10, Raffaella Morganti2,9,

Tim Shimwell2,1, Dan Smith8, and Wendy L. Williams1

1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
e-mail: mostert@strw.leidenuniv.nl

2 ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands
3 SUPA, Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
4 HITS gGmbH (Heidelberg Institute for Theoretical Studies), AstroinformaticsSchloss-Wolfsbrunnenweg 35, 69118 Heidelberg,

Germany
5 Dipartimento di Fisica e Astronomia, Università di Bologna, via P. Gobetti 93/2, 40129 Bologna, Italy
6 INAF – Istituto di Radioastronomia, Via P. Gobetti 101, 40129 Bologna, Italy
7 University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany
8 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
9 Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands

10 School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

Received 26 May 2020 / Accepted 29 October 2020

ABSTRACT

Context. The Low Frequency Array (LOFAR) Two-metre Sky Survey (LoTSS) is a low-frequency radio continuum survey of the
Northern sky at an unparalleled resolution and sensitivity.
Aims. In order to fully exploit this huge dataset and those produced by the Square Kilometre Array in the next decade, automated
methods in machine learning and data-mining will be increasingly essential both for morphological classifications and for identifying
optical counterparts to the radio sources.
Methods. Using self-organising maps (SOMs), a form of unsupervised machine learning, we created a dimensionality reduction of
the radio morphologies for the ∼25k extended radio continuum sources in the LoTSS first data release, which is only ∼2 percent of
the final LoTSS survey. We made use of PINK, a code which extends the SOM algorithm with rotation and flipping invariance,
increasing its suitability and effectiveness for training on astronomical sources.
Results. After training, the SOMs can be used for a wide range of science exploitation and we present an illustration of their potential
by finding an arbitrary number of morphologically rare sources in our training data (424 square degrees) and subsequently in an
area of the sky (∼5300 square degrees) outside the training data. Objects found in this way span a wide range of morphological and
physical categories: extended jets of radio active galactic nuclei, diffuse cluster haloes and relics, and nearby spiral galaxies. Finally,
to enable accessible, interactive, and intuitive data exploration, we showcase the LOFAR-PyBDSF Visualisation Tool, which allows
users to explore the LoTSS dataset through the trained SOMs.

Key words. galaxies: active – galaxies: peculiar – radio continuum: galaxies – techniques: image processing – methods: statistical –
methods: data analysis

1. Introduction

The morphology of a radio source is an important tool for
studying the nature of the source emitting the radio waves and
the environment or medium around the radio-emitting source
(e.g. Miley 1980; Kempner et al. 2004). In radio astronomy,
the most time-resistant morphological classification scheme for
radio galaxies is the one presented by Fanaroff & Riley (1974),
which classifies radio galaxies based on their extended radio
jets. The binary classification scheme is based on the location
of the brightest hot-spots within the lobes of an extended source.
Fanaroff & Riley (1974) used their scheme to classify a num-
ber of sources from the revised third Cambridge catalogue of
radio sources (3CR; Mackay 1971) and found a distinct separa-
tion in the luminosities of these sources at 2×1025 W Hz−1 sr−1 at
178 MHz, the Fanaroff-Riley class I (FRI) sources being below

this separation and the Fanaroff-Riley class II (FRII) sources
being systematically above it.

A new generation of radio surveys, such as the Low Fre-
quency Array (LOFAR; van Haarlem et al. 2013) Two-metre
Sky Survey (LoTSS; Shimwell et al. 2017), the Evolution-
ary Map of the Universe (EMU; Norris et al. 2011), and the
MeerKAT international GHz tiered extragalactic exploration
(MIGHTEE; Jarvis et al. 2016) are producing ever larger sam-
ples of highly resolved radio sources. Furthermore, LoTSS com-
bines high angular resolution with a high sensitivity to diffuse
radio emission, which has never been achieved before over large
area surveys, and thus it probes a different range of morpholo-
gies (e.g. Hardcastle et al. 2019; Mandal et al. 2020. The extent
to which these new radio surveys may redefine our understand-
ing of radio morphology is illustrated by the recent results of
Mingo et al. (2019), who find that the dichotomy between FRI
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and FRII luminosities does not seem to hold (supporting Best
2009) and that the radio active galactic nuclei (AGN) population
might be more heterogeneous than previously assumed.

Radio morphological information is also used when perform-
ing optical or infrared cross-identifications, providing us with
valuable information on the nature of the radio sources. For unre-
solved radio sources, if present, a host galaxy should be located
at the same location as the radio emission. For resolved radio
AGN, we expect a host galaxy to be at the origin of its jets. This
origin is not necessarily close to the flux-weighted centre of the
radio emission. In these cases, we need to use morphological
information (the orientation of the jets projected onto the sky
plane) to find the potential host galaxy.

A classical classification of radio morphology consists of
automated source detection (using a simple signal-to-noise cri-
terion), followed by a manual label process. With the LOFAR
surveys and the future surveys of the Square Kilometer Array
(SKA; Schilizzi 2004) and its pathfinders, it is essential to
explore methods in machine learning and data-mining to deal, in
a more automated and therefore inherently statistical way, with
the large sample coming our way.

Conveniently, in the past few years, in the field of computer
science, significant improvements have been made in the fields
of data mining and machine learning in general and computer
vision specifically. These improvements are generally recog-
nised to be enabled by the availability of larger datasets, increas-
ingly powerful graphics processing unit (GPU) accelerated com-
pute power and the development and refinement of machine
learning algorithms (e.g. Halevy et al. 2009; Goodfellow et al.
2016; Sun et al. 2017).

We can roughly divide machine learning approaches into
two categories: supervised and unsupervised learning (e.g.
Goodfellow et al. 2016). Supervised approaches are fundamen-
tally limited by the requirement for a labelled training sample,
which can be limited in size, or by the fact that such a sample
is only available for certain surveys. Human-created labels or
human-annotated data are valuable but costly as the annotation
process scales linearly with the number of samples in a dataset.
Unsupervised learning does not require labels for its training
dataset and can be used for density estimations or to cluster data
in groups according to patterns in the data (e.g. Goodfellow et al.
2016). The lack of labels means these techniques are not biased
by preconceived human-created categories; however, they do not
necessarily relate to intrinsic physical source properties.

Unsupervised learning approaches have been applied to
astronomical datasets before. Baron & Poznanski (2016) took an
unsupervised approach to study galaxy evolution by using ran-
dom forests to find spectroscopic outliers in the Sloan Digital
Sky Survey (SDSS). Segal et al. (2018) used “apparent complex-
ity” as a metric to describe radio morphology. In this approach,
images of radio sources are compressed using the gzip com-
pression algorithm after which the size of the resulting file is
a course-grained measure for the morphological complexity of
the source. The one-dimensional nature of the result makes it a
potentially useful addition to a catalogue where it can serve as
input to supervised learning methods. On its own, the metric is
not so valuable, as the degeneracies are numerous and no infor-
mation about the shape, size or number of components of the
source is retained.

Our ultimate aim is to robustly classify the radio sources in
new generations of wide and deep radio surveys according to
their morphology. Given the new parameter space being probed
by these surveys and the potential new morphological regime
they reveal (Mingo et al. 2019), unsupervised clustering offers

an approach that minimises our assumptions and any biases
inherent within them.

In this paper we use a rotation and flipping invariant imple-
mentation of the self-organised maps (SOM; Kohonen 1989,
2001) dimensionality reduction algorithm (Polsterer et al. 2015)
to explore the morphologies of radio sources in the LOFAR Two-
metre Sky Survey First Data Release (Shimwell et al. 2017).
The dimensionality reduction will be a model that represents
the most frequently occurring shapes in our data, regardless of
whether they conform to any pre-existing morphological clas-
sification scheme. In addition to providing a data-driven model
of the representative radio morphologies within LoTSS, an SOM
can be used to select the radio objects that most diverge from this
model – these will be morphologically rare or outlier sources that
can automatically be identified within potentially unexplored
parameter space. This method does not limit our search to many
forms of AGN (bent, assymetric, remnant and restarted), it also
leads us to nearby spiral galaxies and cluster emission many of
which may be previously undiscovered in radio observations.
We do not tackle the FRI or FRII classification of LoTSS radio
sources in this paper as this requires additional completeness
simulations.

This paper is set out as follows: Sect. 2 presents the LOFAR
radio continuum dataset used in this work. Section 3 introduces
the rotation and flipping invariant SOM technique and outlines
its application to the LoTSS sample of radio continuum sources.
Section 4 presents the resulting trained SOMs, including the
range and distribution of morphological representative images
within the LoTSS extended radio source population. We illus-
trate how the trained map can be used to automatically identify
morphologically unique sources in new datasets. In Sect. 5 we
discuss our research and its place within the wider picture of
large survey science. Finally, Sect. 6 presents the summary and
conclusions of the paper.

2. Data

The primary data used for training and optimising the SOMs
in our study is taken from the first data release of the LOFAR
Two-metre Sky Survey (LoTSS-DR1; Shimwell et al. 2019) and
consists of 58 pointings that make up a mosaic that covers 424
square degrees in the HETDEX region of the sky (right ascen-
sion 10h45m00s–15h30m00s and declination 45◦–57◦). The sur-
vey, observed at 120–168 MHz with a median rms sensitivity of
S 144 MHz = 71 µJy beam−1 and a resolution of 6′′, will eventually
cover the entire Northern sky.

The data are accompanied by a corresponding catalogue
containing 352 694 source-entries, generated by the Python
Blob Detection and Source Finder (PyBDSF)1 application
(Mohan & Rafferty 2015); see Shimwell et al. (2019) for the
parameters used. PyBDSF builds a catalogue from emission
islands with peak intensity values that exceed the surrounding
noise in the image by, in this case, five standard deviations. One
or more Gaussians are fit to these islands. If these Gaussians
overlap2, they will enter the catalogue as a single entry. The
RA and Dec of the entry is set to the centroid of its Gaussians,
which is determined using moment analysis. 93% of the cata-
logue entries correspond to unresolved sources. As these contain
no morphological information beyond an upper limit on their

1 https://github.com/lofar-astron/PyBDSF
2 Grouping of Gaussians into sources: http://www.astron.nl/
citt/pybdsf/algorithms.html#grouping
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angular size, we only train on the 24 601 objects composed of
multiple Gaussians3.

In Sect. 4.4, we make use of additional LoTSS data consisting
of 841 pointings that make up a mosaic that covers 5720 square
degrees, fully overlapping with the 424 square degrees of the
HETDEX region of the sky. This dataset, constitutes the second
LoTSS data release (LoTSS-DR2; Tasse et al. 2020) and contains
4 395 448 PyBDSF-generated source-entries. We use the part of
this larger dataset that is outside our initial dataset to show that an
SOM trained with sources on a small patch of the sky can be used
to cluster and find outliers in sources from a different part of the
sky without retraining.

3. Method: Rotation invariant self-organised maps

A self-organising map (SOM; Kohonen 1989, 2001), also known
as a Kohonen self-organising map, Kohonen map or Kohonen
network, is an unsupervised artificial neural network used to
reduce high-dimensional data to a low-dimensional (usually two
or three) representation (known as the “map” or the “lattice”).
An SOM belongs to the family of dimensionality reduction tech-
niques and is an especially useful starting point for visualisa-
tion and clustering and hence data-exploration. An SOM aims
to capture the properties of the elements of a dataset by creat-
ing a small number of representative elements on a fixed lattice.
One key property of SOMs that makes them particularly use-
ful for morphological studies is that they are coherent; similar
representative images should be close to each other on the lattice
while dissimilar representative images should be further apart on
the lattice.

