
28 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Composition and decomposition of multiparty sessions / Barbanera F.; Dezani-Ciancaglini M.; Lanese I.;
Tuosto E.. - In: THE JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING. - ISSN 2352-
2208. - ELETTRONICO. - 119:(2021), pp. 100620.1-100620.34. [10.1016/j.jlamp.2020.100620]

Published Version:

Composition and decomposition of multiparty sessions

Published:
DOI: http://doi.org/10.1016/j.jlamp.2020.100620

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/846892 since: 2022-01-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.jlamp.2020.100620
https://hdl.handle.net/11585/846892

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, Emilio Tuosto,
Composition and decomposition of multiparty sessions, Journal of Logical and
Algebraic Methods in Programming, Volume 119, 2021, 100620, ISSN 2352-2208.

The final published version is available online at:
https://doi.org/10.1016/j.jlamp.2020.100620

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1016/j.jlamp.2020.100620

Composition and Decomposition of Multiparty Sessions

Franco Barbaneraa,1, Mariangiola Dezani-Ciancaglinib,2,
Ivan Lanesec, Emilio Tuostod,3

aDipartimento di Mat. e Inf., Università di Catania (Italy), barba@dmi.unict.it
bDipartimento di Informatica, Università di Torino (Italy), dezani@di.unito.it
cFocus Team, University of Bologna/INRIA (Italy), ivan.lanese@gmail.com

dGran Sasso Science Institute (Italy), emilio.tuosto@gssi.it

Abstract

Multiparty sessions are systems of concurrent processes, which allow several par-
ticipants to communicate by sending and receiving messages. Their overall be-
haviour can be described by means of global types. Typable multiparty sessions
enjoy lock-freedom.

We look at multiparty sessions as open systems by allowing one to compose
multiparty sessions by transforming two of their participants into a pair of cou-
pled gateways, forwarding messages between the two sessions. Gateways need to be
compatible. We show that the session resulting from the composition can be typed,
and its type can be computed from the global types of the starting sessions. As
a consequence, lock-freedom is preserved by composition. Compatibility between
global types is necessary, since systems obtained by composing sessions with in-
compatible global types have locks (or they are not sessions). We also define direct
composition, which allows one to connect two global types without using gateways.
Finally, we propose a decomposition operator, to split a global type into two, which
is the left inverse of direct composition. Direct composition and decomposition on
global types prepare the ground for a novel framework allowing for the modular
design and implementation of distributed systems.

1Partially supported by the project “Piano Triennale Ricerca” DMI-Università di Cata-
nia.

2Partially supported by Ateneo/Compagnia di San Paolo 2016/2018 project “Mnemo-
Computing - Components for Processing In Memory”.

3 Research partly supported by the EU H2020 RISE programme under the Marie
Skodowska-Curie grant agreement No 778233.

Preprint submitted to Elsevier January 30, 2020

1. Introduction

Distributed systems are seldom developed as independent entities. In-
deed, in many cases they should be considered as open entities ready for
interaction with an environment. Composition may be specified either stat-
ically, for a fixed environment, or dynamically, if the environment only be-
comes known upon deployment. In general, it is fairly natural to expect to
connect open systems as if they were composable modules, and in doing that
one should rely on “safe” methodologies and techniques, guaranteeing the
composition not to “break” any relevant property of the single systems.

In [1] a methodology has been proposed for the composition of open sys-
tems, consisting in replacing any two participants (one per system) - if their
behaviours are “compatible” - by a pair of coupled forwarders, dubbed gate-
ways, enabling the two systems to exchange messages. In this approach,
the behaviour of any participant can be looked at as an interface. In this
setting, the notion of interface is interpreted not as the description of the in-
teractions “offered” by a system but, dually, as those “required” by a possible
environment (usually another system).

One of the contributions of the present paper is to present a choreography
formalism enabling to “lift” the composition-by-gateways approach of [1]
from systems to protocol descriptions, represented as MultiParty Session
Types (MPST) [23, 24]. More precisely, we define a function that, given
two MPSTs and two participants (one per MPST) to be used as interfaces,
computes the MPST of the composed system. This allows one to lift to
the composed system all the guarantees on the soundness of communication
provided by the chosen MPST formalism. We remark that our approach
does not change the syntax of the chosen MPST approach, but allows one
to look at it as a formalism to describe open systems (while MPST normally
describe only closed systems).

While the idea of the approach is rather general, not all MPST formalisms
in the literature are suitable for its application. For instance, the require-
ments imposed by the type system in [13] are too strong for the gateway
processes to be typed, thus we could not get any guarantee on the result of
the composition.

In the present paper we apply the approach in a setting as simple as possi-
ble (inspired by [34]), to highlight its features and avoid unrelated complexity.
In particular, the simplicity of the calculus allows us to get rid of channels
and local types. Moreover, the fact that global and local behaviours are both

2

represented as infinite regular trees avoids the hindering issues caused by a
syntactic description of recursion.

With respect to [34], we relax the conditions imposed on global types in
order to be projectable, in particular ensuring projectability of global types
resulting from our composition operation (a property that does not hold in
the formalism of [34]). In our formalism, typable systems are guaranteed to
be lock-free [26]. Hence, the systems obtained by composing typable systems
are lock-free too. Beyond this, the global type of the composed system also
provides a global view of the new system. These two benefits are direct
consequences of one of our main contributions: the function from the global
types of the original systems to the global type of the system obtained by
composition.

In order to ensure the correctness of composition, we need to require a
condition of interface compatibility on the two participants chosen as inter-
faces. We show that the compatibility relation used in [1] can be relaxed
to a relation closely connected to the observational preorder of [34], in turn
corresponding to the subtyping relation for session types of [20, 16].

The notion of compatibility between global types is further investigated
by showing it to be, not only a sufficient condition to get lock-freeness preser-
vation under composition, but also a necessary condition.

The use of gateways enables to connect systems in a safe way by means
of the minimal modification, corresponding to the transformation of inter-
face participants into forwarders, while the other participants are unchanged.
This property is quite important when composition happens dynamically.
However this approach is less suitable when composition is performed stati-
cally, to support a modular design and development process. Indeed, in this
case one would like to avoid the overhead due to gateways. To answer this
need we define a second function which performs direct composition (both
at the level of global types and at the level of systems), that is composition
without the need for gateways. One can see direct composition as a sim-
plification of composition by gateways, where the behaviour of gateways is
internalised in the participants willing to communicate with the other system,
hence gateways are no more needed. Of course, this approach requires some
(limited) changes to the other participants of the systems to be composed.

We complement direct composition with an operation of decomposition,
which is, on global types, its left inverse. Decomposition allows one to take
a typed MPST and split its participants into two groups (to each group an
interface participant is also added), thus creating two MPSTs. A MPST with

3

the original global type can be recovered by direct composition.
Direct composition and decomposition form the basis of a modular de-

sign and implementation development process, where one can take a global
description, divide it into descriptions of subsystems to be implemented sep-
arately, and then safely compose the resulting implementations.

In the standard subtyping for session types supertypes have less inputs
and more outputs than their subtypes [16]. In our type system we use a
preorder on processes in which larger processes have less inputs than smaller
ones, but the same outputs. This allows us to get: (i) a stronger notion of
session fidelity, (ii) a better correspondence between composition by gate-
ways at the level of multiparty sessions and the one at the level of global
types, (iii) the necessity of compatibility between global types to ensure that
lock-freedom is preserved under composition. Besides, we show that such a
restriction does not change the class of multiparty sessions that can be typed
(but may change the types assigned to them).

Outline. Sections 2, 3 and 4 respectively introduce our calculus of multiparty
sessions, their global types, and prove the properties that well-typed sessions
enjoy. Sections 5 and 6 define the compatibility relation and the composi-
tion via gateways for sessions and global types, respectively. The key result
that sessions obtained from composition are typable (and hence lock free)
is presented in Theorem 6.11. In Section 7 compatibility between global
types is shown to be not only a sufficient, but also a necessary condition for
lock-freedom of composition. Direct composition, allowing one to compose
systems without the need for gateways, is defined in Section 8, where related
properties are also discussed and proved. The decomposition operation which
complements the direct composition operation is defined and investigated in
Section 9. In Section 10 we discuss how all previous results change if we con-
sider a preorder on processes mimicking the standard subtyping relation on
session types, that allows larger processes to have more outputs than smaller
ones. Section 11 concludes by a recap of the paper and by discussing related
and future work.

Comparison with the workshop version. The present paper is a revised and
extended version of [3]. The definition of the composition operation, first pre-
sented in [3], is considerably improved here, enabling to simplify and make
more readable also the proofs of most of the related results. This paper in-
cludes also a number of new contributions. First, we show that compatibility

4

between global types is not only a sufficient, but also a necessary condition in
order to get lock-freedom preservation for composition of typable multiparty
sessions. Also, both the direct composition and the decomposition opera-
tions, and all the related results, are new. Lastly, in the workshop version
we did not consider how the results change when the processes are compared
using a preorder mimicking the standard subtyping preorder.

2. Processes and Multiparty Sessions

We use the following base sets and notation: messages, ranged over by
`, `′, . . . ; session participants, ranged over by p, q, . . .; processes, ranged over
by P,Q, . . . ; multiparty sessions, ranged over byM,M′, . . . ; integers, ranged
over by n,m, i, j,

Processes implement the behaviour of participants. The input process
p?{`i.Pi | 1≤i≤n} waits for one of the messages `i from participant p; the
output process p!{`i.Pi | 1≤i≤n} chooses one message `i for some i, 1 ≤ i ≤ n,
and sends it to participant p. We use Λ as shorthand for {`i.Pi | 1≤i≤n}. We
define the multiset of messages in Λ as msg({`i.Pi | 1≤i≤n}) = {`i | 1≤i≤n}.
After sending or receiving the message `i for some i, the process reduces to Pi.
The set Λ acts as an external choice in p?Λ and as an internal choice in p!Λ.
In a full-fledged calculus, messages would carry values, namely they would
be of the form `(v). Here for simplicity we consider only pure messages. This
agrees with the focus of session calculi, which is on process interactions that
do not depend on actual transmitted values.

For the sake of abstraction, we do not take into account any explicit
syntax for recursion, but rather consider processes as, possibly infinite, reg-
ular trees. It is handy to first define pre-processes, since the processes must
satisfy conditions which can be easily given using the tree representation of
pre-processes.

Definition 2.1 (Processes).

(i) We say that P is a pre-process and Λ is a pre-choice of messages if
they are generated by the grammar:

P ::=coinductive 0 || p?Λ || p!Λ Λ ::= {`i.Pi | 1≤i≤n}

and all messages in msg(Λ) are pairwise distinct.

5

(ii) The tree representation of a pre-process is a directed rooted tree, where:
(a) each internal node is labelled by p? or p! and has as many children

as the number of messages,
(b) the edge from p? or p! to the child Pi is labelled by `i and
(c) the leaves of the tree (if any) are labelled by 0.

(iii) We say that a pre-process P is a process if the tree representation of
P is regular (namely, it has finitely many distinct sub-trees).
We say that a pre-choice of messages Λ is a choice of messages if all
the pre-processes in Λ are processes.

The fact that the grammar for pre-processes has to be interpreted coin-
ductively implies that infinite derivations are allowed. We identify pro-
cesses with their tree representations and we shall sometimes refer to the
trees as the processes themselves. The regularity condition implies that
we only consider processes admitting a finite description. This is equiv-
alent to writing processes with µ-notation and having an equality which
allows for an infinite number of unfoldings. This is also called the equirecur-
sive approach, since it views processes as the unique solutions of (guarded)
recursive equations [33, Section 20.2]. The existence and uniqueness of
a solution follow from known results (see [14] and [9, Theorem 7.5.34]).
With such an approach, it is natural to use coinduction as the main logical
tool, as we do in most of the proofs. In particular, we adopt the coinduction
style advocated in [27] which, without compromising formal rigour, promotes
readability and conciseness.

We define the set ptp(P) of participants of process P by: ptp(0) = ∅ and

ptp(p?{`i.Pi | 1≤i≤n}) = ptp(p!{`i.Pi | 1≤i≤n}) = {p}∪ptp(P1)∪ . . .∪ptp(Pn).

The regularity of processes assures that the set of participants is finite.
We shall write `.P] Λ for {`.P}∪Λ if ` 6∈msg(Λ) and Λ1] Λ2 for Λ1∪Λ2

if msg(Λ1)∩msg(Λ2) = ∅. We shall also omit curly brackets in choices with
only one branch, as well as trailing 0 processes.

A multiparty session is the parallel composition of pairs participant/pro-
cess.

Definition 2.2 (Multiparty Sessions).
A multiparty session M is defined by the following grammar:

M ::=inductive p . P || M | M

6

and it satisfies the following conditions:
(a) in p1 . P1 | . . . | pn . Pn, for all i, j, 1 ≤ i 6= j ≤ n, pi 6= pj;
(b) in p . P we require p 6∈ ptp(P) (we do not allow self-communication).

We shall use
∏

1≤i≤n
pi . Pi as shorthand for p1 . P1 | . . . | pn . Pn.

We define pts(p . P) = {p} and pts(M | M′) = pts(M) ∪ pts(M′).

Operational Semantics. We assume to have a structural congruence ≡ on
multiparty sessions, establishing that parallel composition is commutative,
associative and has neutral elements p . 0 for any fresh p.
It is convenient to adopt the notation p . P ∈M for M≡ p . P | M′.

The reduction for multiparty sessions allows participants to choose and
communicate messages.

Definition 2.3 (LTS for Multiparty Sessions). The labelled transition
system (LTS) for multiparty sessions is the closure under structural congru-
ence of the reduction specified by the unique rule:

[comm]

msg(Λ) ⊆ msg(Λ′)

p . q!(`.P] Λ) | q . p?(`.Q] Λ′) | M p`q−−→ p . P | q . Q | M

Rule [comm] makes the communication possible: participant p sends message
` to participant q. This rule is non-deterministic in the choice of messages.
The condition msg(Λ) ⊆ msg(Λ′) assures that the sender can freely choose
the message, since the receiver must offer all sender messages and possibly
more. This allows us to distinguish in the operational semantics between

internal and external choices. We use M λ−→ M′ as shorthand for M p`q−−→
M′. We sometimes omit the label, writing −→. As usual, −→∗ denotes the
reflexive and transitive closure of −→.

