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Abstract

In this paper we derive the leading quantum gravitational corrections to the
geodesics and the equations of motion for a scalar field in the spacetime containing
a constant density star. It is shown that these corrections can be calculated in
quantum gravity reliably and in a model independent way. Furthermore, we find that
quantum gravity gives rise to an additional redshift that results from the gradient
instead of the amplitude of the density profile.
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1 Introduction

In earlier work [1] we derived the leading quantum corrections to the interior and ex-
terior region of the spacetime containing a constant and uniform density star, which
are classically described by the well-known interior and vacuum Schwarzschild solutions.
These calculations were done in the framework of the effective field theory for quantum
gravity [2–8]. Corrections obtained in this way are the result of integrating out the
quantum fluctuations of the graviton.

Remarkably, despite the fact that quantum general relativity is not renormalizable,
it is possible to make predictions in quantum gravity. These predictions apply to any
model for which Lorentz invariance is a fundamental symmetry, general relativity is the
correct low energy limit, and for which quantum field theory methods remain applicable
up to the Planck scale. The quantum gravitational effective action contains two parts
consisting of local and nonlocal operators. While the Wilson coefficients of the local
part are non-calculable without knowing the ultra-violet complete theory of quantum
gravity, the Wilson coefficients of the nonlocal part of the action are calculable from first
principles and depend only on the infrared physics which is very well understood as we
know General Relativity.

Any unknown physics coming from an ultra-violet complete theory, would give rise
to extra quantum corrections in the form of local operators. However, such physics only
gives rise to contact interactions below the Planck scale. For example, integrating out
Kaluza-Klein interactions would give rise to contact interactions. Furthermore, it was
shown in [1] that corrections due to such contact interactions are subleading in the case
of a star, assuming higher order curvature terms are not unnaturally large. The leading
order corrections to the metric describing the spacetime around a star only depend on the
nonlocal physics which is calculable from first principles and in a model independent way,
without a detailed knowledge of the ultra-violet complete theory of quantum gravity.

In this paper we will use the results from Ref. [1] to derive the leading quantum
corrections to the geodesics and the scalar waves in such a quantum corrected spacetime.
A complication in these calculations may arise, since the metric corrections and curvature
invariants, such as the Ricci scalar, diverge when the surface of the star is approached.
These secularities indicate a breakdown of the perturbative approach that is used, and
result from the fact that the interior Schwarzschild solution of general relativity contains
a step-like discontinuity in the energy density at the star surface.

Since the Einstein equations in general relativity only involve second order derivatives
of the metric, step-like discontinuities result in acceptable C1 metrics. 1 Quantum gravity
in the effective field theory approach, on the other hand, is an infinite derivative theory
and it therefore requires C∞ sources in order to produce continuous metrics. In other
words, one should also determine a quantum correction to the matter source which makes
it compatible with the effective quantum equations for the metric. However, quantum
corrections to the uniform matter source appear really necessary only within a layer

1Even Dirac delta-like discontinuities in the energy density produce continuous metrics, which leads
to the well-known case of shell-like sources.
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of thickness of the order of the Planck length around the surface, and are expected to
remain phenomenologically negligible.

In any case, and although the non-smooth solutions of general relativity are not
expected to be physical, they can still serve as important toy models. This is particularly
true for the Schwarzschild interior, as it is an analytical solution of the Einstein equations,
that could approximate compact objects.

While it seems difficult to find practical applications for our results, they are a further
demonstration that model independent calculations are possible in quantum gravity at
energies below the Planck scale. This is in sharp contrast to the standard lore which
states that quantum gravity is a mystery: we do not have a theory of quantum gravity
and thus quantum gravitational calculations are not possible. This is simply not true
and our results help to reinforce this point. As such, our findings are very important as
they further demonstrate that quantum gravitational calculations are possible at energies
below the Planck scale.