Our dataset consists of cutouts from Stokes-I LOFAR
images, with each cutout centred on a radio source that has
been detected in the associated PyBDSF source catalogue (see
Sect. 3.2 for details). Thus our SOM should capture the overall
properties of the images in our dataset by creating a small num-
ber of representative images on a fixed lattice. Formally, an SOM
consists of a lattice of “neurons” and each neuron has weights
(pixels of the representative image). By iteratively training these
weights (the pixels of the representative images will be itera-
tively adjusted), the aim is to maximise the similarity between
the neurons (images) and the training dataset.

The metric we use for determining the similarity between a
representative image and an image from the training dataset is
the Euclidean norm, meaning that we subtract the representa-
tive image from the image in the training dataset and take the
square root of the squared sums of the pixel values in the resid-
ual image. By minimising the value of the norm of each image in
the training dataset to its corresponding most similar representa-
tive image, we ensure that the representative images of the SOM
are a good representation of the images in the training set.

For determining the coherence we count the number of
images in our training dataset for which the second best match-
ing representative image is not located directly next to the best
matching representative image on the lattice. By minimising this
number we ensure that the SOM is coherent.

In machine learning, the distinction is made between model
parameters and model hyper-parameters. Model parameters are
initialised by the user and updated by the training algorithm,

3 That is, entries with PyBDSF S_Code = “M” or “C”. See http://
astron.nl/citt/pybdsf/write_catalog.html#write-catalog
and http://astron.nl/citt/pybdsf/algorithms.html#gauss
ian-fitting

while the hyper-parameters are set (and may be updated) by the
user. The pixel-values of the representative images are model
parameters, the dimensions of the SOM lattice and the dimen-
sions of the cutouts are hyper-parameters.

For a full outline of the SOM algorithm and its basic imple-
mentation, we refer the reader to Kohonen (2001). In the next
section we describe the rotation and flipping-invariant SOM
algorithm employed in this work and subsequently its hyper-
parameters.

3.1. Rotation invariant SOM

The classification of radio source morphologies should not
depend on the orientation of the source on the sky. Hence, the
classification should be invariant to rotation and flipping. Even
so, most algorithms, supervised or unsupervised, are not fully
rotation and flipping invariant. For supervised convolutional neu-
ral networks this problem is often handled by simplified approx-
imation by inserting (many) rotated copies of each source in
the training dataset (e.g. Dieleman et al. 2015; Aniyan & Thorat
2017; Alhassan et al. 2018; Dai & Tong 2018; Lukic et al. 2018,
2019).

Polsterer et al. (2015) proposed a rotation and flipping
invariant SOM algorithm:

1. Initialise the pixel-values of the images in the adopted lat-
tice to some arbitrary value. In our case we initialise with zeros.

2. For each image in the training dataset:
(a) Create rotated and flipped copies.
(b) For each representative image Rep, calculate the

Euclidean norm to each of the copied images Imcopy in the SOM,
where the Euclidean norm is defined as:

‖Imcopy − Rep‖2 =

√∑
i

(Imcopyi
− Repi)2, (1)

and the summation is over all the pixels i of the images.
(c) For each representative image, find the image copy

Imcopy,best to which it has the smallest Euclidean norm. If mul-
tiple image copies produce the same norm, randomly select one
of those image copies.

(d) From the set of image copies to each representative image
found in 2c, find the single combination of representative image
and copied image Imcopy,best that have the smallest Euclidean
norm to each other. We refer to this representative image as
Repbest. If multiple combinations produce the same norm, ran-
domly select one of those combinations. Repbest,loc denotes the
(x, y) location of Repbest on the SOM lattice.

(e) Update the pixels of each representative image Rep such
that they are more like their respective Imcopy,best:

Repnew = Rep + α · θ
(
‖Repbest − Reploc‖2

)
· (Imcopy,best − Rep), (2)

where Repnew is the updated representative image, α is a scalar
known as the learning constraint and θ

(
‖Repbest − Reploc‖2

)
is a

function known as the neighbourhood-function. We note that α
regulates to what degree all representative images should adapt
to Imcopy,best; θ is a function of the Euclidean norm between the
location of the considered representative image on the lattice
Reploc and Repbest,loc. It causes representative images that are
farther apart from Repbest,loc on the lattice to adapt less to their
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respective Imcopy,best. We chose the boundaries of the SOM to be
periodic4.

3. Repeat step 2 (except for 2a) a fixed number of times (or
“epochs”) or until a user-defined stopping condition is met.

4. Now that the SOM is trained, optionally repeat step 2b
and 2c once. Then for each image, return the smallest Euclidean
norm of each representative image to their Imcopy,best.

Polsterer et al. (2015) developed PINK5, a GPU-optimised
code for step 1, 2 and 4 of this algorithm. In this study we
build on the core PINK algorithm to appropriately preprocess
LOFAR data for PINK version 0.23 and enable automated and
flexible implementation of step 3 such that θ and α are scalar
functions that also depend on the number of completed epochs.

For SOMs, tuning hyper-parameters comes down to a trade-
off between compute-time, how similar the images in our dataset
are to the representative images in the (trained) SOM and the
coherency across the SOM. Good coherence implies that the
similarity between the representative images decreases gradually
as a function of distance on the lattice between them.

To quantify the coherency of the SOM and how similar the
images of our dataset are to the representative images in the
(trained) SOM, we used two metrics. The Average Quantisation
Error (AQE), as described by Kohonen (2001), is defined as the
average summed Euclidean norm from each image in our dataset
to its corresponding best matching representative image:

AQE =

 |D|∑
‖Imcopy,best − Repbest‖2

/ |D|, (3)

where the summation iterates over all images in our dataset D
and |D| is the number of images in our dataset. A lower AQE
equals a better representation of the data. The Topological Error
(TE) as described by Villmann et al. (1994), is a measure for the
coherence of the SOM. It is defined as the percentage of images
for which the second best matching representative image is not
a direct neighbour of the best matching representative image,
where direct neighbour is defined as all eight neighbours for rep-
resentative images on a rectangular lattice. A lower TE equals
better coherency. We note that AQE and TE are relative measures
and can only be used to monitor progress of an SOM during
training (for example after every completed epoch) or to make a
comparison between different SOMs that have been trained with
the same dataset and the same image and lattice dimensions.

A dimensionality reduction technique can produce a closer
approximation of a dataset when given more model parameters
to model this dataset. For an SOM, having more representative
images is equivalent to more model parameters. Therefore, an
SOM with more representative images leads to a better repre-
sentation of the images in the training dataset (lower AQE and
TE). The size of the SOM lattice is arbitrary and we can change it
in accordance with the purpose of the dimensionality reduction.
Using hundreds of representative images for the visual inspec-
tion of the most common morphologies in the data is impracti-
cal, and a small trained lattice (<10× 10 representative images)
might suffice. In general, smaller lattices lead to a smaller num-
ber of discernible morphological groups. In the case of a 4 × 4
SOM, elongated singles and compact doubles were the only dis-
cernible groups. For a 20 × 20 SOM we find additional neurons
4 The representative images at the right border are connected to those
at the left and the representative images at the bottom are connected to
the representative images at the top.
5 Parallelised rotation and flipping INvariant Kohonen map.
See github: https://web.archive.org/web/20200623002706/
https://yann.lecun.com/exdb/mnist/

representing slightly bent extended doubles. For this paper we
adopt a 10 × 10 lattice. SOMs can be trained on a lattice with
more than two dimensions, but in this study we make use of only
two-dimensional SOMs, as higher dimensional SOMs are harder
to visualise on a 2D surface.

For the neighbourhood-function PINK adopts a commonly
used 2D-symmetric Gaussian of the form

θ(σ,Repbest,Reploc) =
1

σ
√

2π

· exp

−1
2

(
‖Repbest − Reploc‖2

σ

)2 , (4)

where σ is known as the neighbourhood radius. Generally a
larger neighbourhood radius will result in a lower TE and higher
AQE. We can intuitively understand this, as a larger neighbour-
hood radius will cause each training image to leave its imprint
on a larger part of the SOM lattice and as a result, represen-
tative images will be more similar across the lattice: creating
better coherence but with the representative image set encom-
passing less well the variety of images in the dataset. As stated
by Kohonen (2001), by decreasing the neighbourhood radius
with each training epoch, updates to the lattice will at first be
global (ensuring coherence) and then become ever more local
(ensuring a good representation of the individual images in our
dataset). Therefore, we adopt and implement a decrease in the
neighbourhood radius such that σ(t) = σ0 × σ

t
d with t the epoch

number, σ0 the starting radius and σd the radius decrease rate.
For the value of σ0, we adopted the rule of thumb from Kohonen
(2001): we start with a neighbourhood radius half the size of the
largest dimension of the SOM lattice.

The size of the learning rate α determines the size of the
step we take in the model-landscape. Small steps will generally
slowly take us in the right direction but can get us stuck in a local
optimum, while big steps give faster results but might overshoot
the (local) optimum. The best results within a given compute-
time is achieved by starting out with a large value for the learn-
ing rate and gradually decreasing its size with every epoch. We
adopt and implement a decrease in the learning rate such that
α(t) = α0×α

t
d×σ(t)

√
2πwith t the epoch number, α0 the starting

learning rate and αd the learning rate decrease. We also use the
learning rate to undo the normalisation of the neighbourhood-
function: we keep its peak constant at the value of 1. If we were
to keep the 2D-Gaussian normalised, for small neighbourhood
radii, the impact of a single training image on the representa-
tive images of the SOM would be too great. For each subsequent
image, the best matching representative image would be updated
to be very much like this image, thereby erasing the similarity to
previous images.

To determine reasonable values for the SOM lattice dimen-
sions, σd, α0 and αd, we tested the SOM algorithm and its
hyperparameters on the well known MNIST handwritten dig-
its dataset6. Subsequently, we tuned the parameters on our own
dataset based on the AQE and TE metrics. We stop training
once the AQE improved (declined) by less than 1% over the last
epoch. To prevent over-fitting, we evaluated the quality of the
SOM based on the AQE and TE metrics in a holdout-part of the
dataset: a randomly drawn subset of the dataset that had not been
used for training. Once we had settled on reasonable parameters
(see Table 1), we adopted those for the full dataset.

6 The dataset is available at http://yann.lecun.com/exdb/
mnist/
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Table 1. Parameters used for the first SOM training run.

SOM lattice dimensions (w × h × d) 10 × 10 × 1
Number of channels or layers 1
Representative image dimensions 67 × 67 pixels2, equivalent to 100 × 100 arcsec2

Neighbourhood radius start σ0 | decrease σd 5 | 0.9
Learning rate start α0 | decrease αd 1 | 0.7
Periodic boundary conditions True
Stopping condition AQE improvement per epoch< 1%
Resulting number of training epochs 23
Initialisation Zeros

At the start of the training process, we initialise the pixel-
values of our representative images with zeros. Different initial-
isation, for example using random numbers, changes the initial
place on which the images leave their inprint on the SOM. As we
train for more than 20 epochs, the initialisation – given it is of
similar magnitude to the training images – only leads to changes
in the final location of the groups we find. It does not expose new
morphological groups.

