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Near-field Tracking with Large Antenna Arrays:

Fundamental Limits and Practical Algorithms
Anna Guerra, Member, IEEE, Francesco Guidi, Member, IEEE,

Davide Dardari, Senior, IEEE, and Petar M. Djurić, Fellow, IEEE,

Abstract—Applications towards 6G have brought a huge in-
terest towards arrays with a high number of antennas and op-
erating within the millimeter and sub-THz bandwidths for joint
communication, sensing, and localization. With such large arrays,
the plane wave approximation is often not accurate because the
system may operate in the (radiating) near-field propagation
region (i.e., the Fresnel region) where the electromagnetic field
wavefront is spherical. In this case, the curvature of arrival (CoA)
is a measure of the spherical wavefront that can be used to infer
the source position using only a single large antenna array. In this
paper, we study a near-field tracking problem for inferring the
state (i.e., the position and velocity) of a moving source with an
ad-hoc observation model that accounts for the phase-difference
profile of a large receiving array. For this tracking problem, we
derive the posterior Cramér-Rao Lower Bound (P-CRLB), and
we provide insights on how the loss of positioning information
outside the Fresnel region results from an increase of the ranging
error rather than from inaccuracies of angular estimation.
Then, we investigate the accuracy and complexity performance
of different Bayesian tracking algorithms in the presence of
model parameter mismatches and abrupt trajectory changes. Our
results demonstrate the feasibility and high accuracy of most
tracking approaches without the need for wideband signals and
of any synchronization scheme.

Index Terms—Near-field tracking, posterior Cramér-Rao lower
bound, curvature-of-arrival, large antenna array.

I. INTRODUCTION

Short-range localization and tracking techniques have re-

cently attracted great interest in all the scenarios where the

signal coming from the Global Navigation Satellite System

(GNSS) is denied or leads to a low-accuracy positioning

[1]–[3]. Nowadays, there is a large variety of ad-hoc solu-

tions for high-accuracy positioning, spanning from systems

based on dedicated impulse radio ultrawide bandwidth (UWB)

technology to system integrating heterogeneous sensors [4].

Unfortunately, most of the available solutions usually require

an ad-hoc positioning infrastructure with multiple anchors, i.e.,

multiple reference sensors with known positions, that can be

expensive or bulky, especially for indoor environments [5].

While it is possible, in principle, to avoid the need for

infrastructure using simultaneous localization and mapping

(SLAM) algorithms based on laser or camera sensors [6], it

A. Guerra (corresponding author, e-mail: anna.guerra3@unibo.it) and D.
Dardari are with the WiLAB - Department of Electrical and Information En-
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work has received funding from the EU’s H2020 research and innovation
programme under the Marie Skłodowska-Curie project AirSens (no. 793581).
This paper was funded by the project “Dipartimenti di Eccellenza” - DEI.

is of interest to realize high-accuracy radio localization and

tracking solutions that make use of the same network of access

points (APs) already deployed for communication coverage.

With the sixth generation (6G) of cellular networks, further

improvements are expected in localization and tracking. These

improvements will result from the joint use of high frequencies

and large arrays for both communication and localization

purposes [7]–[13] (see Fig. 1). Following a trend started by the

5G cellular systems, many APs, equipped with massive arrays,

are expected to play a dual functional role of communication

and localization reference nodes. The large antenna arrays at

each AP allow to collect a large set of measurements, thus

enhancing the localization accuracy.

Usually, with such large arrays, source localization and

tracking are based on the joint estimate of the angle-of-arrival

(AOA) and time-of-arrival (TOA) [12]–[16], which requires

a fine synchronization between the transmitter (namely, the

source to be localized), and the receiver (the AP).1 When

synchronization is not guaranteed, it is not possible to retrieve

any reliable positioning information about the transmitter if

only one AP is involved in the process. Traditionally, time

difference of arrival (TDOA) or two-way ranging approaches

are used to overcome this issue [2], but they require multiple

message-passing between nodes or the involvement of multiple

APs with a good geometric dilution of precision (GDOP).

When APs are closely located to each other and latency

requirements become stringent, these approaches could fail

and, therefore, new solutions are needed.

When the antenna array is large enough to capture the

spherical characteristic of the incident wave, which happens

when operating in the radiating near-field of the antenna array

(Fresnel region),2 a promising approach is to retrieve the

source position directly from the curvature of arrival (CoA)

encapsulated in the spherical wavefront impinging a single

large array. A graphical representation is in Fig. 1. Note that

throughout the paper, an array is considered large if the ratio

between the maximum size of the array and the source-array

distance, namely D/d, is such that the source is located in the

Fresnel region. The CoA depends on the transmitter position

and the array geometry, and, when it is used for localization

or tracking purposes, it does not need any synchronization [7],

[17], [18]. This concept is not new, and it has been investigated

1In this paper, the term “source” is used as a synonym of “user”, “trans-
mitter”, “target”, and “emitter”, whereas the term “antenna array” refers to
the “receiver”, that can be located in the “AP”.

2Note that, in this paper, the term “near–field” refers to the “Fresnel region”,
“radiating near–field”, and “near–far field”.
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for different frequencies and architectures [19]–[23], entailing

the adoption of distributed antennas [23]–[25]. In the next, we

will review the literature on near–field tracking.

a) Related Works: Many localization methods for near-

field sources have already been proposed in the literature as

[26], [27] and references therein. In the near–field region, the

wavefront shape varies nonlinearly with the array position

and it is characterized by both the angular and the range

parameters. Hence, it can be used for source positioning or

tracking.

For example, in [28], a near-field model is used to localize

multiple sources using an extended version of the MUSIC

algorithm, also referred to as spherical wave MUSIC. In [19],

an approach for direct wireless positioning with narrowband

multi-tone signaling and multi-arrays is described, whereas,

in [29], a MUSIC-based method with an extensive analysis

on the attainable fundamental localization limits is derived

for near-field propagation conditions. A detailed investigation

using acoustic waveforms has been carried out in [21], [30].

More recently, [23]–[25] concern with the source localization

problem by forming a large aperture array of passive sensors

connected with fiber, wireless links, or wired lines. Follow-

ing the same trend, [31], [32] provide an arrayed Extended

Kalman Filter (EKF) approach for multiple source tracking

and a comparison with the posterior Cramér-Rao Lower Bound

(P-CRLB) in the lower microwave band. In [33], a multipath

localization algorithm is investigated where not only the signal

sources but also their multipath reflectors are localized in the

radiating near–field of the antenna.

Unfortunately, these studies usually refer to acoustic waves

or radiofrequency (RF) microwaves considering only very

short distances or using very large, often not practical, dis-

tributed antennas. As an example, in [23], the array is com-

posed of passive sensors distributed in the environment and

spaced apart of several meters.

At millimeter-waves (mm-wave) frequencies, source po-

sitioning and tracking are in principle possible even with

antenna arrays with limited aperture and for distances up

to several meters [7], [12], [17], [18]. In fact, thanks to

a reduced wavelength, a large number of antennas can be

accommodated in a small area [34]–[36]. For example for a

uniform rectangular array (URA) of 400 antennas, we have a

maximum size of 0.14m for a central frequency of 28GHz.

Therefore, the Fraunhofer distance limiting the near–field

region is approximately 4m. To preserve the same boundary

at 2.4GHz, the array size should approximately be three times

larger.

Preliminary studies on near-field fundamental limits on

positioning with fifth generation (5G) antenna arrays have

been recently addressed in [16], [37], [38], but considering

a static scenario and non-Bayesian methods. The papers in

[16], [18], [39]–[43] propose some derivations valid for near–

field sources in presence of synchronization between the

transmitters and the receiver. In [18], [42], [43] a model valid

for metasurfaces has been recently proposed for reconfigurable

intelligent surface (RIS)-aided localization scenarios. None of

these works deals with an asymptotic analysis to evaluate the

behaviour of the spherical information as the source distance

Wave rays from

far–field source in p2

Wave rays from

near–field source in p1

x

y

z

D

Array

d1 < dF

d2 > dF

q0

qn

p2
p1

Curve wavefront

Plane wavefront

Fig. 1. Curvature of arrival of the wavefront impinging on a large array when
the source is in near–field in p1. When instead the source is in far–field in
p2, the wavefront can be approximated as planar.

increases compared to the maximum array size.

b) Contributions: In this paper, we investigate the fun-

damental limits in source tracking in a single-array scenario

to highlight the behavior of position information inside and

outside the Fresnel region, and we assess the accuracy and

complexity performance through practical algorithms working

with CoA in absence of synchronization between the array

and the source. To this end, we consider a wrapped phase-

difference observation model accounting for the near-field

wavefronts, and we derive compact formulas for different array

configurations to gain further insights on the capability to

infer the position information when moving from near–field to

far–field regions, conventionally delimited by the Fraunhofer

distance [44]. Through an asymptotic analysis, we evaluate

the role of ranging and bearing information on localization

when the source-array distance increases, showing that the

CoA provides both types of information only in the Fresnel

region while, elsewhere, only bearing data can be correctly

estimated. Further, we investigate different Bayesian tracking

algorithms to assess their robustness, accuracy, and complexity

in different situations.

