
11 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Montagna F., Mach S., Benatti S., Garofalo A., Ottavi G., Benini L., et al. (2022). A Low-Power
Transprecision Floating-Point Cluster for Efficient Near-Sensor Data Analytics. IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, 33(5), 1038-1053 [10.1109/TPDS.2021.3101764].

Published Version:

A Low-Power Transprecision Floating-Point Cluster for Efficient Near-Sensor Data Analytics

Published:
DOI: http://doi.org/10.1109/TPDS.2021.3101764

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/870155 since: 2022-05-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TPDS.2021.3101764
https://hdl.handle.net/11585/870155

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Montagna et al.

 "A Low-Power Transprecision Floating-Point Cluster for Efficient
Near-Sensor Data Analytics"

in
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 5, pp. 1038-
1053, 2022

The final published version is available online at:
https://doi.org/10.1109/TPDS.2021.3101764

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

1

A Low-Power Transprecision Floating-Point
Cluster for Efficient Near-Sensor Data Analytics

Fabio Montagna, Stefan Mach, Simone Benatti, Angelo Garofalo, Gianmarco Ottavi,
Luca Benini, Fellow, IEEE, Davide Rossi, Member, IEEE, and Giuseppe Tagliavini, Member, IEEE

Abstract—Recent applications in low-power (1-20 mW) near-sensor computing require the adoption of floating-point arithmetic to
reconcile high precision results with a wide dynamic range. In this paper, we propose a low-power multi-core computing cluster that
leverages the fined-grained tunable principles of transprecision computing to provide support to near-sensor applications at a minimum
power budget. Our solution – based on the open-source RISC-V architecture – combines parallelization and sub-word vectorization
with a dedicated interconnect design capable of sharing floating-point units (FPUs) among the cores. On top of this architecture, we
provide a full-fledged software stack support, including a parallel low-level runtime, a compilation toolchain, and a high-level
programming model, with the aim to support the development of end-to-end applications. We performed an exhaustive exploration of
the design space of the transprecision cluster on a cycle-accurate FPGA emulator, varying the number of cores and FPUs to maximize
performance. Orthogonally, we performed a vertical exploration to identify the most efficient solutions in terms of non-functional
requirements (operating frequency, power, and area). We conducted an experimental assessment on a set of benchmarks
representative of the near-sensor processing domain, complementing the timing results with a post place-&-route analysis of the power
consumption. A comparison with the state-of-the-art shows that our solution outperforms the competitors in energy efficiency, reaching
a peak of 97 Gflop/s/W on single-precision scalars and 162 Gflop/s/W on half-precision vectors. Finally, a real-life use case
demonstrates the effectiveness of our approach in fulfilling accuracy constraints.

Index Terms—RISC-V, transprecision, parallel computing, sub-word vectorization, FPU interconnect, near-sensor computing

F

1 INTRODUCTION

THE pervasive adoption of edge computing is increasing
the computational demand for algorithms targeted on

low-power embedded devices operating in the mW range.
Besides the aggressive optimization strategies adopted on
the algorithmic side, there is a great effort to find the best
trade-off between architectural features and computational
capabilities [1]. Indeed, deploying artificial intelligence al-
gorithms or digital signal processing (DSP) on near-sensor
devices poses several challenges to resource-constrained
low-power embedded systems.

Fixed-point arithmetic is a well-established paradigm in
embedded systems optimization since it allows a simplified
numerical representation for real numbers at high energy
efficiency [2]. Nevertheless, many applications require high
precision results characterized by a wide dynamic range
(e.g., the accumulation stage of support vectors or feed-

• F. Montagna and G. Tagliavini are with the Dept. of Computer Science
and Engineering (DISI), University of Bologna, Italy.
E-mail: {fabio.montagna, giuseppe.tagliavini}@unibo.it

• S. Mach and L. Benini are with the Dept. of Information Technology and
Electrical Engineering (D-ITET), ETH Zürich, Switzerland.
E-mail: {smach, benini}@iis.ee.ethz.ch

• A. Garofalo, G. Ottavi, S. Benatti, L. Benini and D. Rossi are with
the Dept. of Electrical, Electronic, and Information Engineering (DEI),
University of Bologna, Italy.
E-mail: {angelo.garofalo, gianmarco.ottavi2, simone.benatti, davide.rossi,
luca.benini}@unibo.it

This work has been partially supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement numbers
732631 (OPRECOMP), 863337 (WiPLASH), and 857191 (IOTWINS). The
hardware and software IPs developed in this work are open-source, with the
goal of supporting and boosting an innovation ecosystem focusing on low-
power computing for the IoT.

forward inference for deep neural networks). In these cases,
fixed-point implementations may suffer from numerical in-
stability, requiring an in-depth analysis to make the result
reliable. This methodology implies additional code sections
to normalize and adjust the dynamic range avoiding satu-
ration (e.g., the fixed-point implementation of linear time-
invariant digital filters described in [3]). As a result, fixed-
point arithmetic is not necessarily the most energy-efficient
solution since the code requires real-time adaptations of the
dynamic range that affect performance significantly and in-
crease the time-to-market [2]. To cope with these issues, the
adoption of single-precision floating-point (FP) arithmetic
is a well-established paradigm for embedded low-power
systems, such as ARM Cortex M4, a microcontroller (MCU)
architecture that is the de facto standard for FP-capable low-
power edge nodes. Combining FP and fixed-point arith-
metic, depending on the computational requirements, is the
typical approach for optimizing Cortex M4 applications.
The main shortcomings of this approach are related to the
manual analysis for the format selection (float vs. fixed), the
tuning required for adjusting the fixed-point dynamic range,
and the software overhead to make the format conversions.
Furthermore, the usage of mixed (i.e., floating-fixed point)
representation introduces several architectural bottlenecks
in managing the pipelines and the register file, such as flush-
ing or stalls that reduce the computational efficiency of these
approaches. Finally, at least in commercial architectures, the
floating-point unit (FPU) cannot be turned off when the
core executes fixed-point operations, resulting in a further
reduction energy efficiency reduction.

In this scenario, transprecision computing [4] is emerging

2

TABLE 1
Floating-point formats used in low-power embedded systems.

Format1 Exponent Mantissa Range Accuracy2

float 8 23 1.2× 10−38 – 3.4× 1038 7.2
bfloat16 8 7 1.2× 10−38 – 3.4× 1038 2.4
float16 5 11 5.9× 10−88 – 6.5× 104 3.6
1 Number of bits. 2 Decimal digits.

as a successful paradigm for embedded computing systems.
This paradigm is an evolution of approximate computing,
and it aims at tuning approximation at a fine grain during
the computation progress through hardware and software
control mechanisms. In the context of FP computations,
this approach requires the availability of hardware units
providing efficient support for multiple FP formats [5].
The IEEE 754-2008 standard [6] describes five FP formats,
including the 16-bit half-precision format (float16) and the
32-bit single-precision format (float). Moreover, bfloat16 is an
alternative 16-bit format dedicating 8 bits to the exponent
field, in contrast with the 5 bits used in the IEEE half-
precision format; this trade-off allows to handle the same
dynamic range of the float format losing some precision.
Relevant applications in the field of near-sensor computing
as well as state-of-the-art (SoA) machine learning algorithms
widely rely on float16 and bfloat16 formats since many
ML models, such as Temporal Convolutional Networks
(TCN) or Convolutional Neural Networks (CNN), tolerate
lower precision arithmetic without losing their accuracy
[7]. Adopting the smaller format that satisfies the applica-
tion accuracy requirements paves the way for substantial
improvements in performance and energy consumption.
For instance, Quantized Neural Networks (QNNs) encode
weights or activations into 8-bit or smaller data types with
a negligible accuracy loss – around 2% between 8-bit and
float models of a MobileNet SSD topology [8]. Nevertheless,
programmers need full software support in the compilation
toolchain and also a consolidated methodology for tun-
ing the precision of FP variables [9]. Table 1 provides an
overview of the discussed formats.

A major optimization enabled by FP bitwidth reduc-
tion relies on applying the single-instruction-multiple-data
(SIMD) approach on multiple sub-word elements simultane-
ously. These data types are known as packed-SIMD vectors.
As a clear benefit, SIMD operations act on multiple data
elements of the same size and type simultaneously, offering
a theoretical 2× speed-up for 16-bit data. Moreover, vector-
ization of 16-bit types enables an equivalent reduction of
the memory footprint, allowing to store bigger models in
the same amount of memory. This approach also enables
more effective data movements, as multiple elements can be
transferred concurrently.

An architectural design that aims to achieve the goals
discussed above must exploit additional features of the
ultra-low-power (ULP) computing domain. A tightly-
coupled cluster composed of several processing elements
(PEs) enables to improve the computational capabilities of
the system using parallel programming techniques without
increasing the operating frequency. Specialized hardware
extensions allow programmers to accelerate key parallel

patterns and exploit the advantages of packed-SIMD opera-
tions. Combining these features with near-threshold com-
puting on a fully programmable multi-core architecture
leads to a highly scalable and versatile system suitable for
a wide range of applications. The total number of FPUs
and their sharing among the cluster cores require careful
evaluation since these aspects directly impact area and
energy efficiency. For instance, having a dedicated FPU
for each core can be detrimental if the data demand from
the PEs can not be satisfied by the memory throughput:
this effect is known as the Von Neumann bottleneck [10].
Thus, reducing the number of FPUs and adopting a sharing
policy among the cores can be beneficial to improve overall
efficiency. Another aspect to consider is the pipelining of the
FPU unit, which allows designers to increase the maximum
operating frequency to the cost of potential deterioration
of performance if pipeline latency cannot be completely
hidden. In this complex scenario, finding the best trade-off
requires an accurate exploration of the design space that
includes the definition of adequate metrics and an experi-
mental assessment of kernels from end-to-end applications.

In this paper, we propose the design of a transprecision
computing cluster tailored for applications in the domain
of low-power (1-20 mW) near-sensor computing and its
complete software ecosystem. The main contributions of our
work are:

• The architectural design of the transprecision cluster.
A dedicated design for the FPU interconnect enables
multiple policies for FPU sharing, with the possibil-
ity to guarantee different trade-offs.

• A complete software infrastructure that includes
a low-level runtime environment to enable effi-
cient parallel programming, an extended compila-
tion toolchain to support transprecision features, and
a high-level programming model (OpenMP) highly
optimized to exploit the architectural features.

• A comprehensive exploration of the design space
considering different architectural configurations of
the transprecision cluster: the number of cores, the
number of FPUs and the related sharing factor, the
number of pipeline stages in the FPUs. We have
performed this exploration on an accurate hardware
emulator implemented on an FPGA board.

• A vertical exploration to identify the most effi-
cient solutions optimizing non-functional require-
ments (i.e., operating frequency, power, and area).
For this evaluation, we have considered the ex-
perimental results and power/area figures derived
from post place-&-route (P&R) models in 22nm FDX
technology. This exploration provides guidelines to
instantiate an optimal proper cluster configuration
depending on the target application domain and
expected performance.