Example 2.4. Let us consider a system (inspired by a similar one in [1])
with participants p, q, and h interacting according to the following protocol.
Participant p keeps on sending text messages to q, which has to deliver them
to h. After a message has been sent by p, the next one can be sent only if the
previous has been received by h and its propriety of language ascertained, i.e
if it does not contain, say, rude or offensive words. Participant h acknowledges
to q the propriety of language of a received text by means of the message

7

ack. In such a case q sends to p an ok message so that p can proceed by
sending a further message. More precisely:

1. p sends a text message to q in order to be delivered to h, which accepts
only texts possessing a good propriety of language;

2. then h either

(a) sends an ack to q certifying the reception of the text and its propri-
ety. In this case q sends back to p an ok message and the protocol
goes back to step 1, so that p can proceed by sending a further
text message;

(b) sends a nack message to inform q that the text has not the re-
quired propriety of language. In such a case q produces transf (a
semantically invariant reformulation of the text), sends it back to
h and the protocol goes to step 2 again. Before doing that, q in-
forms p (through the notyet message) that the text has not been
accepted yet and a reformulation has been requested;

(c) sends a stop message to inform q that no more text will be ac-
cepted. In such a case q informs p of that.

A multiparty session implementing this protocol is: M = p.P | q.Q | h.H
where

P = q!text.P1 P1 = q?{ok.P, notyet.P1, stop}
Q = p?text.h!text.Q1 Q1 = h?{ack.p!ok.Q,

nack.p!notyet.h!transf.Q1,
stop.p!stop}

H = q?text.H1 H1 = q!{ack.H, nack.q?transf.H1, stop}
�

We end this section by defining the property of lock-freedom for mul-
tiparty sessions as in [26, 32]. Lock-freedom guarantees progress for each
participant (and hence deadlock-freedom). In other words, each participant
ready to communicate will eventually find her partner exposing a dual com-
munication action. Recall that, by structural congruence, p.0 is the neutral
element of parallel composition, for any fresh p.

Definition 2.5 (Lock-Freedom). We say that a multiparty session M is
a lock-free session if

8

(a) M−→∗M′ implies either M′ ≡ p . 0 or M′ −→M′′, and

(b) M −→∗ p . P | M′ and P 6= 0 imply p . P | M′ −→∗ M′′ λ−→ and p
occurs in λ.

To get a stronger lock-freedom assuring that a communication involving p
will occur in all reductions starting from p . P | M when P 6= 0 we need the
following fairness assumption:

in a session, any pair of participants ready to communicate will
exchange a message after a finite number of steps

In this way the multiparty session M = p . P | q . Q | r . s!` | s . r?` with
P = q!`′.P and Q = p?`′.Q will not have the infinite reduction

M p`′q−−→M p`′q−−→ · · ·

where r and s never communicate.
This assumption can be implemented, e.g., by a maximally parallel reduction
in which at each step all possible communications are done [34].
Notice that we do not require participants to choose outputs in a fair way,
since our type system excludes starvation due to the choice of labels, which
is exemplified below.

Example 2.6. The multiparty session M = p . P | q . Q | r . R with
P = q!{`1.r?`3, `2.P}, Q = p?{`1, `2.Q}, and R = p!`3, has the infinite reduc-
tion

M p`2q−−→M p`2q−−→ · · ·

in which participant r can never send her message. Notice that this multi-
party session is rejected by our type system, see Remark 3.11. �

3. Global Types and Typing System

The behaviour of multiparty sessions can be disciplined by means of types.
Global types describe the whole conversation scenarios of multiparty sessions.
As in [34] we directly assign global types to multiparty sessions without the
usual detour around session types and subtyping [23, 24].

9

The type p → q : {`i.Gi | 1≤i≤n} formalises a protocol where participant
p must send to q a message `i for some i, 1 ≤ i ≤ n, (and q must receive
it) and then, depending on which `i was chosen by p, the protocol continues
as Gi. We use Γ as shorthand for {`i.Gi | 1≤i≤n} and define the multiset
msg({`i.Gi | 1≤i≤n}) = {`i | 1 ≤ i ≤ n}. As for processes, we define first
pre-global types and then global types.

Definition 3.1 (Global Types).

(i) We say that G is a pre-global type and Γ is a pre-choice of communi-
cations if they are generated by the grammar:

G ::=coinductive End || p→ q : Γ Γ := {`i.Gi | 1≤i≤n}

where p 6= q and all messages in msg(Γ) are pairwise distinct.

(ii) The tree representation of a pre-global type is built as follows:
(a) each internal node is labelled by p→ q and has as many children

as the number of messages,
(b) the edge from p→ q to the child Gi is labelled by `i and
(c) the leaves of the tree (if any) are labelled by End.

(iii) We say that a pre-global type G is a global type if the tree representation
of G is regular. We say that a pre-choice of communications Γ is a
choice of communications if all the pre-global types in Γ are global types.

We identify pre-global types and global types with their tree representations
and we shall sometimes refer to the tree representations as the global types
themselves. As for processes, the regularity condition implies that we only
consider global types admitting a finite representation.

The set ptg(G) of participants of global type G is defined similarly to those
of processes and sessions. The regularity of global types assures that the set
of participants is finite. We shall write `.G] Γ for {`.G} ∪ Γ if ` 6∈ msg(Γ)
and Γ1] Γ2 for Γ1 ∪ Γ2 if msg(Γ1) ∩msg(Γ2) = ∅. We assume that] has
the highest precedence, i.e. p → q : Γ1] Γ2 means p → q : (Γ1] Γ2). We
shall omit curly brackets in choices with only one branch, as well as trailing
End terms.

Since all messages in communication choices are pairwise distinct, the set
of paths in the trees representing global types are determined by the labels of
nodes and edges found on the way, omitting the leaf label End. Let ρ range

10

over paths of global types. Formally the set of paths of a global type can be
defined as a set of sequences (ε is the empty sequence):

paths(End) = {ε}
paths(p→ q : {`i.Gi | 1≤i≤n}) =

⋃
1≤i≤n{(p→ q) `i ρ | ρ ∈ paths(Gi)}

Note that every infinite path of a global type has infinitely many occurrences
of ‘→’. We use “p 6∈ ρ” as a shorthand for “p does not occur in ρ”.
The function length, which returns the number of “interactions” in a path,
is defined as expected:

length(ε) = 0
length((p→ q) `i ρ) = 1 + length(ρ)

Example 3.2. A global type representing the protocol of Example 2.4 is:

G = p→ q : text.q→ h : text.G1

G1 = h→ q : {ack.q→ p : ok.G,
nack.q→ p : notyet.q→ h : transf.G1,
stop.q→ p : stop}

Examples of paths in G are
ρ1 = (p→ q)text(q→ h)text(h→ q)stop(q→ p)stop and
ρ2 = (p→ q)text(q→ h)text(h→ q)ack(q→ p)okρ2.
We get length(ρ1) = 4 and length(ρ2) =∞. �

Usually, as in [23, 24], projection of global types onto participants pro-
duces session types, and session types are assigned to processes by a type
system. The simple shape of our messages, instead, allows us to define a
projection of global types onto participants producing processes directly.

The projection of a global type onto a participant, if defined, returns the
process that the participant should run to comply with the protocol specified
by the global type. If the global type begins with a message from p to q, then
the projection onto p should send one message to q, and the projection onto
q should receive one message from p. The projection onto a third participant
r skips the initial communication, that does not involve r. However, such a
communication may be part of a choice, and since r is not part of it, she
is not immediately aware of which branch is taken. Then, there are two
possibilities: either r will behave in the same way in all the branches, hence

11

she has no need to know which one has been taken, or she will discover
later on which branch has been taken, by receiving distinct messages in each
branch. In the first case, the projections on r of all the branches must be
the same, and this projection defines her behaviour. In the second case, the
projections yield input processes receiving from the same sender, and we can
allow the process of r to combine all these processes, proviso the messages
are all different.

Definition 3.3 (Projection). Given a participant p, we coinductively de-
fine the partial function �p on global types G as follows:

G�p = 0 if p 6∈ ptg(G)
(p→ q : {`i.Gi | 1≤i≤n}) �p = q!{`i.Gi�p| 1≤i≤n}
(q→ p : {`i.Gi | 1≤i≤n}) �p = q?{`i.Gi�p| 1≤i≤n}
(q→ r : {`i.Gi | 1≤i≤n}) �p =

=

G1�p if p 6∈ {q, r} and Gi�p= G1�p ∀ 1 ≤ i ≤ n

s?(Λ1] . . .] Λn) if p 6∈ {q, r}, Gi�p= s?Λi ∀ 1 ≤ i ≤ n and
msg(Λi) ∩msg(Λj) = ∅ ∀ 1 ≤ i 6= j ≤ n

We say that G�p is the projection of G onto p if G�p is defined. We say
that G is projectable if G�p is defined for all participants p.

This projection is the coinductive version of the projection given in [17, 21],
where processes are replaced by local types.

As mentioned above, if p is not involved in the first communication of G,
then in all branches the process of participant p must either behave in the
same way or be an input from the same sender of different messages, so that
p can understand which branch was chosen.

Example 3.4. The global type G of Example 3.2 is projectable, and by
projecting it we obtain G�p= P , G�q= Q, G�h= H, where P , Q, and H are
as defined in Example 2.4.
Also the global type G′ = p → q : {`1.r → p : `3, `2.G

′} is projectable:
G′�p= P , G′�q= Q, G′�r= R, where P , Q and R are defined in Example 2.6.
Notice that G′ has two branches, the projection of the first branch onto r is
p!`3, the projection of the second branch onto r is just the projection of G′

onto r, so p!`3 is the (coinductive) projection of G′ onto r. �

12

In order to assure lock-freedom by typing we require each participant to
occur in all the paths from the root, and that for each participant the first
occurrences in the various paths are at bounded depth. This is formalised
by requiring the depth of each participant, defined as below, to be finite.

Definition 3.5 (Depth). Let

depth(ρ, p) =

{
length(ρ1) if ρ = ρ1 (q→ r) ` ρ2, p 6∈ ρ1and p ∈ {q, r}
0 if p 6∈ ρ

We then define depth : G× ptg(G)→ N ∪ {∞} by

depth(G, p) = sup{depth(ρ, p) | ρ ∈ paths(G)}

Example 3.6. Let G be as in Example 3.2; then depth(G, p) = depth(G, q) =
0, and depth(G, h) = 1.

Let G′ be as in Example 3.4, then depth(G′, r) =∞. �

Definition 3.7 (Well-formed Global Types). A global type G is well for-
med if depth(G, p) is finite and G�p is defined for all p ∈ ptg(G).

Example 3.8. The global type G of Example 3.2 is well formed, while the
global type G′ of Example 3.4 is not well formed, since its depth is not
bounded. �

In the following, we will only consider well-formed global types.

To type multiparty sessions we use the preorder 6 on processes defined below
and inspired by the subtyping of [11].

Definition 3.9 (Structural Preorder). We define the structural preorder
on processes, P 6 Q, by coinduction:

[sub-0]

0 6 0

[sub-out]

Pi 6 Qi ∀1 ≤ i ≤ n

p!{`i.Pi | 1≤i≤n} 6 p!{`i.Qi | 1≤i≤n}
==================================

[sub-in]

Pi 6 Qi ∀1 ≤ i ≤ n

p?({`i.Pi | 1≤i≤n}] Λ) 6 p?{`i.Qi | 1≤i≤n}
==

13

The double-line in rules indicates that the rules are interpreted coinductively.
Rule [sub-in] allows larger processes to offer fewer inputs than smaller ones,
while Rule [sub-out] requires the output messages to be the same. The
regularity condition on processes is crucial to guarantee the termination of
algorithms for checking structural preorder. Usually, subtyping relations for
output allow more branches in the supertype. We discuss this option in
Section 10.

The typing judgments associate global types to sessions and are of the
shape ` M : G.

Definition 3.10 (Typing System). The only typing rule is:

[t-sess]

∀p ∈ pts(M).
(
p . P ∈M =⇒ P 6 G�p

)
` M : G

A session M is well typed if there exists G such that ` M : G.

The rule above requires that the processes in parallel can play as participants
of a whole communication protocol or they are the terminated process, i.e.
they are smaller or equal (according to the structural preorder) to the pro-
jections of a same global type. Note that [t-sess] is not coinductive since a
multiparty session is a finite parallel composition of (possibly infinite) pro-
cesses; hence coinduction is necessary only for the subtyping relation.
The quantification ∀p ∈ pts(M) (instead of a quantification over p . P) in
the premise makes [t-sess] finitary. Indeed, p . 0 ∈ M for all p 6∈ pts(M),
but no check is needed on those participants. Remark that ` M : G implies
ptg(G) ⊆ pts(M). In fact if p . P ∈ M and P 6= 0 and p 6∈ ptg(G), then
G�p= 0 and P 6 G�p cannot hold.

Remark 3.11. Since the projections of G′ as defined in Example 3.4 are
exactly the processes of the multiparty session in Example 2.6 and G′ is not
well formed, our type system rejects the multiparty session in Example 2.6.

4. Properties of Well-Typed Sessions

We start with the standard lemmas of inversion and canonical form, easily
following from Rule [t-sess].

14

Lemma 4.1 (Inversion Lemma).
If ` M : G and p . P ∈M, then P 6 G�p.

Lemma 4.2 (Canonical Form Lemma). If ` M : G and p ∈ ptg(G),
then there is p . P ∈M and P 6 G�p.

To formalise the properties of Subject Reduction and Session Fidelity
[23, 24], we use the standard LTS for global types given below.

Definition 4.3 (LTS for Global Types). The labelled transition system
(LTS) for global types is specified by the rules:

[ecomm]

p→ q : `.G] Γ
p`q−−→ G

[icomm]

Gi
p`q−−→ G′i ∀1 ≤ i ≤ n {p, q} ∩ {r, s} = ∅

r→ s : {`i.Gi | 1≤i≤n}
p`q−−→ r→ s : {`i.G′i | 1≤i≤n}

Rule [Icomm] makes sense since, in a projectable global type r → s : Γ,
behaviours involving a participant p doing an output as first action and
different from r are the same in all branches. Hence they are independent
from the choice of r, and may be executed before it.

In the remaining of this section we show the main properties of our type
system, i.e. Subject Reduction, Sessione Fidelity and Lock-Freedom. We
start with two lemmas. The first lemma says that the depths of participants
not occurring in the root of a global type decrease along the branches of the
tree. The second lemma relates projections and reductions of global types.

Lemma 4.4. If G = p → q : Γ and r ∈ ptg(G) \ {p, q}, then depth(G, r) >
depth(G′, r) for all `.G′ ∈ Γ.

Proof. All paths of G are of the shape (p→ q) ` ρ, where ρ is a path of G′.
This gives depth(G, r) > depth(G′, r). �

Lemma 4.5 (Key Lemma).