The main contributions of the paper are as follows.

• We introduce a narrowband signal and observation model,

accounting for phase difference-of-arrival at a single

large co-located antenna array, that includes CoA of the

impinging wavefront;

• We derive the P-CRLB to assess the ultimate performance

of the CoA–based tracking in the near– and far–field

regions when the considered phase-difference model is

used;

• To highlight the role of the ratio between the source

distance and the array size for near-field localization

and tracking, we analyze the Fisher Information Ma-

trices (FIMs) on ranging and bearing information and



IEEE TRANSACTIONS ON SIGNAL PROCESSING 3

their asymptotic behaviors. Moreover, we derive compact

formulas for three different array geometries;

• We evaluate the performance of different Bayesian filter-

ing approaches considering different models and param-

eters available at the receiver. We investigate the com-

plexity and robustness of the tracking algorithms under

model parameter mismatches, abrupt changes of direction

(i.e., model mismatches), and we show the impact of

movements inside and outside the Fresnel region.

c) Notation: Scalar variables, vectors and matrices are

represented with lower letters, lower bold letters, and capital

bold letters, respectively (e.g., x, x, and X, respectively).

The symbols (·)T, (·)−1
, and (·)† represent the transpose,

inverse and Moore-Penrose pseudo-inverse operators of their

arguments, respectively, and ‖·‖ is the 2-norm of its argument.

We use k for discrete temporal indexing, n for antenna

indexing, and m for particle indexing. As an example, xn,k,

xn,k, Xn,k stand for a scalar, a vector or a matrix related to

the nth antenna at the kth time instant. With IN and 0N we

represent the identity and all-zero matrices of size N × N .

A probability density function is denoted by p (·), and E {x}
is the expectation of a random vector x with respect to its

distribution. With N (x;µ,Σ) we indicate that the random

vector x is distributed according to a Gaussian pdf with a

mean vector µ and a covariance matrix Σ. The notation xa|b

indicates the value of a vector x at time instant a estimated

by considering the measurements collected up to time instant

b. For example, xk|k−1 is the value of x predicted at time

instant k− 1 for the next time instant k, whereas, once a new

measurement becomes available at k, this value is updated to

xk|k. j =
√
−1 is the imaginary unit.

d) Organisation of the paper: The rest of the paper is

organized as follows. Section II provides the signal and state-

space model of the tracking problem, Sections III-IV describe

the fundamental limits of near–field tracking performance and

present practical algorithms for source tracking, respectively.

Simulation results are reported in Section V and conclusions

are drawn in Section VI.

II. SIGNAL AND STATE–SPACE MODEL

We consider a tracking scenario where a single antenna

array tracks a moving source by exploiting the phase profile

of the received signal caused by the CoA. We denote by

sk =
[

pT
k , v

T
k

]T ∈ R
Ns the state composed of the position and

velocity Cartesian coordinates of the source at time instant k,

respectively, defined by pk = [xk, yk, zk]
T ∈ R

3 and vk =
[vx,k, vy,k, vz,k]

T ∈ R
3. Therefore, the state dimensionality is

Ns = 6. We also consider that the array has N antennas

located at qn = [xn, yn, zn]
T ∈ R

3, n = 0, . . . , (N − 1), with

reference location q0.

At each time instant, the geometric relationships between

the reference location and the source are given by

pk=





xk

yk
zk



=





x0 + dk cos (φk) sin (θk)
y0 + dk sin (φk) sin (θk)
z0 + dk cos (θk)



 , (1)

with dk , d0,k = ‖pk − q0‖, φk , φ0,k =

atan2 (yk − y0, xk − x0), and θk,θ0,k=acos
(

zk−z0
dk

)

being

X

Y

Z

Large array

dn0

θn0

φn0

φk

θk
dk

dn,k

α , arccos (gn,k)

q0

qn

Trajectory

pk

Curve wavefront

∆dn,k

Fig. 2. Considered antenna array and system geometry. The receiver antenna
array (the antennas are indicated with gray squares with reference location
in q0 in green), tracks a moving source at pk (purple square marker) whose
trajectory is depicted with a dashed line.

the true distance, azimuth, and elevation angles, respectively,

as represented in Fig. 2.

The collaborative source/user emits a narrowband signal

such as a pilot in a resource block of an orthogonal frequency

division multiplexing (OFDM) scheme centered at a frequency

fp, dedicated to positioning, which is received by the antenna

array and processed for tracking purposes.3 By considering a

direct line-of-sight (LOS) link between each antenna and the

source, the received signal at the nth antenna, during the pth

OFDM symbol of duration T , is

rn (t) = an,k cos (2π fp t− ϑn,k) + νn (t) , (2)

where an,k , Aλ
4π dn,k

∈ R and ϑn,k , 2π fp

(

dn,k

c + t0

)

are

the received signal amplitude and phase at the nth antenna of

the array observed at discrete time k. The distance between

the considered nth array antenna and the source is dn,k. The

received signal amplitude is A =
√
2Pt with Pt being the

transmitted power. The wavelength is indicated as λ = c
fp

,

with c being the speed of light.

We assume that the source is not synchronized with the

receiver so that any TOA information cannot be inferred from

the signal, and the phase offset between the source and the

array is not known. The unknown clock offset due to the

lack of synchronization between the array and the source

is t0. Finally, νn (t) is the observation noise modeled as

additive white Gaussian noise (AWGN) with double-sided

power spectral density N0

2 .

Starting from the received signals, the sequential state

estimation problem (tracking) can be formulated starting from

a discrete-time state-space representation given by [45]

sk = s−k +wk = Ak sk−1 +wk, (3)

zk = h (pk) + ηk, (4)

where the motion model is considered a linear function of

the state, with s−k = Ak sk−1 being the predicted state,

3Thanks to a proper allocation of radio resources through OFDM, the
extension of this work to tracking of multiple sources is straightforward as
the association problem is implicitly solved by the orthogonality of the pilot
tones, and by the fact that the source is cooperative (active) with the receiver.
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and Ak ∈ R
N2

s being the transition matrix of size Ns ×
Ns, whereas the observation model is a nonlinear function

h : R
Ns/2 → R

N that will be defined in the sequel, and

wk ∼ N (wk;0,Qk)∈ R
Ns and ηk ∼ N (ηk;0,Rk) ∈ R

N

are zero-mean noise processes with Qk and Rk being the

transition and observation noise covariance matrices of sizes

Ns×Ns and N×N , respectively. In the next, we will assume

a time invariant transition matrix and covariance matrix, e.g.,

Ak = A and Qk = Q, as well as Rk = R = σ2
η IN , where

σ2
η is the variance associated to the phase-difference noise.

The observation function provides, for a given source posi-

tion, the phase-differences at each antenna, i.e., the difference

of phases gathered at the considered antenna and at the

reference location. More specifically,

h (pk) = [h0 (pk) , . . . , hn (pk) , . . . , hN−1 (pk)]
T
, (5)

of size N×1, where the generic element is a phase difference

between 0 and 2π, given by4

hn (pk) = ∆ϑn,k mod 2π, (6)

∆ϑn,k =
2π

λ
∆dn,k (qn,pk) , (7)

where ∆ϑn,k , ϑn,k − ϑ0,k represents the difference of

phases collected at locations qn and at the reference location

q0. The modulo operator is denoted with mod and returns

the remainder after division (of ∆ϑn,k/2π) preserving the

same sign of ∆ϑn,k, and ∆dn,k (qn,pk) is the extra-distance

traveled by the waveform to arrive to the nth antenna with

respect to the reference one, represented in Fig. 2. In particular,

this extra-distance is given by

∆dn,k (qn,pk) = dn,k (qn,pk)− dk (q0,pk) . (8)

According to trigonometric rules, we have

d2n,k = d2n0 + d2k − 2 dk dn0 gn,k, (9)

where dn0 = ‖qn − q0‖, with n > 0, is the distance between

the nth antenna and the reference location, and

gn,k , g (θn0, φn0, θk, φk) = sin (θn0) sin (θk) cos (φn0 − φk)

+ cos (θn0) cos (θk) , (10)

is a geometric term with θn0 and φn0 being the nth antenna

elevation and azimuth angles with respect to the reference

location, respectively (for the reference antenna it is φ00 =
θ00 = 0). Consequently, the extra-distance in (8) can be written

as [7], [31]

∆dn,k (qn,pk) = dk

(

√

fn,k − 1
)

, (11)

with the CoA information gathered in fn,k as

fn,k , fn,k (qn,pk) = 1 +

(

dn0
dk

)2

− 2
dn0
dk

gn,k. (12)

Note that the observation function in (6) is highly nonlinear

with respect to the source position as highlighted in (11)-

(12). The velocity is exclusively inferred using the transition

4Note that the phase uncertainty due to source-array clock mismatches
disappears thanks to the difference between the phases at the array antennas
and the reference.

model and the latest position estimates (without measurement

correction/update that only applies for position estimation) [2].