• A comparison with the most efficient configurations
deriving from the design space exploration with SoA
solutions, considering a broader scenario that in-
cludes high-performance and embedded computing
domains.

• The description of a use case that demonstrates the
effective adoption of the transprecision cluster and

3

its software infrastructure in a real-life application.
This contribution shows how multiple formats can
be used and the consequences of mixed-precision
computations on application accuracy.

Our experimental results show that the configuration
with 16 cores and private FPUs configured with one
pipeline stage provide the best performance (5.92 Gflop/s),
the one with 16 cores and private FPUs configured with
zero pipeline stages is the most energy-efficient (167
Gflop/s/W), and the configuration with 8 cores and 4
shared FPUs configured with one pipeline stage is the most
area-efficient (3.5 Gflop/s/mm2). Ultimately, the energy
efficiency of the transprecision cluster outperforms all the
other solutions that provide FP support in the area of
embedded computing.

The rest of the paper is organized as follows: Section 2
presents the related work. The proposed architecture of the
transprecision cluster is presented in Section 3. Section 4
describes the programming model and the compilation
toolchain. Sections 5 and 6 present the experimental results
and a comparison with previous works, respectively. Finally,
Section 7 concludes the whole paper.

2 RELATED WORK

This section provides an overview of the current SoA. First,
we consider the main alternatives available for platform and
component design. Then, we explore the role of packed-
SIMD and vector units in embedded platforms, as they
are central to our discussion. We also discuss software-
based approaches since they represent a platform-agnostic
alternative to our solution. Finally, we provide an overview
of both low-power and high-end embedded systems that
provide FP support because these architectures provide us
a baseline to compare our results.

2.1 Non-IEEE floating-point formats

In recent years, researchers have started to explore custom
formats that are alternative to the IEEE standard ones and
their closer derivatives (e.g., bfloat16) [7]. Coleman et al. [11]
propose an FPU based on the logarithmic number system
(LNS) that is almost 2.5× faster than standard FP units in
non-linear processing kernels. Alternatively, Universal num-
bers (UNUMs) adopt a variable-width representation based
on interval arithmetic to guarantee that the result contains
the exact solution [12]. The variable width provided by
UNUM enables to scale up precision in scientific computing
applications [13], but current hardware implementations are
not suitable for the area and energy constraints of the em-
bedded computing domain. A recent version of the UNUM
specification, known as UNUM type III or posit [14], proposes
a solution to the hardware overhead issue. Tiwari et al. [15]
introduce a posit arithmetic unit supporting multiply-and-
add, division, and square root operations. The synthesis
of the IEEE-754 and posit units on a 65 nm technology
node shows that the area of the posit design is about 1.6×
higher. At the same time, the number of cycles required for
execution is almost equivalent.

The discussed solutions may represent a viable alterna-
tive to reduce execution time in our target domain. How-
ever, we have not included these hardware components
in the transprecision cluster design for two main reasons.
First, current hardware implementations are characterized
by high power and area overheads compared to actual
performance benefits [16]. Second, their adoption imposes
a significant effort by programmers since these approaches
are not natively supported as language data types.

2.2 Transprecision computing building blocks
The choice of an energy-efficient and transprecision-enabled
FPU design is a key enabler for this work. In literature,
there are several designs of FPUs that enable transprecision
operations. For instance, Kaul et al. [17] describe a variable-
precision fused multiply-and-add (FMA) unit with vector
support (1, 2, or 4 ways). Their design considers 8 bits for
the exponents and 24 bits for the mantissa. Moreover, a 5-bit
certainty field tracks the number of accurate mantissa bits:
Computations that do not fulfill the accuracy constraints
provided by the application are recomputed with increased
precision. The energy consumption for a 32 nm CMOS
implementation is 19.4 pJ/FLOP, even though the overhead
due to precision tracking and fixed-size exponents increases
the total energy consumption at the application level. More-
over, if maximum precision is required, applications become
very inefficient due to the need for repeated operations
performed at a lower precision.

Nannarelli [18] describes the design of an FPU based
on the Tunable Floating-Point (TFP) format, which supports
a variable number of bits for mantissa (from 4 to 24) and
exponent (from 5 to 8). However, this solution does not
support vectorization, which is a key enabler for energy
efficiency. Jaiswal et al. [19] present a pipelined design of
two FP adders that support multiple precision configura-
tions. The results are promising in terms of area and energy
efficiency, but this solution does not support additional FP
operations. Hardfloat [20] is an open-source library (writ-
ten in Chisel) that contains parameterized blocks for FMA
operations, conversions between integer and FP numbers,
and conversions among different FP formats. At the current
stage of development, this library offers individual function
blocks instead of a fully-featured FPU, missing unit-level
optimizations. Zhang et al. [21] present a multiple-precision
FP FMA with vector support Their work aims at minimizing
the area overhead, but the hardware sharing inside the
datapath constrains all formats to use the same latency.
Moreover, the FPU does not provide any support for scalars
in smaller formats.

FPnew [22] is an open-source transprecision floating-
point unit (TP-FPU) capable of supporting a wide range of
standard (double, float, and float16) and custom (bfloat16
and 8-bit minifloat) FP formats. FPnew supports both scalar
and packet-SIMD operations, and the experimental results
in [22] assess that this design outperforms all its competitors
in terms of area and energy efficiency. We have integrated
this FPU in our architecture, and Section 3.2 describes its
design and integration aspects in further detail. FPNew
includes a DIVSQRT module to compute divisions and
square roots using an iterative non-restoring divider, similar
to the design presented in [23].

4

2.3 Packet-SIMD support and vector units

Intel initially introduced Packed-SIMD extensions for FP
computations with the MMX and SSE ISAs. ARM later
introduced the NEON extension, which supports up to 128-
bit single-precision FP operations, which has been evaluated
as a better solution than the Intel counterpart in low-power
embedded platforms [24]. In this context, heterogeneous
architectures have also provided support for packed-SIMD
instructions featuring a DSP accelerator, such as Texas
Instruments Keystone II [25]. Considering the impact of
packed-SIMD instructions on the processing capabilities of
DSP platforms, the RISC-V consortium is working on a
dedicated ISA extension [26].

Variable-length vector units have been initially intro-
duced on the CRAY-1 architecture [27], and today they are
a well-established solution in high-end computer systems.
The ARM Scalable Vector Extension (SVE) [28] is a vector ex-
tension introduces as a SIMD instruction set for the AArch64
architecture. The SVE specification allows system designers
to choose a vector register length between 128 and 2,048
bits to satisfy different constraints. The programming model
is vector-length agnostic; there is no need to recompile the
source code or use compiler intrinsics to change the vector
length. The A64FX chip by Fujitsu is realized in TSMC 7nm
technology and implements the SVE extension, including 48
cores with support for 512-bit wide vectors and reaching
peak performance of 2.7 Tflop/s [29]. This chip has been
used in Fugaku, which entered the TOP500 list in June 2020
as the fastest supercomputer in the world.

The current working draft for the RISC-V ‘V’ vector
extension [30] defines a variable-length register file with
vector operation semantics. This extension provides support
for FP16, FP32, FP64, and FP128 types and also includes
widening FMA operations to support mixed-precision com-
putations (e.g., multiplying two FP16 registers and adding
the result to an FP32 register). Hwacha [31] is the first
embodiment of this provisional standard. It is based on
the vector-fetch paradigm and is composed of an array of
single-issue, in-order RISC-V Rocket cores [31]. In general,
the area and power consumption of these solutions are too
high for low-power, MCU-class processing systems. This
observation is the main reason why vector semantics in ULP
embedded systems are typically supported by providing
packed-SIMD instructions.

2.4 Software-based transprecision approaches

Besides approaches involving custom HW design to en-
able mixed-precision operations, several researchers have
proposed multiple-precision arithmetic libraries that extend
the IEEE754 formats to perform FP computations with arbi-
trary precision. This solution allows application designers to
overcome the limitations of fixed-format FP types without
dedicated hardware support. ARPREC [32] and GNU MPFR
[33] provide APIs to handle multiple formats characterized
by a fixed-size exponent (a machine word) and an arbitrary
size mantissa (multiples of a machine word). Arb [34] is
a C library for arbitrary-precision interval arithmetic using
the midpoint-radius representation that outperforms non-
interval solutions such as MPFR in some applications. These

libraries are widely used in contexts requiring a high dy-
namic range and are characterized by relaxed constraints on
computation time and energy consumption (e.g., scientific
computing on data center nodes). To speed up the library
execution time, Lefèvre [35] presents a new algorithm to
speed up the sum of arbitrary-precision FP number using
the MPRF internal representation, However, the approach
based on software emulation is not a viable solution for
energy-efficient embedded systems since: Time and energy
efficiency are negatively affected by at least an order of
magnitude compared with solutions based on dedicated
hardware.

Anderson et al. [36] propose a software approach for the
reduced-precision representation of FP data. They define a
set of non-standard floating-point multibyte formats (flytes)
that can be converted to the next largest hardware type
to perform arithmetic computations. The exponent is set
to the maximum number of bits of the containing type to
minimize the conversion overhead. The adoption of the
vector units available on general-purpose processors (e.g.,
Intel Haswell) or high-end accelerators (e.g., Intel Xeon Phi)
allows the software library to coalesce memory accesses and
then amortize the conversion overhead.

2.5 Low-power parallel architectures for FP computing

FPGAs are among the most promising embedded archi-
tectures for signal processing. The recent development of
heterogeneous SoCs, such as the Xilinx Zynq family, has
enabled a high level of flexibility to build heterogeneous
acceleration systems. However, the DSP-capable hardware
of these devices requires a power envelope in the order
of Watts. Modulating numerical precision of floating-point
operation is an efficient method to enable fast, accurate
computation for demanding algorithms in near-sensor pro-
cessing. Nevertheless, the design of FPUs on a low-power
FPGA, such as Lattice senseAI [37], is hampered by the
reduced LUTs capabilities of these devices as well as the
lack of DSP blocks with transprecision support.

Coarse Grain Reconfigurable Architectures (CGRAs) re-
cently emerged as a promising solution for the near-sensor
processing domain. CGRAs are systolic arrays containing
a large number of processing elements with a low-latency
routing interconnect. MuTARe [38] is a CGRA working in
the near-threshold voltage regime to achieve low energy.
This solution improves by 29% the energy efficiency of a
heterogeneous platform based on the ARM big. LITTLE
platform. However, MuTARe targets high-end embedded
systems, and it does not provide FP support. Transpire
[39] is a CGRA architecture with FP support. The authors
state an improvement of around 10× in performance and
energy efficiency compared with a RISC-V core extended
with packed-SIMD vectorization. These benefits are limited
to specific algorithms since the design of CGRAs enables
programmers to exploit different combinations of data-level
and pipeline-based parallelism. However, the domain of
near-sensor processing includes a wide variety of algo-
rithms presenting complex access patterns that cannot be
efficiently implemented on CGRAs. For example, Prasad et
al. [39] present the implementation of a Principal Compo-
nent Analysis (PCA) algorithm. Although Transpire delivers

5

remarkable efficiency, the performance of a tightly-coupled
cluster of processors scales much better with the number
of cores. Moreover, the work presented in [39] does not
consider the performance and energy reconfiguration over-
head needed to swap the different kernels of the PCA. The
results presented in Section 6 show that exploiting clusters
of software programmable processors leads to better per-
formance in a much more software-friendly programming
environment.

