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Abstract
We show that the bootstrapped Newtonian poten-
tial generated by a uniform and isotropic source does
not depend on the one-loop correction for the matter
coupling to gravity. The latter however affects the re-
lation between the proper mass and the ADM mass
and, consequently, the pressure needed to keep the
configuration stable.

PACS - 04.70.Dy, 04.70.-s, 04.60.-m

1 Introduction and motivation
Black holes represent problematic predictions of gen-
eral relativity, particularly in that they feature clas-
sical curvature singularities [1,2], which further seem
to make hardly any sense in a quantum context. One
therefore expects that a complete description of grav-
ity will be modified by quantum physics. For this
reason, an extension of Newtonian gravity that con-
tains non-linear interaction terms was developed in
Refs. [3–6], as a toy model to describe static, spheri-

∗E-mail: casadio@bo.infn.it
†E-mail: octavian.micu@spacescience.ro
‡jmureika@lmu.edu

cally symmetric sources in a quantum fashion. 1 As
we shall review below, the non-linear term describ-
ing the gravitational self-interaction is in particular
obtained by coupling the gravitational potential to
the Newtonian gravitational potential energy den-
sity (1.5). 2 For this reason, this approach is termed
bootstrapped Newtonian gravity. Solutions were then
found corresponding to homogeneous matter distri-
butions of radius R for which no Buchdahl limit [10]
appears, but still require increasingly large pressure
to counterbalance the gravitational pull for increasing
compactness.

Indeed, the model naturally contains two mass pa-
rameters, one which appears in the potential outside
the source and can be identified with the Arnowitt-
Deser-Misner (ADM) mass [9], and a second mass
term M0 that is simply the volume integral of the
proper density (from which the energy associated
with the pressure is excluded). Since only M can
be measured by studying orbits around the compact
object, we shall define the compactness in terms of
M as GNM/R like in Ref. [6]. One then obtains a
unique relation between M0 and M . As a further

1The issue of building a quantum description will be tackled
elsewhere [7, 8].

2The same term can also be obtained by expanding the
Einstein-Hilbert action around flat space (for the details see
Appendix B of Ref. [5]).
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development of the model, we are here interested in
analysing in more detail the effects of the couplings
introduced in Ref. [6] on these two masses.

We recall from Ref. [5] that a non-linear equation
for the potential V = V (r) describing the gravita-
tional pull on test particles generated by a matter
density ρ = ρ(r) can be obtained starting from the
Newtonian Lagrangian 3

LN[V ] = −4π

∫ ∞
0

r2 dr

[
(V ′)

2

8πGN
+ ρ V

]
(1.1)

and the corresponding Poisson equation of motion

r−2
(
r2 V ′

)′ ≡ 4V = 4πGN ρ . (1.2)

We can then include the effects of gravitational self-
interaction by noting that the Hamiltonian

HN[V ] = 4π

∫ ∞
0

r2 dr

(
− V 4V

8πGN
+ ρ V

)
, (1.3)

computed on-shell by means of Eq. (1.2), yields the
total Newtonian potential energy

UN[V ] = 2π

∫ ∞
0

r2 dr ρ(r)V (r)

= −4π

∫ ∞
0

r2 dr
[V ′(r)]

2

8πGN
, (1.4)

where we assumed boundary terms vanish. Following
Refs. [3–6], one can view UN as given by the volume
integral of the gravitational current

JV = − [V ′(r)]
2

2πGN
. (1.5)

We can also include the source term

Jρ = −2V 2 , (1.6)

which comes from the linearisation of the volume
measure around the vacuum [5] and can be inter-
preted as a gravitational one-loop correction to the
matter density. As we recalled above, in Ref. [3],
no Buchdahl limit [10] was found but the pressure p
becomes very large for compact sources with a size
R . RH ≡ 2GNM , and one must therefore add a
corresponding potential energy UB such that

p = −dUB

dV
. (1.7)

This can be easily included by sim-
ply shifting ρ → ρ + p to yield 4

L[V ] = −4π

∫ ∞
0

r2 dr

[
(V ′)

2

8πGN
+ (V + qρ Jρ) (ρ+ p) qV JV V

]

= −4π

∫ ∞
0

r2 dr

[
(1− 4 qV V ) (V ′)

2

8πGN
+ V (1− 2 qρ V ) (ρ+ p)