In the next sections, we will investigate the theoretical limits

on source tracking as well as some practical algorithms by

considering the source located both in the radiating near–

and far–field regions. Conventionally, the boundary between

the reactive and the radiating near–field region is 0.62
√

D3

λ ,

whereas the far–field region corresponds to distances larger

than the Fraunhofer limit given by dF , 2D2

λ , where D is

the array aperture, i.e., the largest distance between any two

antennas of the array. Consequently, the radiating near–field

region is [44]

0.62

√

D3

λ
≤ dk ≤ dF. (13)

III. FUNDAMENTAL LIMITS ON NEAR–FIELD TRACKING

A. Posterior CRLB

We now derive the P-CRLB [46]–[49] for the discrete-time

nonlinear problem described in this paper. As introduced in

[46], [49], different Bayesian bounds can be derived depending

on the choice of the probability distribution from which the

Bayesian Fisher Information Matrix (FIM) is computed.

The joint distribution of the state and measurements, p0:k =
p (s0:k, z0:k), allows for the computation of the Bayesian FIM

from the state history, i.e., J0:k of size (k + 1)Ns × (k +
1)Ns, and the derivation of the tightest P-CRLB for nonlinear

filtering problems. The P-CRLB of the joint distribution can

be written as the inverse of the Bayesian FIM

P0:k ≥ J−1
0:k, (14)

where J0:k is the Bayesian FIM defined as

J0:k = Es0:k,z0:k

{

∆s0:k
s0:k

ln p (s0:k, z0:k)
}

, (15)

with ∆b
a = ∇T

a∇b and ∇a =
[

∂
∂a1

, . . . , ∂
∂aA

]

being the

gradient with respect to the vector a of size 1 × A. From

(15), it is possible to derive the P-CRLB on sk by taking the

Ns×Ns lower-right sub-matrix of the inverse of J0:k. A more

elegant approach that avoids the inversion of the large FIM

J0:k is a recursive formula proposed in [46], which permits to

express the FIM of sk, namely Jk of size Ns ×Ns, as

Jk = D22
k−1 −D21

k−1

(

Jk−1 +D11
k−1

)−1
D12

k−1 , (16)

where the initial information matrix J0 = Es0

{

∆s0
s0
ln p (s0)

}

is derived from the prior distribution of the state [50] and

where

D11
k−1 = Ep0:k

[

−∆
sk−1

sk−1
ln p (sk|sk−1)

]

= ATQ−1A, (17)

D12
k−1 = Ep0:k

[

−∆sk
sk−1

ln p (sk|sk−1)
]

= −ATQ−1, (18)

D21
k−1 =

(

D12
k−1

)T
, (19)

D22
k−1 = Ep0:k

[

−∆sk
sk

ln p (sk|sk−1)−∆sk
sk

ln p (zk|sk)
]

= Q−1 + JD
k , (20)
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where JD
k is the expectation of the Hessian matrix with respect

to the state and measurements as [50]

JD
k = Ep0:k

{

−∆sk
sk

ln p (zk|sk)
}

= Esk|sk−1

{

Ezk|sk

{

−∆sk
sk

ln p (zk|sk)
}}

= Esk|sk−1

{

J̃D
k

}

, (21)

with J̃D
k being the non-Bayesian data FIM of size Ns × Ns.

Unfortunately, the expectation in (21) cannot be easily derived,

but it is often approximated using Monte Carlo integration

[50]. Indeed, we can separate the contribution deriving from

the collected data and the prior information, thus writing

Jk = JP
k|k−1 + JD

k , (22)

where JP
k|k−1 = Q−1 −D21

k−1

(

Jk−1 +D11
k−1

)−1
D12

k−1 con-

tains the propagation information. In the sequel, we will

find closed-form solutions for J̃D
k to better investigate the

behaviour in near– and far–field regions. In the case study

of Sec. V, we use the Bayesian FIM in (22) as a benchmark

for practical tracking algorithms.

B. A Near–Field vs. Far–field Fisher Information Analysis

We now investigate the behavior of the non-Bayesian data

FIM when the target approaches the Fraunhofer distance, that

is, when dk = dF, and when it is far from the radiating near–

field region, i.e., dk ≫ dF (far–field).

Proposition 1 (FIM on Source State). Under the observation

model in (6)-(7) and weak regularity conditions for p (zk|sk)
[51], the positioning information carried by the data FIM

vanishes when the distance increases, i.e.,

J̃D
k , Ezk|sk

{

∇T
sk

ln p (zk|sk) ∇sk ln p (zk|sk)
}

=
1

σ2
η

∇T
sk

h (pk)∇sk h (pk) −→
dk≫dF

0Ns
, (23)

where 0Ns
is an all-zero matrix of size Ns ×Ns.

Proof. All the entries of the data FIM,5 given by

{

J̃D
k

}

i,j
=

1

σ2
η

(

2π

λ

)2 N−1
∑

n=0

∂∆dn,k
∂ [sk]j

· ∂∆dn,k
∂ [sk]i

−→
dk≫dF

0 ,

(24)

∀i, j = 1, . . . , Ns, tend to be zero since

∂∆dn,k
∂ [sk]i

−→
dk≫dF

0, ∀i = 1, . . . , Ns. (25)

as demonstrated in Appendix A.

In the next, we will show that, when moving towards the

far–field region, such vanishing of information is only caused

by the loss of the distance information, whereas the angles

can still be inferred from the collected phases. To analyze this

point, we derive the single components of the FIM on the

5In order to meet the regurality conditions, e.g., to let ∇sk
ln p (zk|sk)

exist and be finite, the derivatives of hn(pk) with respect to sk are taken
equal to the left and right derivatives in the discontinuous points, which is
equivalent to substituting hn(pk) with ∆ϑn,k in the derivatives.

distance and angle parameters, namely ξk ∈ {dk, θk, φk}. We

have

J̃D
k (ξk) , Ezk|ξk

{

(

∂ ln p (zk|ξk)
∂ξk

)2
}

∈ R, (26)

where the gradient of the log-likelihood is given by

∂ ln p (zk|ξk)
∂ξk

=
1

σ2
η

N−1
∑

n=0

∂hn (ξk)

∂ξk
(zn,k − hn (ξk)). (27)

In the next, for notation simplicity, we omit the time index k.

Moreover, we refer to J̃D
k (ξk) as FIM even if it is a scalar.

Proposition 2 (FIMs on Distance and Angles). Under the

observation model in (6)-(7) and weak regularity conditions

for p (zk|ξk), the FIMs for distance and angles for both near–

and far–field regions (for any value of d) and for any geometry

(i.e., for any dn0, gn) are

J̃D (d) =
4π2

λ2 σ2
η

N−1
∑

n=0

1

d2 + d2n0 − 2 gn dn0 d
·

·
[

2 d2 + d2n0 (g
2
n + 1)− 4 gn d dn0+

− 2(d− gndn0)
√

d2 + d2n0 − 2 gnd dn0

]

, (28)

J̃D (β) =
4π2

λ2σ2
η

N−1
∑

n=0

d2 d2n0
d2n0 + d2 − 2 gn d dn0

(

∂gn
∂β

)2

, (29)

where β ∈ {θ, φ} can be either the elevation or azimuth angle.

Proof. See Appendix B.

Because the FIMs in (28)-(29) are not easy to interpret, we

further simplify them by focusing on different planar array

geometries, i.e., on the uniform circular array (UCA) and on

URA, as well as on uniform linear array (ULA) as a specific

case of URA. However, note that, for 3D localization, a planar

geometry is needed to estimate the elevation angle and allows

positioning.

C. UCA Configuration

We now provide assumptions, propositions and remarks

when a UCA geometry is considered at the receiver side.

Assumption 1 (UCA). The distance and azimuth angle be-

tween the nth antenna and the reference location are dn0 =
D/2, φn0 = π

2 , ∀n = 1, . . . , (N − 1), whereas the elevation

angle is set to θn0 = n 2π
N (lying on Y Z plane).