3.2. Preprocessing: Creating a training dataset from LoTSS
images

Our training set only contains images – no labels, or catalogue
information, just pixel-information. We created images for our
training dataset by making a square cutout from the LOFAR
intensity maps for each catalogue entry. Each cut-out has a fixed
angular (or on-sky) size, centred on the source right ascension
and declination. We proceeded by applying a circular mask,
removed all flux below 1.5 times the local noise and rescaled
the remaining flux to the continuous Adelman-McCarthy (2009)
range. Below we elaborate on these steps.

Given the varying intrinsic physical sizes and redshifts of
the radio source population, the choice for the on-sky size is
thus a cause of degeneracy in our trained SOM. Sources with
similar morphology but different apparent size will best match
different neurons on the SOM. Using different on-sky sizes for
each source and then rescaling the dimensions of each image
such that the extent of the radio emission for all resolved sources
spans a fixed number of pixels would avoid this issue. However,
this is not a trivial task for several key reasons. Firstly, a radio
source can consist of two lobes of emission that are spatially sep-
arated, such that automatic source extraction software is not able
to recognise that the two islands of emission belong to a single
radio source. The source size reported by source extraction soft-
ware may thus refer to a small emission structure that is part of
a larger structure. Secondly, the precise size or extent of a radio
source has no fixed definition and will also depend on the mor-
phology itself. We refer the reader to Sect. 5.1 for more on this
topic.

In the remainder of this paper, we proceed to use fixed on-sky
size images to train our SOM. Using fixed on-sky size images,
the SOM will need more neurons to represent the images in
the training dataset compared to the ideal case where the extent
of the emission is normalised. Nevertheless, after training, the
SOM will still be a good representation of the images in the
training dataset. Compared to regular sources, sources with out-
lying morphologies will still have a larger Euclidean norm with
respect to the weights of their best matching neurons.

To capture most of the source morphology, the fixed on-sky
size should be chosen big enough that most sources fit inside and
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Fig. 1. Cumulative distribution function (CDF) of the full-width half
maximum (FWHM) of the 325 694 radio-sources in the catalogue and
the subset of 24 601 sources that are composed of multiple Gaussians
by PyBDSF. The reported FWHMs of the sources are on the low side
as PyBDSF breaks up large apparent objects into multiple catalogue
entries with smaller sized objects.

small enough to minimise the amount of nearby unrelated radio
emission. Ideally, we would remove the emission from neigh-
bouring sources that spuriously entered our image. This is not
practical due to the difficulty of correctly associating emission
with a single radio source. Our source might be part of a larger
structure which we risk incorrectly removing (i.e. our catalogue
entry might be centred on a single lobe of a double-lobed radio
source in which case we would remove the second lobe). Limi-
tations to the fixed image size are discussed in Sect. 5.1.

We informed our decision process by gathering information
on the nearest-neighbour distances of all 325 694 radio-sources
in the catalogue and the different sizes of all 24 601 multiple-
componentobjects thatweusedfor training.Figure1 indicates that
a cutout size between roughly 50 and 150 arcsec is able to encom-
pass most extended sources as reported by the catalogue. Figure 2
shows that avoiding any contamination from unrelated sources
is impossible; we should at least stay well below 200 arcsec
toavoidcontamination invirtuallyall cutouts.Weadoptafixedon-
sky size of 100× 100 arcsec2, which translates into 67× 67 pixel2
images as the pixel scale of our FITS-files is 1.5 × 1.5 arcsec2.

In the rotation procedure of the training algorithm (step 2a)
we create image copies that are flipped and rotated by incre-
ments of 1 degree using bilinear interpolation. Including flip-
ping we end up with 720 rotated and or flipped image copies for
each image in our training dataset. To ensure that these images
do not have empty corners, initial images of 95 × 95 pixels2
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Fig. 2. CDF of the angular distance to the nearest neighbour for
all 325 694 sources and for the subset of 24 601 multiple Gaussian-
component sources to all 325 694 sources.
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Fig. 3. Training process of the final 10 × 10 cyclic SOM. Neigh-
bourhood radius is the radius on the SOM lattice. With each epoch
we decrease the neighbourhood radius which results in an increasingly
accurate SOM (lower AQE) and higher coherency (lower TE). Eventu-
ally we increase the accuracy at the cost of the coherency (higher TE).
As the AQE is the average of the Euclidean norm between each cutout
and its best matching neuron, the errorbars indicate the standard devia-
tion of these values for our data set.

(142.5×142.5 arcsec2) were extracted, which were then cropped
to 67 × 67 pixels2 after rotation.

We do not want our SOM to learn the correlated noise-
patterns around our sources during training. Therefore, we tested
preprocessing the images in the form of clipping the data above
or below a certain brightness threshold and in the form of
non-linear rescaling of the intensity. In a supervised convo-
lution neural network approach to classify FRIs and FRIIs,
Aniyan & Thorat (2017) report best results with sigma-clipping,
removing all values below 3 times the local noise. We tested
a range of sigma-clip values based on the local mean of the
PyBDSF-generated noise map (see Shimwell et al. 2019) and
find that a 1.5 sigma-clip threshold results in a good balance
between noise-reduction and retaining diffuse parts of the emis-
sion.

As the similarity measure in our algorithm is the Euclidean
norm, the intensity of the images in our training dataset affects
the outcome of the trained SOM. Without rescaling the inten-
sities, the SOM clustering will be dominated by the apparent
brightness of the sources instead of by morphology. The goal of

this study is to find rare morphologies across the full dynamic
range of LoTSS, we therefore normalise the intensity of all
sources by linearly scaling the intensity values of each image
in our training dataset to between 0 and 1 (after sigma-clipping).
During training, because of the rotation and subsequent crop-
ping, only the pixels within the circle with a diameter equal to
the width of our image are used to compare the image to the neu-
ron weights. Therefore, we only consider these pixels during the
intensity rescaling and mask all pixels outside of this circle.

In future research simultaneous training on multiple layers
will be considered: multiple instances of the same image with
different scaling or clipping applied to highlight different fea-
tures of each source. See Sect. 5.3 for a description of a multi-
layer SOM.

4. Results

In this section we present and inspect the trained SOMs and the
outlying sources that we can find using these SOMs.

4.1. Initial SOM training

We first trained the SOM with the parameters reported in Table 1,
starting with our initial sample of 24 601 multiple Gaussian-
component sources. Visually inspecting the resulting trained
map revealed that a large part of the SOM contains morpholog-
ically similar looking neurons that represent a large number of
unresolved or barely resolved sources still present in our training
set (see Appendix A for more details).

Therefore, to increase the diversity of the different neurons
of the SOM, images from our training set that best matched one
of the 10 least unique neurons (10% of the total number of neu-
rons) were removed from our training sample7. In this way we
removed sources that added the least extra value to our explo-
ration of the morphologies in LoTSS. Future versions of PINK
might make this step obsolete by introducing a learning rate
that is adaptable per representative image. This will enable us
to lower the learning rate specifically for neurons that are often
selected as best matching neuron. As a result, often occurring
shapes (of which unresolved or barely resolved sources are the
most frequent) will not be so dominant in the trained SOM.

After removal of the unresolved (or marginally resolved)
sources, the SOM training procedure was repeated using the
same hyper-parameters (Table 1), on the reduced sample of
19 544 images – 5057 fewer than the training set used in the
first run. Figure 3 shows the SOM training progress using the
values of our two performance metrics, we expect both values to
gradually decrease. We see that training with a neighbourhood
radius that decreases with every epoch results in an ever more
accurate SOM (reflected in the lower AQE and the smaller stan-
dard deviation on the AQE) but eventually this comes at the cost
of the overall coherency (higher TE). We stopped the training
process at the point where the AQE declined less than 1% from
the last epoch. However, if coherency is deemed more impor-
tant than training set representation one can decide to stop when
TE is at its local minimum. After SOM training was complete,
in the mapping phase (step 4 of the algorithm as described in
Sect. 3), the 19, 544 sources used for training were compared
to the trained SOM to find the best-matching neuron for each

7 These representative images were selected based on the U-matrix of
the SOM. The U-matrix (Ultsch 1990) is a metric that shows how sim-
ilar each representative image in a trained SOM is to its neighbouring
representative images.
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Fig. 4. Final 10 × 10 cyclic SOM. Each one of the 100 representative images represents a cluster of similar morphologies present in the training
dataset. Topology across the representative images is well conserved: Similar shaped representative images are close to each other in the SOM.
We note that the SOM is cyclic, the representative images at the right border are connected to those at the left and the representative images at the
bottom are connected to the representative images at the top.

image and to calculate the smallest Euclidean norm between
each image and each neuron.

4.2. Final 10×10 trained SOM

Figure 4 shows the final 10 × 10 cyclic SOM, where cyclic indi-
cates that its boundary conditions are periodic. Each one of the
100 representative images represents a set of similarly shaped
sources from our training dataset. Training took place using
PINK version 0.23 on a single Tesla K80 GPU and took 4.2 and
3.5 hours for the initial SOM and the final SOM respectively.
Thus, on average, PINK processed roughly 37 radio images per
second.

As expected, neurons that represent similarly shaped sources
are close to each other in this SOM, illustrating that topology

across the SOM is conserved. The AQE on the training set is 1.65
with a standard deviation of 1.38 and the TE is 9.94%. These val-
ues compare to an AQE of 1.4 with a standard deviation of 1.35
and TE = 5.63% for the initial SOM training run that included
the marginally resolved source population. We expect the AQE
to be higher than in the first trained SOM as a result of ejecting
5 057 well represented (unresolved and barely resolved) sources
from our training set.

In Fig. 5, we see that most sources get assigned to a represen-
tative image that more or less matches their shape or contours.
However, through degeneracies in the Euclidean norm similarity
measure and the small number of representative clusters that we
use to represent all shapes and sizes in our data, it is still possible
to have a range of different shapes assigned to some representa-
tive images. The potential number of degenerate morphologies
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Fig. 5. Closer look at five representative images with distinctly different shapes. The first row shows five hand-picked representative images from
the trained SOM. The location of each representative image on the SOM is indicated by (column, row), thus the first highlighted representative
image in this figure is positioned in the seventh column, second row of the SOM in Fig. 4. In each column, we show five (randomly selected) radio
sources that have been mapped to the representative images in the first row.

assigned to a representative image increases with the size and
brightness of the representative image, as can be seen by compar-
ing the radio sources associated with representative image (4, 4)
to those associated with representative image (10, 2): (10, 2) still
contains a variety of different morphologies whereas the sources
belonging to (4, 4) are all very similar.

In Fig. 6, we label the SOM based on the category of known
radio morphologies that each representative image most closely
resembles. Representative images that clearly belonged to more
than one group were assigned to multiple groups. They can be
seen to form fully connected groups (the map is cyclic) with the
exception of two neurons labelled as “core-dominated doubles”
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Fig. 6. Final 10 × 10 cyclic SOM manually labelled into seven categories. These categories describe the type of sources that are dominant or
most occurring in the set of sources that best matches each of the 100 representative images. If there are multiple dominant types of sources best
matching a representative image, the representative image is labelled using multiple categories, which is visualised by the dashed multi-coloured
edges.

and two neurons labelled as “Mix”, indicating that the topology
of the dataset is indeed conserved.