Mr.Wolf [1] is a multi-core programmable processor
implemented in CMOS 40nm technology. The platform
includes a tiny (12 Kgates) RISC-V core accelerated by a
powerful 8-cores cluster of RI5CY cores sharing two single-
precision FPUs. The limited number of FPUs provided by
this architecture represents a severe limitation to the maxi-
mum FP intensity that applications may expose. A primary
contribution of our work consists of finding the best tradeoff
between the number of cores and the number of available
FPUs, yet considering strict area and power constraints and
exploiting transprecision units to improve performance and
execution efficiency. In Section 6, we include Mr.Wolf in our
comparison with SoA platforms.

Helium [40] is an extension of the Armv8.1-M architec-
ture targeting low-power MCU-class computing systems.
The ISA extension includes a set of scalar and vector in-
structions supporting fixed-point (8-bit, 16-bit, and 32-bit)
and FP (float and float16, optionally double) formats. These
instructions are beneficial for a wide range of near-sensor
applications, from machine learning to DSP. The Cortex-M55
[41] core includes the Helium extension, but chips based on
this IP are not yet available on the market to perform a
comparison with our solution.

2.6 High-end embedded systems for FP computing

The most widely used commercial architectures for
compute-intensive FP workloads are GP-GPUs. With the
growth of emerging applications such as training of neural
networks, they have also started to support reduced preci-
sion floating-point formats such as brain-float and binary16.
Indeed, training algorithms for deep neural networks such
as backpropagation are naturally robust to errors. These
features of modern GPUs have also been exploited in other
application domains, such as linear algebra [42], demon-
strating significant benefits for performance and efficiency.
NVidia Pascal has been the first GPU with native sup-
port for 16-bit FP formats. The Volta microarchitecture fur-
ther extended support to reduced precision types featur-
ing mixed-precision multiply-and-add instructions; the new
Ampere microarchitecture improves performance by 2.5×,
increasing to 5× with the support for sparse computations.
However, GP-GPUs are optimized for throughput-oriented
application domains, while our platform design prioritizes
the energy and area constraints of near-sensor applications.

Other research works target neural network training and
FP-intensive workloads by leveraging specialized architec-
tures. NTX is a memory-mapped streaming co-processor
targeting inference and training of deep neural networks
in high-performance computing systems [43]. This design
removes the register-file bottleneck of SIMD architectures
accessing the memory exploiting programmable hardware

So
C

 In
te

rc
on

ne
ct

FPU
0

FPU
1

FPU
k-1

DIV-
SQRT

Logarithmic Interconnect

Event Unit

RI5CY
Core
2

RI5CY
Core
n-1

Shared FPU Interconnect

DMA Unit

C
lu

st
er

 In
te

rc
on

ne
ct

Cluster Domain
L2 Memory

SRAM
512kB

SoC Domain

RI5CY
Fabric
Ctl.

Peripherals
μDMA Unit

HyperBus

UART

Camera

QSPI

I2C

TCDM

Bank
0

TCDM

Bank
1

TCDM

Bank
2

TCDM

Bank
3

TCDM

Bank
m-1

RI5CY
Core
0

RI5CY
Core
1

I$ I$ I$ I$

Hierarchical Instruction Cache

Fig. 1. Top-level view of the proposed transprecision cluster.

loops and address generators, and enabling execution effi-
ciency close to one MAC per cycle. NTX improves energy
efficiency by 2.7× over GPGPUs, with 4.4× less silicon area,
delivering 1.2 TFLOP/s.

In [44], the memory-mapped control has been replaced
by a tiny general-purpose processor meant to drive double-
precision FPUs, improving the efficiency and flexibility of
previous approaches. This architecture introduces two ISA
extensions to reduce the pressure on the core: the stream
semantic registers (SSR) and the floating-point repetition
instruction (FREP). SSRs allow the core to implicitly encode
memory accesses as register reads/writes, removing a sig-
nificant number of explicit memory instructions. The FREP
extension decouples the FP and integer pipeline by sequenc-
ing instructions from a micro-loop buffer. The evaluation on
an octa-core cluster in 22 nm technology reports a 5× multi-
core speed-up and a 3.5× gain in energy efficiency.

The architectures discussed in this section target the
domain of servers and high-end embedded systems, and
presenting further details is beyond the scope of our work.
However, the comparison with these solutions provides
valuable insight and is discussed in Section 6.

3 ARCHITECTURE AND IMPLEMENTATION

This section illustrates the architecture of the transprecision
cluster, with a specific focus on the FPU design choices. It
also presents the results deriving from the physical imple-
mentation and the related design space exploration.

3.1 Cluster Architecture

The cluster architecture proposed in this work is a soft IP
implementing a tightly-coupled cluster of processors built
around a parametric number of RISC-V cores called RI5CY.
The cluster is integrated into an SoC featuring a standard
set of peripherals such as a JTAG interface used to pre-load
program and data into an L2 scratchpad memory accessed
by the cluster through an AXI bus. Fig.1 shows the top-level
design of the transprecision cluster.

RI5CY is a RISC-V based processor implementing
a 4-stage in-order single-issue pipeline, supporting the
RV32IMC instruction set and dedicated extensions for DSP

6

and machine learning workloads. The cores fetch instruc-
tions from a 2-levels shared instruction cache optimized
for performance and energy efficiency when running SIMD
workloads typical of near-sensor data analytics applications.
To enable the single-cycle exchange of data among cores,
they share a multi-banked Tightly-Coupled Data Memory
(TCDM) behaving as a scratchpad memory. This design choice
is a standard solution adopted in the low-power computing
domain to avoid area and energy overheads associated
with data caches [45]. From the software perspective, data
coherency is enforced by algorithms exploiting inter-core
synchronization primitives. The TCDM enables the cores
to share data through a word-level interleaved, single-cycle
latency logarithmic interconnect, allowing the execution of
data-parallel programming models such as OpenMP. A ded-
icated hardware block (Event Unit) provides low-overhead
support for fine-grained parallelism, accelerating the execu-
tion patterns typical of data-parallel programming models
(e.g., thread dispatching, barriers, and critical regions) and
enabling the adoption of power-saving policies when cores
are idle. The event unit also controls the clock gating of
the cores within the cluster. The event unit clock-gates the
cores waiting on a synchronization barrier until all the other
cores reach the barrier; at this point, all cores can resume the
program flow.

Outside the cluster, at the SoC level, the architecture
features one more memory hierarchy level, composed of a
15-cycle latency multi-banked scratchpad memory used to
serve the data bus of the cores, the instruction cache refills,
and the cluster DMA. We base the explorations performed
in this work on a set of cluster configurations with 8 and
16 cores. The L2 memory comprises 512 kB (4 × 128 kB
banks), the TCDM is 64 kB for the 8-core configurations
(16 × 4 kB banks) and 128 kB for the 16-core ones (32 × 4
kB banks). The cluster cores are connected to multiple FPU
instances, whose number and interconnect are a central part
of our exploration. Unlike the standard configuration for
the RI5CY core, the proposed cluster does not employ core-
private FPUs. Instead, a set of FPUs is shared among all
cores in the cluster, using an interconnect which enables
various mappings of cores to available FPUs. The next
section provides insights into the FPU subsystem proposed
in this work.

3.2 FPU and interconnect

The cluster exploits configurations of FPnew [22] as FPU
instances in our evaluation. FPnew is a parametric FPU
architecture that supports multiple FP formats, SIMD vec-
tors for smaller-than-32-bits data types, and the insertion
of any number of pipeline stages. The last parameter is
a key configuration knob for the design space exploration
discussed in this paper. Fig. 2 (bottom) shows an archi-
tectural overview of a single shared FPU instance. The IP
supports the standard IEEE formats, binary32 (float) and
binary16 (float16), as well as bfloat16. Some operations such
as Multiplication and Fused Multiply-Add (FMA) can also
be performed as multi-format operations, taking the prod-
uct of two 16-bit operands but returning a 32-bit single-
precision result. Such multi-format operations are helpful in
many near-sensor data analytics applications accumulating

Tag

Operand Inputs

Operation
Group
Block

COMP

Operation
Group
Block

CONV

Result Output

32

32

Vector Disassembly

32

32

Vector Assembly

16

16

Vector
Lane 2

32

Vector
Lane 1

MULTI
FMA
FP32
FP16

FP16alt

MULTI
FMA
FP16

FP16alt

Pa
ra

m
et

ric
 P

ip
el

in
e

0-
2

R
eg

is
te

rs

Fair Round-Robin Arbitration of Outputs

32

Fair Arbitration

FPU 1

Fair Arbitration

FPU 0

Fair Arbitration

FPU 2

Fair Arbitration

Core 0 Core 7Core 3Core 6Core 2Core 5Core 1Core 4

Distribution & Silencing of Unused Operands

ADD
MUL

Operation
Group
Block

FPU 3

FPU Top Level

Tag Tag Tag

FPU 3

In
te

rc
on

ne
ct

C
lu

st
er

Sh
ar

ed
 F

PU
s

Fig. 2. FPU sharing for the 8-core, 4-FPU configuration.

data in a higher-precision variable to avoid overflows or
losses of precision. To make full use of the 32-bit data path,
we enable packed-SIMD operations for the 16-bit types,
boosting the execution performance when using 16-bit data
types. Division and square root operations are disabled in
the FPU instances as these operations reside in stand-alone
blocks (DIV-SQRT), which are shared separately. The DIV-
SQRT units feature a fixed latency of 11, 7, and 6 cycles
for float, float16, and bfloat16, respectively. Moreover, since
DIV-SQRT is designed as an iterative block, back-to-back
pipelined operations are not possible when using these
units.

The individual FPU instances are linked to one or more
cores through a logarithmic tree interconnect, allowing to
share one FPU among multiple cores in a fully transparent
way from a software perspective. On the core side, the in-
terconnect interface replaces the FPU in the execution stage,
mimicking a core-private unit. The FPU instances connect
to the cores through an auxiliary processing unit (APU)
interface, featuring a ready/valid handshake and support
tagging of all in-flight operations, requiring no modification
to be shared.