This paper is organized as follows: in the next section we state the results derived
in [1]; in section 3, we solve the radial geodesics perturbatively and derive the leading
quantum corrections; in section 4 we turn to the radial modes of the scalar field and
solve their equations of motion perturbatively to derive the leading quantum corrections;
finally in section 5 we conclude.

2 The quantum corrected metric

We here consider the quantum corrected metric derived in [1], which is static and spher-
ically symmetric and can therefore be written as

ds2 = −f(r) dt2 + g(r) dr2 + r2 dΩ2. (2.1)

where dΩ2 = dθ2 + (sin θ)2 dφ2. Outside the star of radius Rs (that is, for r > Rs), the
metric functions are given by

f(r) = 1− 2GNM

r
+ αe(r) , (2.2)

g(r) =

(

1− 2GNM

r

)−1

+ βe(r) , (2.3)

where

αe(r) = α̃
2GN l2p M

R3
s

[

2
Rs

r
+ ln

(

r −Rs

r +Rs

)]

+O
(

G3
N

)

,

βe(r) = β̃
2GN l2p M

r (r2 −R2
s )

+O
(

G3
N

)

, (2.4)
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with 2

α̃ = 96π (α+ β + 3γ) (2.5)

β̃ = 192π (γ − α) . (2.6)

In the stellar interior (given by 0 ≤ r < Rs), we likewise have

f(r) =
1

4

(

3

√

1− 2GNM

Rs
−
√

1− 2GNMr2

R3
s

)2

+ αi(r) , (2.7)

g(r) =

(

1− 2GNMr2

R3
s

)−1

+ βi(r) , (2.8)

where now

αi(r) = α̃
2GN l2pM

R3
s

ln

(

R2
s

R2
s − r2

)

+O(G3
N),

βi(r) = β̃
2GN l2pM r2

R3
s (R

2
s − r2)

+O(G3
N) . (2.9)

Moreover, we assume throughout the paper that the Buchdahl limit [9] is satisfied, so
that

Rs ≥
9

8
(2GN M) . (2.10)

Let us remark that the Newton constant GN is dimensionful and the displayed per-
turbation expansion is therefore a shorthand notation for two contributions, which are
different in nature. In particular,

O
(

G3
N

)

= l2p RO
(

[2GNM/Rs]
2
)

+O
(

l4p R2
)

, (2.11)

where lp is the Planck length, and R is the curvature scalar. The true perturbation
parameters are thus the inverse of the radius of curvature in units of the Planck length
and the compactness of the star, which are dimensionless as they should.

Furthermore, the quantum corrections become secular when r ∼ Rs. This secularity
can be avoided, if the layer

(1− δ)Rs < r < (1 + δ)Rs with δ ∼
(

2GNM

Rs

)(

lp
Rs

)2

(2.12)

is excluded, as discussed in [1].
Finally, we recall that the metric can be rewritten as

ds2 = f(r)(−dt2 + dr2∗) + r2dΩ2 (2.13)

by introducing the tortoise coordinate

r∗ =

∫ r
√

g(r′)

f(r′)
dr′ . (2.14)

This form is particularly useful fo studying waves and will be employed in section 4.

2The values for α, β and γ can be found in [1].
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3 Geodesics

Geodesic equations can be derived in a way similar to the derivation in a Schwarzschild
metric. The quantum corrected star metric has four Killing vectors. Three of those are
due to the spherical symmetry, and one due to time-invariance. We use two of these
Killing vectors to fix the direction of the angular momentum along the polar axis by
setting

θ =
π

2
. (3.1)

The remaining two Killing vectors can then be written as

Kµ = (∂t)
µ , (3.2)

Rµ = (∂φ)
µ , (3.3)

and can be used to define a conserved energy

E = −Kµ
dxµ

dλ
= f(r)

dt

dλ
(3.4)

and a conserved angular momentum

L = Rµ
dxµ

dλ
= r2

dφ

dλ
. (3.5)