The labelling process reveals numerous distinct populations:
with “core-dominated” we indicate double-lobed AGN where
the core has a higher peak flux than the lobes; “compact dou-
bles” indicate compact, double-lobed AGN; “extended doubles”
indicate double-lobed AGN where the hotspots are spatially
separated; “single lobe of extended doubles” indicate a (cata-
logue entry centred on a) single lobe of a double-lobed AGN.
“elongated singles” indicate compact emission probably origi-
nating from unresolved or barely resolved AGN or from strongly
beamed single AGN lobes. “(single lobe of) diffuse/large dou-
bles” indicate either fluffy, double-lobed AGN or a single lobe
of a large double-lobed AGN. Finally, “mix” is used for the two
SOM cells that contain a variety of sources (these often include
spurious emission from a neighbouring bright source).

A distinct morphological population that is missing in these
labels is that of bent FRI type sources. We expected that the dif-
ferent curvatures in the lobes of these sources results in them
ending up in various labelled groups within the SOM, not very
well represented by any of them. By mapping the NAT and WAT
collection from Mingo et al. (2019) to our SOM, we confirmed
that this is true. With a median value of 2.07, the Euclidean
norm of the NAT and WAT sources to their representative image
is 4% higher than that of the large non-bent FRI sources from
Mingo et al. (2019) and 57% larger than the median Euclidean
norm of all sources in our dataset, reinforcing our conclusion.

4.3. Morphology distribution of LoTSS extended radio
sources

In Fig. 7 we show the distribution of the number of best
matching sources for each representative image in the SOM (a
“heatmap”). We can see that the most common representative
images are those that resemble unresolved sources or elongated
single sources while the least common represent faint sources
with a hard-to-distinguish shape and core-dominated sources.

After combining the heatmap with the representative image
labels assigned above, we get a picture of the overall morphology
distribution of the extended sources in LoTSS DR1 (see Fig. 8).
We caution however that these results serve as a first order esti-
mate and there will be individual sources best matching a given
particular neuron that could be more accurately labelled by a
label not previously included.

If we count every source associated with the label “single
lobe of an extended double” – disregarding the ones associated
to representative images with multiple labels and the ones asso-
ciated to the label “(Single lobe of) large/diffuse doubles” – we
can get a conservative estimate of the percentage of inadequate
source association by the source extraction software. As such,
we estimate that the percentage of inadequate source associ-
ation for the 19 544 extended source entries in the catalogue
is about 13%. This percentage is higher than the percentage
of sources that were associated through visual inspection as
detailed by Williams et al. (2019): 5% of these 19 544 sources
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Fig. 7. Heatmap of the 10 × 10 cyclic SOM, indicating the number of
sources from our training dataset mapped to each of the representative
images shown in Fig. 4.

Fig. 8. Piechart of dominant groups in the 10 × 10 cyclic SOM, pro-
viding a rough indication of the percentage of sources best matching a
neuron in each group. The number of sources best matching a neuron
that belonged to two groups was counted half for the tally in each group.
These are first-order estimates: each group will contain sources that a
human will classify differently after individual inspection.

ended up combined in the value added catalogue8. To per-
form this visual inspection and correct the PyBDSF catalogue
Williams et al. (2019) use crowd-sourced manual component
association through the Zooniverse platform9. This platform
allowed every source (LOFAR radio contours on top of a WISE
or Pan-STARRS image) to be viewed and associated by five dif-
ferent astronomers. In the same process, optical and or infrared
host-galaxies were assigned to the radio emission if possible.
Only associations agreed upon by four or five out of five peo-
ple were combined in the value added catalogue. The difference
between the number of source associations in Williams et al.
(2019) and our estimate here shows the difficulty in distinguish-
ing between a pair of lobe-hotspots and two unrelated, unre-
solved or barely resolved radio sources.

8 See the LoTSS-DR1 merged component catalogue: https://
lofar-surveys.org/public/LOFAR_HBA_T1_DR1_merge_ID_
v1.2.comp.fits
9 Web address: http://zooniverse.org
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Fig. 9. Histogram of the Euclidean norm from each radio source to its
closest representative image in the final 10 × 10 SOM, for each of the
19 544 radio sources in our final training set. Most sources have a very
small Euclidean norm to their best resembling representative image in
the SOM, which means they are morphologically similar to at least one
representative image in the SOM. We isolated the 100 most outlying
sources and show them in Appendix B.
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Fig. 10. Histogram of Euclidean norm from each radio source to its
closest representative image in the final 10× 10 cyclic SOM, aggregated
by group. This shows how well each source resembles the best matching
representative image in its group. The lower the Euclidean norm, the
better the match. In general, a steeper declining trend indicates a better
match across sources with the same label.

4.4. Discovering morphologically rare sources through outlier
score

The trained SOM gives us an overview of the archetypes or dom-
inant morphologies present in the dataset. One can imagine that
if the difference (the Euclidean norm) between a cutout and its
best matching representative image is much larger than average,
see Fig. 9, this means that the cutout does not match well to
any representative image in the map. This implies that radio-
objects with this angular size and morphology are not abun-
dant in the training set: they are morphological outliers. The
Euclidean norm between a cutout and its best matching repre-
sentative image can therefore be seen as an “outlier score”.

Pre-processing the sources, specifically sigma-clipping or
rescaling our cutouts, affects the magnitude of the Euclidean
norm values. As we scale all our pixel values to range between
0 and 1, we are biased towards having large apparent objects
as outliers. For sources that are slightly different than their rep-
resentative image, objects with a large angular size will have
a larger Euclidean norm than smaller sources. Indeed Fig. 10
shows that the group “(single lobe of) large/diffuse sources”
shows higher Euclidean norms than all other groups. Before we
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inspect the objects with high outlier score in our dataset, we dis-
cuss three options to reduce the bias in finding objects with large
angular size and explain why we do not use them.

The first option is scaling the pixel values such that the sum
of the pixel values add up to one in each cutout. This will steer
the bias towards sources that have bright emission concentrated
in a small area. In practice, cutouts with the highest outlier scores
will then be those compact bright doubles that enter the cat-
alogue slightly off-centre and compact objects with unrelated
neighbouring compact objects within our fixed-sized window.

A second option to reduce the bias is to look for the objects
with the highest Euclidean norm per labelled group of neurons.
As the groups represent sources of varying angular size, we can
expect to find outlying morphologies for sources with smaller
angular size. In practice, the objects with the highest Euclidean
norm in the groups – except in the “(single lobe of) large diffuse
doubles” group – are mostly artefacts and regular FRI or FRII
sources close to the noise-level. Visual inspection shows that
adopting a peak flux threshold of 0.5 mJy beam−1 and a total flux
threshold of 5 mJy, excludes most of the images containing these
artefacts. We then inspect the resulting 14 objects with the high-
est Euclidean norm per group in each of the groups except the
“(single lobe of) large diffuse doubles” group; these 84 sources
comprise 33 NAT or WAT objects, 42 non-bent FRI or FRII, and
9 sources too small or faint to clearly categorise. Many of the
non-bent FRI or FRII and a number of the other objects (31 out
of the 84 in total) received a high outlier score, not because of
their rare morphology, but because of unrelated close-by neigh-
bouring radio objects.

A third option to alleviate our bias towards finding outlier
objects with large angular size, is by including another mea-
sure in the outlier score. We experimented with an outlier score
that is the summation of the Euclidean norm and the Euclidean
norm times the fraction G times a tunable parameter γ. Here, G
is the maximum sum of pixel values attained by any neuron in
the SOM divided by the sum of the pixel values of the consid-
ered neuron. Therefore, G will be one for the neuron with the
highest sum and proportionally bigger for neurons with smaller
summed values – thus proportionally bigger than one for neurons
that represent sources with smaller angular sizes. By increasing
γ, we increase the outlier score for sources with smaller angu-
lar sizes with respect to sources with larger angular sizes. This
approach yields similar results to the previous experiment: we do
indeed find more small angular sized objects, but they are often
positioned close to an unrelated neighbouring radio source. As
unrelated close neighbour sources do not represent physically
rare objects, we do not consider this to be an optimal approach –
although ultimately the best definition to define outliers should
depend on the user’s specific science goals.

In this paper, we use only the Euclidean norm as our out-
lier score and inspect the objects with the overall highest out-
lier score. To illustrate the potential of this method, we select
the 100 sources with the greatest outlier score (all sources to the
right of the red vertical line in Fig. 9) and present all of them in
Appendix B. To suppress the number of duplicate objects (broken
up during the automatic source-extraction) we require each table-
entry to be at a distance greater than 400 arcsec from all previ-
ous table-entries. We visually inspected each of these 100 sources
to investigate the nature of these outliers and provide a physical
classification in Table B.1. In Fig. 11 we highlight the wide range
of different source-types and morphologies present.

We observe that 49% of the outliers are AGN with jet activ-
ity, the lobes thereof show a range of curvature – from wide
angle tailed (12%) to narrow angle tailed (2%) – indicating

Fig. 11. Piechart showing the wide variety of morphologies and radio
source types present in the 100 most outlying sources in the final
10 × 10 cyclic SOM. Top panel: descriptive labels have been estab-
lished by a manual visual inspection of each source in radio (LoTSS),
mid-infrared (WISE) and optical (SDSS9 colour). We labelled sources
that fitted in more than one category as “ambiguous”. “X-type” sources
are “X-shaped” extended doubles (Rees 1978), “WATs” and “NATs”
are Wide Angle Tailed and Narrow Angle Tailed sources, “WDS”
are Wide Double Sources, “NEBD” are Narrow Edge Brightened
Doubles (Miley 1980), “DDRG” are Double-Double Radio Galax-
ies (Schoenmakers et al. 1999). An “AGN remnant candidate” is an
extended double with such relaxed morphology that the AGN jets might
not be active any more. As M101 is an exceptionally large apparent
object, the source detection software did not group the separate detec-
tions of this nearby spiral, as a result it features multiple times in the cat-
alogue. Bottom panel: we grouped subtypes together to get an overview
of the dominant types of sources in the outliers: “M101” was grouped
with “nearby galaxy”; “complex” with “ambiguous”; “cluster relic”
and “cluster halo” were grouped into “cluster emission” and “DDRG”,
“NEBD”, “NAT”, “WAT”, “WDS”, “double”, “asymmetric double” and
“X-type” were grouped into “AGN with jet activity”. A figure contain-
ing each of these one hundred most outlying sources can be found in
Appendix B.

motion through the circum galactic medium or rotation in the
case of X-type sources (2%). Examples of outliers of each type
can be found in Fig. B.1 by looking at the Radio description
in Table B.1. The sample is also diverse with respect to edge-
brightening and edge-darkening, we can see that the sample con-
tains 29 FRI and 25 FRII type sources. For three sources the
FR classification is unclear and for the remaining sources it is
not applicable. The outliers cover multiple stages of jet-activity:
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from active doubles, to “dying” AGN remnants, to restarted
Double-double radio galaxies.

Although diverse, not all AGN that we present here can be
regarded as radio objects with outlying morphologies. Specifi-
cally, the Narrow edge brigthened sources, Wide double sources
and regular doubles account for 24% of the sources. These
objects occur less frequently in the survey compared to simi-
lar objects of smaller angular size, but their morphologies can
hardly be regarded as outlying.