Proposition 3 (FIMs for UCA). Under Assumption 1 of UCA,

the FIMs in (28)-(29) for a generic source position are

J̃D (d)=
4π2

λ2 σ2
η

N−1
∑

n=0

1

4 d2 +D2 − 4 gndD
·

·
[

8 d2 +D2 (g2n + 1)− 8 gn dD+

− 2(2 d− gnD)
√

4 d2 +D2 − 4 gndD
]

, (30)
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J̃D (β) =
4π2

λ2 σ2
η

N−1
∑

n=0

d2 D2

D2 + 4 d2 − 4 gn dD

(

∂gn
∂β

)2

, (31)

with β ∈ {θ, φ}.

Proof. From (28)-(29), they are obtained by substituting

(dn0, φn0, θn0) with the values in Assumption 1.

Remark 1 (Asymptotic Analysis for UCA). From the FIMs in

(30)-(31) valid for a UCA and without any assumption of the

source position, we obtain the FIMs at the boundary of the

Fresnel region (i.e., for dk = dF) that are

J̃D (d) =
4π2

λ2 σ2
η

N−1
∑

n=0

1

1 + λ2

16D2 − gn
λ

2D

·

·
[

2 +
λ2

16D2
(g2n + 1)− gn λ

D
+

−
(

2− gn
λ

2D

)

√

1 +
λ2

16D2
− gn

λ

2D

]

, (32)

J̃D (β) =
π2 D2

λ2 σ2
η

N−1
∑

n=0

1

1 + λ2

16D2 − gn
λ

2D

(

∂gn
∂β

)2

, (33)

with β ∈ {θ, φ}, and the FIMs for d ≫ dF that are

J̃D (d)= 0, (34)

J̃D (β) =
π2 D2

λ2 σ2
η

N−1
∑

n=0

(

∂gn
∂β

)2

. (35)

Note that the expressions in (32)-(33) coincide with those in

(34)-(35) when λ ≪ D, e.g., when mm-waves are considered.

Now to further simplify the expressions, we constrain the

source position along the central perpendicular line (CPL) as

in [37].

Assumption 2 (Source Position). The source is on the central

perpendicular line, along the X-axis, so that θ = π
2 , φ = 0,

such that gn = 0, ∀n = 0, . . . , N − 1.

Proposition 4 (FIMs for UCA and Source on CPL). Under

Assumptions 1 and 2, the FIMs in (28)-(29) for a UCA on the

Y Z-plane and a target on the X-axis are

J̃D (d) =
4N π2

λ2 σ2
η

·
2 + D2

4 d2 − 2
√

1 + D2

4 d2

1 + D2

4 d2

, (36)

J̃D (θ) = J̃D (φ) =
N π2

2λ2σ2
η

D2

1 + D2

4 d2

. (37)

Proof. See Appendix C.

Remark 2 (Asymptotic Analysis for UCA and Source on CPL).

From (36)-(37), we obtain the FIMs at the boundary of the

Fresnel region (dk = dF),

J̃D (d)=
4N π2

λ2 σ2
η

2 + λ2

16D2 − 2
√

1 + λ2

16D2

1 + λ2

16D2

, (38)

J̃D (θ) = J̃D (φ) =
N π2

2λ2σ2
η

D2

1 + λ2

16D2

, (39)

and, for dk ≫ dF (far–field region), we get

J̃D (d) = 0, (40)

J̃D (θ) = J̃D (φ) =
D2 N π2

2λ2σ2
η

. (41)

The results show the dependence of the FIMs on the diameter

D of the array and the number of measurements N . Further,

they also reveal that the FIMs are inversely proportional to the

measurement noise variance σ2
η and squared wavelength λ2.

Note that J̃D (θ) and J̃D (φ) in (39) tend to their asymptotic

values in (41) because λ2

16D2 ≪ 1. Consequently, the perfor-

mance is constant within the Fresnel region. According to this

result, outside the near–field region bounded by dF, it is not

possible to retrieve the target position because the CoA tends

to vanish, despite the feasibility of estimating the angles.

D. URA and ULA Configurations

We now provide assumptions, propositions and remarks

when a URA geometry is considered at the receiver, and we

draw the ULA as a specific case of URA.

We consider a URA lying on the Y Z-plane with q0 =
[0, 0, 0] and antennas equally spaced by λ/2. The generic nth

antenna is located at qn = λ
2 [0, ny, nz] with ny = ⌊ n

Nz
⌋ and

nz = (n mod Nz) being the antenna index along the Y - and

Z-axis, respectively. Moreover, it can be noted that a ULA

lying along the Y -axis is a special case of URA with Nz = 0,

i.e., qn = λ
2 [0, n, 0], with n = 0, . . . , (N−1). We, thus, have

the following two assumptions

Assumption 3 (URA). The distance, azimuth and elevation

angles between the nth antenna and the reference location

are dn0 = λ
2

√

n2
y + n2

z , λ
2 ñ, φn0 = π

2 , ∀n, and θn0 =

acos
(

nz

ñ

)

∈
[

0, π
2

]

, respectively.

Assumption 4 (ULA). The distance, azimuth and elevation

angles between the nth antenna and the reference location

are dn0 = λ
2 n, φn0 = π

2 , and θn0 = π
2 ∀n = 0, . . . , (N − 1),

respectively. In this case, we have gn = sin(θ) sin(φ), ∀n.

Following the same principle as for the UCA, starting from

(28)-(29), we can derive the FIMs for distance and angles valid

for the URA and ULA.

Proposition 5 (FIMs for URA and ULA). Under Assumptions

3 and 4, considering a URA on the Y Z-plane, the FIMs in

(28)-(29) become

J̃D (d) =
8π2

λ2 σ2
η

N−1
∑

n=0

1

4 d2 + λ2 ñ2 − 4 gn λ ñ d
·

·
[

4 d2 +
λ2

2
ñ2 (g2n + 1)− 4 gn d λ ñ+

− (2 d− gnλ ñ)
√

4 d2 + λ2 ñ2 − 4 gnd λ ñ
]

, (42)

J̃D (β) =
4π2

σ2
η

N−1
∑

n=0

d2 ñ2

4 d2 + λ2 ñ2 − 4 gn d λ ñ

(

∂gn
∂β

)2

,

(43)

with β ∈ {θ, φ}. The FIMs for ULA can be obtained by

replacing ñ with n.
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Fig. 3. Ranging error

√

[

J̃D (d)
]

−1

as a function of the source distance

d. We set fp = 28GHz and ση = 20◦, NF and FF stand for near–field
and far–field, respectively. We considered an URA and UCA geometry for a
fixed D = 0.14m. The threshold, indicated with a dashed line, corresponds
to ranging error of 1/10 of the actual distance.

Remark 3 (Asymptotic Analysis for URA and ULA). From

the FIMs in (42)-(43) valid for URA and ULA and without

any assumption on the source position, we obtain the FIMs at

the boundary of the Fresnel region that are

J̃D (d) =
8π2

λ2 σ2
η

N−1
∑

n=0

1

1 +
(

ñ
Ñ2

)2

− 2 gn
ñ
Ñ2

·

·
[

1 +
ñ

2 Ñ2

(

ñ

Ñ2
(g2n + 1)− 4 gn

)

+

−
(

1− 2 gn
ñ

Ñ2

)

√

1 +

(

ñ

Ñ2

)2

− 2 gn
ñ

Ñ2

]

, (44)

J̃D (β) =
π2

σ2
η

N−1
∑

n=0

ñ2

1 +
(

ñ
Ñ2

)2

− 2 gn
ñ
Ñ2

(

∂gn
∂β

)2

, (45)

with β ∈ {θ, φ}, D = λ
2 Ñ , λ

2

√

N2
y +N2

z , and the FIMs

for d ≫ dF that are

J̃D (d)= 0, (46)

J̃D (β) =
π2

σ2
η

N−1
∑

n=0

ñ2

(

∂gn
∂β

)2

. (47)

These same expressions hold for ULA by replacing ñ with n.

Proposition 6 (FIMs for URA and Source on CPL). Under

Assumptions 2 and 3, considering a URA on the Y Z-plane
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Fig. 4. Ranging error

√

[

J̃D (d)
]

−1

as a function of the source distance

d. We set fp = 28GHz and ση = 20◦, NF and FF stand for near–field
and far–field, respectively. We considered an ULA and UCA geometry for
N = 400 and antenna spacing of λ/2.

and a source on the X-axis, the FIMs in (28)-(29) become

J̃D (d) =
4π2

λ2 σ2
η

N−1
∑

n=0

8 d2 + λ2 ñ2 − 4 d
√
4 d2 + λ2 ñ2

4 d2 + λ2 ñ2
,

(48)

J̃D (θ) =
4π2

σ2
η

N−1
∑

n=0

n2
z d

2

ñ2 λ2 + 4 d2
, (49)

J̃D (φ) =
4π2

σ2
η

N−1
∑

n=0

n2
y d

2

ñ2 λ2 + 4 d2
. (50)

Proof. From (28)-(29), the FIMs are obtained by substituting

(dn0, φn0, θn0) according to Assumption 2 and (θ, φ) accord-

ing to Assumption 3.