Furthermore, along geodesics the quantity

ǫ = −gµν
dxµ

dλ

dxν

dλ
(3.6)

is also conserved. For massive particles we can set ǫ = 1, as long as we identify λ = τ
as the proper time along the geodesic. For massless particles ǫ = 0 with λ an arbitrary
affine parameter. By making use of the conserved quantities, we can rewrite Eq. (3.6)
as

(

dr

dλ

)2

+
1

g(r)

(

L2

r2
+ ǫ

)

=
E2

f(r) g(r)
. (3.7)

Compatibly with the quantum corrections described in section 2, we will solve this
equation perturbatively in the Planck length and the star compactness, by writing

r(λ) = rc(λ) + rq(λ) , (3.8)

where

rc(λ) =

∞
∑

m=0

r0,m(λ)

(

2GNM

Rs

)m

(3.9)

represents the classical trajectory, and

rq(λ) =

∞
∑

n=1

∞
∑

m=0

rn,m(λ)

(

lp
Rs

)2n (2GNM

Rs

)m

(3.10)

is the quantum correction.
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3.1 Exterior region

In the exterior region, r > Rs, we can write

(

dr

dλ

)2

+
L2

r2
− 2GNM

Rs

(

L2

r2
+ ǫ

)

Rs

r
+ Vq(r) = η2 , (3.11)

where η =
√
E2 − ǫ and the effective quantum potential is given by

Vq(r) = E2 αe(r) + η2 βe(r)−
L2

r2
βe(r) . (3.12)

We notice that the term proportional to E2 signals a violation of the equivalence
principle, since the acceleration undergone by the particle following the geodesic depends
on its energy. However, αe = O(G2

N) ∼ (lp/Rs)
2 in the sense explained after Eq. (2.11),

and the size of this violation remains negligibly small throughout space.
The quantum corrections to the metric outside the star are larger near the surface.

In order to study geodesics for which the quantum corrections are expected to be the
largest, we impose the boundary conditions

rc(0) = Rs , (3.13)

rq (λ0 → ∞) = 0 . (3.14)

This somewhat unconventional choice of specifying the boundary conditions at two dif-
ferent points is motivated by the fact that one cannot set rq(λ = 0) = 0, as the quantum
corrections diverge at the surface of the star. Instead one can impose any boundary
condition on rq(λ0) for any λ0 > 0, as this boundary condition does not impact the
cumulative quantum corrections along a particular segment of the geodesic. For this one
has to evaluate the difference rq(λ2) − rq(λ1), for specified values λ1 and λ2, and any
such difference is independent of the specific choice of λ0.

For L = 0 one finds the leading classical solutions for an outgoing radial geodesic
(λ ≥ 0)

r0,0(λ) = η λ+Rs, (3.15)

r0,1(λ) =
ǫRs

2 η2
ln

(

1 +
η λ

Rs

)

, (3.16)

and the leading quantum corrections

r1,0(λ) = 0 (3.17)

r1,1(λ) =
α̃E2Rs

2 η2

[

2 ln

(

2Rs + ηλ

Rs + ηλ

)

− 2 +
ηλ

Rs
ln

(

1 +
2Rs

ηλ

)]

+
β̃Rs

4
ln

[

ηλ(2Rs + ηλ)

(Rs + ηλ)2

]

. (3.18)
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Notice that r11(λ) contains a secular term proportional to β̃ for λ → 0, which was
expected, and occurs within the interval of Eq. (2.12).

However, the term proportional to E2 never grows large even for λ ∼ 0, and the
violation to the equivalence principle therefore remains of order (lp/Rs)

2 everywhere in
r > Rs.