Ten percent of the outliers are nearby starforming galax-
ies, where the radio-emission largely overlaps with the optical
emission in Pan-STARRS grizy bands. The synchrotron emis-
sion originating from supernovas is a star-formation tracer that
is unobstructed by dust. As expected, both sharp cluster relics
like “bow shocks” and the more diffuse and amorphous cluster
halos can also be found among the 100 objects with highest out-
lier scores.

Twenty-three percent of the outliers are ambiguous or com-
plex in nature. Most ambiguous outliers (16%) are diffuse and
somewhat amorphous, raising the question whether they are
active AGN, AGN remnants or cluster related emission. For the
complex objects (7%), there seems to be additional interaction
with neighbouring objects.

In Fig. 12, we highlight a number of individual outliers. The
red boxes within these images show the fixed size of the cutouts
as they enter the SOM for training: the solid red boxes show the
initial 142.5 × 142.5 arcsec2 cutout and the inner (dashed) boxes
show the 100× 100 arcsec2 cutout after cropping as described in
Sect. 3.2. The figure shows that objects that fall entirely within
the fixed-size box, and those which extend beyond it, can both
be given high outlier scores, demonstrating that the fixed cutout
size does not prevent us from finding morphological outliers of
different apparent sizes, even when relying on imperfect source
extraction.

It is possible to map a dataset to an SOM that is trained on
a similar dataset. We can thus quickly find outliers in a newly
observed parts of the sky within the same survey. We showcase
this concept by looking for outliers in a new dataset covering
5296 (5720 − 424; LoTSS-DR2 minus the LoTSS-DR1 area)
square degrees. To avoid distortion by the synthesised beam, we
used all objects within a radius of 2.5 degree around the centre of
each field. Analogous to the approach for LoTSS-DR1, we sup-
press the number of duplicate objects by imposing a minimum
separation distance of 200 arcsec between the listed outliers.

Table 2 shows an excerpt of the table of the 1000 most out-
lying objects in this dataset. Again, the outliers include objects
that span a large range in apparent size and morphology. The
apparent sizes range from less than a hundred arcsec to a degree.
The morphologies include soft-edged (diffuse) emission as well
as sharp-edged (compact) emission. Cross-matching against the
extended source catalogue (2MASX; Jarrett et al. 2000) from the
Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), we
see that 93 (9.3%) of the first 1000 outliers align with a 2MASX
object (with radius >15 arcsec), indicating that the outliers con-
tain numerous nearby starforming galaxies.

In Fig. 11 we see that for the 100 outliers of LoTSS-DR1,
based on their radio morphology, a significant percentage can be
classed as cluster emission (either as relic or halo emission). Fur-
thermore, the movement of the AGN in the intra-cluster medium
is known to effect the morphology of AGN radio emission and
can for example lead to long bent tails. As such, many of the
WAT identified by the outlier selection will likely also be asso-
ciated with galaxy cluster or group environments. Indeed for

LoTSS-DR2 we find that 303 (30.3%) of the first 1000 outliers
align with known SDSS galaxy clusters (Wen et al. 2012).

The LoTSS-DR2 outlier source types include many AGN
with bent and or asymmetric jets, restarted AGN (DDRGs) and
even phoenixes (revived fossil plasma in a galaxy cluster). A
radio phoenix (source #181) features in Mandal et al. (2020); a
tailed AGN (source #320) features in Hardcastle et al. (2019);
and a symmetric set of arcs around Abel 2626 (source #413) fea-
tures in Ignesti et al. (2017, 2018), Kadam et al. (2019), proving
that our method of finding morphological outliers is able to auto-
matically identify classes of rare sources with genuine scientific
importance.

5. Discussion

5.1. Linear invariance and the challenge of radio source
association

Without correctly associated radio sources and corresponding
correct apparent size estimates, we are not able to linearly rescale
each radio source in size to make the SOM linearly size invari-
ant. This means that objects that appear to be large on the sky
will also appear as larger shapes in the SOM.

Given a large enough SOM, some neurons will start to repre-
sent parts of larger objects such as a single lobe of an AGN with
large angular size. In practice, these neurons may also resemble
the disk-shaped emission of a nearby starforming galaxy, limit-
ing the SOM’s ability to separate intrinsically different sources.
Sources much smaller than our fixed image size of 100 arcsec
with closeby (within 50 arcsec) neighbouring sources are also
poorly analysed by our method. Indeed, inspection of the out-
lying objects per group shows that many images with a high
Euclidean norm are often occurring morphologies like regular
compact FRII with closeby unrelated radio sources. The group
of neurons labelled as “(single lobe of) large diffuse doubles” are
the exception to this observation.

At this moment, no automatic source extraction code comes
close to a human ability to associate spatially separated radio
emission. However, source association performed by humans is
a tedious, time intensive process.

An ongoing LOFAR Galaxy Zoo project tackles the associa-
tion problem for LoTSS-DR1 (Williams et al. 2019) and LoTSS-
DR2 and can thereafter serve as labelled training sample for
supervised learning attempts to the radio component associa-
tion problem. Dieleman et al. (2015) and Dai & Tong (2018)
were successfully able to recreate the labels assigned to galax-
ies by volunteers in the Optical and Radio Galaxy Zoo projects
respectively. Wu et al. (2019) use FIRST and WISE images
combined with Radio Galaxy Zoo crowd-sourced associations
(Banfield et al. 2015) to combine radio blob detection, associa-
tion and classification using a promising deep learning approach.

In this paper we showed that it is possible to select morpho-
logically rare objects in large datasets with no previous human
created labels or associations. Our selection works across a range
of apparent sizes and for broken up sources. We did not find an
upper limit to the angular size of objects for our ability to mark
them as having a rare morphology. However, we can conclude that
our SOM approach to finding outliers is ill-suited to find sources
with outlying morphologies with angular sizes much smaller
than our fixed view window. Specifically using the Euclidean
norm as outlier score and a fixed view window of 100 arcsec,
we find no sources with an angular size smaller than 45 arcsec
in our list of 100 outliers (Appendix B).
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Fig. 12. Handpicked diverse examples taken from the list of 100 morphological outliers created by using the SOM. The red boxes indicate the size
of the cutouts fed to the SOM, the inner (dashed) red boxes indicate the size of the cutouts after rotation and cropping. In this figure, we manually
zoomed out to show the full extent of the objects. The outliers list contains a wide range of objects. Going row by row from left to right: a rotating
extended double, a nearby spiral (M109), an asymmetric double, an AGN remnant candidate, a WAT, a head-tail radio source, an AGN remnant
candidate with spatially separated lobes and an x-shaped radio source. The complexity of some of the objects means that these descriptions are
preliminary. Follow-up observations are necessary to understand the nature of some of these objects.

Furthermore, SOM extracted features (i.e. the location of the
best matching representative image of a source on the SOM lat-
tice or its outlier score) can be used as complementary input for
datasets analysed using classical machine learning techniques,
for example for source cross-identification (cf. Alegre et al., in
prep.).

5.2. SOM for data-exploration. The LOFAR-PINK
Visualisation Tool: an interactive webtool

SOMs can be used as the basis for data-exploration and visualisa-
tion tasks. As such we build the LOFAR-PINK Visualisation
Tool10 an interactive website for SOM exploration: https:
//rafaelmostert.com/lofar/ID51/som.php. The tool is

10 https://github.com/RafaelMostert/
lofar-pink-visualization-tool

interactive, accessible by any webbrowser, shareable and easy to
set up on a newly trained SOM. It enables users to do their own
data-exploration without in-depth prior knowledge of the code or
algorithms involved (see Appendix C). It has succesfully been
used for outreach projects and is an approachable way to show-
case the quality of LoTSS.

A trained SOM used for dimensionality reduction in com-
bination with the webtool means that one can represent the
diversity of a dataset in a very compact way. As such, this
combination can be used for both validation of new data and for
systematic searches within large data sets based on more than
one-dimensional catalogue values.

5.3. Future work

In this paper, we scraped the surface of what is possible
with SOMs and 2D astronomical image-data. We used an
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Fig. 12. continued. The outliers list contains a wide range of objects. Going row by row from left to right: an AGN remnant candidate (Shulevski
et al., in prep.), M101, diffuse emission combined with AGN emission, diffuse emission next to a giant head-tail AGN next to a WAT (Wilber et al.
2019). As the source extraction and association software PyBDSF did not associate radio emission of objects with a large (greater than a few
hundred arcsec) apparent size, these appear as multiple separate entries in the source catalogue. The SOM can thus give different parts of the same
astronomical object a high outlier score. We adopt a minimum separation distance between outlying objects of 400 arcsec.

Table 2. Excerpt of the table containing the 1000 sources in the DR2 area (excluding the LoTSS-DR1 area) with the largest Euclidean norm
(outlier score) to their best matching representative image in the SOM shown in Fig. 4.

# Outlier score RA [deg] Dec [deg] Field name Rep. image 2MASX or SDSS galaxy cluster

1 32.02 193.894 27.172 P192+27 (1, 1)
2 27.69 15.003 30.041 P015+31 (1, 1)
3 27.66 193.873 27.224 P192+27 (1, 1)
4 27.57 239.386 54.739 P241+55 (1, 1)
5 27.46 339.267 34.415 P337+36 (1, 1) 2MASX 22370410+3424573
6 27.46 16.921 32.226 P018+31 (1, 1)
7 27.40 214.642 37.802 P213+37 (1, 1) WHL J141837.7+374625
8 26.34 157.948 57.038 P160+57 (1, 1) WHL J103201.9+570318
9 26.20 142.027 30.017 P141+29 (1, 1)
10 26.14 151.258 35.034 P151+35 (1, 1)

Notes. The field name refers to the LoTSS field name. The complete table is available at http://rafaelmostert.com/lotss-dr2-outliers.
html.

SOM trained on data from a single survey in combination
with a catalogue without corrected radio component associa-
tions and without (optical or spectral) information about the
host-galaxies.

Future work could focus on the addition of complementary
surveys to the LOFAR high-band survey to provide a dimen-
sionality reduction and visualisation of multi-wavelength data.
The ability to fold in multiple layered input (multiple cutouts
with the same dimensions as one input) is already present in the
PINK software. This would break degeneracies between repre-
sentative images and input images and allow a more diverse set
of unsupervised clusters to appear in the SOM.

A two-layer SOM works as follows: a single image with
two layers – for example a radio image taken at 150 MHz and
at 1.4 GHz – will be compared to an SOM in which each neu-
ron also has two layers. The first layer of the neuron will rep-
resent the 150 MHz emission and the second layer the 1.4 GHz
emission and the distance metric will simply be the sum of the
Euclidean norm between the image’s first layer and the neuron’s
first layer and the Euclidean norm between the image’s second
layer and the neuron’s second layer.

Galvin et al. (2019) demonstrate this principle with an SOM
trained on both radio (FIRST; Becker et al. 1995) and infrared
(WISE; Wright et al. 2010) cutouts. In the same way, our LoTSS
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data could be complemented by cutouts from other large infrared
sky-surveys like WISE, or optical surveys such as the Panoramic
Survey Telescope and Rapid Response System (Pan-STARSS;
Kaiser et al. 2000; Chambers et al. 2016) survey or the DESI
Legacy Imaging Surveys (Legacy11; Dey et al. 2019). At 3GHz
the Very Large Array Sky Survey (VLASS12; Lacy et al. 2020)
can complement the LoTSS data and eventually the LOFAR
Low-band Sky Survey (LoLSS13), 40–70 MHz, can complement
our data at frequencies that are just above the atmospheric cut-
off. With this additional spectral information that helps to reduce
the number of morphological degeneracies, an SOM can be used
as a selection tool to query a set of objects based on morphology.