Proposition 7 (FIMs for ULA and Source on CPL). Under

Assumptions 2 and 4, considering a ULA along the y-axis and

a source on the X-axis, the FIMs in (28)-(29) become

J̃D (d) =
4π2

λ2 σ2
η

N−1
∑

n=0

8 d2 + λ2 n2 − 4 d
√
4 d2 + λ2 n2

4 d2 + λ2 n2
,

(51)

J̃D (θ) = 0, (52)

J̃D (φ) =
4π2 d2

σ2
η

N−1
∑

n=0

n2

4 d2 + λ2 n2
. (53)

It is worth noticing that the estimation of the elevation angle

is not feasible given the considered linear array geometry.
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Algorithm 1: Extended Kalman Filter

Initialization for k = 1:

Initialize the state s0 ∼ N (s0;m0,P0);
for k = 1, . . . ,K do

Measurement update;

Calculate the innovation and its covariance;

vk = zk − h
(

mk|k−1

)

; size: (N × 1)

Sk = HkPk|k−1H
T
k +Rk; (N ×N )

Compute the Kalman gain;

Kk = Pk|k−1H
T
k S−1

k ; (Ns ×N )

Update the posterior state estimate and covariance;

mk|k = mk|k−1 +Kk vk; (Ns × 1)

Pk|k = Pk|k−1 −Kk Sk K
T
k ; (Ns ×Ns)

State Estimation;

Estimate the state;

ŝk = mk|k; (Ns × 1)

Time Update;

Predict the prior state estimate and covariance;

mk+1|k = Amk|k; (Ns × 1)

Pk+1|k = APk|k A
T +Q; (Ns ×Ns)

end

Remark 4 (Asymptotic Analysis for URA-ULA and source on

CPL). For asymptotic considerations, we specialize (48)-(50)

at the boundary of the Fresnel region (d = dF), thus yielding

J̃D (d) =
4π2

λ2 σ2
η

∑

ny,nz

2 +
(

ñ
Ñ2

)2

− 2

√

1 +
(

ñ
Ñ2

)2

1 +
(

ñ
Ñ2

)2 , (54)

J̃D (θ) =
π2

σ2
η

∑

ny,nz

n2
z

1 +
(

ñ
Ñ2

)2 , (55)

J̃D (θ) =
π2

σ2
η

∑

ny,nz

n2
y

1 +
(

ñ
Ñ2

)2 , (56)

where
∑

ny,nz
=
∑Ny−1

ny=0

∑Nz−1
nz=0 , whereas, for dk ≫ dF, we

obtain

J̃D (d) = 0, (57)

J̃D (θ) =
π2

σ2
η

Ny Nz (2Nz − 1) (Nz − 1)

6
, (58)

J̃D (φ) =
π2

σ2
η

Ny Nz (2Ny − 1) (Ny − 1)

6
. (59)

The asymptotic FIMs for ULA are obtained by replac-

ing in (57)-(59), the parameters
{

ny, nz, ñ, Ñ ,Ny, Nz

}

with

{n, 0, n,N,N, 0}.

Notably, due to the considered system geometry, the number

of antennas on the Z-axis, i.e., Nz, augments the information

in estimating the elevation angle, whereas Ny plays the same

role for the azimuth.

E. Numerical Results

We now provide some results according to the aforemen-

tioned considerations. Figs. 3-4 display the square root of the

Algorithm 2: Particle Filter

Initialization for k = 1:

Initialize the particles sm,1 ∼ p0 and their weights

wm,1|0 = 1/M, ∀m;

for k = 1, . . . ,K do
Measurement update;

Update the weights according to the likelihood;

wm,k , wm,k|k = wm,k|k−1p (zk|sm,k);
Normalize the weights;

wm,k|k = wm,k|k/
∑M

m wm,k|k;

State Estimation;

Estimate the state;;

ŝk =
∑M

m wm,k|k sm,k;

Resampling;

Resample using multinomial resampling;

Time Update;

Predict particles and weights according to the

proposal in (62);

sm,k+1 ∼ π (sk+1|sm,k, zk+1)

wm,k+1|k = wm,k|k
p(sm,k+1|sm,k)

π(sm,k+1|sm,k,zk+1)
;

end

inverse of the ranging FIM J̃D(d) as a function of the source-

array distance. More specifically, Fig. 3 is obtained by fixing

the array aperture (i.e., D) and the number of antennas (i.e.,

N ), and by varying the array geometries (i.e., URA vs UCA)

and the antenna spacing; Fig. 4 results from a fixed number of

antennas (i.e., N ) and spacing (i.e., dant = λ/2), while varying

the array aperture and geometries (i.e., ULA vs UCA).

We observe from the obtained results that the ranging

information depends on the ratio d/D, and tends to decrease

when this ratio becomes larger. Fig. 3 also shows a threshold

line that corresponds to an error of 0.1% of the actual distance.

We can see that the inverse of the ranging FIM is above the

threshold outside the Fraunhofer boundary. Moreover, it is

worth noticing that the ranging performance does not depend

on the geometry provided that D is the same.

Since the tracking performance is mainly driven by the array

size D, in the case study of Sec. V-A, we only focus on URA

array configuration.

IV. TRACKING ALGORITHMS

We now provide an overview of some well-known tracking

algorithms to assess their performance and their robustness, us-

ing the state-space model in (3)-(4), with non–linear Gaussian

observation model and considering the CoA for positioning.

A. Extended Kalman Filter

Among the Bayesian estimators, we start by describing

the EKF accounting for the CoA information in (4). The

state is described by a Gaussian distribution, i.e., sk ∼
N (sk;mk,Pk), with mk ∈ R

Ns and Pk ∈ R
N2

s being the

posterior mean vector and covariance matrix of the state,

∀k = 0, . . . ,K. The major steps are reported in Algorithm 1,

and are as follows [45]
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Initialization: The EKF is initialized by a prior distribution

of the state, i.e., s0 ∼ p0 = N (s0;m0,P0).
Measurement update: The EKF requires the evaluation of

the Jacobian matrix associated to the linearization of the

observation model h (pk) [45], that can be written as

Hk , ∇sk h (pk) , (60)

of size N ×Ns, where ∇sk is the gradient with respect to the

state vector and where the nth row of Hk is given by

{Hk}n = ∇skhn (pk) =
2π

λ
∇sk ∆dn,k (pk) , (61)

with n = 0, . . . , N − 1 and where {·}n picks the nth row

of Hk (refer to Appendix A). The Jacobian is evaluated at

sk = mk|k−1 where mk|k−1 is the predicted state (for k = 1,

it is mk|k−1 = m0). Then, following Alg. 1, the innovation

mean and covariance (vk∈ R
N , Sk∈ R

N2

) and the Kalman

gain Kk of size Ns×N are computed and used to update the

posterior mean vector mk|k and covariance matrix Pk|k [45].

Time update: The EKF prediction step makes use of the

transition model in (3), leading to the estimation of the

expected conditional mean mk|k−1 and covariance matrix

Pk|k−1 for the next time instant.

B. Particle Filter

A particle filter (PF) exploits the representation of an

arbitrary probability distribution function (PDF) by a set of

particles and associated weights and where the sequential

sampling-importance-resampling (SIR) procedure plays a cen-

tral role. This approach is especially useful for nonlinear

non-Gaussian models [52], [53]. The goal is the sequential

estimation of a filtering distribution, i.e., p (sk|z1:k). Indeed,

this distribution cannot be analytically solved apart from very

few cases and, thus, the common procedure is to exploit

discrete random measures composed of particles and weights

{sm,k, wm,k}Mm=1, that are possible values of the unknown

state sk, where M is the number of particles [54]. Then, the

PF can be described by following three major steps reported

in Algorithm 2.

Sampling step: The first step is the generation of new

particles at the time instant k. The particles are drawn

from an importance sampling (IS) density π (·) as sm,k ∼
π (sk|sm,k−1, z1:k). Possible choices for the IS density are

reviewed in Sec. IV-C.

Importance step: Subsequently, the weights wm,k associated

with each particle are computed and normalized. The estimate

of the state ŝk is inferred as a weighted sum of particles.

Resampling: Finally, to avoid the degeneracy problem [54]

where few particles are dominant, a resampling strategy is

typically adopted. Resampling permits particles with large

weights to dominate over particles with small weights, so that

at the next time instant, new particles will be generated in the

region where large weights are present. After the resampling,

weights are also set to be equiprobable, i.e., to 1/M .