3.2 Interior region

In the interior region we can write

(

dr

dλ

)2

+
L2

r2
−
[

(

L2

r2
+ ǫ

)(

r

Rs

)2

+
3E2(R2

s − r2)

2R2
s

]

2GNM

Rs

−3E2(11R4
s − 14R2

s r
2 + 3r4)

16R4
s

(

2GNM

Rs

)2

+ Vq(r) = η2, (3.19)

where we again set η =
√
E2 − ǫ and the effective quantum potential now reads

Vq(r) = E2 αi(r) + η2 βi(r)−
L2

r2
βi(r) . (3.20)

Like in the exterior, we impose initial conditions suitable for studying radial geodesics
near the surface, that is

rc(0) = Rs , (3.21)

rq

(

−Rs

η

)

= A , (3.22)

where we will fix the value of A at a later stage. For L = 0 one finds the leading classical
solution for an outgoing radial geodesic (λ ≤ 0) is given by

r0,0(λ) = η λ+Rs, (3.23)

r0,1(λ) =
ǫ λ

2 η
− (3E2 − 2 ǫ) (3Rs + η λ)

λ2

12R2
s

, (3.24)

and the leading quantum corrections read

r1,0(λ) = 0 (3.25)

r1,1(λ;x) =
α̃E2Rs

2η2

[

2 ln

(

2 +
ηλ

Rs

)

− 2 +
ηλ

Rs

{

ln

[

−ηλ

Rs

(

2 +
ηλ

Rs

)]

− 2

}]

+
β̃Rs

4

{

2 + 2
ηλ

Rs
− ln

[

−
(

1 +
2Rs

ηλ

)]}

+A . (3.26)

Notice that r11(λ) also contains a secular term proportional to β̃ for λ → 0 which, like
for the exterior expression (3.18), occurs within the interval given in Eq. (2.12).
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3.3 Crossing the surface

By means of the previous results, we can analyze the discontinuities (of quantum origin)
that the radial geodesics would encounter across r = Rs. Since we assumed initial
conditions such that the classical radial geodesics rc can be joined continuously across
r = Rs, we just need to calculate the difference between the non-vanishing quantum
exterior correction in Eq. (3.18) and the interior analogue in Eq. (3.26) at r = Rs, which
yields

lim
λ→0

[

rext1,1 (λ)− rint1,1(λ)
]

=
β̃ Rs

2
[ln(2) − 1]−A. (3.27)

We then notice that the interior and exterior geodesics can be continuously connected
by fixing A such that the boundary condition for the interior solution is given by

rintq

(

−Rs

η

)

=
β̃ Rs

2
[ln(2)− 1] , (3.28)

provided for the exterior solution one employs the condition

rextq (∞) = 0 , (3.29)

which was used to determine Eq. (3.18).
One could go further and check the smoothness of the solution, and find that there

is a discontinuity in the first derivative that cannot be removed. However, this is not a
physical effect, as it occurs in the interval (2.12), and is thus expected to be regularized
once the interior Schwarzschild solution is smoothened like we wrote in the Introduction.

4 Scalar Fields

The equation of motion for a free scalar field Φ with mass µ is given by

�Φ = µ2 Φ . (4.1)

Since our metric (2.13) has spherical symmetry, we can separate the angular variables
from the other coordinates and write Φ(t, r, θ, φ) = Φ(t, r)S(θ, φ), where S can be de-
composed in the usual spherical harmonics satisfying

(

∂2
θ +

cos θ

sin θ
∂θ +

1

(sin θ)2
∂2
φ

)

Y (θ, φ) = − l(l + 1)Y (θ, φ) . (4.2)

It is then convenient to consider one mode at a time and further separate time from
the radial coordinate, to wit Φ(t, r) = Ψ(t)Φ(r), where Ψ ∼ ei ω t and satisfies

Ψ̈(t) = −ω2Ψ(t) . (4.3)

Furthermore, using the metric (2.13) with the tortoise-like coordinate r∗ yields the radial
equation

[

∂2
r∗

+ η2 − l(l + 1)

r2

]

u(r) = (Vc + Vq)u(r) , (4.4)
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where r∗ is given as a function of r in Eq. (2.14), η2 = ω2 − µ2 > 0 and

u(r) = r∗(r)Φ(r) . (4.5)