]
, (1.8)

where the non-negative coefficients qV and qρ play
the role of coupling constants for the graviton cur-
rents JV and Jρ 5. The associated effective Hamilto-
nian is simply given by

H[V ] = −L[V ] , (1.9)
3Since all functions only depend on the radial coordinate r,

we use the notation f ′ ≡ df/dr.
4This way of including the pressure is in analogy with the

definition of the Tolman mass [11].
5Different values of qV can be implemented in order to ob-

tain the approximate potential for different motions of the test
particles in general relativity.

and the Euler-Lagrange equation for V is given by
the modified Poisson equation

4V =4πGN
1− 4 qρ V

1− 4 qV V
(ρ+ p) +

2 qV (V ′)
2

1− 4 qV V
.(1.10)

We can therefore see that in this simplified boot-
strapped picture, there appears an “effective Newton
constant”

G̃eff =
1− 4 qρ V

1− 4 qV V
GN , (1.11)
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as well as an “effective self-coupling”

qeff =
qV

1− 4 qV V
. (1.12)

It is interesting to note that both effective couplings
decrease when the field V is negative and large if
qρ < qV , something one would expect, e.g. in the
asymptotic safety scenario [12].

The conservation equation that determines the
pressure reads

p′ = −V ′ (ρ+ p) . (1.13)

In the vacuum (where ρ = p = 0), Eq. (1.13) is triv-
ially satisfied and Eq. (1.10) is exactly solved by [3]

V =
1

4 qV

[
1−

(
1 +

6 qV GNM

r

)2/3
]
, (1.14)

where the integration constants were fixed in order to
recover the Newtonian behaviour at large distance,

VN = −GNM

r
. (1.15)

Note that we can now take the limit qV → 0 and
precisely recover the Newtonian potential (1.15), as
one would expect by first considering this limit in
Eq. (1.10). We also note that the large r expansion
of the solution (1.14) reads

V ' −GNM

r
+ qV

G2
NM

2

r2
, (1.16)

so that qV always affects the post-Newtonian order.
In the following analysis, we are specifically inter-

ested in the effect of the one-loop coupling qρ on the
relation between the mass M and the proper mass
M0 of the source (which we will introduce shortly),
hence we set qV = 1 and consider the range qρ ≥ 0.

2 Interior solutions
In order to derive the interior potential, we proceed
as in the previous Refs. [3–6], in which the source
is simply modelled as a spherically-uniform proper
density distribution of matter with radius R,

ρ = ρ0 ≡
3M0

4π R3
Θ(R− r) , (2.1)

where Θ is the Heaviside step function and the total
mass M0 is defined as

M0 = 4π

∫ R

0

r2 dr ρ(r) . (2.2)

We use Eq. (1.13) to express the pressure in terms
of the potential itself like in Ref. [6] as

p = ρ0

(
eVR−V − 1

)
(2.3)

and obtain

4V =
3GNM0

R3

(
1− 4 qρ V

1− 4V

)
eVR−V +

2 (V ′)
2

1− 4V
.(2.4)

Regularity conditions in the centre are required to be
met by the solutions, specifically

V ′in(0) = 0 , (2.5)

where Vin = V (0 ≤ r ≤ R), and they must also satisfy
matching conditions with the exterior solution at the
surface,

Vin(R) = Vout(R) ≡ VR =
1

4

[
1− (1 + 6X)

2/3
]
(2.6)

V ′in(R) = V ′out(R) ≡ V ′R =
X

R (1 + 6X)1/3
, (2.7)

where Vout = V (R ≤ r). We also introduced the
“outer” compactness

X =
GNM

R
, (2.8)

where it is important to keep in mind that the ADM
mass M 6= M0 in general.

2.1 Small and medium compactness
We can approach the problem in a similar way as in
Ref. [6] for the case when the radius of the source R
is much larger or of the order of GNM . An analytic
approximation Vs for Vin can be obtained by expand-
ing around r = 0, and thus the expression for the
potential in (2.4) can be written

Vs ' V0 +
GNM0

2R2

(
1− 4 qρ V0

1− 4V0

)
eVR−V0 r2 , (2.9)

where V0 ≡ Vin(0) < 0. We also used the regularity
condition (2.5), which constrains all odd order terms
in r from the Taylor expansion about r = 0 to vanish.