PFs have become a popular approach because of their ability

to operate with models of any nonlinearity and with any noise

distributions for as long as the likelihoods and the transi-

tion pdf that arise from the model (3)–(4) are computable.

However, their computational complexity may be high if the

number of particles becomes very large [54], [55].

C. The importance sampling (IS) density

The choice of the proposal distribution is one of the most

crucial and critical tasks when implementing PFs. We now

describe some options that perform differently according to

the quality of the adopted models.

a) IS from the prior: In this case, the IS density is set

equal to the transition distribution function, which is

sm,k ∼ p (sm,k|sm,k−1) = N (sm,k;Asm,k−1,Q) , (62)

of size Ns × 1, with m = 1, . . . ,M , and with sm,0 ∼ p0 =
p (s0) being the prior information on the state. As a result, the

weights of the particles can be computed using the likelihood

function (LF) of each particle, i.e.,

wm,k = wm,k−1 p (zk|sm,k) . (63)

A major drawback of this solution is that particles are prop-

agated without taking into consideration the newest measure-

ments zk. Even though the latest measurement is not used for

generating new particles, PFs work surprisingly well in most

settings. One exception is when the likelihood of the particles

is very sharp in comparison to the prior.

b) IS from the likelihood: In situations where the like-

lihood function is much more informative than the prior

distribution, a possible alternative to prior IS is sampling from

the likelihood. A possibility is to run a maximum likelihood

estimator (MLE) at each time instant k, that, differently from

Bayesian approaches, accounts only for the observation model

and the latest set of measurements, while neglecting any

statistical information regarding the state transition. Then,

the state is inferred by solving the following maximization

problem:

ŝML,k = argmax
sk

ln p (zk|sk) , (64)

where, since the measurements are considered independent at

each antenna, we have

p (zk|sk) =
N−1
∏

n=0

p (zn,k|sk) =
N−1
∏

n=0

N
(

zn,k;hn (pk) , σ
2
η

)

=
1√

2π ση

exp

(

−
∑N−1

n=0 (zn,k−hn (pk))
2

2σ2
η

)

.

(65)

Then, the particles are generated from a Gaussian distribution

centered at the maximum likelihood (ML) estimate by

sm,k ∼ N (sm,k; ŝML,k,PML,k) , (66)

where PML,k is the covariance matrix of size Ns × Ns

that determines how the particles are spread around the ML

estimate. With such choice of IS, the weights are updated by

wm,k = wm,k−1
p (zk|sm,k) p (sm,k|sm,k−1)

N (sm,k; ŝML,k,PML,k)
. (67)

Notably, in the considered approach it might happen that

wm,k ≈ 0, ∀m, due to the mismatch between the likelihood
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p (zk|sm,k) and the transition p (sm,k|sm,k−1) in (67). To

overcome such an issue, we included a control such that, if all

the weights are zeros (or below a certain threshold related to

the numerical accuracy), we reset them to wm,k = 1/M, ∀m.

c) Optimal IS: The use of the transition density as an

importance function may create ambiguity problems because

it does not depend on the new measurements zk. At the same

time, the likelihood IS does not account for the transition

model. Consequently, a possible choice for the optimal IS is

to directly sample from the posterior [55]–[57]

π (sk|sm,k−1, zk) =
p (zk|sk) p (sk|sm,k−1)

´

p (zk|sk) p (sk|sm,k−1) dsk
, (68)

where an analytical form can be found if the observation

function is linear and the noises in the state and observation

equations are Gaussians and additive.

d) Local linearisation of the optimal IS: In our case,

since the observation function is nonlinear, we perform a local

linearisation around the predicted state, as done for the EKF,

with the purpose of deriving a closed-form expression for the

proposal density. In particular, we have

zk ≈ h
(

s−k
)

+Hk|k−1

(

sk − s−k
)

+ ηk, (69)

where s−k = Ask−1 is the predicted state, Hk|k−1 ,

Hk

∣

∣

sk=s
−

k

is the N × Ns Jacobian matrix in (60) evaluated

at the predicted state. Then, we can express (69) as a function

of the state, i.e.,

sk = H
†
k|k−1

(

zk − h
(

s−k
)

− ηk

)

+ s−k

= H
†
k|k−1

(

zk − h
(

s−k
))

+ s−k + η̃k, (70)

where † is the pseudo-inverse operator, H
†
k|k−1 is the

Ns × N Moore-Penrose inverse of the predicted Jaco-

bian matrix, η̃k ∼ N
(

η̃k;0, R̃k

)

∈ R
N and R̃k =

H
†
k|k−1 Rk

(

H
†
k|k−1

)T

∈ R
N2

. Consequently, by considering

the product of (3)-(70) that are Gaussian densities, it is

possible to derive

sm,k ∼ p (sm,k|sm,k−1, zk) ≈ N (sm,k;mm,k,Pm,k) , (71)

where the mean and covariance matrix of the particle state are

derived as [57]

P−1
m,k = Q−1 + R̃−1

m,k, (72)

mm,k = Pm,k

[

Q−1 s−m,k +HT
m,k|k−1 R

−1·

·
(

zk − h
(

s−m,k

)

+Hm,k|k−1 s
−
m,k

)

]

, (73)

where s−m,k = Asm,k−1 is the predicted state for the mth

particle, Hm,k|k−1 and R̃m,k are computed at the particle

predicted states. In this case, the weights associated with each

particle are obtained by

wm,k = wm,k−1
p (zk|sm,k) p (sm,k|sm,k−1)

N (sm,k;mm,k,Pm,k)
. (74)

The optimal IS represents a trade-off between the prior and

the likelihood IS, and it provides good performance when

both models are accurate. In the following, we evaluate and

compare the performance of the described approaches.

V. CASE STUDY

A. Simulation Parameters

We now evaluate the tracking performance and the theo-

retical bound by varying the array size, the tracking algo-

rithms, and the model assumptions. To this purpose, we set

λ = 0.01m, and the number of particles to M = 1000, if not

otherwise indicated.

A large antenna array was placed in the origin, i.e., the

reference location was q0 , [x0, y0, z0]
T

(m) = (0, 0, 1), and

we alternatively considered a URA lying on the Y Z-plane with

N = 20× 20, if not otherwise indicated.

The initial state of the target at time instant

0 was s0 , [x0, y0, z0, vx,0, vy,0, vz,0]
T

=
(2.5, −9.1, 1.5, 0.01, 0.97, 0), where the simulation step was

fixed to τ = 1 second, the position and velocity coordinates

were in (m) and (m/step), respectively. The total number of

time instants was K = 20 .

The actual transition of the source followed the linear model

in (3) with the transition function and covariance matrix set

to have a nearly constant velocity movement according to

A =

[

I3 τ I3
03 I3

]

, Q =

[

τ3

3 Qa
τ2

2 Qa

τ2

2 Qa τ Qa

]

, (75)

where Qa is a diagonal matrix containing the variances of

the change in accelerations, i.e., Qa = diag
(

σ2
a,x, σ

2
a,y, σ

2
a,z

)

,

with σ2
a,x = σ2

a,y = γt 0.03
2
(

m2/step6
)

, γt = 1, and σ2
a,z = 0.

Instead, for the tracking estimator, we considered alternatively

γt = 1 and γt = 10, that represented the possibility to

work with transition model parameters that are the same of

those used for the actual target trajectory (transition param-

eter match - TM0) or not (transition parameter mismatch -

TM1), respectively. The measurements were generated using

the model described by (4)-(6), where the noise standard

deviation was set to ση = σ · (1 + γm) with σ = 20◦ (if

not otherwise indicated) and where γm = 0 (i.e., ση = 20◦)

and γm = 1 (i.e., ση = 40◦) denote a model parameter

match (measurement parameter match - MM0) or mismatch

(measurement parameter match - MM1), respectively.

The EKF and the particles were initialized according to

m0 = sm,0 = N (s0,P0) , (76)

P0=diag

(

0.52, 0.52, 0.012,
v2x,0
10

,
v2y,0
10

,
v2z,0
100

)

, (77)

if not otherwise indicated. In the PF method, we exploited the

multinomial resampling strategy [54]. For the likelihood IS,

we set PML,k = P0, ∀k.

For the MLE when estimating the source position, we used

a scatter search algorithm implemented in MATLAB software

(GlobalSearch command) to find a global minimum [58].
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Fig. 5. Normalized LF for planar arrays with 4×4 (top) and 20×20 (bottom)
antennas on the Y Z− plane, with ση = 20◦. The receiver and target locations
were in [0, 0, 1] (indicated as green markers) and in [1.51, 1.51, 1].