In the proposed design, we employ a partial interconnect
with a static mapping of FPUs to cores, such that a core (or
a group of cores) will always access the same physical FPU
instance. It arbitrates cases of simultaneous accesses to the
FPU by using a fair round-robin policy and propagating
the ready signal to only one core, stalling other competing
cores. As such, the fact that FPUs are shared is transparent
to both the core and FPU instances. Moreover, we use a
connection scheme with interleaved allocation to reduce
access contentions on the FPUs in unbalanced workloads.
For example, in a configuration featuring eight cores and
four FPUs, units 0, 1, 2, 3 are shared among cores 0 & 4, 1 & 5,
2 & 6, and 3 & 7, respectively, as shown in Fig. 2 (top). This
approach reduces the area and timing overhead compared
to a monolithic, fully connected crossbar, which puts signifi-
cant pressure on the paths from the cores to the first pipeline

7

TABLE 2
Description of the architectural configurations of the proposed
transprecision cluster that compose the design space. Cluster

(8-16-cores), FP units (2-16), and pipeline stages (0-2).

Mnemonic Cluster FP units Pipeline Stages
8c2f0p 8-cores 2 0
8c2f1p 8-cores 2 1
8c2f2p 8-cores 2 2
8c4f0p 8-cores 4 0
8c4f1p 8-cores 4 1
8c4f2p 8-cores 4 2
8c8f0p 8-cores 8 0
8c8f1p 8-cores 8 1
8c8f2p 8-cores 8 2

16c4f0p 16-cores 4 0
16c4f1p 16-cores 4 1
16c4f2p 16-cores 4 2
16c8f0p 16-cores 8 0
16c8f1p 16-cores 8 1
16c8f2p 16-cores 8 2

16c16f0p 16-cores 16 0
16c16f1p 16-cores 16 1
16c16f2p 16-cores 16 2

stage of the FPU, severely limiting the cluster’s operating
frequency and jeopardizing energy efficiency. Moreover,
it provides an almost optimal allocation (only up to 1%
overhead in performance has been measured against a fully
connected crossbar), avoiding contentions on the shared
units also when the number of workers in parallel sections
is smaller than the number of cores.

In the remainder of the paper, we present a design space
exploration of the proposed transprecision cluster, modify-
ing the key configuration parameters presented previously
in this section, namely the pipeline stages and sharing
factor. The rationale for these design choices lies in the
fact that in most near sensor-data analytics applications,
the density of FPU instructions is smaller than 50%, hence
employing a private, per core FPU may form a bottleneck
for area and energy. On the other hand, the pipelining of
the FPU provides a powerful knob to tune the performance
and energy efficiency of the transprecision cluster. If the
number of cores and FPUs is equal (1/1 sharing factor), the
system effectively degenerates into a core-private scenario,
and the interconnect disappears from the design. In all the
considered configurations, a single DIV-SQRT unit is shared
among all cores. Finally, the proposed exploration involves
designs of 8-core and 16-core clusters with supply voltages
ranging from 0.65 V to 0.8 V to explore the whole design
space in between energy-efficient and high-performance
solutions.

3.3 Implementation

Table 2 describes the 18 different configurations, given
by the combination of the three architectural parameters
(number of cores, number of FP units, and number of FPU
pipeline stages), as described in the previous section. The
various configurations of the clusters have been synthe-
sized using Synopsys Design Compiler 2019.12, using LVT
libraries from 22nm FDX technology from Global Foundries.
Physical implementation has been performed with Cadence
Innovus v19.10-p002 1, using both 0.65 V near-threshold
(NT) and 0.8 V super-threshold (ST) corners. We considered

Fig. 3. Minimum, maximum, and median values of the frequencies for
all the configurations of the transprecision cluster, divided in NT and ST
voltage corners.

Fig. 4. Total area of all the configurations in the design space of the
transprecision cluster.

all permutations of operating conditions for signoff: fast and
slow process transistors, 125◦C and −40◦C temperatures,
±10% of the voltage supply, as well as optimistic and pes-
simistic parasitics. Power analysis has been performed with
Synopsys PrimeTime 2019.12 using the nominal corners at
0.65 V and 0.8 V, extracting value change dump (VCD) traces
through parasitic-annotated post-layout simulation of a 32-
bit floating-point matrix multiplication performed using
Mentor Modelsim 2008.06. Each configuration has been
synthesized and implemented at its maximum operating
frequency. In contrast, power consumption has been ana-
lyzed at the same operating frequency for all configurations
(100 MHz) to guarantee a fair comparison.

Fig. 3, Fig. 4 and Fig. 5 show the frequency, the area,
and the power consumption of the cluster configurations
analyzed in this work at 100 MHz. This frequency supports
a power consumption in the range of 2-4 mW. In Fig. 3, we
report the minimum, maximum, and median values of the
frequencies obtained varying the number of cores (c) and
pipeline stages (p). This analysis does not take into account
the total number of FPUs (f) since this parameter does not
affect the outcomes. When considering single-cycle latency
FPUs, we note that the entire system’s operating frequency
suffers profoundly. The long paths starting from the ID/EX
registers of the core towards the FPUs and then back to the
EX/WB registers form a considerable bottleneck for operat-
ing frequency. On the other hand, the absence of pipeline
registers makes this solution quite small and low-power.

8

Fig. 5. Total power consumption (at 100 MHz) of all the configurations in
the design space of the transprecision cluster.

When moving to single-stage pipeline solutions, we note
a significant increase in the operating frequency when using
NT cells (almost 50%). In contrast, the performance increase
using ST cells is more limited since the design already hits a
structurally critical path from the TCDM SRAMs (featuring
wide-voltage range but low-performance in ST) to the core
through the logarithmic interconnect. In all configurations
featuring one pipeline stage, we can observe an increase in
power and area due to the extra overhead of the additional
pipeline stage. When adding a second pipeline stage to the
FPUs, we can see another slight increase of frequency in all
configurations. In these configurations, we also encounter
structurally critical paths using NT through control paths of
the interconnect to the instruction cache. With two pipeline
stages, although the area increases for all configurations, the
power consumption tends to decrease thanks to the smaller
timing pressure on the FPU.

Considering the sharing factor, we note that the impact
on frequency caused by the FPU interconnect is negligible
and that the area linearly increases when moving from
1/4 to 1/1 sharing (for all configurations). On the other
hand, when moving from 1/4 to 1/2 sharing factor, the
power increases significantly due to the high utilization
of the units. When moving from 1/2 to 1/1 sharing, we
note that the power consumption decreases in almost all
cases. This effect occurs because even if we consider a
highly intensive benchmark (e.g., matrix multiplication), the
FP intensity around 50% leads to underutilization of the
available resources, causing smaller power consumption.
Additionally, the 1/1 configuration removes the intercon-
nect, which relaxes the paths through the FPU, leading to
smaller power consumption. Finally, if we consider scaling
the number of cores, we can notice that most of the power
components scale linearly with the number of cores (i.e.,
core power, TCDM power, and FPU power). On the other
hand, other components such as the interconnect and the
instruction cache scale superlinearly, indicating a smaller
efficiency for the 16-core configuration. Moreover, the op-
erating frequency of the 16-core cluster decreases compared
to the one using eight cores. This effect is due to the longer
path through the interconnects. Finally, we can notice that
the area increases less than linearly due to some blocks not
being duplicated, such as the DMA, the event unit, and the
shared banks of the I$.

4 SOFTWARE INFRASTRUCTURE

The exploitation of the transprecision cluster in end-to-end
applications requires a full software stack. For this purpose,
we designed complete support for scalar and vector data
types for the C/C++ languages, advanced optimizations to
support ISA extensions in the compiler toolchain, and a
parallel programming model to raise the level of abstraction.
All these tools are available as open-source projects on the
PULP code repository [46].

4.1 Scalar types
To enable the adoption of the new formats, we have ex-
tended the GCC front-end for C/C++ programs with new
data types, namely float16, bfloat16. In the usual cross-
compilation circumstance, the FP constants in the programs
must be represented in the target format to avoid range and
precision errors. This requirement determines that the cross
compiler cannot use the host FP arithmetic; for this purpose,
GCC includes an FP emulator to deal with constants in op-
timization passes (e.g., constant propagation). We extended
this emulator to manage the new formats.

Finally, we extended the type system to include rules
for automatic type promotion in mixed-typed expressions
involving the new FP types. In accordance with the standard
rules, promotion is based on the bit width. Consequently, a
float16/bfloat16 operand is converted to float if the expres-
sion includes a float operand. As an additional rule, bfloat16
operands are converted to float16 in expressions that include
only 16-bit types to avoid indeterminacy.

4.2 Vector types
Adopting the GCC approach for vector types, programmers
can specify vector data types through a typedef declara-
tion coupled with a vector_size attribute; the compiler
automatically lowers standard arithmetic and comparison
operations involving these types into their vector counter-
part. The ISA extension also includes cast-and-pack opera-
tions that convert two scalar single-precision operands and
insert them into two adjacent entries of a packed vector in
the destination register. These operations aim at removing
the bottleneck of “convert scalars and assemble vectors”
operations that could seriously compromise the perfor-
mance and energy efficiency of transprecision computing
techniques. A set of compiler intrinsics provides access to
cast-and-pack operations.

The automatic vectorization pass of GCC operates on
the middle-end intermediate representation [47]. This pass
analyzes the loops to replace the scalar operations with
the vectorial ones reducing the loop trip-count by the
vectorization factor. We have also extended the standard
GCC auto-vectorizer to use cast-and-pack operations. The
original version only recognizes patterns involving multi-
ple vector types with different widths using unrolling and
vector-to-vector casts (i.e., cast-and-pack semantic was not
supported).

4.3 Compiler back-end
In addition to the middle-end passes described in the pre-
vious subsection, we further extended the compiler at the

9

back-end level to support a parametric number of FPU
pipeline stages. This parameter substantially impacts the
instruction scheduling algorithm: Imprecise modeling of
the FPU instruction latency may introduce stalls due to
data dependencies with the result. We have modified the
FPU pipeline description to include the hardware func-
tional units and introduce a command-line option to specify
the number of stages in the target configuration. Based
on this option, the model specifies different latencies and
reservation delays for the functional units involved in FP
operations.

Finally, we specified a set of platform-specific param-
eters for the instruction scheduling algorithm. The GCC
algorithm uses a heuristic function to estimate the relative
costs of operations; this value enables the choice of the best
assembly sequence in case of multiple alternatives in the
lowering process.

4.4 Hardware Abstraction layer (HAL)
The architectural template of the transprecision cluster
promotes a Single-Program Multiple-Data (SPMD) parallel
paradigm. This approach is supported by a Hardware Ab-
straction Layer (HAL), which allows access to the plat-
form features with minimal overhead. The HAL provides
information such as the identifier of the core that can be
used to organize the parallel workload for both data and
task parallelism. With this approach, all the cores of the
cluster follow the same execution flow unless the program-
mer explicitly indicates that a specific region should be
executed by a subset of the cores, splitting the workload
among the cores running concurrently on different data.
Inter-core synchronization barriers are explicitly indicated
to ensure the correctness of the results. Our architecture
features dedicated hardware support that allows optimizing
synchronization construct like barriers or critical sections.
The HAL layer provides the basic primitives to support
high-level parallel programming models.