Notice that we have explicitly separated the effective potential into a classical part,

Vc(r) = [f(r)− α(r)− 1]

[

µ2 +
l (l + 1)

r2

]

(4.6)

and a quantum contribution

Vq(r) = α(r)

[

µ2 +
l (l + 1)

r2

]

. (4.7)

Like for the geodesics, we can expand the radial function in the same perturbative
parameters of the quantum corrections to the metric and write

u(r) = uc(r) + uq(r)

=

∞
∑

n,m=0

un,m(r)

(

lp
Rs

)2n(2GNM

Rs

)m

, (4.8)

where uc contains all the terms with n = 0.
We are particularly interested in how quantum corrections to the metric affect the

s-waves with l = 0 originating near the surface of the star. On using the fact that Vc

and Vq are of order (at least) GN, we immediately obtain

u0,0(r) = A cos [η (r∗ −R∗
s )] , (4.9)

u1,0(r) = 0 , (4.10)

where A and R∗
s are integration constants which we will suitably set in the following

subsections. The effect of the potentials (4.6) and (4.7) can then be determined per-
turbatively by treating them as sources acting on the unperturbed solutions defined by
Eqs. (4.9) and (4.10).

4.1 Exterior Region

In the exterior region, the tortoise coordinate is given by

r∗(r) = r + 2GNM ln

(

r

2GNM
− 1

)

+
1

2

∫ ∞

r

[

αe(r
′)− βe(r

′)
]

dr′ + C , (4.11)

where we set the integration constant C so that

R∗
s = Rs + 2GN M ln

(

Rs

2GNM
− 1

)

. (4.12)
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In order to determine the radial function in such a way that all corrections to the
unperturbed solutions (4.9) and (4.10) vanish at some r = (1 + δ)Rs > Rs, we impose
the boundary condition

u[(1 + δ)Rs] = A , (4.13)

where A is the same constant as in Eq. (4.9) and δ is the same parameter that defines
the excluded layer in Eq. (2.12).

We want to see how these modes behave for values of r > (1 + δ)Rs. The radial
equation (4.4) can then be rewritten as the integral equation

u(r∗) = A cos[η (r∗ −R∗
s )] +

∫ ∞

(1+δ)R∗
s

G(r∗, r
′
∗)
[

Vc(r
′
∗) + Vq(r

′
∗)
]

u(r′∗) dr
′
∗ , (4.14)

where the Green’s function is given by

G(r∗, r
′
∗) =

{

1
η
sin [η(r∗ − r′∗)] if r′∗ ≤ r∗,

0 if r′∗ > r∗.
(4.15)

In order to solve the integral equation, one needs to invert Eq. (4.11), which can be done
perturbatively using

r∗ −R∗
s = r −Rs +O (2GNM/Rs) . (4.16)

This is valid if the secularity is avoided, which is the case for r > (1+ δ)Rs. The leading
classical solution is then found to be 3

u0,1(r) =
µ2RsA

2η

{

ln(Rs/r) sin [η(r∗ −R∗
s )] + [Si(2ηr)− Si(2ηRs)] cos [η(r +Rs)]

− [Ci(2ηr)− Ci(2ηRs)] sin [η(r +Rs)]
}

, (4.17)

and the leading quantum correction

u1,1(r) =
α̃µ2A

4η2

({

γE + ln

[

4ηRs(r −Rs)

r +Rs

]

− Ci(2η|r −Rs|)
}

cos[η(r∗ −R∗
s )]

+

[

4ηRs ln

(

2r

r +Rs

)

+ 2η(r −Rs) ln

(

r −Rs

r +Rs

)

− Si(2η|r −Rs|)
]

sin[η(r∗ −R∗
s )]

− 4ηRs [Si(2ηr) − Si(2ηRs)] cos[η(r +Rs)]

+ 4ηRs [Ci(2ηr) − Ci(2ηRs)] sin[η(r +Rs)]