B. Numerical results

1) Likelihood function: We first investigate the LF shape

considering the observation model in (6) and a target located

inside and outside the Fresnel region, delimited by dF. To that

end, we considered a 5 × 5m2 grid of points equally spaced

with a step of 0.1m corresponding to the state sik, with i being

the index of the ith grid point and k the time instant. For each

test position, we computed the LF related to the actual state.

Fig. 5 shows the normalized LF for 4×4 and 20×20 arrays.

The target was located at a distance of d = 2.15m from the

array that corresponds to 0.5 dF for the 20 × 20 array and

12.5 dF for the 4 × 4 array. Note that the LF is peaky and

focused on the target’s position when a large antenna array

is used as the target falls in its near–field region, whereas

it becomes less and less sharp and with ambiguities when

exiting the Fresnel region because the effect of the CoA tends

to vanish. Nevertheless, as demonstrated in Sec III, there is

no variation in the performance of the angle estimation when

moving from the near–field to the far–field region, as also

evident from the sector shape in Fig. 5 (top).
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Fig. 6. Example of estimated trajectories for different approaches and array
sizes. Top: URA with N = 20 × 20 antennas, TM0, MM0; Bottom: URA
with N = 30 × 30 antennas, TM0, MM0. The array reference location is
in [0, 0, 1] and is lying in the Y Z plane. (P-IS) indicates the PF with prior
IS, (LO-IS) is the PF with linearised optimal IS and (L-IS) is the PF with
likelihood IS.

2) Tracking scenarios: In Fig. 6, we present the estimated

trajectories for two different arrays with N = 20 × 20 (top)

and 30 × 30 (bottom). The Fresnel region is displayed as a

grey sphere, whereas the actual trajectory of the source with

black line with cross markers at each time step. The estimated

trajectories are depicted with different colors according to the

tracking approach and to the legend. The parameters used in

the models for generating the data are the same used by the

estimators, i.e., perfect parameter match (γt = 1, γm = 0).

When N = 20× 20, the initial and final points of the source

trajectory were outside the Fresnel region. Consequently, from

the analysis in Sec. III-B, in these areas, measurements are less

informative about the source state and larger errors were made

in the trajectory estimation, especially by those estimators

mainly based on the information retrieved from LF, i.e., the

PF with likelihood IS and the MLE. On the contrary, when

operating in the near–field region, the tracking performance

significantly improves. We notice that the PF with linearised

optimal IS (namely PF - LO-IS in the figures) is less robust

and accurate in estimating the trajectory than the other PF

methods. In contrast to the prior IS (PF - P-IS), the particle

propagation depends both on the transition and measurement

densities, which are not always in perfect accordance with

each other. This is evident when the LF becomes extremely

peaky (i.e., when the source is very close to the array or with

a large number of measurements). Then, it is very likely that

particles are not propagated in regions of large probability

masses because the likelihood is not overlapped with regions

of high transition density [57].

We explain this effect through Fig 7 where we represent the

locations of the weighted particles with linearised optimal and

prior IS for the measurement update at time instant k = 9 and

time update at k = 8 (prediction for k = 9). The weighted
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Fig. 7. Particles and weights for a PF with linearised optimal IS (top) and
for prior IS (bottom) for a URA with 30× 30 antennas. Left: Measurement
update at k = 9. Right: Time update at k = 8 (prediction to k = 9).

particles are reported as circled markers with a color whose

numerical value is reported in dB in the adjacent colorbar.

The plots are snapshots of what happens when passing from

time instant k = 8 to k = 9, i.e., when the source is in front

of the array (at the same y coordinate) as also represented in

Fig. 6. We have chosen this specific time instant because it

corresponds to the time when the estimated track of PF with

linearised optimal IS diverges from the actual source track in

Fig. 6. During the measurement update, the predictive weights

are modified by the likelihood as in (63). In Fig 7-(top, left),

the particles of the PF linearised optimal IS are propagated in a

region where the LF is not informative. Thus, in this example,

all the weights of the particles have a small spatial dispersion,

and very low weights of about −100 dB corresponding to the

LF tails. Conversely, in the prior IS case of Fig 7-(bottom,

left), the likelihood peak can be more easily caught because

with the time update, the algorithm sets all the weights to 1/M
(−30 dB, with M = 1000) and propagates them only using the

transition model with a bigger spatial dispersion. In this case,

we can see that few particles, indicated with an arrow in the

plot, intercept the peak of the LF.

The problem of the optimal IS can be partially overcome

by increasing the uncertainty on the measurement model. This

is equivalent to performing a roughening operation, i.e., a

spreading of the LF by increasing its variance [59].

In Fig. 8, we show a different target trajectory with abrupt

changes in direction. Indeed, rapid variations of the trajectory

are more challenging from a tracking perspective [60]. This

corresponds to a transition model mismatch, which means

that the transition function is not accurate in predicting the

new state sk. Consequently, in this case, a bigger transition

covariance matrix is beneficial for PF with prior IS to increase

the probability of propagating particles in informative regions.

In fact, the target trajectory is not well described by the model

in (75) and, thus, a larger uncertainty leads to smaller inertia
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Fig. 8. An array with 30 × 30 antennas is used for source tracking under
transition model mismatches (i.e., the source follows a zigzag trajectory that
does not correspond with the model in (75)). The transition model considers
γt = 1 (left) and γt = 103 (right), The EKF and PF with linearised optimal
IS are not reported in the figure because they experience large tracking error
in presence of such mismatch.

in the estimation process and to better results. This is not

true for the EKF and PF with linearised optimal IS because

in these algorithms the linearisation of the observation model

requires a transition model that matches the behavior of the

actual trajectory, as also evaluated in Fig. 11.

3) Tracking performance: The previous results were ob-

tained by considering a single realization to get a qualita-

tive idea about the performance behavior of the investigated

tracking algorithms and of their robustness. Now, considering

the same target trajectory shown in Fig. 6, we perform a

performance comparison through Monte Carlo simulations of

many realizations of trajectories. As metrics for comparison,

we consider the empirical cumulative distribution function

(CDF) and the root mean square error (RMSE) defined as

CDF (eth) =
1

Nmc K

Nmc
∑

ℓ=1

K
∑

k=1

1 (eℓ,k ≤ eth) , (78)

RMSEk =

√

√

√

√

1

Nmc

Nmc
∑

ℓ=1

e2ℓ,k, (79)

where the Monte Carlo cycles were fixed to Nmc = 100, 1 (·)
is equal to one if its logical argument is true, otherwise it is

zero, eℓ,k = ‖p̂ℓ,k − pk‖ is the localization error, p̂ℓ,k is the

estimated target position at time instant k for the ℓth Monte

Carlo run, and eth is a threshold for the localization error.

Figure 9-10 depicts the RMSE (top) and empirical CDF

(bottom) obtained for N = 20 × 20 and N = 30 × 30,

respectively, for ση = 20◦ when the parameters match both in

the measurement and transition models (i.e., TM0 and MM0).

The CDF is shown as a function of the localization error,

whereas the RMSE is studied as a function of time. The trace

of the square root of the posterior Cramér-Rao Lower Bound

(CRLB), namely
√

P-CRLB, is also shown as performance

benchmark. As intuitively predictable, the likelihood IS per-

forms better for 30 × 30 than for the 20 × 20 thanks to the

more peaky LF, as the target is always located within the

near–field region of the receiver. On the other hand, the PF

with linearised optimal IS has lower performance, especially

for the 30 × 30 array. The EKF also allows to attain reliable
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meters for different estimators and by considering a URA with N = 20×20
antennas, respectively. The measurement noise variance is set to ση = 20◦.

performance despite its low complexity, provided that it is

well initialized. The RMSE achieves its minimum value when

the source is inside the Fresnel region and at the minimum

distance from the antenna array (i.e., when k ≈ 10).

We also evaluated the impact of parameter mismatches for

the PF, considering a 20 × 20 array. The results in Fig. 11

suggest that the prior IS is robust to model mismatches, as

the red curves exhibit similar behaviors. In particular, with

large variances in the models, the system was more robust

to trajectory variations and, consequently, it could track the

target with a slightly improved accuracy. On the flip side, the

optimal IS with linearized likelihood was more sensitive to

the accuracy of the model. In this case, the joint variations in

the transition parameters together with the peaky likelihood

dramatically affected the performance. We observed perfor-

mance improvement by introducing a measurement parameter
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mismatch (TM0, MM1).

Finally, the results of the performance as a function of the

number of particles are presented in Fig. 12. They show that

M = 1000 is a good tradeoff in terms of obtained accuracy.

4) Computational Complexity Analysis: We finally provide

a brief discussion about the computational complexity of the

algorithms described in Sec. IV.