Beyond visualisation and exploration, the SOM could be
used to improve catalogue (labels) by aiding the association
of extended radio source components. The SOM presented in
this paper can be used to fix the simplest associations. A rule-
based heuristic can associate all sources labelled “single lobe of
extended doubles” with the closest source with the same label
with either a fixed limit or a flexible maximum limit on their
separation distance. Galvin et al. (2020) show that in a similar
approach, with a larger (40 × 40) SOM, even more sources can
be automatically associated.

6. Summary

Current (LoTSS, VLASS) and future surveys of the radio sky
such as Evolutionary Map of the Universe (EMU; Norris et al.
2011), APERTIF survey14, Jarvis et al. (MIGHTEE; 2016),
reveal objects that have an extraordinary array of different mor-
phologies which tell us about the environment of the source or
the origin of the emission. There are too many sources to visu-
ally inspect and there is a risk that some of the most interesting
sources can stay hidden.

Here we use a dimensionality reduction technique altered
for the use on (radio) sources. We apply the rotation and
flipping invariant self-organising map, PINK, developed by
Polsterer et al. (2016) to LoTSS to reveal the different morpholo-
gies present in this dataset.

The source-detection software PyBDSF provides us with a
catalogue of source coordinates and enables us to discard most of
the morphologically undistinguishable unresolved radio sources.
A first trained SOM allows us to eliminate even more unresolved
radio sources that are still present in this subset. A final SOM
trained on these sources reveals six dominant morphological
groups and allows us to estimate the number of sources belong-
ing to each group in the dataset, which serves as an estimate for
the number of sources of this archetype in the completed LoTSS
survey which will eventually cover the full Northern sky.

As the SOM is a model for the (dominant) morphologies of
the resolved sources in the data, we can use the algorithm to
find morphological outliers: objects with a rare morphology that
are not well represented by the map stand out. We present the
100 most outlying sources and highlight a range of physically
different objects. Both large diffuse objects with relaxed mor-
phology (such as cluster halos, AGN remnants and nearby star-
forming galaxies) and sharp-edged complex structures (such as
cluster relics and weirdly shaped extended doubles) are found.
We also show that the SOM, trained on a small region

11 http://legacysurvey.org
12 https://science.nrao.edu/science/surveys/vlass
13 https://lofar-surveys.org
14 https://old.astron.nl/radio-observatory/
apertif-surveys

(424 square degrees) of the sky can be used to find sources with
outlying morphologies in a much larger (∼5300 square degrees)
region of the sky without retraining.

Finally, we show how a survey can be accessed, visualised
and shared by using an interactive web tool build for this pur-
pose. Using the LOFAR-PINK Visualisation Tool one can
intuitively explore the dataset through the SOM, the correspond-
ing radio sources and its outliers.

Future work will focus on the combination of complemen-
tary surveys to LoTSS to provide a dimensionality reduction and
visualisation of multi-wavelength data. The visualisation soft-
ware could be expanded and improved to enable searches by
morphology.

Acknowledgements. We kindly thank the referee for the insightful com-
ments. This research has made use of the python Astropy package
(Astropy Collaboration 2018); the SIMBAD database, operated at CDS, Stras-
bourg, France; the “Aladin sky atlas” developed at CDS, Strasbourg Observatory,
France (Bonnarel et al. 2000) and (Boch et al. 2014); and the VizieR catalogue
access tool, CDS, Strasbourg, France (DOI: 10.26093/cds/vizier). The original
description of the VizieR service was published by Ochsenbein et al. (2000).
R.M. also acknowledges the help of Berndt Doser at the Heidelberg Institute
for Theoretical Studies, without whom this research would not have been possi-
ble. K.L.P. gratefully acknowledges the generous and invaluable support of the
Klaus Tschira Foundation. LOFAR is the Low Frequency Array designed and
constructed by ASTRON. It has observing, data processing, and data storage
facilities in several countries, which are owned by various parties (each with their
own funding sources), and which are collectively operated by the ILT foundation
under a joint scientific policy. The ILT resources have benefited from the fol-
lowing recent major funding sources: CNRS-INSU, Observatoire de Paris and
Université d’Orléans, France; BMBF, MIWF-NRW, MPG, Germany; Science
Foundation Ireland (SFI), Department of Business, Enterprise and Innovation
(DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facili-
ties Council, UK; Ministry of Science and Higher Education, Poland; The Isti-
tuto Nazionale di Astrofisica (INAF), Italy. M.Br. acknowledges support from
the ERC-Stg DRANOEL, no 714245. M.Bo. acknowledges support from INAF
under PRIN SKA/CTA FORECaST and from the Ministero degli Affari Esteri
della Cooperazione Internazionale - Direzione Generale per la Promozione del
Sistema Paese Progetto di Grande Rilevanza ZA18GR02. P.N.B. is grateful for
support from the UK STFC via grant ST/R000972/1. B.M. acknowledges support
from the UK Science and Technology Facilities Council (STFC) under grants
ST/R00109X/1 and ST/R000794/1. K.J.D., H.J.A.R. and W.L.W. acknowledge
support from the ERC Advanced Investigator programme NewClusters 321271.
W.L.W. also acknowledges support from the CAS-NWO programme for radio
astronomy with project number 629.001.024, which is financed by the Nether-
lands Organisation for Scientific Research (NWO).

References
Adelman-McCarthy, J. K., et al. 2009, VizieR Online Data Catalog: II/294
Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2012, ApJS, 203, 21
Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, ApJS, 219, 12
Alhassan, W., Taylor, A., & Vaccari, M. 2018, MNRAS, 480, 2085
Aniyan, A., & Thorat, K. 2017, ApJS, 230, 20
Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123
Banfield, J. K., Wong, O. I., Willett, K. W., et al. 2015, MNRAS, 453, 2326
Baron, D., & Poznanski, D. 2016, MNRAS, 465, 4530
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Best, P. 2009, Astron. Nachr.: Astron. Notes, 330, 184
Boch, T., & Fernique, P. 2014, in Astronomical Data Analysis Software and

Systems XXIII, eds. N. Manset, & P. Forshay, ASP Conf. Ser., 485, 277
Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A&A, 143, 33
Chambers, K. C., Magnier, E., Metcalfe, N., et al. 2016, ArXiv e-prints

[arXiv:1612.05560]
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693
Dai, J. M., & Tong, J. 2018, Visualizing the Hidden Features of Galaxy

Morphology with Machine Learning
Dey, A., Schlegel, D. J., Lang, D., et al. 2019, AJ, 157, 168
Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31
Galvin, T., Huynh, M., Norris, R., et al. 2019, PASP, 131, 108009
Galvin, T., Huynh, M., Norris, R., et al. 2020, MNRAS, 497, 2730
Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press),
http://www.deeplearningbook.org

A89, page 15 of 22

http://legacysurvey.org
https://science.nrao.edu/science/surveys/vlass
https://lofar-surveys.org
https://old.astron.nl/radio-observatory/apertif-surveys
https://old.astron.nl/radio-observatory/apertif-surveys
http://linker.aanda.org/10.1051/0004-6361/202038500/1
http://linker.aanda.org/10.1051/0004-6361/202038500/2
http://linker.aanda.org/10.1051/0004-6361/202038500/3
http://linker.aanda.org/10.1051/0004-6361/202038500/4
http://linker.aanda.org/10.1051/0004-6361/202038500/5
http://linker.aanda.org/10.1051/0004-6361/202038500/6
http://linker.aanda.org/10.1051/0004-6361/202038500/7
http://linker.aanda.org/10.1051/0004-6361/202038500/8
http://linker.aanda.org/10.1051/0004-6361/202038500/9
http://linker.aanda.org/10.1051/0004-6361/202038500/10
http://linker.aanda.org/10.1051/0004-6361/202038500/11
http://linker.aanda.org/10.1051/0004-6361/202038500/12
https://arxiv.org/abs/1612.05560
http://linker.aanda.org/10.1051/0004-6361/202038500/14
http://linker.aanda.org/10.1051/0004-6361/202038500/15
http://linker.aanda.org/10.1051/0004-6361/202038500/15
http://linker.aanda.org/10.1051/0004-6361/202038500/16
http://linker.aanda.org/10.1051/0004-6361/202038500/17
http://linker.aanda.org/10.1051/0004-6361/202038500/18
http://linker.aanda.org/10.1051/0004-6361/202038500/19
http://linker.aanda.org/10.1051/0004-6361/202038500/20
http://linker.aanda.org/10.1051/0004-6361/202038500/21
http://www.deeplearningbook.org


A&A 645, A89 (2021)

Green, D. A., & Riley, J. M. 1995, MNRAS, 274, 324
Hales, S. E. G., Riley, J. M., Waldram, E. M., Warner, P. J., & Baldwin, J. E.

2007, MNRAS, 382, 1639
Halevy, A., Norvig, P., & Pereira, F. 2009, IEEE Intel. Syst., 24
Hardcastle, M., Croston, J., Shimwell, T., et al. 2019, MNRAS, 488,

3416
Ignesti, A., Gitti, M., Brunetti, G., Feretti, L., & Giovannini, G. 2017, A&A, 604,

A21
Ignesti, A., Gitti, M., Brunetti, G., et al. 2018, A&A, 610, A89
Jarrett, T., Chester, T., Cutri, R., et al. 2000, AJ, 119, 2498
Jarvis, M., Taylor, R., Agudo, I., et al. 2016, MeerKAT Science: On the Pathway

to the SKA, 6
Kadam, S. K., Sonkamble, S. S., Pawar, P. K., & Patil, M. K. 2019, MNRAS,

484, 4113
Kaiser, C. R., Schoenmakers, A. P., & Rottgering, H. J. A. 2000, MNRAS, 315,

381
Kempner, J. C., Blanton, E. L., Clarke, T. E., et al. 2004, The Riddle of Cooling

Flows in Galaxies and Clusters of Galaxies
Kohonen, T. 1989, Self-Organization and Associative Memory (Berlin

Heidelberg: Springer)
Kohonen, T. 2001, Self-organizing Maps (Berlin New York: Springer)
Lacy, M., Baum, S. A., Chandler, C. J., et al. 2020, PASP, 132, 035001
Lavaux, G., & Hudson, M. J. 2011, MNRAS, 416, 2840
Lukic, V., Brüggen, M., Banfield, J. K., et al. 2018, MNRAS, 476, 246
Lukic, V., Brüggen, M., Mingo, B., et al. 2019, MNRAS, 487, 1729
Mackay, C. D. 1971, MNRAS, 154, 209
Mahatma, V. H., Hardcastle, M. J., Williams, W. L., et al. 2019, A&A, 622, A13
Mandal, S., Intema, H., van Weeren, R., et al. 2020, A&A, 634, A4
Maslowski, J., Pauliny-Toth, I. I. K., Witzel, A., & Kuehr, H. 1984, A&A, 141,