After imposing the boundary conditions (2.6) and
(2.7), we find that the potential has the same expres-
sion for any values of qρ,

Vs '
R2
[
(1 + 6X)

1/3 − 1
]

+ 2X
(
r2 − 4R2

)
4R2 (1 + 6X)

1/3
,(2.10)
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Figure 1: Ratio M0/M for small and medium com-
pactness for qρ = 1 (dashed line), and qρ = 0 (solid
line). In these two cases M0 is always different from
M (dotted line).

but the relation between M0 and M does depend on
qρ,

M0

M
' e

− X

2(1+6X)1/3 (1 + 8X)

(1 + 6X)
2/3
[
1− qρ + (1+8X)

(1+6X)1/3
qρ

] , (2.11)
which is plotted for the two cases qρ = 1, respectively
qρ = 0 in Fig. 1. Different values of qρ interpolate
between these cases and a critical value of qρ = qs

can be found such that M0 = M (see Fig. 2),

qs '
(1 + 8X) e

− X

2 (1+6X)1/3 − (1 + 6X)1/3

(1 + 6X)1/3
[
1 + 8X − (1 + 6X)1/3

] . (2.12)
For qs . qρ the mass M0 < M as in Ref. [6], whereas
M0 > M for 0 ≤ qρ . qs. It is also worth noting
that the pressure p in Eq. (2.3) grows faster with the
compactness for 0 ≤ qρ . qs than it does for qs . qρ
(see Fig. 3).

2.2 Large compactness
In the large compactness case, GNM � R, we can
employ the linear approximation [6]

Vc ' VR + V ′R (r −R) , (2.13)

which obviously does not depend on qρ (see Ap-
pendix A for more details). The matching condi-
tions (2.6) and (2.7) at r = R are now satisfied by
construction and we can hence determine the rela-
tion between M and M0 by imposing the field equa-

0.2 0.4 0.6 0.8 1.0

GNM
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0.1
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0.3

0.4

0.5

0.6

qs

Figure 2: Critical value qs of qρ for which M = M0

for small and medium compactness.
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Figure 3: Pressure p for small and medium compact-
ness for qρ = 1 (dashed line), and qρ = 0 (solid line).

tion (2.4), yielding

M0

M
' 2 (1 + 5X)

3 (1 + 6X)
2/3
{

1− qρ
[
1− (1 + 6X)

2/3
]} ,(2.14)

which is plotted for the two cases qρ = 1, respectively
qρ = 0, in Fig. 4 and the critical value of qρ = qc such
that M0 = M ,

qc '
2 (1 + 5X)− 3 (1 + 6X)2/3

3 (1 + 6X)2/3
[
(1 + 6X)2/3 − 1

] , (2.15)

is plotted in Fig. 5. It is easy to see from Eq. (2.15)
that qc ∼ X−1/3 → 0 for X → ∞. As with smaller
values of the compactness, the mass M0 < M for
qc . qρ, whereas M0 > M for 0 ≤ qρ . qc, and
the pressure again grows with the compactness much
faster whenM0 > M (see Fig. 6). Finally, one should
keep in mind that the linear approximation becomes
rather accurate only for values of the compactness
X � 1, which explains why the ratios M0/M and
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Figure 4: RatioM0/M for large compactness for qρ =
1 (dashed line), and qρ = 0 (solid line). In these two
cases M0 is always different from M (dotted line).

the values of qρ for which M0 = M do not match
around X = 1 6.

20 40 60 80 100

GNM

R

0.02

0.04

0.06

0.08

qc

Figure 5: Critical value qc of qρ for which M = M0

for large compactness.

We have therefore shown that, not only is the outer
potential insensitive to the matter coupling qρ, but so
is the interior potential (within our approximations).
Since the outer potential only depends on the “total
ADM energy” M , the fact that the value of qρ does
not change it is expected. The value of qρ, however,
can affect the relation between M0 and M very sig-
nificantly.

6We find that the critical couplings qs and qc are numer-
ically very close for values of X ∼ 4, and that the masses
M0 = M0(X) estimated in the two regimes are also rather
close for the same compactness.

2 4 6 8 10

GNM

R

10

20

30

40

50

60

p

Figure 6: Pressure p for large compactness for qρ = 1
(dashed line), and qρ = 0 (solid line).