(i) If G�p= q!Λ and G�q= p?Λ′, then msg(Λ) = msg(Λ′). Moreover for all

` ∈ msg(Λ), G
p`q−−→ G` and `.G`�p∈ Λ and `.G`�q∈ Λ′.

15

(ii) If G
p`q−−→ G′, then G�p= q!Λ and G�q= p?Λ′ and ` ∈ msg(Λ) = msg(Λ′).

Proof. (i). The proof is by induction on w = depth(G, p).
If w = 0, then G = p→ q : Γ. Hence, by definition of projection (Definition
3.3), we have msg(Λ) = msg(Λ′) = msg(Γ) and, for all `.G` ∈ Γ, `.G`�p∈ Λ

and `.G`�q∈ Λ′. Moreover G
p`q−−→ G` using rule [ecomm].

If w > 0, then G = r→ s : {`i.Gi | 1≤i≤n} and p 6∈ {r, s}. From G�q= p?Λ′ we
get q 6∈ {r, s}. Moreover Gi�p= q!Λ and Gi�q= p?Λ′ for all i, 1 ≤ i ≤ n, by
definition of projection. By Lemma 4.4 w > depth(Gi, p) for all i, 1 ≤ i ≤ n.
By the induction hypothesis, msg(Λ) = msg(Λ′). Again by the induction

hypothesis, Gi
p`q−−→ G`i and `.G`i�p∈ Λ and `.G`i�q∈ Λ′ for all i, 1 ≤ i ≤ n, and

all ` ∈ msg(Λ). We get G
p`q−−→ G` using rule [icomm], where G` = r → s :

{`i.G`i | 1≤i≤n}.
(ii). The proof is by induction on depth(G, p) and by cases on the reduction
rules. The case of rule [ecomm] is easy. For rule [icomm], by the induction
hypothesis, Gi�p= q!Λi and Gi�q= p?Λ′i and ` ∈ msg(Λi) = msg(Λ′i) for all i,
1 ≤ i ≤ n. By definition of projection Gi�p= G1�p and Gi�q= G1�q for all i,
1 ≤ i ≤ n. Again by definition of projection G�p= G1�p and G�q= G1�q. �

Subject Reduction says that the transitions of well-typed sessions are
mimicked by those of global types.

Theorem 4.6 (Subject Reduction).

If ` M : G and M p`q−−→M′, then G
p`q−−→ G′ and ` M′ : G′.

Proof. If M p`q−−→M′, then p . q!(`.P] Λ) ∈ M, q . p?(`.Q] Λ′) ∈ M and
p.P ∈M′, q.Q ∈M′. Moreover r .R ∈M iff r .R ∈M′ for all r 6∈ {p, q}.
Since ` M : G, we have that q!(`.P] Λ) 6 G�p, and p?(`.Q] Λ′) 6 G�q,
and for all r . R ∈ M such that r 6∈ {p, q} we have R 6 G�r by Lemma 4.1.
By definition of 6, from q!(`.P] Λ) 6 G�p we get G�p= q!(`.P0] Λ0) and
P 6 P0. Similarly from p?(`.Q] Λ′) 6 G �q we get G �q= p?(`.Q0] Λ′0)

and Q 6 Q0. Lemma 4.5(i) implies G
p`q−−→ G′ and G′�p= P0 and G′�q= Q0.

We show G �r6 G′ �r for each r 6∈ {p, q} and r . R ∈ M by induction on
depth(G, r) and by cases on the reduction rules. For rule [ecomm] we get
G = p → q : (`.G′] Γ). By Definition 3.3 either G�r= G′�r or G�r6 G′�r.
For rule [icomm] Gi�r6 G′i�r for all i, 1 ≤ i ≤ n, by the induction hypothesis.
This implies G�r6 G′�r. We conclude ` M′ : G′. �

16

Session fidelity assures that the communications in a session typed by a
global type proceed as prescribed by the global type.

Theorem 4.7 (Session Fidelity). Let ` M : G.

(i) If M p`q−−→M′, then G
p`q−−→ G′ and ` M′ : G′.

(ii) If G
p`q−−→ G′, then M p`q−−→M′ and ` M′ : G′.

Proof. (i). It is the Subject Reduction Theorem.
(ii). By Lemma 4.5(ii), G�p= q!Λ and G�q= p?Λ′ and ` ∈ msg(Λ) = msg(Λ′).
By Lemma 4.5(i) `.G′�p∈ Λ and `.G′�q∈ Λ′. By Lemma 4.2 p . P ∈ M and
q . Q ∈M and P 6 G�p and Q 6 G�q. By definition of 6 we get

• P = q!(`.P ′] Λ1) with {`} ∪msg(Λ1) = msg(Λ) and P ′ 6 G′�p,

• Q = p?(`.Q′] Λ2) with {`} ∪msg(Λ2) ⊇ msg(Λ′) and Q′ 6 G′�q.

Hence we have M p`q−−→M′ with p . P ′ ∈M′, q . Q′ ∈M′ and r . R ∈M iff
r . R ∈M′ for all r 6∈ {p, q}. We conclude ` M′ : G′. �

We end this section by showing that the type system ` assures lock-
freedom. By Subject Reduction it is enough to prove that well-typed sessions
are deadlock-free and no participant waits forever. Both follow from Session
Fidelity, and the latter uses also Lemma 4.4.

Theorem 4.8 (Lock-Freedom). If M is well typed, then M is lock-free.

Proof. Let M̂ be the session obtained after a sequence of reductions from
M as in conditions (a) and (b) of Definition 2.5. By Subject Reduction M̂
can be typed. Let G be a type for M̂. If M̂ 6≡ p . 0, then G 6= End.

Let G = q → r : Γ. By rule [ecomm], G
q`r−→ G′ for some `.G′ ∈ Γ, and this

implies M̂ q`r−→ M′ by Theorem 4.7(ii). This shows condition (a) of Defini-
tion 2.5.
The proof of condition (b) of Definition 2.5 is by induction on w = depth(G, p).

If w = 0 then either G = p → q : Γ or G = q → p : Γ and G
λ−→ G′ with p

in λ by rule [ecomm]. Then M̂ λ−→ M′′ by Theorem 4.7(ii). If w > 0 then

G = q→ r : Γ with p 6∈ {q, r} and G
q`r−→ G` for all `.G` ∈ Γ by rule [ecomm].

By Lemma 4.4 depth(G, p) > depth(G`, p) and induction applies. �

17

It is easy to check that ` M : G, where M and G are the multiparty
session and the global type of Examples 2.4 and 3.2, respectively. By the
above result, M of Example 2.4 is hence provably lock-free.

5. Composition of Multiparty-Sessions via Gateways

Two multiparty sessions can be composed via gateways when they pos-
sess two compatible participants, i.e. participants that offer communications
which can be paired. Hence, the two participants can be transformed into
forwarders, that we dub “gateways”.

We start by discussing the relation of compatibility between processes by
elaborating on Examples 2.4 and 3.2. If we decide to look at the participant
h in these examples as an interface, the messages sent by her have to be
considered as those actually provided by an external environment, and the
received messages as messages expected by such an environment. In a sense,
this means that, if we abstract from participants’ name in the process H,
we get a description of an interface (in the more usual sense) of an external
system, rather than an interface of our system.

In order to better grasp the notion of compatibility hinted at above, let
us dub “an” the operation abstracting from the participants’ name inside
processes. So, in our example we would get

an(H) = ◦?text.an(H1)
an(H1) = ◦!{ack.an(H), nack.◦?transf.an(H1), stop}

where ◦ stands for an abstracted participant name.
Let us now take into account another system that could work as the envi-
ronment of the system having the G of Example 3.2 as global type. Assume
that such a system is formed by participants k, r and s interacting according
to the following protocol:

Participant k sends text messages to r and s in an alternating way, starting
with r.

Participants r and s inform k that a text has been accepted or refused by
sending back, respectively, either ack or nack.

In the first case it is the other receiver’s turn to receive the text: a
message go is exchanged between r and s to signal this case;

18

In the second case, the sender has to resend the text until it is ac-
cepted. Meanwhile the involved participant between r and s in-
forms the other one that she needs to wait, since the previous
message is being resent in a transf ormed form.

This protocol can be implemented by the multiparty session

M′ = r . R | s . S | k . Kr

where

R = k?text.R1 R1= k!{ack.s!go.R2, nack.s!wait.k?transf.R1}
R2= s?{go.R,wait.R2}

S = r?{go.k?text.S1,wait.S} S1 = k!{ack.r!go.S, nack.r!wait.k?transf.S1}
Kr= r!text.K ′r K ′r= r?{ack.Ks, nack.r!transf.K ′r}
Ks= s!text.K ′s K ′s= s?{ack.Kr, nack.s!transf.K ′s}

The “behaviour as interface” of participant k corresponds to

an(Kr) = an(Ks) = ◦!text.an(K ′r)
an(K ′r) = an(K ′s) = ◦?{ack.an(Kr), nack.◦!transf.an(K ′r)}

Notice that the mapping an equates Kr and Ks, i.e. an(Kr) = an(Ks).
The interactions “offered” and “requested” by an(H) and an(Kr) do not pre-
cisely match each other, that is an(H) 6= an(Kr) (where (·) is the standard
syntactic duality function replacing ‘!’ by ‘?’ and vice versa [22]). Nonethe-
less it is easy to check that, even if the system p . P | q . Q of Example 2.4
can safely deal with a message stop coming from its environment, no problem
arises in case such a message never arrives.

In the following definition, instead of explicitly introducing the “an” func-
tion, we simply formalise the compatibility relation in such a way that two
processes are compatible (as interfaces) whenever they offer dual commu-
nications to arbitrary participants, and, for each communication, the set of
input labels is a subset of the set of output labels.

Definition 5.1 (Compatible Processes). The interface compatibility re-
lation P↔Q on processes (compatibility for short), is the largest symmetric
relation coinductively defined by:

[comp-0]

0↔0

[comp-o/i]

Pi↔Qi ∀1 ≤ i ≤ n

p!({`i.Pi | 1≤i≤n}] Λ)↔q?{`i.Qi | 1≤i≤n}
==

19

The double line in rule [comp-o/i] indicates that the rule is coinductive.
Notice that the relation↔ is insensitive to the names of senders and receivers.
Process compatibility is similar to, but simpler than, the subtyping relation
defined in [20]. Therefore one can easily adapt the algorithm for subtyping
in [20] so to check process compatibility.
For what concerns our example, it is straightforward to verify that H↔Kr.

Useful properties of compatibility are stated in the following proposition,
whose proof is simple.

Proposition 5.2. (i) If P↔p?(Λ] Λ′), then P↔p?Λ.

(ii) If P↔p?Λ and P↔p?Λ′ and Λ ∩ Λ′ = ∅, then P↔p?(Λ] Λ′).

(iii) If p!(`.P] Λ)↔q?`.Q, then P↔Q.

As done in [1] for the setting of Communicating Finite State Machines
(CFSMs), the presence of two compatible processes H and K in two multi-
party sessions M and M′ enables to connect them by transforming H and
K into a pair of gateways. This means that each message received by H is
immediately sent to K, each message sent by H needs to be first received by
K, and similarly for what concerns K. Hence, we define below a function
gw(P, h) which transforms an arbitrary process P (representing the behaviour
of K above) not containing a fixed participant h into a gateway towards h,
namely a process which:

1. sends to h each message received in P ;

2. receives from h each message to be sent in P .

Definition 5.3 (Gateway Process). Let h 6∈ ptp(P). We define gw(P, h)
coinductively as follows

gw(0, h) = 0
gw(p?{`i.Pi | 1≤i≤n}, h) = p?{`i.h!`i.gw(Pi, h) | 1≤i≤n}
gw(p!{`i.Pi | 1≤i≤n}, h) = h?{`i.p!`i.gw(Pi, h) | 1≤i≤n}

A first lemma assures the soundness of the previous definition.

Lemma 5.4. If h 6∈ ptp(P), then gw(P, h) is defined and it is a process.

20

Proof. The proof is by coinduction on P and by cases on its shape. The
case P = 0 is trivial. If P = p?{`i.Pi | 1≤i≤n} then

gw(P, h) = p?{`i.h!`i.gw(Pi, h) | 1≤i≤n}

For each i, 1 ≤ i ≤ n, by coinduction gw(Pi, h) is defined and it is a process,
since h 6∈ ptp(Pi). Hence, by definition also gw(p?{`i.Pi | 1≤i≤n}, h) is a
process. The proof for the case where P is an output process is similar. �

The gateway process construction is monotone with respect to the struc-
tural preorder. This property is key to get Theorem 6.11 (ensuring that
composition via gateways preserves typability) and it essentially relies on
the fact that larger processes offer the same output messages than smaller
ones.

Lemma 5.5. Let h 6∈ ptp(P)∪ptp(Q). If P 6 Q, then gw(P, h) 6 gw(Q, h).

Proof. The proof is by coinduction on the derivation of P 6 Q. We only
consider the case of input processes, the proof for output processes is similar
and simpler, the one for 0 is trivial.
If P = p?{`i.Pi | 1≤i≤n} and Q = p?{`i.Qi | 1≤i≤m} with m≤n, then

gw(P, h) =p?{`i.h!`i.gw(Pi, h) | 1≤i≤n} and

gw(Q, h) =p?{`i.h!`i.gw(Qi, h) | 1≤i≤m}

From P 6 Q we get Pi 6 Qi for all i, 1 ≤ i ≤ m. By coinduction gw(Pi, h) 6
gw(Qi, h), which implies h!`i.gw(Pi, h) 6 h!`i.gw(Qi, h) for all i, 1 ≤ i ≤ m.
Hence gw(P, h) 6 gw(Q, h), by definition of 6 (Definition 3.9). �

The following relationship between compatibility and structural preorder
of processes will be essential in the proof of one of our main results (Theorem
6.11).

Lemma 5.6. If P↔Q, then P 6 P ′ and Q 6 Q′ imply P ′↔Q′.

Proof. Let us assume

P = p!{`i.Pi | 1≤i≤n} 6 P ′ = p!{`i.P ′i | 1≤i≤n}
l
Q = q?{`i.Qi | 1≤i≤m} 6 Q′ = q?{`i.Q′i | 1≤i≤m′} with m′ ≤ m ≤ n

21

From P ↔ Q we get Pi ↔ Qi for all i, 1 ≤ i ≤ m. From P 6 P ′ we
get Pi 6 P ′i for all i, 1 ≤ i ≤ n. From Q 6 Q′ we get Qi 6 Q′i for all i,
1 ≤ i ≤ m′. By coinduction we have P ′i↔Q′i for all i, 1 ≤ i ≤ m′. We can
then conclude P ′↔Q′. �

Essentially the result above shows that compatibility is upward-closed with
respect to the structural preorder. However, it is not downward-closed. For
example p!`↔q?` and q?{`, `′} 6 q?`, but p!`↔q?{`, `′} is false.