4.5 High-level parallel programming model
As a high-level approach to code parallelization, we support
OpenMP [48], a parallel programming model based on
directives that are translated by the compiler front-end into
functions calls towards a runtime environment. OpenMP
relies on the fork/join programming paradigm. A program
based on this conceptual framework executes sequentially
on a single thread and creates additional threads (fork) to
exploit parallelism in annotated code regions. After the
completion of the parallel workload, the program encoun-
ters a synchronization point (join), after which it continues
sequentially.

We optimized the OpenMP runtime to reduce three main
sources of overheads that are relevant in our target domain.
First, we reduced the overhead associated with parallel
regions by removing support for some recent features. Our
implementation is compliant with the OpenMP 3.0 specifi-
cation, except for the task directive. In real applications that
we considered, this support is sufficient for the common
requirements of this class of devices. Second, we re-designed
the synchronization primitives, which depend on the POSIX
API in the GCC reference implementation, intending to

TABLE 3
Main application domains (Domains), FP intensity (FP I.), and memory

intensity (M. I.) for scalar and vector variants of the benchmarks.

Scalar Vector
Apps Domains FP I. M. I. FP I. M. I.
CONV Audio, Image, ExG 0.33 0.67 0.28 0.29
DWT Audio, Image, ExG 0.29 0.59 0.21 0.57
FFT Audio, Image, ExG 0.32 0.52 0.26 0.38
FIR Audio, Image, ExG 0.32 0.65 0.32 0.48
IIR Audio, Image, ExG 0.19 0.55 0.17 0.33
KMEANS ExG 0.55 0.36 0.44 0.30
MATMUL Audio, Image, ExG 0.28 0.58 0.27 0.41
SVM ExG 0.27 0.53 0.21 0.52

exploit the benefits of the Event Unit (introduced in Sec-
tion 3.1). This aspect is crucial to reduce the overhead of
barriers and critical sections, which can become relevant
if compared with the optimized HAL primitives described
in Section 4.4. Third, we modified the directive lowering
performed by the GCC toolchain. Instead of calling runtime
functions and outlining the user code, loops with static
scheduling policy and implicit barriers are directly inlined.
This last point is a key enabler for the adoption of OpenMP:
A high-level model can provide a more intuitive interface
than HAL primitives, but it comes at the cost of higher
overhead when parallel workloads are fine-grained.

5 EXPERIMENTAL RESULTS

This section describes the experimental setup, the bench-
mark suite, and the main outcomes of the experiments.

5.1 Experimental Set-up
The experiments have been performed on a hardware
emulator implemented on a Xilinx UltraScale+ VCU118
FPGA board. The emulation on the FPGA provides cycle-
accurate results, with a significant speed-up of the exper-
iments compared to an RTL-equivalent simulation. A set
of non-intrusive per-core performance counters included
in the hardware design record the number of executed
instructions and cycles spent in different states (total, active,
L2/TCDM memory stalls, TCDM contention, FPU stall, FPU
contention, FPU write-back stall, instruction cache miss).
We have generated all the bitstreams for all the configu-
rations reported in Table 2 and, after loading a bitstream
on the FPGA, we load and run application binaries using
OpenOCD and GDB interfaces. The same interface is used to
load a program binary in the L2 memory, start the program
execution, and finally read the performance counters from
an emulated terminal. The values of power consumption
used to calculate the efficiency have been derived from
an annotated post-layout simulation, as described in Sec-
tion 3.3.

5.2 Benchmarks
To evaluate the different configurations of the proposed
transprecision cluster architecture, we analyzed eight bench-
marks commonly used in the near-sensor processing appli-
cations for filtering, feature extraction, classification, and
basic linear algebra functions. Table 3 illustrates the tar-
get benchmarks associated with their domains (i.e., audio

10

TABLE 4
Performance [Gflop/s], energy efficiency [Gflop/s/W], and area efficiency [Gflop/s/mm2] executing the benchmarks on the 8- and 16-cores

configurations. Performance and area efficiency are computed at 0.8 V , energy efficiency at 0.65 V . Each cell reports the best configuration name
and the corresponding value for the metric. The last line reports normalized average values.

8 CORES 16 CORES
Scalar Vector Scalar Vector

Perf. En. Eff. Area Eff. Perf. En. Eff. Area Eff. Perf. En. Eff. Area Eff. Perf. En. Eff. Area Eff.

CONV 8c8f1p
2.04

8c8f0p
91

8c4f2p
2.1

8c8f1p
2.98

8c8f0p
139

8c4f1p
3.0

16c16f1p
3.37

16c16f0p
94

16c4f2p
2.0

16c16f1p
4.78

16c16f0p
140

16c4f1p
2.7

DWT 8c8f1p
0.95

8c8f0p
45

8c4f2p
0.9

8c8f1p
1.21

8c8f0p
55

8c4f2p
1.3

16c16f1p
1.06

16c16f0p
31

16c4f2p
0.6

16c16f1p
1.11

16c16f0p
33

16c4f2p
0.8

FFT 8c8f1p
1.37

8c8f0p
61

8c4f2p
1.3

8c8f1p
1.98

8c8f0p
96

8c8f1p
1.9

16c16f1p
1.99

16c16f0p
56

16c4f2p
1.1

16c16f1p
2.74

16c16f0p
78

16c4f2p
1.7

FIR 8c8f1p
1.88

8c8f0p
97

8c4f0p
1.9

8c8f1p
3.57

8c8f0p
162

8c4f1p
3.5

16c16f1p
3.08

16c16f0p
99

16c8f0p
1.8

16c16f1p
5.92

16c16f0p
167

16c4f1p
3.3

IIR 8c8f1p
0.94

8c8f0p
45

8c4f2p
1.0

8c8f1p
1.55

8c8f0p
72

8c4f2p
1.6

16c16f1p
0.98

16c16f0p
28

16c4f2p
0.7

16c16f1p
1.71

16c16f0p
49

16c4f2p
1.2

K-MEANS 8c8f1p
1.68

8c8f0p
80

8c8f1p
1.6

8c8f1p
2.33

8c8f0p
113

8c8f1p
2.2

16c16f1p
1.50

16c16f0p
43

16c4f2p
1.0

16c16f1p
2.43

16c16f0p
67

16c4f2p
1.5

MATMUL 8c8f1p
1.81

8c8f0p
81

8c4f1p
1.8

8c8f1p
3.32

8c8f0p
148

8c4f1p
3.2

16c16f1p
2.86

16c16f0p
80

16c4f2p
1.6

16c16f1p
5.47

16c16f0p
154

16c4f2p
3.1

SVM 8c8f1p
0.77

8c8f0p
37

8c4f2p
0.8

8c8f1p
0.91

8c8f0p
42

8c2f1p
1.0

16c16f1p
1.19

16c16f0p
35

16c4f2p
0.7

16c16f1p
1.47

16c16f0p
42

16c4f2p
1.0

Norm. avg 8c8f1p
0.48

8c8f0p
0.43

8c4f1p
0.30

8c8f1p
1.00

8c8f0p
1.00

8c4f1p
0.94

16c16f1p
0.41

16c16f0p
0.43

16c4f2p
0.29

16c16f1p
1.00

16c16f0p
1.00

16c4f2p
0.97

processing, image processing, ExG biosignal processing).
The Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) are digital filters with various applications in
data acquisition and analysis. The Discrete Wavelet Trans-
form (DWT) is a standard kernel used for feature extrac-
tion, which decomposes a signal into a different level of
frequency resolutions through a bank of Low Pass (LPF) and
High Pass Filters (HPF), capturing both temporal and fre-
quency information. The Fast Fourier Transform (FFT) is a
mathematical method that transforms a signal from the time
domain to the frequency domain. There are several variants
of this algorithm; in this paper, we consider the decimation-
in-frequency radix-2 variant. We consider a state-of-the-art
supervised classifier, the Support Vector Machine (SVM),
widely used in near-sensor applications. We also include
another classifier, named K-Means, which is an unsuper-
vised ML algorithm able to inference an unknown outcome
starting from input vectors. The last two kernels are basic
linear algebra subprograms (BLAS) commonly used in DSP:
matrix multiplication (MATMUL) and convolution (CONV),
which is the most computing-intensive kernel in convolu-
tional neural network (CNN) workloads.

We have implemented different variants of each kernel,
using scalar (float) and vector (2 × float16, 2 × bfloat16) data
types. Considering the design of the FPU, there is no signif-
icant difference in execution time and energy consumption
between float16 and bfloat16 vectors; in the following exper-
iments, we report a single value for both configurations.
To exploit the parallelism provided by the transprecision
cluster, each variant accepts a parameter representing the
number of cores available in the current configuration. The
source code includes a form of parametric parallelism based
on the number of available cores and the core id, using
the low-overhead HAL interface described in Section 4.
We exploited data parallelism at the loop level with static
scheduling of the iterations on the available cores. This pol-
icy guarantees maximum balancing with a limited overhead
related to the computation of per-core iteration boundaries.
Whenever it is feasible, we apply data parallelism to the

outer loops of the benchmarks (CONV, FIR, MATMUL). In
other cases, data parallelism is applied to single stages of
the algorithm, separated by a synchronization barrier (DWT,
FFT, KMEANS, SVM); except for FFT, these benchmarks are
characterized by sequential regions interleaved with parallel
loops and executed by a single core.

A common problem of IIR filters working on a single
stream is that data dependencies limit parallelism. To al-
leviate this limitation, we have adopted a technique based
on a block formulation of recursive filters tailored for vec-
tor units [49]. The algebraic transformations required by
this technique are applied off-line and do not imply any
overhead. However, the time complexity of the algorithm
is higher than the original one, and the size of the vector
state (equal to the number of taps) severely limits the ex-
ploitability of parallelism. For this reason, the vector variant
of this benchmark is the only reported case with alternative
configurations achieving the best result for energy efficiency.

Table 3 also reports the FP and memory intensity of the
benchmarks for scalar and vector variants. The FP intensity
is computed as the ratio between the number of FP instruc-
tions and the total number of instructions. Analogously, the
memory intensity is the number of load/store instructions
over the total number of instructions. These numbers pro-
vide a quantitative evaluation of the pressure on the FPU
and memory subsystems and are essential to understand
the actual FP workload in a real execution scenario.

5.3 Performance, energy efficiency, and area efficiency

We have performed extensive benchmarking considering
different configurations of the transprecision cluster and
multiple benchmark variants. The number of configurations
is limited to a restricted range due to system requirements,
depending on the application domain and target technology.
Then, once the SoC is fabricated, further tuning can be
performed through DVFS, in the specific case in the range
between 0.65 V and 0.8 V. The benchmarks are as heteroge-
neous as possible in terms of application requirements and

11

Fig. 6. Speed-ups obtained executing scalar and vector variants on all the platform configurations. Each configuration reports the number of available
cores and the support to vectorization. Each bar shows the minimum (dark color), maximum and average (light color) value.

parallel patterns, intending to stress the platform during
tests.