Regarding the EKF, by considering that Ns = 6 ≪ N , with

N being the number of measurements, the total cost of the

algorithm is mainly driven by the inversion of the innovation

covariance matrix Sk and it goes as O
(

N3
)

.

Regarding the PF, the “Measurement Update”, and “State

Estimation” steps of Alg. 2 present the same computational

complexity for all the approaches (i.e., prior, likelihood and

linearised optimal IS). In particular, the complexity depends

on the number of measurements and of particles M , and it is



IEEE TRANSACTIONS ON SIGNAL PROCESSING 14

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

Localization Error [m]

E
m

p
ir

ic
al

C
D

F
Model parameters mismatches

PF, P-IS - TM0 MM0

PF, LO-IS - TM0 MM0

PF, P-IS - TM1 MM0

PF, LO-IS - TM1 MM0

PF, P-IS - TM0 MM1

PF, LO-IS - TM0 MM1

PF, P-IS - TM1 MM1

PF, LO-IS - TM1 MM1

Fig. 11. Empirical CDF vs. Localization error in meters for particle filters
using prior (red lines) and optimal (black lines) IS, by considering a rectangu-
lar array with N = 20× 20 antennas. Parameters mismatches are considered
as described in Sec. V-A. Markers are plotted with a step of 10.

O
(

N3 +M N2
)

because of the inversion of the measurement

covariance matrix R and of the likelihood derivation for each

particle. For the “Time Update” in the PF, the cost depends

on the chosen IS proposal as follows:

• Prior IS: the cost is O
(

M N2
s

)

driven by the instructions

used for propagating particles;

• Likelihood IS: the cost is O
(

N3
s +M N2

s + c2 (Ns, N)
)

depending on the MLE search (expressed with

c2 (Ns, N)), on the inversion of transition matrices

(P−1
ML and Q−1), and on the computation of the

transition and proposal densities;

• Linearised Optimal IS: the cost is

O
(

M N3
s +MNsN

2 +M N2
s N
)

, mainly depending on

the computation and inversion of the covariance matrix

Pm,k for each particle.

Consequently, by only comparing the PF approaches, the prior

IS represents the less complex solution regardless the choice

of the MLE implementation. Instead, the EKF presents the

lowest complexity among all the other approaches because it

does not involve the use of particles but it solves the tracking

using a closed-form solution.

VI. CONCLUSIONS

In this paper, we investigated a tracking problem where

a single array equipped with a co-located large number of

antennas estimates the position of a source by exploiting

the CoA information. First, we derived the theoretical bound

on tracking estimation error, and we investigated the system

ability to infer both angle and distance information (i.e., the

position) when operating in the near–field region. This is

enabled by processing the information of the electromagnetic

wavefront curvature. The asymptotic analysis puts in evidence

that the distance information tends to vanish when approaching
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the far–field region, which implies a scarce position estimation

in the radial direction.

Second, we compared the performance of some state-of-

the-art practical tracking algorithms to show the feasibility of

accurate tracking using CoA information under different work-

ing conditions. Numerical results show that the performance

of PF-based schemes is close to that of the theoretical bound,

and, hence, sub-meter tracking accuracy can be obtained in

the considered scenarios. Moreover, the comparison among

different methods highlights that PF with prior IS is more

robust to model mismatches and it is less computationally

complex among the PF approaches.

Finally, our study indicates that it is possible to perform

high accuracy tracking using one single antenna array and

narrowband signals by exploiting the CoA in phase-difference

measurements, provided that the target is within the near–

field region of the antenna. In this setting, there is no need

of accurate TOA estimation, which requires very large band-

widths and tight synchronization between the transmitter and

the receiver.

APPENDIX A

We derive the expression for ∇s ∆dn where, for simplicity

of notation, we omit the temporal index k. In particular, due to

the fact that the derivatives with respect to the source velocity

vk are 0, we focus only on the source position. We can write

∇p ∆dn =
[

√

fn − 1
]

∇pd+
d ∇p fn

2
√
fn

, (80)

where ∇p fn is given by

∇pfn =− 2 dn0
d

(

dn0 ∇pd

d2
+∇pgn − gn ∇p d

d

)

, (81)
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with

∇p d =

[

∂d

∂x
,
∂d

∂y
,
∂d

∂z

]

=

[

x− x0

d
,
y − y0

d
,
z − z0

d

]

, (82)

being the gradient of the distance with respect to the source

position and where the gradient of the angular term gn is

∇p gn = sin(θn0) (cos (φn0 − φ) cos (θ)∇p θ

+sin (θ) sin (φn0−φ)∇pφ)

− cos(θn0) sin (θ)∇pθ, (83)

with

∇pθ =

[

∂θ

∂x
,
∂θ

∂y
,
∂θ

∂z

]

=

[

cos(φ) cos(θ)

d
,
sin(φ) cos(θ)

d
,− sin(θ)

d

]

, (84)

∇pφ=

[

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

]

=

[

− sin(φ)

d sin(θ)
,

cos(φ)

d sin(θ)
, 0

]

. (85)

Now, it is easy to show that (25) holds. In fact, considering

for example the x coordinate, we have

∂∆dn
∂x

=
1

d

{

(x− x0)
[

√

fn − 1
]

− dn0√
fn

(

dn0 (x− x0)

d2

+d
∂gn
∂x

− gn (x− x0)

d

)}

−→
d≫dF

0. (86)

Finally, the gradient of dn with respect to the state is

∇p dn =
1

dn
[∆xn∇p∆xn +∆yn∇p∆yn +∆zn∇p∆zn] ,

(87)

where ∆xn = x− xn, ∆yn = y − yn, and ∆zn = z − zn.

APPENDIX B

By substituting ∂hn

∂ξ = 2π
λ

∂∆dn

∂ξ and by omitting the

temporal index for notation simplicity, we can reformulate (26)

according to [61] as

J̃D (ξ) =
1

σ2
η

N−1
∑

n=0

(

∂hn

∂ξ

)2

=
4π2

λ2 σ2
η

N−1
∑

n=0

(

∂∆dn
∂ξ

)2

, (88)

where the derivatives inside the summations of (88) depend

on the actual significance of ξ and are given by

∂∆dn
∂d

=
√

fn − 1− dn0

d
√
fn

(

dn0
d

− gn

)

, (89)

∂∆dn
∂θ

= d
∂
√
fn

∂θ
= − dn0√

fn

∂gn
∂θ

, (90)

∂∆dn
∂φ

= d
∂
√
fn

∂φ
= − dn0√

fn

∂gn
∂φ

, (91)

with fn and gn defined in (12) and (10), respectively, and with

∂gn
∂θ

=cos(θ) sin(θn0) cos(φn0 − φ)−sin(θ) cos(θn0), (92)

∂gn
∂φ

=sin(φn0 − φ) sin(θn0) sin(θ). (93)

By substituting fn in (89)-(91) and squaring, we obtain

(

∂∆dn
∂d

)2

=

(

1− gn dn0

d −
√

1 +
d2
n0

d2 − 2 gn dn0

d

)2

1 +
d2
n0

d2 − 2 gn dn0

d

,

(94)
(

∂∆dn
∂θ

)2

=
d2n0

1 +
d2
n0

d2 − 2 gn dn0

d

(

∂gn
∂θ

)2

, (95)

(

∂∆dn
∂φ

)2

=
d2n0

1 +
d2
n0

d2 − 2 gn dn0

d

(

∂gn
∂φ

)2

. (96)

By injecting the expressions above into (88), we obtain (28).

APPENDIX C

In this case, given the Assumption 1 and 2, we can write

(28)-(29) as

J̃D (d) =
4π2

λ2 σ2
η

N−1
∑

n=0

8 d2 +D2 − 4 d
√
4 d2 +D2

4 d2 +D2
, (97)

J̃D (θ) =
π2

λ2σ2
η

D2

1 + D2

4 d2

N−1
∑

n=0

(

cos
(

2π
n

N

))2

, (98)

J̃D (φ) =
π2

λ2σ2
η

D2

1 + D2

4 d2

N−1
∑

n=0

(

sin
(

2π
n

N

))2

, (99)

where we have exploited the following relationships

(

∂gn
∂θ

)2

= (cos θn0)
2
=
(

cos
(

2π
n

N

))2

, (100)

(

∂gn
∂φ

)2

= (sin θn0)
2
=
(

sin
(

2π
n

N

))2

, (101)

and

N−1
∑

n=0

(

cos
(

2π
n

N

))2

=

N−1
∑

n=0

(

sin
(

2π
n

N

))2

=
N

2
. (102)

Then, (97)-(99) can be further simplified as in (36)-(37).
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[52] P. M. Djurić et al., “Particle filtering,” IEEE Signal Process. Mag.,
vol. 20, no. 5, pp. 19–38, 2003.
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