The formal definition of composition of multiparty sessions via gateways
is based on the notion of process compatibility (Definition 5.1) and on the
transformation of a process into a gateway (Definition 5.3).

Definition 5.7 (Compatible Multiparty Sessions).
Two multiparty sessions M, M′ are compatible via the participants h and k
if pts(M)∩ pts(M′) = ∅ and h .H ∈M and k .K ∈M′ with H↔K.
We write (M, h)↔(M′, k) when M, M′ are compatible via h and k.

Definition 5.8 (Composition Via Gateways of Multiparty Sessions).
Let M ≡M1 | h . H, M′ ≡ M′

1 | k . K and (M, h)↔ (M′, k). We define
M h↔kM′, the composition of M and M′ via gateways, through h and k, by

M h↔kM′ =M1 | M′
1 | h . gw(H, k) | k . gw(K, h)

Example 5.9. Consider M of Example 2.4 and M′ defined on page 19. It
is not difficult to check that

M h↔kM′ = p . P | q . Q | r . R | s . S | h . Ĥ | k . K̂r

where

Ĥ = gw(H, k)=q?text.k!text.Ĥ1 Ĥ1= k?{ack.q!ack.Ĥ,

nack.q!nack.q?transf.k!transf.Ĥ1,
stop.q!stop}

K̂r= gw(Kr, h) = h?text.r!text.K̂ ′r K̂ ′r= r?{ack.h!ack.K̂s,

nack.h!nack.h?transf.r!transf.K̂ ′r}
K̂s= gw(Ks, h) = h?text.s!text.K̂ ′s K̂ ′s= s?{ack.h!ack.K̂r,

nack.h!nack.h?transf.s!transf.K̂ ′s}�

22

We have shown above how to compose two multiparty sessions, but we
have not provided any guarantee on the behaviour of the resulting multiparty
session. In the next section we prove that lock-freedom is preserved under
session composition via gateways. To show this, we define an operator taking
the global types of two sessions and the name of a participant in each of
them (the two participants need to be compatible) and building a type for
the composed multiparty session.
Notice that preservation of lock-freedom cannot be inferred from the results
of [2], where lock-freedom was not taken into account.

6. Composition of Global Types via Gateways

The composition defined in the previous section can be shown to be lock-
freedom preserving by means of Theorem 4.8. In fact, it is possible to lift
the construction in Definition 5.8 to the level of global types. We start by
defining the compatibility of global types via two participants, which mimics
the compatibility of multiparty sessions via two participants

Definition 6.1 (Compatible Global Types). Two global types G, G′ are
compatible via the participants h and k if ptg(G)∩ptg(G′) = ∅ and G�h↔G′�k.
We write (G, h)↔(G′, k) when G, G′ are compatible via h and k.

It is easy to verify that (G, h)↔(G′, k) implies

h ∈ ptg(G) if, and only if, k ∈ ptg(G′).

The compatibility of typed sessions implies the compatibility of the cor-
responding global types.

Lemma 6.2. If (M, h)↔(M′, k) and ` M : G and ` M′ : G′, then

(G, h)↔(G′, k)

Proof. The typings ` M : G and ` M′ : G′ imply ptg(G) ⊆ pts(M) and
ptg(G′) ⊆ pts(M′) as observed after Definition 3.10. Therefore we get that
pts(M) ∩ pts(M′) = ∅ implies ptg(G) ∩ ptg(G′) = ∅. Let h . H ∈ M and
k . K ∈ M′. By the Inversion Lemma (Lemma 4.1) from ` M : G we get
H 6 G�h and from ` M′ : G′ we get K 6 G′�k. From (M, h)↔ (M′, k) we
get H↔K by Definition 5.7. Lemma 5.6 implies G�h↔G′�k. �

It is worth noticing that (G, h)↔ (G′, k) and ` M : G and ` M′ : G′ do not
imply (M, h)↔(M′, k), as shown in the following example.

23

Example 6.3. Take M = p . h?` | h . p!`, M′ = q . k!` | k . q?{`, `′},
G = h→ p : `, G′ = q→ k : `. We get p!`↔q?`, but p!`↔q?{`, `′} does not
hold. �

We are now ready to define the composition of global types via gateways.
To avoid cumbersome parentheses, in the following we assume

?→ ? : Γ h↔k ?→ ? : Γ′ reads (?→ ? : Γ) h↔k (?→ ? : Γ′)
?→ ? : Γ h↔k G reads (?→ ? : Γ) h↔k G
G h↔k ?→ ? : Γ reads G h↔k (?→ ? : Γ)

`.?→ ? : `.?→ ? : `.G h↔k G′ reads `.?→ ? : `.?→ ? : `.(G h↔k G′)
`.G h↔k G′ reads `.(G h↔k G′)

where ? stands for arbitrary, possibly different participant names.

Definition 6.4 (Composition of Global Types via Gateways).
Let (G, h)↔(G′, k). We define

G h↔k G′

coinductively by the clauses of Figure 1, assuming {p, q, r, s} ∩ {h, k} = ∅.
The clauses must be applied in the given order.

(1) End h↔k G = G

(2) p→ h : {`i.Gi | 1≤i≤n} h↔k k→ s : {`i.G′i | 1≤i≤n}] Γ =
p→ h : {`i.h→ k : `i.k→ s : `i.Gi h↔k G

′
i | 1≤i≤n}

(3) h→ p : {`i.Gi | 1≤i≤n}] Γ h↔k s→ k : {`i.G′i | 1≤i≤n} =
s→ k : {`i.k→ h : `i.h→ p : `i.Gi h↔k G

′
i | 1≤i≤n}

(4) p→ q : {`i.Gi | 1≤i≤n} h↔k G = p→ q : {`i.G k↔h Gi | 1≤i≤n}
(5) G h↔k r→ s : {`i.Gi | 1≤i≤n} = r→ s : {`i.Gi k↔h G | 1≤i≤n}

Figure 1: Definition of h↔k on global types

The core rules of our construction are rules (2) and (3), where the commu-
nication received by one of the two gateways is sent to the other one, which
in turns outputs it. In global types, the order of interactions between pairs
of unrelated participants is irrelevant, since we would get the very same pro-
jections. In clauses (4) and (5), however, we swap roles h and k, as well as

24

their corresponding global types in the “recursive call”. We do that in order
to spare the axiom G h↔k End = G. Moreover, this swapping avoids that in
G k↔h G′ the interactions following a communication via gateway all belong
to G (or G′) and that the communication is completed after the description
of interactions all belonging to G′ (or G). In this way, the parallel nature of
the interactions in G and G′ that are not affected by the communications via
gateways is made visually more evident.

Example 6.5. The protocol implemented by the multiparty sessionM′ de-
fined on page 19 can be represented by the following global type Gr:

Gr = k→ r : text.G′r
G′r = r→ k : {ack.r→ s : go.Gs,

nack.r→ s : wait.k→ r : transf.G′r}
Gs = k→ s : text.G′s
G′s = s→ k : {ack.s→ r : go.Gr,

nack.s→ r : wait.k→ s : transf.G′s}

Then, by Definition 6.4, the composition, via h and k, of the global type G
of Example 3.2 and the above global type Gr is:

G h↔k Gr = p→ q : text.q→ h : text.h→ k : text.k→ r : text.G′r k↔h G1

G′r k↔h G1 = r→ k : {ack.k→ h : ack.h→ q : ack.r→ s : go.q→ p : ok.Gs
k↔h G,

nack.k→ h : nack.h→ q : nack.r→ s : wait.q→ p : notyet.
q→ h : transf.h→ k : transf.k→ r : transf.G′r k↔h G1}

Gs
k↔h G = p→ q : text.q→ h : text.h→ k : text.k→ s : text.G1

h↔k G′s

G1
h↔k G′s = s→ k : {ack.k→ h : ack.h→ q : ack.q→ p : ok.s→ r : go.G h↔k Gr,

nack.k→ h : nack.h→ q : nack.q→ p : notyet.s→ r : wait.
q→ h : transf.h→ k : transf.k→ s : transf.G1

h↔k G′s}

In G h↔k Gr the text messages coming from p are delivered to q and, alter-
nately, to r and s till they are accepted (ack). Participant p is informed when
text messages are accepted (ok). During the cycle, q transforms a not yet
accepted text into a more suitable form. The messages between q on one side
and r and s on the other side are exchanged by passing through the coupled
gateways h and k.

It is worth pointing out that in G h↔k Gr, the stop branch of G disappeared.
In fact, since any message coming from h in G does now come from k (which is

25

now the gateway forwarding the messages coming in turn from either r or s),
the function h↔k takes care of the fact that only ack or nack can be received by
(the gateway) h. This fact is reflected in the following Theorem 6.10, where
it is shown that gw(G�h, k) and gw(G′�k, h) are 6 of the projections on h and
k of G h↔k G′, respectively.

We could look at both h and p as interfaces: h representing a social-
network system, which does not accept rude language, and p a social-network
client sending text messages and requiring to be informed about their delivery
status. From this point of view, the global type G of Example 3.2 actually de-
scribes a “delivery-guaranteed” service for text messages, assuring messages
to be eventually delivered by means of a text-transformation policy. �

In order to show the soundness of Definition 6.4, it is handy to express
the condition G�h↔G′�k by means of a relation, dubbed agreement, between
the pairs (G, h) and (G, k).

Definition 6.6 (Agreement Relation).]
The agreement relation (G, h)!(G, k) is the largest symmetric relation coin-
ductively defined by the rules:

[rel-End]

(End, h)!(G′, k) if k 6∈ ptg(G′)

[rel-go]

h 6∈ {p, q} (G`, h)!(G′, k) ∀`.G` ∈ Γ

(p→ q : Γ, h)!(G′, k)
===

[rel-comm]

msg(Γ) = msg(Γ′) (G`, h)!(Ĝ`, k) ∀`.G` ∈ Γ, `.Ĝ` ∈ Γ′

(p→ h : Γ, h)!(k→ q : Γ′] Γ′′, k)
===

The following lemma connects the agreement relation between pairs global
type/participant with the compatibility of the projections of global types on
the participants.

Lemma 6.7. (G, h)!(G′, k) iff G�h↔G′�k.

Proof. From (G, h)! (G′, k) we can show G�h↔G′�k by coinduction and by
cases on the rules of Definition 6.6.

26

If the last applied rule is [rel-go], let Γ = {`i.Gi | 1≤i≤n}. By coinduction
Gi�h↔G′�k for all i, 1 ≤ i ≤ n. By Definition 3.3 we have two cases:

1. G�h= G1�h if Gi�h= G1�h for all i, 1 ≤ i ≤ n;

2. G�h= s?(Λ1] . . .] Λn) if Gi�p= s?Λi for all i, 1 ≤ i ≤ n and
msg(Λi) ∩msg(Λj) = ∅ for all i,j, 1 ≤ i 6= j ≤ n.

In case 1 we are done. In case 2 we conclude by repeatedly applying Propo-
sition 5.2(ii).

If the last applied rule is [rel-comm], then by coinduction G`�h↔ Ĝ`�k for all
` ∈ msg(Γ) = msg(Γ′). By Definition 3.3 G�h= p?{`.G`�h| `.G` ∈ Γ} and

G′�k= q!{`.Ĝ`�k| `.Ĝ` ∈ (Γ′] Γ′′)}. We can then derive G�h↔G′�k using rule
[comp-o/i] of Definition 5.1.

Vice versa, if ¬
(
(G, h)!(G′, k)

)
there exists a “failing derivation” using

rules of Definition 6.6 with conclusion (G, h)!(G′, k) and with at least one
finite branch ending with a judgment having one of the following forms (or
the symmetric ones):

1. (End, h)!(Y, k) with k ∈ ptg(Y);

2. (p→ h : Γ, h)!(s→ k : Γ′, k);

3. (h→ p : Γ, h)!(k→ s : Γ′, k);

4. (p→ h : Γ, h)!(k→ s : Γ′, k) and there exists ` ∈ msg(Γ) \msg(Γ′).

In order to show ¬(G�h↔G′�k) it is enough to assume G�h↔G′�k and to derive
a contradiction by checking that the following statements hold:

a) k ∈ ptg(Y) implies ¬(End�h↔Y�k);

b) If Y = p→ h : Γ and Y′ = s→ k : Γ′, then ¬(Y�h↔Y′�k);

c) If Y = h→ p : Γ and Y′ = k→ s : Γ′, then ¬(Y�h↔Y′�k);

d) If Y = p→ h : Γ, Y′ = k→ s : Γ′, and there exists ` ∈ msg(Γ)\msg(Γ′),
then ¬(Y�h↔Y′�k).

a), b), c) and d) above descend easily from Definition 3.3 of projection and
Definition 5.1 of compatibility between processes. �

Using the previous lemma we can give the following definition of compat-
ible global types, which is alternative to Definition 6.1:

27

(G, h)↔(G′, k) if ptg(G) ∩ ptg(G′) = ∅ and (G, h)!(G′, k).

The agreement relation is preserved by recursive calls performed during
the composition of global types.

Lemma 6.8. Let (G, h)! (G′, k). Then for any call Y h↔k Y′ or Y′ k↔h Y in
the tree of the recursive calls of G h↔k G′ we get (Y, h)!(Y′, k).

Proof. The proof is by coinduction on the rules of Definition 6.6 and by
cases on the rules of Definition 6.4.
Rule (2): Y h↔k Y′ = p → h : {`i.h → k : `i.k → s : `i.Yi h↔k Y′i | 1≤i≤n} where
Y = p→ h : {`i.Yi | 1≤i≤n} and Y′ = k→ s : {`i.Y′i | 1≤i≤n}] Γ. The relation
(Y, h)!(Y′, k) is the conclusion of rule [rel-comm] (cf. Definition 6.6) with
premises (Yi, h)!(Y′i, k) for all i, 1 ≤ i ≤ n.
The proof for rule (3) is similar to the proof for rule (2).
Rule (4): p → q : {`i.Yi | 1≤i≤n} h↔k Y′ = p → q : {`i.Y′ k↔h Yi | 1≤i≤n}. Let
Y = p→ q : {`i.Yi | 1≤i≤n}. The relation (Y, h)!(Y′, k) is the conclusion of
rule [rel-go] with premises (Yi, h)!(Y′, k) for all i, 1 ≤ i ≤ n.
The proof for rule (5) is similar to the proof for rule (4). �

We can now prove the soundness of Definition 6.4.

Lemma 6.9. Let (G, h)↔ (G′, k). Then G h↔k G′ is defined and it is a global
type, i.e. a regular pre-global type.