We have measured the performance (Gflop/s), the
energy efficiency (Gflop/s/W), and the area efficiency
(Gflop/s/mm2) for each benchmark variant and platform
configuration: Table 4 reports the results of these experi-
ments. The last row reports the average of the measures,
with normalized values in the range between 0 and 1.
Computing these metrics allows establishing the configura-
tions that guarantee the best performance and energy/area
efficiency for the considered benchmarks.

The configuration with 16 cores, private FPUs, and one
pipeline stage (16c16f1p) provides the best performance,
with a maximum of 3.37 Gflop/s for scalars and 5.92
Gflop/s for vectors. It is quite intuitive that using the
maximum number of cores and FPUs is beneficial for perfor-
mance. An additional pipeline stage could enable a further
increase of the frequency, but this is not the case due to
structural critical paths (as discussed in Section 3.3.

The configuration with 16 cores, private FPUs, and zero
pipeline stages is the most energy-efficient (16c16f0p), with a
maximum of 99 Gflop/s/W and 167 Gflop/s/W for vectors.
Using the maximum number of cores is never detrimental
to performance, mainly thanks to the adoption of aggressive
power-saving policies that turn off cores waiting for syn-
chronization events. Moreover, this configuration prevents
the occurrence of FPU stalls, which are detrimental to en-
ergy efficiency.

The configuration with 8 cores and 4 shared FPUs config-
ured with one pipeline stage (8c4f1p) is on average the most
area-efficient, with a maximum of 1.8 Gflop/s/mm2 for
scalars and 3.5 Gflop/s/mm2 for vectors. This configuration

saves area by reducing the number of cores and the sharing
factor, but maintaining a single pipeline stage represents the
best tradeoff with performance.

5.3.1 Parallelization and vectorization

Fig. 6 depicts the speed-ups from the execution of the
benchmarks on the 16-cores architectures, combining the
benefits deriving from parallelism and vectorization. Each
configuration of the transprecision cluster is denoted by the
abbreviation n-CL, where n indicates the number of cores.
The suffix VECT designates the execution of the vector vari-
ant. The baseline to compute the speed-up is the execution
on a single core with no vectorization support. The bars
show the average, maximum, and minimum values of the
speed-ups executed on all the architectural configurations.

Focusing on the parallel speed-up, we can notice that the
values reported for DWT, IIR, and K-MEANS are modest,
reaching a saturation point around 8. These benchmarks
have a complex parallel execution flow, requiring several
synchronization barriers and regions with sequential execu-
tion to ensure the correctness of the results, and this limits
the parallelism. However, this effect is not detrimental to
energy efficiency, as discussed in Section 5.3 The rest of
the kernels (CONV, FFT, FIR, and MATMUL) demonstrate a
nearly ideal speed-up.

Vectorization leads to an additional improvement of the
speed-up – between 1.3× and 2× – thanks to the beneficial
effects described in Section 1. Moreover, the improvement
derived from vectorization is higher than the parallel speed-
up for some applications. This trend is principally evident
for FIR, IIR, MATMUL, and KMEANS when passing from
8CL-VECT (8 cores working on vectors) to 16CL (8 cores

12

2 FPUs (1/4) 4 FPUs (1/2) 8 FPUs (1/1) 4 FPUs (1/4) 8 FPUs (1/2) 16 FPUs (1/1)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e

PERF. [Gflop/s] E. EFF. [Gflop/s/W] A. EFF. [Gflop/s/mm2]

16-CORES CL8-CORES CL

Fig. 7. Performance (PERF.), energy efficiency (E. EFF.), and area
efficiency (A. EFF.) fixing one pipeline stage and varying the number
of FPUs. The values are the average of the normalized results.

working on scalars). This effect is due to the different
overheads related to parallelization and vectorization. IIR
and K-MEANS require several synchronization barriers and
regions with sequential execution semantic. Conversely, FIR
and MATMUL are amenable to advanced manual vector-
ization techniques. For instance, the vector variant of MAT-
MUL reaches a near-ideal improvement vectorizing both
input matrices. The efficiency is achieved by unrolling the
two inner loops, adding shuffle operations to compute the
transpose, and using a dot-product intrinsic to accumulate
two products. A similar technique is applied to FIR. On the
other side, the complex multiplication kernel required by
FFT requires 7 cycles for scalar data and 10 cycles for vector
data; consequently, the maximum gain from vectorization is
1.43×.

5.3.2 Sharing factor
Fig. 7 reports average values of performance, energy effi-
ciency, and area efficiency varying the sharing factor. The
left part of the figure references 8-cores configurations, the
right part 16-cores ones. The number of pipeline stages
has been set to one for all experiments, while the number
of FPUs corresponds to sharing factors 1/4, 1/2, and 1/1,
respectively.

As a general trend, performance grows when increasing
the sharing factor. This increment is more evident passing
from 1/4 to 1/2 in 8-cores configurations, and passing from
1/2 to 1/1 in the 16-cores configurations.

The energy efficiency increases with the sharing factor.
This effect has a minor relevance for 16-cores configura-
tions because the contribution of FPUs to the total energy
consumption is proportionally lower. Conversely, the area
efficiency increases by reducing the sharing factor from 1/1
to 1/4. This trend is inverted in the transition from 1/4 to
1/2 with 8 cores. This effect is related to the FP intensity
of benchmarks, which is always less than one (as expected
in real applications). A 1/2 sharing factor can sustain an FP
intensity up to 0.5 with no additional stalls. This value is
enough for the requirements of most applications, consider-
ing that 0.31 is the average FP intensity of the benchmarks
in Table 3. On the 16-cores configuration, the number of
FPUs to reach the same sharing factor is higher, implying
a significant increase of the area; in this case, the best area
efficiency corresponds to the minimum sharing factor (1/4).

0 PS 1 PS 2 PS 0 PS 1 PS 2 PS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e

PERF. [Gflop/s] E. EFF. [Gflop/s/W] A. EFF. [Gflop/s/mm
2
]

8-CORES CL 16-CORES CL

Fig. 8. Performance (PERF.), Energy efficiency (E. EFF.), and area
efficiency (A. EFF.) fixing a 1/1 sharing factor and varying the pipeline
stages (PS). The values are the average of the normalized resultss.

5.3.3 Pipelining
Fig. 8 shows average values of performance, energy effi-
ciency, and area efficiency varying the number of pipeline
stages. The support for pipelining improves performance
since this technique allows for increasing the operating
frequency of the transprecision cluster. Conversely, perfor-
mance degrades with two pipeline stages. Even if we can
increase the operating frequency, we observe an increment
in the number of cycles due to the contentions on the
write ports of the register file. Configuring the FPU for
two pipeline stages, a write-back stall may happen when a
load/store post-increment operation or an integer operation
arrives right after an FP operation. For instance, when we
have the valid signal for the FP operation in the first cycle,
and then a load/store post-increment request in the second
clock cycle before storing the FP results, the FPU must wait
until the other instructions end, resulting in a stall for the
use of the port. There are no contentions with no pipeline
stages because there is a dedicated port for the FPU.

In all cases, energy efficiency decreases by incrementing
the number of pipeline stages since the design makes the
logic more complicated. Finally, area efficiency follows a
trend very similar to performance. The area required to
enable one-stage pipelining leads to a considerable benefit,
while a further area increase for a second stage is not
equally convenient. This trend has a minor impact on 16-
cores configurations since the contribution of pipeline logic
becomes negligible.

5.4 Case study: CCA-based Brain-Computer Interface
To evaluate the impact of changing the numerical represen-
tation on an end-to-end application, we analyze the vector-
ization of a processing chain based on Canonical Correlation
Analysis (CCA) executed on a benchmark dataset [51]. In
particular, we focus our analysis on area efficiency to target
viable implementations on devices with severe constraints
in terms of energy and size (e.g., wearable biomedical sys-
tems). We use CCA to emulate the extraction of steady-state
visually evoked potential (SSVEP) from Electroencephalo-
gram (EEG), as it is a well-established method to detect the
brain response to a given visual stimulus.

This application represents an example of a
computationally-intensive processing chain since neural

13

TABLE 5
Comparison with state-of-the-art architectures in high-performance and low-power embedded domain.

Hwacha [50] Snitch [44] NTX [43] Ariane [43] Xavier* Transpire [39] STM32H7† Mr.Wolf [1]

This work
Best perf. (16c16f1p)

Best en. eff. (16c16f0p)
Best area eff. (8c4f1p)

Domain HPC HPC HPC High-End High-End IoT IoT IoT IoT
Technology 16nm FinFET GF 22FDX GF 22FDX GF 22FDX TSMC 12FFN GF 22FDX 40nm CMOS 40nm CMOS GF 22FDX
Voltage (V) 0.55/11 0.802 0.801 0.801 0.751 0.802 1.80 / 1.801 0.8 / 1.101 0.80 / 0.65 / 0.803

Frequency
(GHz) 1.44 1.06 1.55 0.92 1.38 0.2 0.20 / 0.48 0.45 0.37 / 0.30 / 0.43

Area
(mm2) 24 0.89 0.56 0.39 11 1.4 – 10 2.1 / 1.8 / 0.97

Performance5

(Gflop/s) 2804 14.4 18.3 2 83 1.084 0.05 / 0.13 1.8 2.9 / 2.3 / 1.7

Energy eff5

(Gflop/s/W) 108 4 128 135 40 38 964 1.2 / 0.9 50 67 / 81 / 68

Area eff5

(Gflop/s/mm2) 4.2 4 25.83 32.6 5.2 4.1 1.14 - / - 1 1.5 / 1.4 / 1.8

FP formats
double

float
float16

double
float float‡

float
float16

bfloat16
minifloat

float
float16

float16
mini-float float float

float
float16

bfloat16

Programming
interface ISA extension ISA extension Memory-mapped

configuration ISA extension Base ISA Base ISA Base ISA Base ISA ISA extension

Execution
model

SIMT
vector-thread

unit
(accelerator)

Loop-buffers for
tensor streaming

(accelerator)

Loop-buffers for
tensor streaming

(accelerator)

SIMD
processor

SIMT
vector-thread

unit
(accelerator)

Co-Processor Processor Multi-core
processor

Multi-core
processor

Compiler
support Yes (OpenCL) Partial (inline ASM) No Yes Yes (CUDA) Yes Yes Yes Yes

* Numbers extracted from [44]. †Measurements taken on a NUCLEOH743ZI development board executing a 128×128. matrix multiplication.
1 Silicon measurements. 2 Post-layout simulation using typical frequency. 3 Post-layout simulation using worst-case frequency. 4 Original performance is half
precision, normalized to binary32. 5 Performance and efficiency metrics are scaled to 22nm technology node. 1/λ is considered for performance, 1/λV 2 scaling is
considered for energy efficiency, 1/λ2 is considered for area efficiency. 0.8V corner is considered for performance and energy efficiency, 0.65V corner is considered for
energy efficiency. ‡Higher internal accumulation precision with float results.

data processing requires particular effort due to their
low Signal-to-Noise ratio [52]. Moreover, computational
paradigms for these applications are moving faster towards
near-sensor and edge computing, even though they need
high accuracy and low numerical errors. As a result, they
represent a crucial challenge and a valid use case to explore
novel optimizations in adaptive numerical representations
at high energy efficiency.