+ {Ci[2η(r +Rs)]−Ci(4ηRs)} cos[η(r + 3Rs)]

+ {Si[2η(r +Rs)]− Si(4ηRs)} sin[η(r + 3Rs)]
)

, (4.18)

where Ci and Si are cosine and sine integrals. Notice that the results are independent of
δ, since corrections due to δ are subleading by its definition in Eq. (2.12). Furthermore,

3Note we make use of Eq. (4.16) also in order to express the result in the coordinate r.
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at this order in perturbation theory, the divergences of the metric corrections (2.4) can
be absorbed in the phase

r∗ −R∗
s = r −Rs + 2GNM ln(r/Rs) +

1

2

∫ ∞

r

[

αe(r
′)− βe(r

′)
]

dr′

= (r −Rs)

(

1 +
2GNM

Rs

)

+

({

α̃ [ln(2)− 1] +
β̃

4
ln

[

2(r −Rs)

Rs

]

}

Rs

−1

2

{

α̃

[

1 + ln

(

r −Rs

2Rs

)]

+
3

4
β̃

}

(r −Rs)

)

2GNM

Rs

l2p
R2

s

+O (r −Rs)
2 +O

(

2GNM

Rs

)2

+O
(

lp
Rs

)4

. (4.19)

4.2 Interior Region

In the interior region the tortoise coordinate is given by

r∗(r) = r +
r

4

(

3− r2

R2
s

)

2GNM

Rs
− 1

2

∫ r

0

[

αi(r
′)− βi(r

′)
]

dr′ +D , (4.20)

and D is chosen so that
R∗

s = Rs +GNM . (4.21)

We again impose a boundary condition, in order to fix the wave mode this time at
r = (1− δ)Rs, to wit

u[(1− δ)Rs] = A . (4.22)

Like in the exterior, Eq. (4.4) yields the integral equation

u(r) = A cos[η (R∗
s − r∗)] +

∫ (1−δ)R∗
s

0
G(r∗, r

′
∗)
[

Vc(r
′) + Vq(r

′)
]

u(r′) dr′∗ , (4.23)

with the Green’s function here given by

G(r∗, r
′
∗) =

{

0 if r′∗ < r∗,
1
η
sin [η(r′∗ − r∗)] if r′∗ ≥ r∗.

(4.24)

Eq. (4.20) can again be inverted perturbatively using

R∗
s − r∗ = Rs − r +O

(

2GNM

Rs

)

, (4.25)

which is valid inside the ball 0 ≤ r < (1 − δ)Rs. The leading classical solution is then
found to be 4

u0,1(r) =
m2A

24η3R2
s

{

3η (r2 −R2
s ) cos[η(r∗ −R∗

s )]

+
[

2η2(r −Rs)(r
2 + rRs − 8R2

s )− 3(r +Rs)
]

sin[η(r∗ −R∗
s )]
}

,

(4.26)

4We make use of Eq. (4.25) to revert to the coordinate r.
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and the leading quantum correction

u1,1(r) =
α̃m2A

4η2

(

−
[

γE + ln

(

η|r2 −R2
s |

Rs

)

− Ci(2η|r −Rs|)
]

cos[η(r∗ −R∗
s )]

+

{

4ηRs ln

(

2Rs

r +Rs

)

+ 2η(r −Rs)

[

2− ln

( |r2 −R2
s |

R2
s

)]

− Si(2η|r −Rs|)
}

sin[η(r∗ −R∗
s )]

+ {Ci[2η(r +Rs)]− Ci(4ηRs)} cos[η(r + 3Rs)]

+ {Si[2η(r +Rs)]− Si(4ηRs)} sin[η(r + 3Rs)]
)

. (4.27)

The results in the interior are again independent of δ, to leading order, and the diver-
gences of the metric corrections (2.9) can also be absorbed in the phase

r∗ −R∗
s = r −Rs +

[

r

4

(

3− r2

R2
s

)

− Rs

2

]