Proof. From (G, h)↔(G′, k) we have (G, h)!(G′, k). By Lemma 6.8 for all
recursive calls Y h↔k Y′ in G h↔k G′ we always get global types Y,Y′ such that
(Y, h)! (Y′, k). We show that (Y, h)! (Y′, k) assures the applicability of
one rule in Definition 6.4. The proof is by cases on the rules of Definition 6.6.
Rule [rel-End]: we can apply rule (1).
Rule [rel-go]: we can apply rule (4) or (5).
Rule [rel-comm]: we can apply rule (2) or (3).
Notice that the applicability of the rules in alternative is due to the symmetry
of the relation (Y, h)!(Y′, k).

The regularity of the obtained pre-global type follows by observing that
the regularity of G and G′ implies that the tree of the recursive calls has no
infinite path with pairwise distinct calls. �

The following theorem gives the key result concerning projections of types
obtained by composing via gateways.

28

Theorem 6.10. If (G, h)↔(G′, k), then G h↔k G′ is well formed. Moreover

(i) gw(G�h, k) 6 (G h↔k G′)�h and gw(G′�k, h) 6 (G h↔k G′)�k;

(ii) G�p6 (G h↔k G′)�p and G′�q6 (G h↔k G′)�q ,
for any p ∈ ptg(G) and q ∈ ptg(G′) such that p 6= h and q 6= k.

Proof. We recall that by Definition 3.7 a global type is well formed iff it is
projectable on each participant and each participant has finite depth. It is
easy to verify that if

w = max{depth(G, p) | p ∈ ptg(G)} and

w′ = max{depth(G′, p) | p ∈ ptg(G′)}

then depth(G h↔k G′, p) ≤ 2(w + w′) for all p ∈ ptg(G) ∪ ptg(G′). We show
the projectability of the composition by proving (i) and (ii).
(i). We consider only the case gw(G �h, k) 6 (G h↔k G′) �h as the proof of
gw(G′�k, h) 6 (G h↔k G′)�k is specular. We prove gw(Y�h, k) 6 (Y h↔k Y′)�h for
any recursive call Y h↔k Y′ in G h↔k G′ by coinduction and by cases on the last
applied rule.
Rules (1), (4) and (5) do not modify the communications of participant h,
so coinduction easily applies.

Rule (2): Y h↔k Y′ = p → h : {`i.h → k : `i.k → s : `i.Yi h↔k Y′i | 1≤i≤n} where
Y = p→ h : {`i.Yi | 1≤i≤n} and Y′ = k→ s : {`i.Y′i | 1≤i≤n}] Γ.
Then Y�h= p?{`i.Yi�h| 1≤i≤n} by Definition 3.3.
gw(Y�h, k) = p?{`i.k!`i.gw(Yi�h, k) | 1≤i≤n} by Definition 5.3

6 p?{`i.k!`i.(Yi h↔k Y
′
i)�h| 1≤i≤n} by rules [sub-in] and [sub-out]

of Definition 3.9 since
by coinduction
gw(Yi�h, k) 6 (Yi h↔k Y

′
i)�h

for all i, 1 ≤ i ≤ n
= (Y h↔k Y′)�h by Definition 3.3.

Rule (3): Y h↔k Y′ = s→ k : {`i.k→ h : `i.h→ p : `i.Yi h↔k Y
′
i | 1≤i≤n}, where

Y = h→ p : {`i.Yi | 1≤i≤m} and Y′ = s→ k : {`i.Y′i | 1≤i≤n} with m ≥ n.
Then Y�h= p!{`i.Yi�h| 1≤i≤m} by Definition 3.3.

29

gw(Y�h, k) = k?{`i.p!`i.gw(Yi�h, k) | 1≤i≤m} by Definition 5.3
6 k?{`i.p!`i.gw(Yi�h, k) | 1≤i≤n} by rule [sub-in]

6 k?{`i.p!`i.(Yi h↔k Y
′
i)�h| 1≤i≤n} by rules [sub-in] and [sub-out]

of Definition 3.9 since
by coinduction
gw(Yi�h, k) 6 (Yi h↔k Y

′
i)�h

for all i, 1 ≤ i ≤ n
= (Y h↔k Y′)�h by Definition 3.3.

(ii). We only show G�p6 (G h↔k G′)�p for p ∈ ptg(G) and p 6= h. The proof
of G�q6 (G h↔k G′)�q for q ∈ ptg(G′) and q 6= k is specular. Consider the
recursive calls Y h↔k Y′ in G h↔k G′. We prove Y�p6 (Y h↔k Y′)�p by coinduction
on Y,Y′ and by cases on the last applied rule. The only rule which modifies
the communications of p is rule (3):
Y h↔k Y′ = s → k : {`i.k → h : `i.h → p : `i.Yi h↔k Y′i | 1≤i≤n}, where
Y = h→ p : {`i.Yi | 1≤i≤m} and Y′ = s→ k : {`i.Y′i | 1≤i≤n} with m ≥ n.
Y�p = h?{`i.Yi�p| 1≤i≤m} by Definition 3.3

6 h?{`i.Yi�p| 1≤i≤n} by rule [sub-in]

6 h?{`i.(Yi h↔k Y′i)�p| 1≤i≤n} by rule [sub-in] since by coinduction
Yi�p6 (Yi h↔k Y

′
i)�p for all i, 1 ≤ i ≤ n

= (Y h↔k Y′)�p by Definition 3.3. �

We now show that by composing via gateways two well-typed sessions
which are compatible, we get a session which is also well typed. This is
relevant, since well-typed sessions enjoy lock-freedom (Theorem 4.8).

Theorem 6.11. If (M, h)↔ (M′, k) and ` M : G and ` M′ : G′, then
` M h↔kM′ : G h↔k G′.

Proof. Let M≡M1 | h . H and M′ ≡M′
1 | k . K. By construction

M h↔kM′ =M1 | M′
1 | h . gw(H, k) | k . gw(K, h)

From ` M : G we get H 6 G�h and from ` M′ : G′ we get K 6 G′�k, both
thanks to the Inversion Lemma (Lemma 4.1). Lemma 5.5 gives gw(H, k) 6
gw(G�h, k) and gw(K, h) 6 gw(G′�k, h). From (M, h)↔ (M′, k) by Lemma
6.2 we get (G, h)↔ (G′, k). We conclude ` M h↔k M′ : G h↔k G′ using the
relations on the projections of G h↔k G′ given in Theorem 6.10. �

As a general application of the previous results, let us suppose to have two
systems that correspond to multiparty sessions that are compatible via some

30

participants (according to Definition 5.7) and that are well typed (according
to Definition 3.10). At this point, we can “deploy” the composed system
(following Definition 5.8) without any further verification step, since Theorem
6.11 ensures that under such conditions we have a well-typed and hence lock-
free composed system. Besides, we are able to provide the documentation
(the global type) of the resulting system.

7. Compatibility of Global Types is Necessary

We have shown that the composition of typeable multiparty sessions, via
the transformation of two participants into gateways, does preserve lock-
freedom in case the two participants are compatible. One could wonder
whether session compatibility, besides being a sufficient condition for ensur-
ing such a preservation property, is also a necessary one. Example 6.3 shows
that this is not the case. In fact taking M and M′ as in Example 6.3,
M h↔k M′ is undefined, since (M, h)↔ (M′, k) does not hold; nonetheless
we can build

p . h?` | h . k?`.p!` | q . k!` | k . q?{`.h!`, `′.h!`′}

which is lock-free, since its only reduction terminates with p.0. The reason is
that even if potentially k could try to send `′ to p (via h), creating a deadlock,
in this session such a possibility is never taken, since q will never send `′ to
k. Notice that in the same example (G, h)↔(G′, k) instead holds.

We will look then at compatibility of global types. Let ¬
(
(G, h)↔(G′, k)

)
and ` M : G and ` M′ : G′. Then ¬

(
(M, h)↔ (M′, k)

)
by Lemma 6.2.

This implies that M h↔kM′ is undefined. Anyway if M ≡M1 | h . H and
M′ ≡ M′

1 | k . K we can build M1 | M′
1 | gw(H, k) | gw(K, h). Theorem

7.4 below shows that this parallel composition is not lock-free (or not even a
session) when ¬

(
(G, h)↔(G′, k)

)
and ` M : G and ` M′ : G′.

We proceed by providing an inductive characterisation of the relation of
non-compatibility between processes.

Definition 7.1 (Non-Compatibility of Processes).
The non-compatibility relation between processes, dubbed 6↔, is the symmetric

31

closure of the relation inductively defined as follows.

[nocomp-0]

P 6= 0

P 6↔0

[nocomp-i]

p?Λ 6↔q?Λ′

[nocomp-o]

p!Λ 6↔q!Λ′

[nocomp-lab]

msg(Λ′) 6⊆ msg(Λ)

p!Λ 6↔q?Λ′

[nocomp-hered]

P 6↔Q

p!(`.P] Λ) 6↔q?(`.Q] Λ′)

Lemma 7.2. P 6↔Q iff ¬(P↔Q).

Proof. If P 6↔Q, then we can show ¬(P↔Q) by induction on the derivation
of P 6↔Q. We just develop the inductive case [nocomp-hered]. In this case,
P = p!(`.P ′] Λ) and Q = q?(`.Q′] Λ′); moreover, P ′ 6↔ Q′ and thus, by
the induction hypothesis, ¬(P ′ ↔ Q′). We now notice that P ↔ Q could
only possibly hold by rule [comp-o/i] but, since ¬(P ′↔Q′), at least one of
the coinductive premises of such a rule is not satisfied. Hence, we conclude
¬(P↔Q).
Vice versa, if ¬(P ↔ Q) we construct a derivation of P 6↔ Q by looking
at a “failing derivation” of P ↔ Q. If we try to apply rule [comp-o/i] to
show P↔Q, there exists a derivation branch that fails after n steps, i.e. that
reaches two processes P ′, Q′ which do not match the conclusion of [comp-o/i].
We prove P 6↔Q by induction on n, turning the failing coinductive derivation
branch into a derivation of depth n+ 1 which concludes P 6↔Q:

• base case n = 0. The derivation fails immediately, i.e. P ′ = P and
Q′ = Q. By cases on the possible shapes of P and Q, we construct a
derivation which concludes P 6↔Q in 1 = n + 1 steps, by one of the
axioms [nocomp-0], [nocomp-i], [nocomp-o], or [nocomp-lab];

• inductive case n = m + 1. The shapes of P,Q match the conclusion
of rule [nocomp-hered], but there is some coinductive premise P ′↔Q′

whose sub-derivation has a branch that fails after m steps. By the
induction hypothesis, there exists a derivation of depth m + 1 that
concludes P ′ 6↔Q′; using this as a premise of rule [nocomp-hered] we
construct a derivation of depth (m + 1) + 1 = n + 1 which concludes
P 6↔Q. �

32

A lemma connecting projections of global types with reductions of typed
sessions is handy.

Lemma 7.3. Let ` M : G.

(i) If G�p= q?Λ with ` ∈ msg(Λ), then there is a reduction

M−→∗M′ | q . p!Λ′ such that ` ∈ msg(Λ′).

(ii) If G�p= q!Λ with ` ∈ msg(Λ), then there is a reduction

M−→∗M′ | q . p?Λ′ such that ` ∈ msg(Λ′).

Proof. The proofs of both items are by induction on w = depth(G, p).
(i). If w = 0, then G = q→ p : Γ and q . Q ∈ M and Q 6 G�q. We get the
statement without reducing M, since G�q= p!Λ′ and msg(Λ′) = msg(Λ) =
msg(Γ).
If w > 0, then G = r → s : {`i.Gi | 1≤i≤n} with p 6∈ {r, s}, then by Definition
3.3 there is j, 1 ≤ j ≤ n, such that Gj�p= q?Λj with ` ∈ Λj. By rule [ecomm]

of Definition 4.3 G
r`js−−→ Gj. By Theorem 4.7(ii) M r`js−−→M′′ and ` M′′ : Gj.

We conclude using induction, since by Lemma 4.4 depth(Gj, p) < w.
The proof of (ii) is simpler than the proof of (i), since when w > 0 and

G = r → s : {`i.Gi | 1≤i≤n} with p 6∈ {r, s}, then by Definition 3.3 we have
Gi�p= G1�p for all i, 1 ≤ i ≤ n. �

We can now prove that, whereas compatibility between sessions is not a
necessary condition for lock-freedom preservation (as shown at the beginning
of this section using Example 6.3), compatibility between global types is.

Theorem 7.4.
If ¬

(
(G, h)↔(G′, k)

)
and ` M | h . H : G and ` M′ | k .K : G′, then either

M | M′ | h . gw(H, k) | k . gw(K, h) is not a session or it is not lock-free.