376
Messier, C. 1781, Catalogue des Nébuleuses et des Amas d’Étoiles (Catalog of

Nebulae and Star Clusters), Connaissance des Temps ou des Mouvements
Célestes

Miley, G. 1980, Ann. Rev. Astron. Astrophys., 18, 165
Mingo, B., Croston, J., Hardcastle, M., et al. 2019, MNRAS, 488, 2701
Mohan, N., & Rafferty, D. 2015, PyBDSF: Python Blob Detection and Source

Finder (Astrophysics Source Code Library)
Norris, R. P., Hopkins, A. M., Afonso, J., et al. 2011, PASA, 28, 215
Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23
Pâris, I., Petitjean, P., Ross, N. P., et al. 2017, A&A, 597, A79

Paturel, G., Petit, C., Prugniel, P., et al. 2003, A&A, 412, 45
Polsterer, K. L., Gieseke, F., & Igel, C. 2015, in Astronomical Data Analysis

Software an Systems XXIV (ADASS XXIV), eds. A. R. Taylor, & E.
Rosolowsky, ASP Conf. Ser., 495, 81

Polsterer, K., Gieseke, F. C., Igel, C., Doser, B., Gianniotis, N., & ESANN, 2016,
Proceedings, 0

Rees, M. J. 1978, Nature, 275, 516
Rudnick, L., & Owen, F. N. 1976, ApJ, 203, L107
Rykoff, E. S., Rozo, E., Hollowood, D., et al. 2016, ApJS, 224, 1
Schilizzi, R. T. 2004, in Ground-based Telescopes, Int. Soc. Opt. Photonics,

5489, 62
Schoenmakers, A. P., Röttgering, H. J. A., & de Bruyn, A. G. 1999, in The Most

Distant Radio Galaxies, eds. H. J. A. Röttgering, P. N. Best, & M. D. Lehnert,
497

Segal, G., Parkinson, D., Norris, R. P., & Swan, J. 2018, PASP, 131, 108007
Shimwell, T. W., Röttgering, H. J. A., Best, P. N., et al. 2017, A&A, 598, A104
Shimwell, T., Tasse, C., Hardcastle, M., et al. 2019, A&A, 622, A1
Skrutskie, M., Cutri, R., Stiening, R., et al. 2006, AJ, 131, 1163
Sun, C., Shrivastava, A., Singh, S., & Gupta, A. 2017, Proceedings of the IEEE

international conference on computer vision, 843
Szabo, T., Pierpaoli, E., Dong, F., Pipino, A., & Gunn, J. 2011, ApJ, 736, 21
Tasse, C., et al. 2020, A&A, submitted
Tully, R. B. 1988, Nearby galaxies catalog
Ultsch, A. 1990, Proceedings INNC’90, International Neural Network

Conference, 1990 (Kluwer), 305
van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2
Veron-Cetty, M. P., & Veron, P. 2006, VizieR Online Data Catalog, 7248
Villmann, T., Der, R., & Martinetz, T. 1994, Proceedings of the IEEE

International Conference on Neural Networks (ICNN-94), Orlando, II, 645
Wake, D. A., Bundy, K., Diamond-Stanic, A. M., et al. 2017, AJ, 154, 86
Wen, Z., Han, J., & Liu, F. 2012, ApJS, 199, 34
Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9
White, R. L., Becker, R. H., Helfand, D. J., & Gregg, M. D. 1997, ApJ, 475, 479
Wilber, A., Brüggen, M., Bonafede, A., et al. 2019, A&A, 622, A25
Williams, W., Hardcastle, M., Best, P., et al. 2019, A&A, 622, A2
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Wu, C., Wong, O. I., Rudnick, L., et al. 2019, MNRAS, 482, 1211
Yoon, J. H., Schawinski, K., Sheen, Y.-K., Ree, C. H., & Yi, S. K. 2008, ApJS,

176, 414
Yuan, Z. S., Han, J. L., & Wen, Z. L. 2016, MNRAS, 460, 3669

A89, page 16 of 22

http://linker.aanda.org/10.1051/0004-6361/202038500/22
http://linker.aanda.org/10.1051/0004-6361/202038500/23
http://linker.aanda.org/10.1051/0004-6361/202038500/24
http://linker.aanda.org/10.1051/0004-6361/202038500/25
http://linker.aanda.org/10.1051/0004-6361/202038500/25
http://linker.aanda.org/10.1051/0004-6361/202038500/26
http://linker.aanda.org/10.1051/0004-6361/202038500/26
http://linker.aanda.org/10.1051/0004-6361/202038500/27
http://linker.aanda.org/10.1051/0004-6361/202038500/28
http://linker.aanda.org/10.1051/0004-6361/202038500/29
http://linker.aanda.org/10.1051/0004-6361/202038500/29
http://linker.aanda.org/10.1051/0004-6361/202038500/30
http://linker.aanda.org/10.1051/0004-6361/202038500/30
http://linker.aanda.org/10.1051/0004-6361/202038500/31
http://linker.aanda.org/10.1051/0004-6361/202038500/31
http://linker.aanda.org/10.1051/0004-6361/202038500/32
http://linker.aanda.org/10.1051/0004-6361/202038500/32
http://linker.aanda.org/10.1051/0004-6361/202038500/33
http://linker.aanda.org/10.1051/0004-6361/202038500/34
http://linker.aanda.org/10.1051/0004-6361/202038500/35
http://linker.aanda.org/10.1051/0004-6361/202038500/36
http://linker.aanda.org/10.1051/0004-6361/202038500/37
http://linker.aanda.org/10.1051/0004-6361/202038500/38
http://linker.aanda.org/10.1051/0004-6361/202038500/39
http://linker.aanda.org/10.1051/0004-6361/202038500/40
http://linker.aanda.org/10.1051/0004-6361/202038500/41
http://linker.aanda.org/10.1051/0004-6361/202038500/42
http://linker.aanda.org/10.1051/0004-6361/202038500/42
http://linker.aanda.org/10.1051/0004-6361/202038500/43
http://linker.aanda.org/10.1051/0004-6361/202038500/43
http://linker.aanda.org/10.1051/0004-6361/202038500/43
http://linker.aanda.org/10.1051/0004-6361/202038500/44
http://linker.aanda.org/10.1051/0004-6361/202038500/45
http://linker.aanda.org/10.1051/0004-6361/202038500/46
http://linker.aanda.org/10.1051/0004-6361/202038500/46
http://linker.aanda.org/10.1051/0004-6361/202038500/47
http://linker.aanda.org/10.1051/0004-6361/202038500/48
http://linker.aanda.org/10.1051/0004-6361/202038500/49
http://linker.aanda.org/10.1051/0004-6361/202038500/50
http://linker.aanda.org/10.1051/0004-6361/202038500/51
http://linker.aanda.org/10.1051/0004-6361/202038500/53
http://linker.aanda.org/10.1051/0004-6361/202038500/54
http://linker.aanda.org/10.1051/0004-6361/202038500/55
http://linker.aanda.org/10.1051/0004-6361/202038500/56
http://linker.aanda.org/10.1051/0004-6361/202038500/57
http://linker.aanda.org/10.1051/0004-6361/202038500/57
http://linker.aanda.org/10.1051/0004-6361/202038500/58
http://linker.aanda.org/10.1051/0004-6361/202038500/59
http://linker.aanda.org/10.1051/0004-6361/202038500/60
http://linker.aanda.org/10.1051/0004-6361/202038500/61
http://linker.aanda.org/10.1051/0004-6361/202038500/62
http://linker.aanda.org/10.1051/0004-6361/202038500/62
http://linker.aanda.org/10.1051/0004-6361/202038500/63
http://linker.aanda.org/10.1051/0004-6361/202038500/65
http://linker.aanda.org/10.1051/0004-6361/202038500/66
http://linker.aanda.org/10.1051/0004-6361/202038500/66
http://linker.aanda.org/10.1051/0004-6361/202038500/67
http://linker.aanda.org/10.1051/0004-6361/202038500/69
http://linker.aanda.org/10.1051/0004-6361/202038500/69
http://linker.aanda.org/10.1051/0004-6361/202038500/70
http://linker.aanda.org/10.1051/0004-6361/202038500/71
http://linker.aanda.org/10.1051/0004-6361/202038500/72
http://linker.aanda.org/10.1051/0004-6361/202038500/73
http://linker.aanda.org/10.1051/0004-6361/202038500/74
http://linker.aanda.org/10.1051/0004-6361/202038500/75
http://linker.aanda.org/10.1051/0004-6361/202038500/76
http://linker.aanda.org/10.1051/0004-6361/202038500/77
http://linker.aanda.org/10.1051/0004-6361/202038500/78
http://linker.aanda.org/10.1051/0004-6361/202038500/78
http://linker.aanda.org/10.1051/0004-6361/202038500/79


R. I. J. Mostert et al.: Unveiling radio morphology using self-organising maps

Appendix A: First run self-organised map

Figure A.1 shows the output of our first run SOM, prior to the removal of largely unresolved sources. The red highlighted represen-
tative images in the SOM have been selected for their similarity to their neighbouring representative images using a U-matrix. See
Ultsch (1990) for details on the U-matrix.

Fig. A.1. Top panel: first run 10 × 10 cyclic SOM. The first run reveals that our preprocessed dataset still contains a large fraction of unresolved
sources. We remove these from the training dataset by removing all radio sources that map to one of the red highlighted representative images.
Bottom panel: heatmap of the first run SOM, indicating the number of sources mapped to each of the representative images.
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Appendix B: Sample of 100 morphological outliers
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Fig. B.1. 100 morphological outliers. The image shows cutouts from the LoTSS survey for sources detected based on the large dissimilarity
between the source and the trained self-organising map: we picked the 100 sources that have the largest Euclidean norm to their best matching
representative image. We note that four sources were detected multiple times.
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Fig. B.1. continued. See previous page for the figure caption.
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Fig. B.1. continued. See previous page for the figure caption.

Figure B.1 shows 100 morphological outliers from the first data
release of the LoTSS survey (Shimwell et al. 2019), detected
based on the large dissimilarity between the source and the SOM
in Fig. 4. The 100 detections are distributed over 96 physical
sources as large objects enter the radio catalogue multiple times.
We mitigated all but four duplicate outlier entries by imposing
a minimum separation distance of 400 arcsec between each out-
lier. As our outlier metric is continuous, 100 is an arbitrary num-
ber of outliers and the procedure could instantly be repeated
to find the n sources with the highest outlier score. The white
numbers in the cutouts in Fig. B.1 correspond to the numbers
in Table B.1, which shows the outlier score for each source, a
manual description of its radio morphology and FR class, its
best matching representative image and, if present, the radio and
optical ID, cross-matched using the SIMBAD astronomical
database (Wenger et al. 2000).

The radio IDs refer to the objects published by White et al.
(FIRST; 1997); Condon et al. (NVSS; 1998); Hales et al.
(7C; 2007); Rudnick & Owen (OR; 1976); Maslowski et al.
(MPWK; 1984); Mahatma et al. (ILT; 2019); Yuan et al.
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Fig. B.2. Artefact within the 100 morphological outliers.