3 Discussion and conclusions
In this work, we focused on the effects induced by
the strength of the one-loop coupling qρ in the La-
grangian (1.8) on the potential V generated by a
static compact source of uniform density. For this
analysis, we set qV = 1 and values of qρ therefore
measure the relative strength of this contribution
with respect to the gravitational self-interaction pro-
portional to qV .

The main conclusions are that a) the potential
V is totally insensitive to the value of qρ ≥ 0 but
b) the relation between the ADM mass M and the
proper mass M0 does depend on qρ. In particular,
M0 > M and the pressure necessary to keep the sys-
tem in equilibrium is much larger when qρ < qcr,
where qcr ' qs in Eq. (2.12) for small compactness
GNM . R and qcr ' qc in Eq. (2.15) for large
compactness GNM > R. Since qcr < 1 = qV , this
case was not covered in Ref. [6], where we assumed
qρ = qV and we always hadM0 < M accordingly. We
also remark that qc � 1 for very large compactness
GNM � R and that it asymptotes to zero, which
makes this case somewhat less likely to play a rel-
evant role in modelling (quantum) black holes than
the case studied in Ref. [6].

We conclude by noting that the fact the potential V
for static configurations does not change with qρ, and
is therefore insensitive to M0, but only depends on
the total mass M and radius R of the source appears
as a form of Birkhoff’s theorem in the bootstrapped
Newtonian picture.
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A Comparison method for large
compactness

Using the comparison method for non-linear differen-
tial equations, it was shown in Ref. [6] that the linear

potential (2.13) is a good approximation in the large
compactness regime for qρ = 1, except in a (very)
small region near r = 0, where it does not satisfy the
boundary condition (2.5). We briefly show here that
this still holds for qρ ≥ 0.

The comparison theorems [13–15] (see also Ap-
pendix C in Ref. [6]) ensure that the solution to
Eq. (2.4) must lie in between any two bounding func-
tions,

V− < Vin < V+ . (A.1)

which satisfy (suitably generalised) bound-
ary conditions and are such that E+(r) < 0
and E−(r) > 0 for 0 ≤ r ≤ R, where

E± ≡ 4V± −
3GNM

±
0 (M)

R3

(
1− 4 qρ V±
1− 4V±

)
eVR−V± −

2
(
V ′±
)2

1− 4V±
. (A.2)

For X ≡ GNM/R � 1, we consider the simpler
equation

ψ′′ =
3GNM0

R3
eVR−ψ , (A.3)

which is solved by

ψ(r;A,B) = −A
(
B +

r

R

)
+ 2 ln

[
1 +

3GNM0

2A2R
eA (B+r/R)+VR

]
, (A.4)

where the constants A, B and M0 are determined by
the boundary conditions (2.5), (2.6) and (2.7). Reg-
ularity at r = 0 in particular yields

M0 =
2A2R

3GN
e−AB−VR . (A.5)

Eq. (2.7) for the continuity of the derivative across
r = R then reads

A tanh(A/2) ' A = RV ′R , (A.6)

and he continuity Eq. (2.6) for the potential,

2 ln
(

1 + eRV
′
R

)
−RV ′R (1 +B) = VR , (A.7)

can be used to express B in terms of M and R.
Putting everything together, we obtain [6]

ψ(r;X,R) ' 1

2

(
X√

6

)2/3(
2 r

R
− 5

)
. (A.8)

Bounding functions for Eq. (2.4) can then be ob-
tained as

V± = C± ψ(r;A±, B±) , (A.9)

where A±, B± and C± are constants computed by im-
posing the boundary conditions (2.5), (2.6) and (2.7).
One first determines a function VC = C ψ(r;A,B)
and corresponding mass M0 which satisfy the three
boundary conditions for any constant C and, for fixed
values of R, X and qρ, one can then numerically de-
termine a constant C+ such that E+ < 0 and a con-
stant C− < C+ such that E− > 0. For example, for
the limiting case qρ = 0 and X = 103, we obtain
C+ ' 1.73 and C− ' 1.05. The two bounding func-
tions are then plotted in Fig. 7 along with the linear
approximation (2.13). For a comparison, we recall
that C+ ' 1.6 and C− ' 1 for qρ = 1 and X = 103

from Ref. [6].
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Figure 7: Bounding functions V− (dashed line) and
V+ (dotted line) vs linear approximation (solid line)
for qρ = 0 and x = 103. Bottom panel is a close up
view near r = 0.
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