Proof. If ptg(G)∩ ptg(G′) 6= ∅, then pts(M | h .H)∩ pts(M′ | k .K) 6= ∅.
In this case M | M′ | h . gw(H, k) | k . gw(K, h) has at least one repeated
participant, so it is not a session. Otherwise ¬(G�h↔ G′�k), i.e. G�h 6↔ G′�k
by Lemma 7.2. We show that M | M′ | h . gw(H, k) | k . gw(K, h) is not
lock-free by induction on the derivation of G�h 6↔G′�k (cf. Definition 7.1). In
each case we use that ` M | h .H : G implies H 6 G�h and ` M | k .K : G′

33

implies K 6 G′�k by Lemma 4.1.
If G�h= 0 and G′�k 6= 0, then H = 0 and K 6= 0. This implies gw(H, k) = 0
but gw(K, h) 6= 0. The messages in gw(K, h) with sender or receiver h will
never be consumed.
If G�h= p?Λ1 and G′�k= q?Λ2, then H = p?Λ′1 and K = q?Λ′2. This implies
gw(H, k) (after receiving a message from p) wants to send a message to k but
gw(K, h) (after receiving a message from q) wants to send a message to h.
If G�h= p!Λ1 and G′�k= q!Λ2, then H = p!Λ′1 and K = q!Λ′2. This implies
gw(H, k) (before sending a message to p) waits for a message from k but
gw(K, h) (before sending a message to q) waits for a message from h.
Let G�h= p!Λ1 and G′�k= q?(`.P]Λ2) and ` 6∈ msg(Λ1), then H = p!Λ′1 with
msg(Λ′1) = msg(Λ1) and K = q?(`.P ′]Λ′2) with msg(Λ′2) ⊇ msg(Λ2). From
G′�k= q?(`.P] Λ2) we get M′ −→∗ M′

1 | q . Q with Q = k!(`.Q′] Λ3) by
Lemma 7.3(i). After Q exchanges the message ` with gw(K, h), the process
gw(K, h) wants to send the message ` to h, but gw(H, k) cannot receive this
message. More precisely

M | M′ | h . gw(H, k) | k . gw(K, h) −→∗

M | M′
1 | q . Q | h . gw(H, k) | k . gw(K, h)

q`k−→
M | M′

1 | q . Q′ | h . gw(H, k) | k . h!`.gw(P, h)

which cannot reduce since gw(H, k) = k?Λ with ` 6∈ msg(Λ) = msg(Λ1).
Let G�h= p!(`.G1�h]Λ1) and G′�k= q?(`.G2�k]Λ2) and G1�h 6↔ G2�k. Then
H = p!(`.P]Λ′1) and K = q?(`.Q]Λ′2) and P 6 G1�h, Q 6 G2�k. By Lemma
7.3M−→∗M1 | p.h?(`.P ′]Λ3) andM′ −→∗M′

1 | q. k!(`.Q′]Λ′3). Then

M | h . H −→∗M1 | p . h?(`.P ′] Λ3) | h . H
h`p−−→M1 | p . P ′ | h . P

and by the Subject Reduction Theorem (Theorem 4.6) there is G′1 such that
` M1 | p . P ′ | h . P : G′1. Similarly

M′ | k . K −→∗M′
1 | q . k!(`.Q′] Λ′3) | k . K

q`k−→M′
1 | q . Q′ | k . Q

and ` M′
1 | q.Q′ | k.Q : G′2 for some G′2. Building G′1 and G′2 as in the proof

of Theorem 4.6 we get G′1�h= G1�h and G′2�k= G2�k, which imply G′1�h 6↔G′2�k.
When gw(K, h) and gw(H, k) exchange the message ` they become gw(P, k)
and gw(Q, h), so the network is not lock-free by induction hypothesis. More

34

precisely

M | M′ | h . gw(H, k) | k . gw(K, h) −→∗

M | M′
1 | q . k!(`.Q′] Λ′3) | h . gw(H, k) | k . gw(K, h)

q`k−→
M | M′

1 | q . Q′ | h . gw(H, k) | k . h!`.gw(Q, h)
k`h−→

M | M′
1 | q . Q′ | h . p!`.gw(P, k) | k . gw(Q, h) −→∗

M1 | p . h?(`.P ′] Λ3) | M′
1 | q . Q′ | h . p!`.gw(P, k) | k . gw(Q, h)

h`p−−→
M1 | p . P ′ | M′

1 | q . Q′ | h . gw(P, k) | k . gw(Q, h)

is not lock-free by induction hypothesis. �

Notice that the theorem above is stated for typeable multiparty sessions,
since it uses compatibility of their global types.

8. Direct Composition of Typed Multiparty Sessions

The use of gateways enables us to get a “safe” composition of systems
by minimally affecting the components themselves, since just the interface
participants need to be modified.

Therefore the composition via gateways is useful after deployment, since it
minimally affects systems that are already implemented. On the other hand,
one would prefer to avoid the overhead due to gateways when composition is
performed statically, as part of a modular design of systems via global types.
In this setting one could easily modify the involved participants, since they
have not been implemented yet.

One could hence wonder whether gateways are strictly necessary to get
safe compositions in our multiparty-sessions setting. It is quite natural to
expect that one could “bypass” the use of gateways by removing them and
simply applying a renaming function on the other participants’ “code”. This
however would be too naive an approach. As pointed out in [2] (Sect. 5.3), a
“safe” composition of their systems which bypasses the use of gateways could
require an heavy redesign of the participants involved in the inter-systems
interactions. A disciplined setting as the present one, instead, enables to
handle direct composition more easily, both at the level of sessions and of
global types, but some care is anyway needed. The following example, in
fact, shows that just a renaming would not work in general.

35

Example 8.1. Consider the following global types and multiparty sessions.

G = p→ h : `.G G′ = k→ r : `.k→ s : `.G′

M = p . P | h . H M′ = r . R | s . S | k . K

where

P = h!`.P H = p?`.H R = k?`.R S = k?`.S K = r!`.s!`.K

It is easy to check that ` M : G and ` M′ : G′.
In order to compose the above multiparty sessions, bypassing the gate-

ways, we could take K out on the side ofM′, and rename some senders’ and
receivers’ names in R and S so that they can receive the message ` directly
from p, obtaining R̃ = p?`.R̃ and S̃ = p?`.S̃. On the side ofM, instead, after
taking out H, we could not get a sound composition by a simple renaming
for the recipient h in P = h!`.P , since the message ` should be delivered,
alternately, to R̃ and S̃. A safe direct composition would hence imply a less
straightforward modification of P as follows: P̃ = r!`.s!`.P̃ . �

We implement a direct composition at the level of global types by means
of the function 6h↔6k defined below and we shall then use this function to
achieve a similar composition of multiparty sessions as well.

Definition 8.2 (Direct Composition of Global Types).
Let (G, h)↔(G′, k). We define

G 6h↔6k G′

coinductively by the clauses of Figure 2, assuming {p, q, r, s} ∩ {h, k} = ∅.
The clauses must be applied in the given order.

Taking G and G′ of Example 8.1, it is easy to check that (G, h)↔(G′, k) and
hence that we can apply direct composition on these global types, obtaining:

G 6h↔6k G′ = p→ r : `.p→ s : `.(G 6h↔6k G′)

We prove now that the direct composition function on global types is well
defined.

Lemma 8.3. Let (G, h)↔ (G′, k). Then G 6h↔6k G′ is defined and it is a global
type, i.e. a regular pre-global type.

36

(1) End 6h↔6k G = G

(2) p→ h : {`i.Gi | 1≤i≤n} 6h↔6k k→ s : {`i.G′i | 1≤i≤n}] Γ =
p→ s : {`i.Gi 6h↔6k G′i | 1≤i≤n}

(3) h→ p : {`i.Gi | 1≤i≤n}] Γ 6h↔6k s→ k : {`i.G′i | 1≤i≤n} =
s→ p : {`i.Gi 6h↔6k G′i | 1≤i≤n}

(4) p→ q : {`i.Gi | 1≤i≤n} 6h↔6k G = p→ q : {`i.G 6k↔6h Gi | 1≤i≤n}
(5) G 6h↔6k r→ s : {`i.Gi | 1≤i≤n} = r→ s : {`i.Gi 6k↔6h G | 1≤i≤n}

Figure 2: Definition of 6h↔6k on global types

Proof. This lemma is the analogous of Lemma 6.9, whose proof uses
Lemma 6.8. Notice that Figure 1 and Figure 2 have exactly the same global
types on the left side of the equalities. The proofs of Lemmas 6.8 and 6.9
only use these global types. Therefore we can easily adapt these proofs to
G 6h↔6k G′. �

The global type G 6h↔6k G′ can be shown to be well formed and to preserve
the projections of those participants which do not communicate with h or k.

Theorem 8.4. If (G, h)↔(G′, k), then G 6h↔6k G′ is well formed. If p ∈ ptg(G)
and h 6∈ ptp(G�p), then G�p= (G 6h↔6k G′)�p. If p ∈ ptg(G′) and k 6∈ ptp(G′�p),
then G′�p= (G 6h↔6k G′)�p.

Proof. It is easy to verify that if

w = max{depth(G, p) | p ∈ ptg(G)} and

w′ = max{depth(G′, p) | p ∈ ptg(G′)}

then depth(G h↔k G′, p) ≤ max{w,w′} for all p ∈ ptg(G) ∪ ptg(G′). We can
show that G 6h↔6k G′ is projectable using the projectability of G,G′ and the
definition of G 6h↔6k G′.
If p ∈ ptg(Y) and h 6∈ ptp(Y�p) we prove that Y�p= (Y 6h↔6k Y′)�p for any
recursive call Y h↔k Y′ in G h↔k G′ by coinduction and by cases on the last
applied rule. Since h 6∈ ptp(Y�p) only rules (4) and (5) can be used and these
rules do not modify the communications of p, so we get the statement. The
case of p ∈ ptg(Y′) and k 6∈ ptp(Y′�p) is analogous. �

37

We can hence obtain a direct composition function at the multiparty-
session level through the use of the function 6h↔6k on global types.

Definition 8.5 (Direct Composition of Multiparty Sessions).
Let ` M : G, ` M′ : G′, (M, h) ↔ (M′, k), with M ≡ M1 | M2 and
M′ ≡M′

1 | M′
2 such that:

• h ∈ ptp(P) for all p . P ∈M1

• h 6∈ ptp(P) for all p . P ∈M2

• k ∈ ptp(Q) for all q . Q ∈M′
1

• k 6∈ ptp(Q) for all q . Q ∈M′
2

We define

M 6h↔6kM′ =
∏

p∈pts(M1)

p . (G 6h↔6k G′)�p | M2 |
∏

q∈pts(M′
1)

q . (G 6h↔6k G′)�q | M′
2

The main result of this section connects the direct composition of global
types and the direct composition of multiparty sessions.

Theorem 8.6. If (M, h) ↔ (M′, k) and ` M : G and ` M′ : G′, then
` M 6h↔6kM′ : G 6h↔6k G′.

Proof. Lemma 6.2 gives (G, h)↔ (G′, k). By Theorem 8.4 G 6h↔6k G′ is well
formed. We conclude ` M 6h↔6k M′ : G 6h↔6k G′ using the relations on the
projections of G h↔k G′ given in Theorem 8.4. �

Example 8.7. It is almost immediate to check that (M, h)↔ (M′, k) for
Example 8.1. We obtain

M 6h↔6kM′ = p . P̃ | r . R̃ | s . S̃

where
R̃ = p?`.R̃ S̃ = p?`.S̃ P̃ = r!`.s!`.P̃

and ` M 6h↔6kM′ : G 6h↔6k G′. �

For direct compositions we cannot compose M and M′ when ` M : G
and ` M′ : G′ and ¬((G, h)↔ (G′, k)), since G 6h↔6k G′ is undefined. So we
cannot have a result similar to Theorem 7.4.

38

9. Decomposition of Typed Multiparty Sessions

In order to use direct composition in the modular development of systems
one needs first to decompose a global specification into modules, then to
develop the various modules in isolation, and finally to combine the modules
using direct composition. We still miss an operation to decompose a global
specification: this will be introduced in the present section. In particular, we
will define a function enabling to decompose a global type into two global
types,n whose direct composition represents the same system of processes
represented by the original global type.

Definition 9.1. The projection of a global type G with respect to a set of
participants P ⊆ ptg(G) and one interface participant h 6∈ ptg(G) is the
global type G⇑hP (if any) defined in Figure 3.

G ⇑hP=End if ptg(G) ∩ P = ∅

p→ q : Γ ⇑hP=

p→ q : {`.G⇑hP | `.G ∈ Γ} if p, q ∈ P
p→ h : {`.G⇑hP | `.G ∈ Γ} if p ∈ P , q 6∈ P
h→ q : {`.G⇑hP | `.G ∈ Γ} if p 6∈ P , q ∈ P
Ĝ if {p, q} ∩ P = ∅ and

Ĝ = G⇑hP for all `.G ∈ Γ

Figure 3: Definition of ⇑ for global types

It is easy to check that if ptg(G) = P , then G⇑hP= G. Moreover if P = ∅,
then G⇑hP= End. Clearly this projection is a partial function. In fact the
condition in case p, q 6∈ P is quite demanding. This requirement could be
relaxed (similarly to what is done in Definition 3.3), but this would compli-
cate the definition and we preferred simplicity. This condition reflects on the
projection of global types as stated in the following proposition.

Proposition 9.2.
If G⇑hP is defined and G contains p → q : Γ with {p, q} ∩ P = ∅, then there

is Ĝ such that G`�r= Ĝ�r for all r ∈ ptg(G) and all `.G` ∈ Γ.

Proof. By coinduction on G and by cases on Definition 9.1. �

39

We can now define the decomposition function on global types. Basically,
the participants are split in two different global types, and two fresh interface
participants are created to manage the communications between the two
groups.

Definition 9.3 (Decomposition of Global Types).
Let G be a global type, {P ,Q} a partition of ptg(G) and h, k 6∈ ptg(G) with
h 6= k. We set

Dech,k(G,P ,Q) =
(
G⇑hP ,G⇑kQ

)
if G⇑hP and G⇑kQ are defined.

A first lemma relates decomposition and compatibility of global types.

Lemma 9.4. If Dech,k(G,P ,Q) =
(
G1,G2

)
, then (G1, h)↔(G2, k).

Proof. Clearly ptg(G1) ∩ ptg(G2) = ∅. By Lemma 6.7 it is enough to show
(G1, h)!(G2, k). The proof is by coinduction on G and by cases on Definition
9.1.

If G = p→ q : Γ with p ∈ P and q ∈ Q, then by Definition 9.3

G1 = G⇑hP = p→ h : {`.G`⇑hP | `.G` ∈ Γ} and

G2 = G⇑kQ = k→ q : {`.G`⇑kQ| `.G` ∈ Γ}

By coinduction we have that, for all `.G` ∈ Γ, (G`⇑hP , h)! (G`⇑kQ, k) and
hence we can derive (G1, h)!(G2, k) using rule [rel-comm] of Definition 6.6.

If G = p→ q : Γ with p, q ∈ P , then

G1 = G⇑hP= p→ q : {`.G`⇑hP | `.G` ∈ Γ} and G2 = G⇑kQ= Ĝ

for some global type Ĝ such that Ĝ = G`⇑kQ for all `.G` ∈ Γ. By coinduction
we have that (G`⇑hP , h)! (G`⇑kQ, k) for all `.G` ∈ Γ. Then (G1, h)! (G2, k)
using rule [rel-go] of Definition 6.6. �

The following theorem shows the desired duality between decomposition
and direct composition.

Theorem 9.5. If Dech,k(G,P ,Q) =
(
G1,G2

)
, then G1

6h↔6k G2 = G.

40

Proof. We show the thesis by coinduction on the structure of G and by
cases on Definition 9.1.

If G = p→ q : Γ with p ∈ P and q ∈ Q then

G⇑hP= p→ h : {`.G`⇑hP | `.G` ∈ Γ} and G⇑kQ= k→ q : {`.G`⇑kQ| `.G` ∈ Γ}

By Definition 8.2 we get

G⇑hP6h↔6k G⇑kQ= p→ q : {`.(G`⇑hP6h↔6k G`⇑kQ) | `.G` ∈ Γ}
By coinduction we have that G` = G`⇑hP6h↔6k G`⇑kQ for all `.G` ∈ Γ and hence
the thesis.