(YHW2016; 2016); and Green & Riley (P; 1995). The opti-
cal IDs refer to the objects published by Messier (M;
1781); (SDSS; Adelman-McCarthy 2009; Szabo et al. 2011;
Ahn et al. 2012; Alam et al. 2015; Pâris et al. 2017; Wake et al.
2017); Tully (NGC; 1988); Jarrett et al. (2MASX; 2000);
Yoon et al. (YSS2008; ZwCl; 2008); Rykoff et al. (DES; 2016);
Lavaux & Hudson (LH2011; 2011); Paturel et al. (LEDA;
2003); Veron-Cetty & Veron (VV2006; 2006); Szabo et al.
(SPD2011; 2011); and Skrutskie et al. (2MASS; 2006).
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Table B.1. The 100 sources in the DR1 area with the largest Euclidean norm to their best matching representative image (or outlier score) in the
SOM shown in Fig. 4.

# Outlier score Rep. Image Radio description (FR-class) Radio ID Optical description Optical ID

1, 67 22.5 (1, 1) M101 – Galaxy M 101
2 20.6 (1, 1) complex FIRST J142857.6+543627 – SDSS J142857.65+543627.7
3 19.9 (1, 1) ambiguous – Galaxy SDSSCGB 25342.4
4 18.4 (1, 1) nearby galaxy NVSS J115341+475132 Galaxy in Group of Galaxies NGC 3949
5 18.2 (1, 1) ambiguous NVSS J131358+532822 Brightest galaxy in a Cluster (BCG) 2MASX J13135837+5328092
6 18.0 (1, 1) nearby galaxy NVSS J114837+484242 Galaxy in Pair of Galaxies NGC 3893
7 17.7 (1, 1) nearby galaxy NVSS J121103+502901 Galaxy in Pair of Galaxies NGC 4157
8 16.7 (1, 1) WAT (FRI) – Cluster of Galaxies [YSS2008] 96
9 16.7 (1, 1) nearby galaxy NVSS J143246+492730 Galaxy in Group of Galaxies NGC 5676
10 14.8 (1, 1) AGN remnant candidate (FRI) – – –
11 14.6 (1, 1) ambiguous – Brightest galaxy in a Cluster (BCG) SDSS J122718.54+562529.8
12 14.5 (1, 1) NEBD (FRII) – Quasar SDSS J105817.89+514017.7
13, 18 14.2 (1, 1) NEBD (FRII) – Galaxy SDSSCGB 22520.3
14 13.9 (2, 10) WAT (FRI) – Galaxy in Cluster of Galaxies DES J143442.95+495132.2
15 13.9 (1, 1) ambiguous NVSS J112624+475044 – –
16 13.8 (1, 1) AGN remnant candidate (FRI) – – –
17 13.8 (2, 10) WAT (FRI) – Galaxy in Cluster of Galaxies DES J125051.17+531309.4
19 13.5 (2, 10) double (?) – – SDSS J132435.19+504102.3
20 13.5 (1, 1) nearby galaxy NVSS J120535+503231 Galaxy in Pair of Galaxies NGC 4088
21 13.4 (1, 1) cluster halo – Cluster of Galaxies ZwCl 3570
22 13.2 (1, 1) cluster relic – Group of Galaxies [LH2011] 3085
23 13.2 (2, 10) nearby galaxy – Galaxy in Group of Galaxies M 109
24 12.4 (2, 10) asymmetric double (FRII) – – –
25 12.3 (1, 1) nearby galaxy 7C 121620.39+473545.00 Galaxy M 106
26 12.0 (1, 1) ambiguous – Galaxy SDSSCGB 22905.1
27 12.0 (1, 1) ambiguous – – –
28 11.7 (2, 10) cluster relic – – –
29 11.6 (1, 1) NEBD (FRII) 7C 134413.90+541648.00 Galaxy in Cluster of Galaxies DES J134558.40+540344.9
30 11.5 (1, 1) cluster relic – Galaxy LEDA 2333622
31 11.4 (2, 10) nearby galaxy NVSS J120601+472846 Galaxy in Group of Galaxies NGC 4096
32 11.3 (2, 10) AGN remnant candidate (FRI) – Brightest galaxy in a Cluster (BCG) SDSS J144704.03+503332.9
33 11.1 (2, 10) WDS (FRII) – – –
34 10.8 (1, 1) WDS (FRII) – – –
35 10.7 (2, 10) WAT (FRI) NVSS J114019+535028 – –
36 10.7 (2, 10) WAT (FRI) [OR76] 1200+519 – –
37 10.5 (2, 10) double (FRII) – – –
38, 48, 54 10.5 (2, 10) cluster halo, NAT, WAT – Galaxy in Cluster of Galaxies 2MASX J11343395+4905157
39 10.4 (1, 1) asymmetric double (?) – – –
40 10.4 (1, 10) X-type (FRI) – Galaxy LEDA 2298950
41 10.1 (1, 1) NEBD (FRII) – – –
42 10.0 (1, 1) ambiguous – – –
43 9.9 (1, 1) AGN remnant candidate (FRI) MPWK 1151+488 – –
44 9.9 (1, 1) cluster halo – Galaxy SDSSCGB 14124.3
45 9.8 (2, 10) NEBD (FRII) 7C 114226.19+535535.00 – 2MASX J11450656+5338521
46 9.8 (2, 10) double (FRII) – – –
47 9.7 (2, 10) AGN remnant candidate (FRI) – – –
49 9.7 (2, 10) NAT (FRI) – Galaxy in Cluster of Galaxies DES J130257.91+511936.0
50 9.6 (1, 1) ambiguous NVSS J112922+540735 Brightest galaxy in a Cluster (BCG) 2MASX J11291925+5407344

Notes. The numbers (#) match the numbers shown in Fig. B.1. Each radio description includes a morphology-based FR-class when applicable –
the “?” indicates the FR-class could not be clearly determined.
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Table B.1. continued.

# Outlier score Rep. Image Radio description (FR-class) Radio ID Optical description Optical ID

51 9.6 (1, 1) double (FRII) – – SDSS J112213.75+493326.5
52 9.4 (2, 10) asymmetric double (FRII) ILT J133135.09+455957.0 Brightest galaxy in a Cluster (BCG) SDSS J133135.25+455955.4
53 9.4 (2, 10) NEBD (FRII) – – –
55 9.1 (1, 1) ambiguous – – –
56 9.0 (2, 10) ambiguous [YHW2016] 181.11848+50.17200 Brightest galaxy in a Cluster (BCG) SDSS J120428.43+501018.9
57 8.9 (2, 10) WAT (FRI) – – –
58 8.8 (2, 10) asymmetric double (FRII) – – –
59 8.7 (2, 10) double (FRII) – – –
60 8.7 (1, 1) WAT (FRI) – – –
61 8.7 (2, 10) AGN remnant candidate (FRI) – – –
62 8.7 (2, 10) WAT (FRI) – – SDSS J141157.99+550515.4
63 8.5 (1, 1) complex – – –
64 8.4 (2, 9) WAT (FRI) – Brightest galaxy in a Cluster (BCG) SDSS J124154.22+483835.4
65 8.3 (1, 1) X-type (FRII) 54P 106 – –
66 8.3 (1, 1) AGN remnant candidate (FRI) – – –
68 8.2 (2, 10) asymmetric double (FRI) – – –
69 8.2 (3, 9) artefact – – –
70 8.2 (2, 9) ambiguous – – –
71 8.2 (1, 1) AGN remnant candidate (FRI) – – –
72 8.2 (1, 1) WDS (FRI) – – LEDA 2515619
73 8.1 (2, 10) AGN remnant candidate (FRI) NVSS J123637+491143 Galaxy LEDA 2336215
74 8.1 (2, 10) NEBD (FRII) 7C 104315.90+551446.00 Galaxy SDSSCGB 20905.1
75 8.0 (1, 1) AGN remnant candidate (FRI) – LINER–type Active Galaxy Nucleus SDSS J130331.06+535948.5
76 7.9 (2, 1) double (FRII) – – –
77 7.9 (1, 1) complex – Brightest galaxy in a Cluster (BCG) 2MASX J12044737+4834115
78 7.9 (2, 9) complex – Quasar [VV2006] J133721.0+563329
79 7.9 (2, 10) double (FRII) – – LEDA 2350076
80 7.8 (1, 1) cluster relic – Galaxy in Cluster of Galaxies DES J122852.54+473657.7
81 7.8 (2, 9) ambiguous – – –
82 7.8 (2, 9) ambiguous – – –
83 7.7 (2, 1) WDS (FRII) NVSS J133334+553949 – –
84 7.7 (1, 1) NEBD (FRII) 7C 110931.60+554242.00 Brightest galaxy in a Cluster (BCG) SDSS J111226.86+552612.8
85 7.7 (3, 10) double (FRII) – Quasar SDSS J114837.41+465319.5
86 7.7 (2, 10) WAT (?) – Cluster of Galaxies [SPD2011] 9215
87 7.7 (2, 10) ambiguous – – –
88 7.7 (1, 1) asymmetric double (FRII) NVSS J111218+475603 – –
89 7.7 (10, 1) WDS (FRI) – – –
90 7.6 (2, 1) complex – Galaxy in Cluster of Galaxies DES J131810.69+512724.8
91 7.6 (1, 1) DDRG – Seyfert 1 Galaxy 2MASS J14510640+5333537
92 7.6 (2, 10) asymmetric double (FRI) NVSS J115126+545005 Brightest galaxy in a Cluster (BCG) LEDA 2481883
93 7.6 (1, 1) complex – Galaxy LEDA 2520943
94 7.6 (3, 10) ambiguous NVSS J145000+540504 – 2MASX J14500017+5405042
95 7.6 (2, 10) double (FRII) – – –
96 7.5 (2, 10) WAT (FRI) FIRST J121628.4+561209 – SDSS J121628.37+561209.4
97 7.4 (2, 10) ambiguous – – –
98 7.4 (1, 1) complex – – –
99 7.4 (2, 10) DDRG ILT J105742.50+510558.5 – –
100 7.4 (3, 9) double (FRI) NVSS J112942+542528 Brightest galaxy in a Cluster (BCG) SDSS J112942.17+542528.8

Appendix C: Visualisation and exploration tool

The LOFAR-PINK Visualisation Tool: an interactive web-
site for SOM exploration is available at15 and will eventually be
hosted at16.

The visualisation tool features: the image of a trained SOM;
a heatmap overlay, which shows how many inputs from the
dataset best matched each representative image; for each rep-
resentative image, cutouts of ten radio sources from the train-
ing set that best match it; these cutouts are visible on the sky
using an Aladin Lite snippet allowing users to see whether
the object is part of some larger structure; a histogram of the
Euclidean norm of each cutout to its best matching representa-

tive image; 100 cutouts that have the largest Euclidean norm and
are thus most rare in morphology again coupled to an Aladin Lite
snippet.

After a new SOM is trained and a corresponding dataset
is mapped to it, we prepare the static content of the website,
all within the same Jupyter notebook. The project source code
combined with the static content are uploaded to a web host-
ing server. For personal use, the upload step can be omitted and
starting a virtual PHP server in the command prompt suffices.

The webtool is built using a combination of open source
(Aladin Lite, jQuery, PHP, Python) and open format code
(HTML, CSS). The source-code and its documentation is pub-
lished on GitHub17.

15 https://rafaelmostert.com/lofar/ID51/som.php
16 https://www.astron.nl/lofar-som
17 https://github.com/RafaelMostert/lofar-pink-visualization-tool
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