2GNM

Rs
− 1

2

∫ r

0
αi(r

′)− βi(r
′)dr′

= r −Rs −
(

Rs

{

α̃[1− ln(2)] +
β̃

4

[

2 + ln

( |r −Rs|
2Rs

)]

}

+

{

α̃

2

[

1− ln

(

2|r −Rs|
Rs

)

+
3 β̃

8

]}

(r −Rs)

)

2GNM

Rs

l2p
R2

s

+O (r −Rs)
2 +O

(

2GNM

Rs

)2

+O
(

lp
Rs

)4

. (4.28)

5 Discussion

In this work we calculated the leading quantum corrections to the geodesics and the
scalar waves in a spacetime containing a constant and uniform density star. We have
shown as a proof of principle that such calculations can be done in quantum gravity.
Furthermore, we have found that the divergences at the surface of the star found in
Ref. [1], do not cause serious issues for such calculations. In fact, these divergences
can be kept well under control, if a Planck length layer around the surface of the star
is excluded from the analysis. It is then possible to connect the interior and exterior
solutions in a continuous, but not differentiable way, between the boundaries of such a
layer.

In the case of geodesics the quantum corrections only affect the velocity with respect
to the proper time for a particle following the geodesic. For scalar waves on the other
hand the quantum corrections give rise to both wavelike perturbations to the classical
wave solution and to a phase shift of the classical solution. The latter could in principle
lead to a measurable blueshift when the star surface is approached. However, this would
require compact objects to have density profiles that are smoothened out within a Planck
length interval around the surface of the star, and thus derivatives of the energy density
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that exceed the Planck scale. For any realistic matter distribution one would expect
that all derivatives of the energy density remain below the Planck scale.

We conclude that neither the perturbations nor the phase shift are expected to
be measurable for realistic density profiles with current or near future experiments.
However, the latter effect is in fact very interesting, as it shows that quantum gravity
introduces a redshift due to the gradient of the density profile, while the redshift in
general relativity results only from the presence of mass.
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this work was carried out.

References

[1] X. Calmet, R. Casadio and F. Kuipers, “Quantum Gravitational Corrections to a
Star Metric and the Black Hole Limit,” Phys. Rev. D 100, no. 8, 086010 (2019)

[2] S. Weinberg, “Ultraviolet Divergences In Quantum Theories Of Gravitation,” in
General Relativity: An Einstein Centenery Survey, Cambridge, UK, 790 (1980).

[3] A. O. Barvinsky and G. A. Vilkovisky, “The Generalized Schwinger-de Witt Tech-
nique And The Unique Effective Action In Quantum Gravity,” Phys. Lett. 131B,
313 (1983).

[4] A. O. Barvinsky and G. A. Vilkovisky, “The Generalized Schwinger-Dewitt Tech-
nique in Gauge Theories and Quantum Gravity,” Phys. Rept. 119, 1 (1985).

[5] A. O. Barvinsky and G. A. Vilkovisky, “Beyond the Schwinger-Dewitt Technique:
Converting Loops Into Trees and In-In Currents,” Nucl. Phys. B 282, 163 (1987).

[6] A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 2: Second
order in the curvature. General algorithms,” Nucl. Phys. B 333, 471 (1990).

[7] I. L. Buchbinder, S. D. Odintsov and I. L. Shapiro, “Effective action in quantum
gravity,” Bristol, UK: IOP (1992) 413 p

[8] J. F. Donoghue, “General relativity as an effective field theory: The leading quan-
tum corrections,” Phys. Rev. D 50, 3874 (1994)

[9] H. A. Buchdahl, “General Relativistic Fluid Spheres,” Phys. Rev. 116, 1027 (1959).

12


	1 Introduction
	2 The quantum corrected metric
	3 Geodesics
	3.1 Exterior region
	3.2 Interior region
	3.3 Crossing the surface

	4 Scalar Fields
	4.1 Exterior Region
	4.2 Interior Region

	5 Discussion