If G = p→ q : Γ with p, q ∈ P then

G⇑hP= p→ q : {`.G`⇑hP | 1≤i≤n} and G⇑kQ= Ĝ

for some global type Ĝ such that Ĝ = G`⇑kQ for all `.G` ∈ Γ. By Definition
8.2 we get

G⇑hP6h↔6k G⇑kQ= p→ q : {`.(G`⇑hP6h↔6k Ĝ) | `.G` ∈ Γ}
which implies

G⇑hP6h↔6k G⇑kQ= p→ q : {`.(G`⇑hP6h↔6k G`⇑kQ) | `.G` ∈ Γ}

and we can conclude as in previous case. �

In the remaining of this section we discuss the decomposition of typed
sessions. A notion of process projection is handy.

Definition 9.6. The projection of a process P with respect to a set of par-
ticipants P and one interface participant h 6∈ P is the process P⇑hP defined
by:

0⇑hP= 0 p†Λ⇑hP=

{
p † {`.P `⇑hP | `.P ` ∈ Λ} if p ∈ P ,
h † {`.P `⇑hP | `.P ` ∈ Λ} if p 6∈ P

where † stands for ? or !.

It is easy to verify that if P = ∅, then ptp(P⇑hP) = {h}.
We look for a decomposition procedure at the multiparty-session level,

through the use of the projection in Definition 9.1. Notice that if ` M : G
and {P ,Q} is a partition of ptg(G), then M≡ Πp∈Pp . Pp | Πq∈Qq . Qq.

41

Definition 9.7. Let ` M : G and Dech,k(G,P ,Q) = (G1,G2) and M ≡
Πp∈Pp . Pp | Πq∈Qq . Qq. We define:

Dech,k(M,G,P ,Q) =
(
Πp∈Pp . Pp⇑hP | h . G1�h,Πq∈Qq . Qq⇑kQ | k . G2�k

)
Notably, the decomposition function above exploits the type of the session.

A last proposition on subtyping between input processes (with a trivial
proof) is handy in showing the final theorem.

Proposition 9.8. If P 6 p?Λ and P 6 p?Λ′ and msg(Λ) ∩ msg(Λ′) = ∅,
then P 6 p?(Λ] Λ′).

The main result of this section is that the sessions obtained by decompo-
sition can be typed by the global types obtained by decomposition.

Theorem 9.9.
If ` M : G and Dech,k(G,P ,Q) = (G1,G2) and Dech,k(M,G,P ,Q) =(
M1,M2), then ` M1 : G1 and ` M2 : G2.

Proof. It is enough to show that P 6 G�p implies P ⇑hP6 (G⇑hP)�p with
p ∈ P . The proof is by coinduction on G and by cases on its shape. The case
G = End is trivial.

If G = q → p : {`i.Gi | 1≤i≤n}, by Definition 3.3 and rule [sub-in] (cf.
Definition 3.9) we have

P = q?{`i.Pi | 1≤i≤m} and G�p= q?{`i.Gi�p| 1≤i≤n}

with n ≤ m and Pi 6 Gi �p for all i, 1 ≤ i ≤ n. By coinduction we get
Pi⇑hP6 (Gi⇑hP)�p for all i, 1 ≤ i ≤ n. By Definitions 9.6 and 9.1

P⇑hP= s?{`i.Pi⇑hP | 1≤i≤m} and (G⇑hP)�p= s?{`i.(Gi⇑hP)�p| 1≤i≤n}

where s = q if q ∈ P and s = h otherwise. Then we get P⇑hP6 (G⇑hP)�p by
using the rule [sub-in] of Definition 3.9.

If G = q → p : Γ the proof is similar to the previous case using the rule
[sub-out] of Definition 3.9.

If G = r → s : {`i.Gi | 1≤i≤n} and p 6∈ {r, s}, then we have two cases. If

{r, s} ∩ P = ∅, then by Definition 9.1 (G⇑hP)�p= Ĝ�p for some global type Ĝ

such that Ĝ = Gi⇑hP for all i, 1 ≤ i ≤ n. By Proposition 9.2 Gi�p= G1�p for
all i, 1 ≤ i ≤ n. So coinduction applies. Otherwise, when {r, s} ∩ P 6= ∅, by
Definition 3.3 of projection, we have two subcases:

42

1. G�p= G1�p if Gi�p= G1�p for all i, 1 ≤ i ≤ n;

2. G �p= t?(Λ1] . . .] Λn) with Gi �p= t?Λi for all i, 1 ≤ i ≤ n, and
msg(Λi) ∩msg(Λj) = ∅ for all i, j, 1 ≤ i 6= j ≤ n.

In case 1 the proof is as before. In case 2, from Λ = Λ1] . . .] Λn using
rule [sub-in] of Definition 3.9, we get G�p6 Gi�p, which implies P 6 Gi�p for
all i, 1 ≤ i ≤ n. By coinduction P⇑hP6 (Gi⇑hP)�p for all i, 1 ≤ i ≤ n. By
Definition 9.1 (G⇑hP)�p= t′?(Λ′1] . . .]Λ′n) and (Gi⇑hP)�p= t′?Λ′i (where either
t′ = t or t′ = h) and msg(Λ′i) = msg(Λi) for all i, 1 ≤ i ≤ n. We conclude
P⇑hP6 (G⇑hP)�p by repeated application of Proposition 9.8. �

If G0 = p → r : `.p → s : `.G0 and P = {p} and Q = {r, s}, then we get
Dech,k(G0,P ,Q) =

(
G,G′

)
where G and G′ are as in the Example 8.1. Let

P̃ , R̃ and S̃ be as in Example 8.7. We have

Dech,k(p . P̃ | r . R̃ | s . S̃,G0,P ,Q) =
(
p . P | h . H, r . R | s . S | k . K

)
where P , H, R, S, and K are as in Example 8.1. This shows an instance of
Theorem 9.9.

For typed multiparty sessions the decomposition is not the left inverse of
the direct composition. For example take

M≡ p . r!`1 | q . s?`2 | r . p?{`1, `3} | s . q!`2

and P = {p, q} and Q = {r, s} and G = p → r : `1.s → q : `2. We get
Dech,k(M,G,P ,Q) =

(
M1,M2

)
whereM1 ≡ p.h!`1 | q.h?`2 | h.p?`1.q!`2,

M2 ≡ r . k?{`1, `3} | s . k!`2 | k . r!`1.s?`2. Then ` M1 : G1 and ` M2 : G2

where G1 = p→ h : `1.h→ q : `2 and G2 = k→ r : `1.s→ k : `2. We obtain

M1
6h↔6kM2 ≡ p . r!`1 | q . s?`2 | r . p?`1 | s . q!`2

The difference between M and M1
6h↔6kM2 is that participant r in M waits

for a message `3 from participant p. However, p will never send this message.
As in this example, decomposing followed by composing typed sessions elim-
inates useless inputs. This is due to the replacement of some original pro-
cesses by the projections of global types into the corresponding participants,
see Definition 8.5.

43

10. Standard Preorder on Processes

We now discuss the impact of adopting a structural preorder on processes,
that we denote as 6+, mimicking the standard subtyping relation [16].

The relation 6+ is obtained by replacing [sub-out] with [sub-out+] below
in Definition 3.9, hence it allows more outputs in larger processes than in
smaller ones.

[sub-out+]

Pi 6 Qi ∀1 ≤ i ≤ n

p!{`i.Pi | 1≤i≤n} 6 p!({`i.Qi | 1≤i≤n}] Λ)
======================================= (1)

Let `+ be the typing system obtained by using 6+ in rule [t-sess] (cf. Defi-
nition 3.10).

Lemmas 4.1 and 4.2 easily adapts to the system `+.

Lemma 10.1 (Inversion Lemma for `+). If `+M : G and p . P ∈ M,
then P 6+ G�p.

Lemma 10.2 (Canonical Form Lemma for `+).
If `+M : G and p ∈ ptg(G), then there is p . P ∈M and P 6+ G�p.

Clearly ` M : G implies `+M : G, and a weakening of the vice versa is
shown below.

Theorem 10.3. If `+M : G, then ` M : G′ for some G′.

Proof. The proof is by coinduction on G. Let G = p → q : Γ. Then,
by Lemma 10.2 we get M ≡ p . q!Λ | q . p?Λ′ | M′ and q!Λ 6+ G�p and
p?Λ′ 6+ G�q. By the definition of 6+, msg(Λ) ⊆ msg(Γ) ⊆ msg(Λ′). Let
Λ = {`i.Pi | 1≤i≤n}, Γ = {`i.Gi | 1≤i≤n}]Γ′ and Λ′ = {`i.Qi | 1≤i≤n}]Λ′′. By
definition of 6+ we get Pi 6+ Gi�p and Qi 6+ Gi�q for all i, 1 ≤ i ≤ n. Then
we can derive `+ p . Pi | q . Qi | M′ : Gi for all i, 1 ≤ i ≤ n. By coinduction
there are G′i such that ` p . Pi | q . Qi | M′ : G′i for all i, 1 ≤ i ≤ n. We can
choose G′ = p→ q : {`i.G′i | 1≤i≤n}. �

Thanks to the theorem above, the classes of multiparty sessions that can
be typed by ` and `+ do coincide.

A first effect of adopting 6+ is a weaker notion of session fidelity than the
one for 6. This is easily illustrated by the following example: using `+, we
can type sessionM = p.q!`1 | q.p?{`1, `2} with G = p→ q : {`1, `2}, namely

44

`+M : G holds. However G
p`iq−−→ End with i = 1, 2, while the only reduction

ofM isM p`1q−−→ p.0. Notice that G�p= q!{`1, `2} and G�q= p?{`1, `2}, hence
q!`1 6+ G�p but q!`1 66 G�p.

Lemma 5.5 does not hold for `+, as shown by the following counterex-
ample. If P = p!`1 and Q = p!{`1, `2}, then P 6+ Q, but gw(P, h) =
h?`1.p!`1

+> h?{`1.p!`1, `2.p!`1} = gw(Q, h). The reason is that 6+ allows
larger processes to contain additional messages in send operations, but the
gateway construction would introduce additional messages in inputs.

Instead we can show the analogous of Lemmas 5.6 and 6.2 for 6+.

Lemma 10.4. If P↔Q, then P 6+ P ′ and Q 6+ Q′ imply P ′↔Q′.

Proof. Let us assume

P = p!{`i.Pi | 1≤i≤n} 6+ P ′ = p!{`i.P ′i | 1≤i≤m}
l
Q = q?{`i.Qi | 1≤i≤n′} 6+ Q′ = q?{`i.Q′i | 1≤i≤n′′} with n′′ ≤ n′ ≤ n ≤ m

From P ↔Q we get Pi↔Qi for all i, 1 ≤ i ≤ n′. From P 6+ P ′ we get
Pi 6+ P ′i for all i, 1 ≤ i ≤ n. From Q 6+ Q′ we get Qi 6+ Q′i for all i,
1 ≤ i ≤ n′′. By coinduction we have P ′i↔Q′i for all i, 1 ≤ i ≤ n′′. We can
then conclude P ′↔Q′. �

Lemma 10.5. If (M, h)↔(M′, k) and `+M : G and `+M′ : G′, then

(G, h)↔(G′, k)

Proof. The proof mimics that of Lemma 6.2, just using Lemma 10.4 instead
of Lemma 5.6. �

A main drawback of rule [sub-out+] is that Theorem 6.11 fails to hold
due to the fact that `+ invalidates Lemma 5.5. We can anyway prove a
similar result for `+.

Theorem 10.6. If (M, h)↔ (M′, k) and `+M : G and `+M′ : G′, then
`+M h↔kM′ : G′′ for some G′′.

45

Proof. Theorem 10.3 implies ` M : G1 and ` M′ : G2 for some G1,G2.
Theorem 6.11 gives ` M h↔kM′ : G1

h↔k G2. We can choose G′′ = G1
h↔k G2.

�

Compatibility of global types is not necessary for the type system `+.
Let

G = p→ h : {`1, `2} G′ = k→ s : {`1, `2.s→ k : `3}
M = p . h!`1 | h . p?{`1, `2} M′ = s . k?{`1, `2.k!`3} | k . s!`1

Then ¬
(
(G, h)↔(G′, k)

)
and `+M : G and `+M′ : G′, but

M′′ = p . h!`1 | s . k?{`1, `2.k!`3} | h . p?{`1.k!`1, `2.k!`2} | k . h?`1.s!`1

reduces only as follows:

M′′ p`1h−−→ s . k?{`1, `2.k!`3} | h . k!`1 | k . h?`1.s!`1
h`1k−−→ s . k?{`1, `2.k!`3} | k . s!`1
k`1s−−→ s . 0

As this example shows, if the cause of ¬
(
(G, h)↔(G′, k)

)
occurs after an out-

put that is not present inM andM′, then no deadlock arises by composing
them via gateways.

Instead we can show that the direct composition of multiparty sessions
can be typed using the direct composition of global types, as in the system
`, and differently with respect to the composition via gateways. We define
M 6h←+→6kM′ as M 6h↔6kM′ (cf. Definition 8.5), but using `+ instead of `.

Theorem 10.7. If (M, h)↔ (M′, k) and `+M : G and `+M′ : G′, then
`+M 6h←+→6kM′ : G 6h↔6k G′.

Proof. The proof is as the proof of Theorem 8.6 using Lemma 10.5 instead
of Lemma 6.2. �

The decomposition of global types and multiparty sessions is insensible
to the difference between 6 and 6+ as well.

Proposition 10.8. If P 6+ p?Λ and P 6+ p?Λ′ and msg(Λ)∩msg(Λ′) = ∅,
then P 6+ p?(Λ] Λ′).

46

Theorem 10.9.
If `+M : G, Dech,k(G,P ,Q) = (G1,G2) and Dech,k(M,G,P ,Q) =

(
M1,M2),

then `+M1 : G1 and `+M2 : G2.

Proof. Like in the proof of Theorem 9.9, it is enough to show that P 6+ G�p
implies P ⇑hP6+ (G⇑hP)�p with p ∈ P . Here we show only the cases whose
proofs differ from those considered in Theorem 9.9.

If G = p→ q : {`i.Gi | 1≤i≤n}, by Definition 3.3 we have

P = q!{`i.Pi | 1≤i≤n} and G�p= q!{`i.Gi�p| 1≤i≤m}

with n ≤ m and Pi 6+ Gi�p for all i, 1 ≤ i ≤ n, by [sub-out+] (cf. rule (1)).
By coinduction, Pi⇑hP6+ (Gi⇑hP)�p for all i, 1 ≤ i ≤ n. By Definitions 9.6
and 9.1

P⇑hP= s!{`i.Pi⇑hP | 1≤i≤n} and (G⇑hP)�p= s!{`i.(Gi⇑hP)�p| 1≤i≤m}

where s = q if q ∈ P and s = h otherwise. Then we get P⇑hP6+ (G⇑hP)�p by
using rule [sub-out+].