The CCA algorithm (Fig. 9) computes the canonical
correlation values between a signal input matrix (i.e., EEG)
and an array of reference signals. We have based the CCA
implementation on the Golub-Reinsch [53] algorithm due to
its computational efficiency and high scalability. As shown
in Fig.9, we apply a 5-taps low pass IIR filter to reduce the
high-frequency noise, performing then data downsampling
to reduce the computational time. The last stage of the
preprocessing includes a 3-taps high pass filter to remove
DC offset. After these steps, we compute the CCA on the
output matrix, which is composed of a QR-factorization
(based on Householder rotations), Singular Value Decompo-
sition (SVD), and the extraction of the canonical coefficients
(CCs). Finally, by calculating the Euclidean norm on CCs,
we determine the level of correlation between input and
reference to detect the SSVEP. If the output exceeds a given
threshold, a class is assigned. Otherwise, the rest state is
asserted.

To assign a precision to program variables (precision
tuning), we used the iterative method described in [54],
specifying a target accuracy in terms of a maximum mean
square error (1−5). The output of the tool is a list of val-
ues containing the minimum precision and the maximum
range for each variable in the program. From this list, we

TABLE 6
CCA performance.

MSE† Vectorial 2-cores 4-cores 8-cores
speed-up speed-up speed-up speed-up

CCA 3.4−6 1.3? 1.7 3.2 4.3
? PP 1.7×, CCA+FE 1.2× †Mean Square Error

associated a corresponding type (float, bfloat16, or float16).
Table 6 reports the execution time (active cycles) of the

program parts. We considered two main algorithmic steps:
the Preprocessing (PP), which includes LP filter, downsam-
pling, and HP filter; the Canonical Correlation Analysis +
Feature Extraction (CCA+FE), including QR-factorization,
SVD, CC Extraction, and Euclidian Norm. In the PP step,
we obtain 70% lower cycle count with vector execution w.r.t.
Scalar version and 20% lower cycle count in the CCA+FE
step. Hence, considering the entire processing chain, we
have gain 30% performance. Finally, we assessed that the
MSE is less than the target value set for precision tuning.

6 COMPARISON WITH THE SOA
Table 5 depicts a comparison with SoA platforms with
FP support in high-performance and embedded domains,
where performance and efficiency numbers are normalized
to 22nm technology node to ease the readability of the
results. The number of FP operations has been measured
by executing a single-precision matrix multiplication on all
the platforms. We chose this kernel since it is a standard
benchmark and its performance and power measurements
are available for all the considered architectures. Moreover,
this benchmark is embarrassingly parallel and can be highly

14

Fig. 9. CCA processing chain for SSVEP systems.

optimized on all these architectures. In the last column, we
report values for three configurations of the transprecision
cluster introduced in this work, corresponding to the best
performance, the best energy efficiency, and the best area
efficiency. Comparing with high performance embedded
platform, the Tegra Xavier SoC contains eight streaming
multiprocessors (SMs) composed of four execution units.
Each execution unit includes 16 single-precision FPUs shar-
ing a register file and an instruction cache. The transpreci-
sion cluster is 53% better than an SM in terms of energy
efficiency. As regards performance, a single execution unit
is 13× faster.

As expected, the absolute performance and area effi-
ciency of platforms in the high-performance domain is
higher than the transprecision cluster due to the higher
operating frequencies. In our design, we consider the worst-
case corner for the computation of the operating frequency,
while the other solutions report silicon results or typical
corners, which is somehow penalizing for us. Nevertheless,
our solution outperforms an Ariane and is comparable
with a Hwacha vector processor. The energy efficiency of
the transprecision cluster is comparable with Snitch, NTX,
and Ara, despite these architectures are heavily special-
ized for FP-intensive computations. This outcome is due
to three main factors. First, operating at low voltage in
near-threshold operation makes the transprecision cluster
very power efficient. Second, the best solution is not to
adopt pipelining, so it does not pay the energetic overhead
of pipeline logic. Third, the support to FMA operations
increments by 2× the number of operations performed per
cycle and is highly beneficial.

With respect to Mr.Wolf, the architecture more closely re-
lated to the proposed cluster, our work delivers significantly
better performance when comparing to 32-bit floating-point
matrix multiplication. One of the reasons for the better
metrics is related to the more optimized interconnect and
sharing mechanism, granting high functional performance
(i.e., low contention on the shared units), as well as a

smaller timing pressure on the floating-point units leading
to a higher frequency, smaller area and smaller power. It
should be noted that the maximum frequency of our work
is computed in the worst-case corner, while the Mr.Wolf
frequency is measured on silicon, which is typically 20% to
30% faster than the worst-case corner. The second reason
for the better performance metrics is related to one of
the key contributions of this work: the exploration of the
parameters of the cluster to target a specific performance
metric (throughput, energy efficiency, or area efficiency).
As shown in Table 4 adapting the architectural parameters
of the cluster can have a huge impact on the different
metrics (up to 190% for performance, up to 42% for energy
efficiency, up to 40% for area efficiency), leading to up to
1.4× better performance, 1.6× better energy efficiency, and
1.8× better area efficiency compared to Mr.Wolf.

Finally, compared to most energy-efficient solutions in
Table 5, the proposed cluster provides full compiler support
and flexibility typical of high-level parallel programming
models such as OpenMP, not requiring programmers to
use low-level accelerator-centric interfaces such as OpenCL
or memory-mapped APIs or even lower-level abstractions
(e.g., inline assembly). This support is a key requirement
for the wide adoption of these solutions for near-sensor
computing.

7 CONCLUSION

In this paper, we have described the design of a trans-
precision cluster for near-sensor computing, providing a
full specification of its main components and a full soft-
ware stack to execute end-to-end applications. We have
performed a design space exploration on an FPGA emulator
varying the number of cores, the number of FPUs, and
the pipeline stages. A set of experiments on near-sensor
algorithms and an analysis based on post P&R models have
allowed us to identify the most efficient configurations.

Our experimental results show that configurations with
16 cores and private FPUs are the best solution in terms
of performance and energy efficiency, outperforming the
current state-of-the-art, while a cluster with 8 cores and 4
shared FPUs remains the best solution for area efficiency.
Moreover, these results highlight two important outcomes.
First, energy efficiency is not affected by the effectiveness
of parallelization techniques since the platform provides
effective power-saving policies to turn off cores that are not
active. Second, the trend for energy efficiency is different
from area efficiency; in the design space that we are consid-
ering, these metrics are related but do not scale with a fixed
rate. Overall, one pipeline stage is the solution providing
the best compromise in most configurations; no pipelining
can be beneficial only when energy saving is a high-priority
constraint.

These outcomes provide valuable insight to system de-
signers and engineers, and the guidelines derived by this
exploration can steer the design of future near-sensor com-
puting platforms. Finally, the discussed use case demon-
strates that this platform can be effectively used in real-life
applications characterized by strict accuracy constraints by
leveraging transprecision computing techniques.

15

REFERENCES

[1] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.Wolf:
An Energy-Precision Scalable Parallel Ultra Low Power SoC for
IoT Edge Processing,” IEEE Journal of Solid-State Circuits, vol. 54,
no. 7, pp. 1970–1981, 2019.

[2] B. Barrois and O. Sentieys, “Customizing fixed-point and floating-
point arithmetic—a case study in k-means clustering,” in 2017
IEEE International Workshop on Signal Processing Systems (SiPS).
IEEE, 2017, pp. 1–6.

[3] A. Volkova, T. Hilaire, and C. Lauter, “Arithmetic Approaches
for Rigorous Design of Reliable Fixed-Point LTI Filters,” IEEE
Transactions on Computers, vol. 69, no. 4, pp. 489–504, 2020.

[4] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagli-
avini, A. Emerson, A. Tomás, D. S. Nikolopoulos, E. Flamand,
and N. Wehn, “The transprecision computing paradigm: Concept,
design, and applications,” in 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 1105–1110.

[5] D. Zoni, A. Galimberti, and W. Fornaciari, “An FPU design tem-
plate to optimize the accuracy-efficiency-area trade-off,” Sustain-
able Computing: Informatics and Systems, vol. 29, pp. 1–10, 2021.

[6] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey,
S. Bass, D. Bhandarkar, M. Bhat, D. Bindel, S. Boldo et al., “IEEE
standard for floating-point arithmetic,” IEEE Std, vol. 754, no.
2008, pp. 1–70, 2008.

[7] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, and
D. Mansell, “Bfloat16 processing for neural networks,” in 2019
IEEE 26th Symposium on Computer Arithmetic (ARITH). IEEE, 2019,
pp. 88–91.

[8] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization
of deep convolutional networks,” in International conference on
machine learning, 2016, pp. 2849–2858.

[9] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Ka-
han, K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious:
Tuning assistant for floating-point precision,” in SC’13: Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 2013, pp. 1–12.

[10] D. Efnusheva, A. Cholakoska, and A. Tentov, “A survey of dif-
ferent approaches for overcoming the processor-memory bottle-
neck,” International Journal of Computer Science and Information
Technology, vol. 9, no. 2, pp. 151–163, 2017.

[11] J. N. Coleman, E. Chester, C. I. Softley, and J. Kadlec, “Arithmetic
on the European logarithmic microprocessor,” IEEE Transactions
on Computers, vol. 49, no. 7, pp. 702–715, 2000.

[12] J. L. Gustafson, The End of Error: Unum Computing. CRC Press,
2017.

[13] A. Bocco, Y. Durand, and F. De Dinechin, “SMURF: Scalar
Multiple-precision Unum Risc-V Floating-point Accelerator for
Scientific Computing,” in Proceedings of the Conference for Next
Generation Arithmetic 2019, 2019, pp. 1–8.

[14] J. L. Gustafson and I. T. Yonemoto, “Beating Floating Point at
its Own Game: Posit Arithmetic,” Supercomputing Frontiers and
Innovations, vol. 4, no. 2, pp. 71–86, 2017.

[15] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti, “PERI: A Con-
figurable Posit Enabled RISC-V Core,” ACM Transactions on Ar-
chitecture and Code Optimization (TACO), vol. 18, no. 3, pp. 1–26,
2021.

[16] A. Bocco, Y. Durand, and F. de Dinechin, “Hardware support for
UNUM floating point arithmetic,” in 2017 13th Conference on Ph.
D. Research in Microelectronics and Electronics (PRIME). IEEE, 2017,
pp. 93–96.

[17] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal,
F. Sheikh, R. Krishnamurthy, and S. Borkar, “A 1.45GHz 52-to-
162GFLOPS/W variable-precision floating-point fused multiply-
add unit with certainty tracking in 32nm CMOS,” in 2012 IEEE
International Solid-State Circuits Conference. IEEE, 2012, pp. 182–
184.

[18] A. Nannarelli, “Tunable Floating-Point Adder,” IEEE Transactions
on Computers, vol. 68, no. 10, pp. 1553–1560, 2019.