If G = r → s : {`i.Gi | 1≤i≤n} the proof is as for Theorem 9.9, but using
Proposition 10.8 instead of Proposition 9.8.

�

11. Concluding Remarks, Related Work, and Future Developments

The distinguishing feature of an open system of concurrent components
is its capacity of communicating with the “outside”, i.e. with some environ-
ment of the system. This ability provides means for composing open systems
into larger systems (which may still be open). In order to compose systems
“safely”, it is common practice to rely on interface descriptions.
MPST systems [24, 12, 31] are usually assumed to be closed, since all the
components needed for the functioning of the system must be already there.
As a matter of fact, the MPST framework does work fairly well for the
design of closed systems, but does not possess the flexibility open systems
can offer. In [1, 2] a novel approach to open systems has been proposed
where, according to the current needs, the behaviour of any participant can
be regarded as an “interface”. An interface is hence intended to represent -
somehow dually with respect to the standard notion of interface - part of the

47

expected communication behaviour of the environment. Identifying a par-
ticipant behaviour as interface corresponds to expecting such a behaviour to
be realised by the environment, rather than by an actual component of the
system. Then, according to such an approach, there is actually no distinction
between a closed and an open system. In particular, once two systems pos-
sess two “compatible” interfaces, they can be composed. The composition
mechanism of [1, 2] uses suitable forwarders, dubbed “gateways”, for this
purpose. The gateways are automatically synthesised out of the compatible
interfaces and the composition of two systems simply consists in replacing
the latter by the former.

In the present paper we have provided a MPST formalism where global
types are used to describe the overall behaviour of “safe” systems of pro-
cesses – dubbed multiparty sessions – directly related to the global types
projections. We have then adapted and extended to such a formalism the
approach of [1, 2], both at the global type and multiparty session levels.
In general, managing to look at global types as overall descriptions of open
systems results in a MPST-based approach to the modular design of sys-
tems. From another point of view, by means of such an approach, one could
develop systems where some participants, instead of representing actual pro-
cesses, describe API calls, along the line of what some researchers refer to as
Behavioural API [4]. Moreover, this approach is helpful also after the system
implementation phase. Let us assume to have a system developed using a
MPST software development approach. After the implementation phase, one
could realise that the service corresponding to a participant of the system
can be more suitably provided by another system. The participant can then
be safely replaced by a gateway composition with the other system, and the
composition operation on global types enables to get a global view of what
is going on in the resulting system.

Our calculus of multiparty sessions is like those of [17, 21], but for the
use of coinduction instead of induction which is inspired by [10, 34]. As in
[34] we get rid of local types, which in many calculi are similar to processes
[11, 17, 21]. The syntax of global types is the coinductive version of the
standard syntax [24] and the notion of projection in Definition 3.3 is an
extension of both the standard projection [24] and the projection given in
[34]. Our global types assure lock-freedom of multiparty sessions.

As mentioned above, a relevant feature of our formalism is that the com-
position by gateways operation on systems can be lifted to the level of global
types. In [1, 2], where systems of CFSMs were considered, such a lifting was

48

done by extending the syntax of global descriptions with a new symbol, whose
semantics is indeed the composition by gateways at system level. Instead, in
the present paper, the session obtained by composition is represented using
the standard syntax of global types. Moreover, we have shown that the com-
patibility relation of [1, 2], which requires duality, can be relaxed to a relation
very close to session types subtyping [20, 16]. We further investigated the
notion of compatibility by also showing that compatibility of global types is
actually also a necessary condition in order to get a “safe” composition of
systems.

Our formalism is equipped with a structural preorder on processes akin
to the subtyping relation between session types of [11], which in turn is a
restriction of the subtyping of [16]. This choice is justified by the fact that
the subtyping of [16] allows process substitution, while the subtyping of [20]
allows channel substitution, as observed in [19].

We have also shown that the composition by gateways technique can be
extended so that the gateways can be actually dropped. This alternative
approach has led to the definition of another composition operation that we
dubbed direct. The use of direct composition - in particular at type level -
yields a powerful tool. In fact, it enables the modular design and development
of distributed systems, expecially in case such an operation can be paired –
as we did – with another one enabling to decompose a global description.
Small systems can be separately implemented out of the types obtained by
decomposing a global type. Then by direct composition such systems can be
merged into a system implementing the original global description, as shown
by our results (some constraints have to be imposed on the global type to be
decomposed).

A final contribution of the present paper is the discussion on how the
properties of the given constructions change when we consider a structural
preorder on processes mimicking the subtyping relation of [16].

In [29, 28] global types are built out of several local types (under certain
conditions). We also aim at getting global types, but we obtain them from
the global types describing the two systems which are composed.

The dynamic addition/removal of participants (they can join/leave the
session after it has been set up) is supported in the calculus of [25] and re-
cently in [6]. In [25] the extension of a system is part of the global protocol.
The extension operation is sort of internalised. We take instead the standard
point of view of open systems, where the possible extensions cannot be de-
cided in advance. This is also the point of view adopted in [6], however the

49

type system proposed in [6] aims to guarantee data-flow properties instead
of control properties. For instance, in [6] well-typed systems may be not
lock-free. Both those approaches to the dynamic system extension issue look
orthogonal to the work presented here.

Another approach to safe system composition allows one to replace a frag-
ment of a choreography (essentially a program structured as a multiparty
session type) with a new one at run-time [15], possibly also introducing new
participants [18]. However, the new fragment could not communicate by ex-
changing messages with the context choreography, but only through shared
state. Also, the change may deeply impact all the participants, and a com-
plex middleware managing the change is needed. Hence, this approach is
orthogonal to ours as well.

Both arbiter processes [8] and mediums [7] coordinate communications
described by global types. A difference with the present paper is that their
aim is to reduce the interactions in multiparty sessions to interactions in
binary sessions. Our gateways do instead act as simple forwarders, with the
aim of composing two multiparty systems. Nonetheless, our work could be
further developed in the logical context of [8]: in the logical interpretation of
multiparty sessions one could introduce a “composition cut” corresponding to
a sort of composition-by-gateways operator. Then the good properties of the
system corresponding to the proof containing the cut should be guaranteed by
proving that the “composition cut” is actually an admissible rule. The proof
should consist in a “composition cut elimination” procedure corresponding to
our direct composition on global types, which bypasses the use of gateways.

The results of this paper would be more applicable accounting for asyn-
chronous communications. In particular, a first relevant step would consist in
allowing gateways to interact asynchronously. We expect that compatibility
could be extended, since the subtyping for asynchronous multiparty sessions
is more permissive than the subtyping for the synchronous ones [31]. Of
course this extension requires care, being the subtyping of [31] undecidable,
as shown in [5, 30].

The composition via gateways proposed by the authors of [1, 2] and ex-
ploited in the present paper in a multiparty session setting does produce
networks of systems possessing a tree-like topology. In order to get gen-
eral graphs topology, it sounds natural to extend the present single interface
composition to a multiple interfaces one. Such an extension, however, imme-
diately reveals itself to be unsound: by composing via gateways more than
one pair of compatible interfaces one could obtain a deadlocked system. A

50

very simple example for that is

G = p→ h : ` and G′ = k→ s : `

By projection we get the systems

M = p . h!` | h . p?` and M′ = k . s!` | s . k?`

It is immediate to check that p and s are compatible, as well as h and k.
Simultaneously connecting M and M′ through both the compatible pairs
(p, s) and (h, k) would result in the following deadlocked system

p . s?`.h!` | h . p?`.k!` | k . h?`.s!` | s . k?`.p!`

(This example is similar to one developed in the CFSMs setting of [2]).
It is easy to realise that this sort of difficulty stays the same also in case direct
composition is considered. In order to guarantee “safeness” of multiple con-
nections, suitable requirements have hence to be devised. An adaptation to
the present setting of the interaction type system of [13] could be investigated
in future for such an aim.

Acknowledgments. We gratefully acknowledge the fruitful interactions and
communications with the anonymous referees through the ICE Forum and
thank them for their reports.

References

[1] Barbanera, F., de’Liguoro, U., Hennicker, R., 2018. Global Types for
Open Systems, in: ICE, Open Publishing Association. pp. 4–20.

[2] Barbanera, F., de’Liguoro, U., Hennicker, R., 2019. Connecting Open
Systems of Communicating Finite State Machines. Journal of Logical
and Algebraic Methods in Programming 109, 1–34.

[3] Barbanera, F., Dezani-Ciancaglini, M., 2019. Open Multiparty Sessions,
in: ICE, Open Publishing Association. pp. 77–96.

[4] BEHAPI website, 2019. Behapi website. https://www.um.edu.mt/

projects/behapi/.

51

https://www.um.edu.mt/projects/behapi/
https://www.um.edu.mt/projects/behapi/

[5] Bravetti, M., Carbone, M., Zavattaro, G., 2017. Undecidability of Asyn-
chronous Session Subtyping. Information and Computation 256, 300–
320.

[6] Bruni, R., Corradini, A., Gadducci, F., Melgratti, H.C., Montanari, U.,
Tuosto, E., 2019. Data-Driven Choreographies à la Klaim, in: Models,
Languages, and Tools for Concurrent and Distributed Programming,
Springer. pp. 170–190. Essays Dedicated to Rocco De Nicola on the
Occasion of His 65th Birthday.

[7] Caires, L., Pérez, J.A., 2016. Multiparty Session Types Within a Canon-
ical Binary Theory, and Beyond, in: FORTE, Springer. pp. 74–95.

[8] Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P., 2016.
Coherence Generalises Duality: A Logical Explanation of Multiparty
Session Types, in: CONCUR, Schloss Dagstuhl. pp. 33:1–33:15.

[9] Cardone, F., Coppo, M., 2013. Recursive Types, in: Barendregt, H.,
Dekkers, W., Statman, R. (Eds.), Lambda Calculus with Types. Cam-
bridge University Press. Perspectives in Logic, pp. 377–576.

[10] Castagna, G., Gesbert, N., Padovani, L., 2009. A Theory of Contracts
for Web Services. ACM Transactions on Programming Languages and
Systems 31, 19:1–19:61.

[11] Castellani, I., Dezani-Ciancaglini, M., Giannini, P., 2019. Reversible
Sessions with Flexible Choices. Acta Informatica , 553–583.

[12] Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N., 2015.
A Gentle Introduction to Multiparty Asynchronous Session Types, in:
Formal Methods for Multicore Programming, Springer. pp. 146–178.

[13] Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L., 2016.
Global Progress for Dynamically Interleaved Multiparty Sessions. Math-
ematical Structures in Computer Science 26, 238–302.

[14] Courcelle, B., 1983. Fundamental Properties of Infinite Trees. Theoret-
ical Computer Science 25, 95–169.

[15] Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.,
2017. Dynamic Choreographies: Theory And Implementation. Logical
Methods in Computer Science 13, 1–57.

52

[16] Demangeon, R., Honda, K., 2011. Full Abstraction in a Subtyped Pi-
Calculus with Linear Types, in: CONCUR, Springer. pp. 280–296.

[17] Dezani-Ciancaglini, M., Ghilezan, S., Jaksic, S., Pantovic, J., Yoshida,
N., 2015. Precise Subtyping for Synchronous Multiparty Sessions, in:
PLACES, Open Publishing Association. pp. 29–43.

[18] Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J., 2019. Guess Who’s
Coming: Runtime Inclusion of Participants in Choreographies, in: The
Art of Modelling Computational Systems: A Journey from Logic and
Concurrency to Security and Privacy - Essays Dedicated to Catuscia
Palamidessi on the Occasion of Her 60th Birthday, Springer. pp. 118–
138.

[19] Gay, S., 2016. Subtyping Supports Safe Session Substitution, in: A List
of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, Springer. pp. 95–108.

[20] Gay, S., Hole, M., 2005. Subtyping for Session Types in the Pi Calculus.
Acta Informatica 42, 191–225.

[21] Ghilezan, S., Jaksic, S., Pantovic, J., Scalas, A., Yoshida, N., 2019.
Precise Subtyping for Synchronous Multiparty Sessions. Journal of Logic
and Algebraic Methods in Programming 104, 127–173.

[22] Honda, K., Vasconcelos, V.T., Kubo, M., 1998. Language Primitives and
Type Discipline for Structured Communication-Based Programming, in:
ESOP, Springer. pp. 122–138.

[23] Honda, K., Yoshida, N., Carbone, M., 2008. Multiparty Asynchronous
Session Types, in: POPL, ACM Press. pp. 273–284.

[24] Honda, K., Yoshida, N., Carbone, M., 2016. Multiparty Asynchronous
Session Types. Journal of the ACM 63, 9:1–9:67.

[25] Hu, R., Yoshida, N., 2017. Explicit Connection Actions in Multiparty
Session Types, in: FASE, Springer. pp. 116–133.

[26] Kobayashi, N., 2002. A Type System for Lock-Free Processes. Informa-
tion and Computation 177, 122–159.

53

[27] Kozen, D., Silva, A., 2017. Practical Coinduction. Mathematical Struc-
tures in Computer Science 27, 1132–1152.

[28] Lange, J., 2014. On the Synthesis of Choreographies. Ph.D. thesis.
Department of Computer Science, University of Leicester.

[29] Lange, J., Tuosto, E., 2012. Synthesising Choreographies from Local
Session Types, in: CONCUR, Springer. pp. 225–239.

[30] Lange, J., Yoshida, N., 2017. On the Undecidability of Asynchronous
Session Subtyping, in: FOSSACS, Springer. pp. 441–457.

[31] Mostrous, D., Yoshida, N., Honda, K., 2009. Global Principal Typing
in Partially Commutative Asynchronous Sessions, in: ESOP, Springer.
pp. 316–332.

[32] Padovani, L., 2014. Deadlock and Lock Freedom in the Linear π-
calculus, in: LICS, pp. 72:1–72:10.

[33] Pierce, B.C., 2002. Types and Programming Languages. MIT Press.

[34] Severi, P., Dezani-Ciancaglini, M., 2019. Observational Equivalence for
Multiparty Sessions. Fundamenta Informaticae 167, 267–305.

54

	Copertina_postprint_IRIS_UNIBO
	OpenGTsynch-Main
	Introduction
	Processes and Multiparty Sessions
	Global Types and Typing System
	Properties of Well-Typed Sessions
	Composition of Multiparty-Sessions via Gateways
	Composition of Global Types via Gateways
	Compatibility of Global Types is Necessary
	Direct Composition of Typed Multiparty Sessions
	Decomposition of Typed Multiparty Sessions
	Standard Preorder on Processes
	Concluding Remarks, Related Work, and Future Developments