[19] M. K. Jaiswal, B. S. C. Varma, H. K. . So, M. Balakrishnan, K. Paul,
and R. C. C. Cheung, “Configurable Architectures for Multi-Mode
Floating Point Adders,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 62, no. 8, pp. 2079–2090, 2015.

[20] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[21] H. Zhang, D. Chen, and S. Ko, “Efficient Multiple-Precision
Floating-Point Fused Multiply-Add with Mixed-Precision Sup-
port,” IEEE Transactions on Computers, vol. 68, no. 7, pp. 1035–1048,
2019.

[22] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “FPnew: An Open-
Source Multiformat Floating-Point Unit Architecture for Energy-
Proportional Transprecision Computing,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 29, no. 4, pp. 774–
787, 2021.

[23] J. D. Bruguera, “Low Latency Floating-Point Division and Square
Root Unit,” IEEE Transactions on Computers, vol. 69, no. 2, pp. 274–
287, 2019.

[24] G. Mitra, B. Johnston, A. P. Rendell, E. McCreath, and J. Zhou,
“Use of SIMD vector operations to accelerate application code
performance on low-powered ARM and Intel platforms,” in 2013
IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum. IEEE, 2013, pp. 1107–1116.

[25] G. Mitra, E. Stotzer, A. Jayaraj, and A. P. Rendell, “Implementation
and optimization of the OpenMP accelerator model for the TI
Keystone II architecture,” in International Workshop on OpenMP.
Springer, 2014, pp. 202–214.

[26] RISC-V Foundation, “P Extension.” [Online]. Available: https:
//github.com/riscv/riscv-p-spec

[27] R. M. Russell, “The CRAY-1 computer system,” Communications of
the ACM, vol. 21, no. 1, pp. 63–72, 1978.

[28] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu et al., “The
ARM scalable vector extension,” IEEE Micro, vol. 37, no. 2, pp.
26–39, 2017.

[29] T. Yoshida, “Fujitsu high performance CPU for the Post-K Com-
puter,” in Hot Chips, vol. 30, 2018.

[30] RISC-V ”V” Specification. [Online]. Available: https://github.
com/riscv/riscv-v-spec

[31] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Sto-
janović, and K. Asanović, “A 45nm 1.3 GHz 16.7 double-precision
GFLOPS/W RISC-V processor with vector accelerators,” in ESS-
CIRC 2014-40th European Solid State Circuits Conference (ESSCIRC).
IEEE, 2014, pp. 199–202.

[32] D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, “ARPREC:
An arbitrary precision computation package,” Lawrence Berkeley
National Laboratory, 2002.

[33] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmer-
mann, “MPFR: A multiple-precision binary floating-point library
with correct rounding,” ACM Transactions on Mathematical Software
(TOMS), vol. 33, no. 2, p. 13, 2007.

[34] F. Johansson, “Arb: efficient arbitrary-precision midpoint-radius
interval arithmetic,” IEEE Transactions on Computers, vol. 66, no. 8,
pp. 1281–1292, 2017.

[35] V. Lefèvre, “Correctly rounded arbitrary-precision floating-point
summation,” IEEE Transactions on Computers, vol. 66, no. 12, pp.
2111–2124, 2017.

[36] A. Anderson, S. Muralidharan, and D. Gregg, “Efficient Multibyte
Floating Point Data Formats Using Vectorization,” IEEE Transac-
tions on Computers, vol. 66, no. 12, pp. 2081–2096, 2017.

[37] Lattice sensAI Stack. [Online]. Available: https://www.
latticesemi.com/sensAI

[38] M. Brandalero, L. Carro, A. C. S. Beck Filho, and M. Shafique,
“Multi-Target Adaptive Reconfigurable Acceleration for Low-
Power IoT Processing,” IEEE Transactions on Computers, 2020.

[39] R. Prasad, S. Das, K. J. M. Martin, and P. Coussy, “Floating Point
CGRA based Ultra-Low Power DSP Accelerator,” Journal of Signal
Processing Systems, pp. 1–13, 2021.

[40] Arm Helium Technology. [Online]. Available: https://www.arm.
com/why-arm/technologies/helium

[41] Arm Cortex M55 processor. [Online]. Available: https://www.
arm.com/products/silicon-ip-cpu/cortex-m/cortex-m55

[42] S. Eliuk, C. Upright, and A. Skjellum, “dMath: A Scalable
Linear Algebra and Math Library for Heterogeneous GP-GPU
Architectures,” arXiv:1604.01416 [cs.EU], 2016. [Online]. Available:
http://arxiv.org/abs/1604.01416

[43] F. Zaruba, F. Schuiki, S. Mach, and L. Benini, “The Floating Point
Trinity: A Multi-modal Approach to Extreme Energy-Efficiency
and Performance,” in 2019 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS). IEEE, 2019, pp. 767–770.

[44] F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini, “Snitch: A tiny
Pseudo Dual-Issue Processor for Area and Energy Efficient Execu-

16

tion of Floating-Point Intensive Workloads,” IEEE Transactions on
Computers, 2020.

[45] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Mar-
wedel, “Scratchpad memory: A design alternative for cache on-
chip memory in embedded systems,” in Proceedings of the Tenth
International Symposium on Hardware/Software Codesign. CODES
2002 (IEEE Cat. No. 02TH8627). IEEE, 2002, pp. 73–78.

[46] PULP GitHub page. [Online]. Available: https://github.com/
pulp-platform

[47] Auto-vectorization in GCC. [Online]. Available: https://www.
gnu.org/software/gcc/projects/tree-ssa/vectorization.html

[48] GNU Foundation, “libgomp runtime.” [Online]. Available:
https://gcc.gnu.org/onlinedocs/libgomp/

[49] J. Robelly, G. Cichon, H. Seidel, and G. Fettweis, “Implementation
of recursive digital filters into vector SIMD DSP architectures,” in
2004 IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 5. IEEE, 2004, pp. V–165.

[50] C. Schmidt, J. Wright, Z. Wang, E. Chang, A. Ou, W. Bae, S. Huang,
A. Flynn, B. Richards, K. Asanović, E. Alon, and B. Nikolić, “4.3
An Eight-Core 1.44GHz RISC-V Vector Machine in 16nm FinFET,”
in 2021 IEEE International Solid- State Circuits Conference (ISSCC),
vol. 64, 2021, pp. 58–60.

[51] M. Salvaro, S. Benatti, V. J. Kartsch, M. Guermandi, and L. Benini,
“A minimally invasive low-power platform for real-time brain
computer interaction based on canonical correlation analysis,”
IEEE Internet of Things Journal, vol. 6, no. 1, pp. 967–977, 2019.

[52] F. Lin, J. K. Zao, K. Tu, Y. Wang, Y. Huang, C. Chuang, H. Kuo,
Y. Chien, C. Chou, and T. Jung, “SNR analysis of high-frequency
steady-state visual evoked potentials from the foveal and ex-
trafoveal regions of Human Retina,” in 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
2012, pp. 1810–1814.

[53] A. A. Maciejewski and C. A. Klein, “The singular value decompo-
sition: Computation and applications to robotics,” The International
journal of robotics research, vol. 8, no. 6, pp. 63–79, 1989.

[54] G. Tagliavini, A. Marongiu, and L. Benini, “FlexFloat: A soft-
ware library for transprecision computing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

Fabio Montagna received the Ph.D. degree in
Electrical, Electronic and Information Engineer-
ing from the University of Bologna, Bologna,
Italy, in 2020. He is currently working as Re-
search Fellow at DISI, University of Bologna,
Bologna, Italy. His main research topic is energy-
efficient parallel architectures for ultra-low power
bio-signal processing. His research interests in-
clude embedded wearable and implantable sys-
tems, parallel computing, signal processing, and
machine learning.

Stefan Mach received his B.Sc. and M.Sc. de-
gree from the Swiss Federal Institute of Tech-
nology Zurich (ETHZ), Switzerland, where he is
currently pursuing a Ph.D. degree. Since 2017,
he has been a research assistant with the In-
tegrated Systems Laboratory at ETHZ. His re-
search interests include transprecision comput-
ing, computer arithmetics, and energy-efficient
processor architectures.

Simone Benatti received the Ph.D. degree in
Electrical Engineering and Computer Science
from the University of Bologna, in 2016. He cur-
rently holds a postdoctoral position with the Uni-
versity of Bologna. His research interests include
energy efficient embedded wearable systems for
advanced Human Computer Interaction and al-
gorithms for edge computing. In this field, he
has authored/coauthored more than 40 papers
in international peer-reviewed conferences and
journals. Previously, he worked 8 years as an

Electronic Designer and R&D Engineer of electromedical devices.

Angelo Garofalo received the B.Sc and M.Sc.
degree in electronic engineering from the Uni-
versity of Bologna, Bologna, Italy, in 2016 and
2018 respectively. He is currently working to-
ward his Ph.D. degree at DEI, University of
Bologna, Bologna, Italy. His main research topic
is Hardware-Software design of ultra-low power
multiprocessor systems on chip. His research
interests include Quantized Neural Networks,
Hardware efficient Machine Learning, trans-
precision computing, and energy-efficient fully-

programmable embedded architectures.

Gianmarco Ottavi is a researcher at University
of Bologna (Italy) in the department of Electrical,
Electronic and Information Engineering (DEI).
His current research topics are on developing
Ultra Low Power embedded systems based on
RISC-V Instruction Set Architecture.

Luca Benini holds the chair of digital Circuits
and systems at ETHZ and is Full Professor
at the University of Bologna. Dr. Benini’s re-
search interests are in energy-efficient comput-
ing systems design, from embedded to high-
performance. He has published more than 1000
peer-reviewed papers and five books. He is
a Fellow of the ACM and a member of the
Academia Europaea. He is the recipient of the
2016 IEEE CAS Mac Van Valkenburg Award and
the 2020 EDAA Achievement Award.

Davide Rossi received the Ph.D. degree from
the University of Bologna, Bologna, Italy, in
2012. He has been a Post-Doctoral Researcher
with the Department of Electrical, Electronic and
Information Engineering “Guglielmo Marconi,”
University of Bologna, since 2015, where he is
currently an Assistant Professor. His research
interests focus on energy-efficient digital archi-
tectures. In this field, he has published more than
100 papers in international peer-reviewed con-
ferences and journals. He is recipient of Donald

O. Pederson Best Paper Award 2018, 2020 IEEE TCAS Darlington Best
Paper Award, 2020 IEEE TVLSI Prize Paper Award.

Giuseppe Tagliavini received the Ph.D. degree
in electronic engineering from the University of
Bologna, Bologna, Italy, in 2017. He is currently
an Assistant Professor with the Department of
Computer Science and Engineering (DISI) at the
University of Bologna. He has co-authored over
30 papers in international conferences and jour-
nals. His research interests include parallel pro-
gramming models for embedded systems, run-
time optimization for multicore and many-core
accelerators, and design of software stacks for

emerging computing architectures.

