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Near-field Tracking with Large Antenna Arrays:
Fundamental Limits and Practical Algorithms

Anna Guerra, Member, IEEE, Francesco Guidi, Member, IEEE,
Davide Dardari, Senior, IEEE, and Petar M. Djurié, Fellow, IEEE,

Abstract—Applications towards 6G have brought a huge in-
terest towards arrays with a high number of antennas and op-
erating within the millimeter and sub-THz bandwidths for joint
communication, sensing, and localization. With such large arrays,
the plane wave approximation is often not accurate because the
system may operate in the (radiating) near-field propagation
region (i.e., the Fresnel region) where the electromagnetic field
wavefront is spherical. In this case, the curvature of arrival (CoA)
is a measure of the spherical wavefront that can be used to infer
the source position using only a single large antenna array. In this
paper, we study a near-field tracking problem for inferring the
state (i.e., the position and velocity) of a moving source with an
ad-hoc observation model that accounts for the phase-difference
profile of a large receiving array. For this tracking problem, we
derive the posterior Cramér-Rao Lower Bound (P-CRLB), and
we provide insights on how the loss of positioning information
outside the Fresnel region results from an increase of the ranging
error rather than from inaccuracies of angular estimation.
Then, we investigate the accuracy and complexity performance
of different Bayesian tracking algorithms in the presence of
model parameter mismatches and abrupt trajectory changes. Our
results demonstrate the feasibility and high accuracy of most
tracking approaches without the need for wideband signals and
of any synchronization scheme.

Index Terms—Near-field tracking, posterior Cramér-Rao lower
bound, curvature-of-arrival, large antenna array.

I. INTRODUCTION

Short-range localization and tracking techniques have re-
cently attracted great interest in all the scenarios where the
signal coming from the Global Navigation Satellite System
(GNSS) is denied or leads to a low-accuracy positioning
[1]-[3]. Nowadays, there is a large variety of ad-hoc solu-
tions for high-accuracy positioning, spanning from systems
based on dedicated impulse radio ultrawide bandwidth (UWB)
technology to system integrating heterogeneous sensors [4].
Unfortunately, most of the available solutions usually require
an ad-hoc positioning infrastructure with multiple anchors, i.e.,
multiple reference sensors with known positions, that can be
expensive or bulky, especially for indoor environments [5].
While it is possible, in principle, to avoid the need for
infrastructure using simultaneous localization and mapping
(SLAM) algorithms based on laser or camera sensors [6], it
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is of interest to realize high-accuracy radio localization and
tracking solutions that make use of the same network of access
points (APs) already deployed for communication coverage.

With the sixth generation (6G) of cellular networks, further
improvements are expected in localization and tracking. These
improvements will result from the joint use of high frequencies
and large arrays for both communication and localization
purposes [7]-[13] (see Fig. 1). Following a trend started by the
5G cellular systems, many APs, equipped with massive arrays,
are expected to play a dual functional role of communication
and localization reference nodes. The large antenna arrays at
each AP allow to collect a large set of measurements, thus
enhancing the localization accuracy.

Usually, with such large arrays, source localization and
tracking are based on the joint estimate of the angle-of-arrival
(AOA) and time-of-arrival (TOA) [12]-[16], which requires
a fine synchronization between the transmitter (namely, the
source to be localized), and the receiver (the AP).! When
synchronization is not guaranteed, it is not possible to retrieve
any reliable positioning information about the transmitter if
only one AP is involved in the process. Traditionally, time
difference of arrival (TDOA) or two-way ranging approaches
are used to overcome this issue [2], but they require multiple
message-passing between nodes or the involvement of multiple
APs with a good geometric dilution of precision (GDOP).
When APs are closely located to each other and latency
requirements become stringent, these approaches could fail
and, therefore, new solutions are needed.

When the antenna array is large enough to capture the
spherical characteristic of the incident wave, which happens
when operating in the radiating near-field of the antenna array
(Fresnel region),” a promising approach is to retrieve the
source position directly from the curvature of arrival (CoA)
encapsulated in the spherical wavefront impinging a single
large array. A graphical representation is in Fig. 1. Note that
throughout the paper, an array is considered large if the ratio
between the maximum size of the array and the source-array
distance, namely D/d, is such that the source is located in the
Fresnel region. The CoA depends on the transmitter position
and the array geometry, and, when it is used for localization
or tracking purposes, it does not need any synchronization [7],
[17], [18]. This concept is not new, and it has been investigated

2

'In this paper, the term “source” is used as a synonym of “user”, “trans-
mitter”, “target”, and “emitter”, whereas the term “antenna array” refers to
the “receiver”, that can be located in the “AP”.

2Note that, in this paper, the term “near—field” refers to the “Fresnel region”,
“radiating near—field”, and “near—far field”.
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for different frequencies and architectures [19]-[23], entailing
the adoption of distributed antennas [23]-[25]. In the next, we
will review the literature on near—field tracking.

a) Related Works: Many localization methods for near-
field sources have already been proposed in the literature as
[26], [27] and references therein. In the near—field region, the
wavefront shape varies nonlinearly with the array position
and it is characterized by both the angular and the range
parameters. Hence, it can be used for source positioning or
tracking.

For example, in [28], a near-field model is used to localize
multiple sources using an extended version of the MUSIC
algorithm, also referred to as spherical wave MUSIC. In [19],
an approach for direct wireless positioning with narrowband
multi-tone signaling and multi-arrays is described, whereas,
in [29], a MUSIC-based method with an extensive analysis
on the attainable fundamental localization limits is derived
for near-field propagation conditions. A detailed investigation
using acoustic waveforms has been carried out in [21], [30].
More recently, [23]-[25] concern with the source localization
problem by forming a large aperture array of passive sensors
connected with fiber, wireless links, or wired lines. Follow-
ing the same trend, [31], [32] provide an arrayed Extended
Kalman Filter (EKF) approach for multiple source tracking
and a comparison with the posterior Cramér-Rao Lower Bound
(P-CRLB) in the lower microwave band. In [33], a multipath
localization algorithm is investigated where not only the signal
sources but also their multipath reflectors are localized in the
radiating near—field of the antenna.

Unfortunately, these studies usually refer to acoustic waves
or radiofrequency (RF) microwaves considering only very
short distances or using very large, often not practical, dis-
tributed antennas. As an example, in [23], the array is com-
posed of passive sensors distributed in the environment and
spaced apart of several meters.

At millimeter-waves (mm-wave) frequencies, source po-
sitioning and tracking are in principle possible even with
antenna arrays with limited aperture and for distances up
to several meters [7], [12], [17], [18]. In fact, thanks to
a reduced wavelength, a large number of antennas can be
accommodated in a small area [34]-[36]. For example for a
uniform rectangular array (URA) of 400 antennas, we have a
maximum size of 0.14m for a central frequency of 28 GHz.
Therefore, the Fraunhofer distance limiting the near—field
region is approximately 4 m. To preserve the same boundary
at 2.4 GHz, the array size should approximately be three times
larger.

Preliminary studies on near-field fundamental limits on
positioning with fifth generation (5G) antenna arrays have
been recently addressed in [16], [37], [38], but considering
a static scenario and non-Bayesian methods. The papers in
[16], [18], [39]-[43] propose some derivations valid for near—
field sources in presence of synchronization between the
transmitters and the receiver. In [18], [42], [43] a model valid
for metasurfaces has been recently proposed for reconfigurable
intelligent surface (RIS)-aided localization scenarios. None of
these works deals with an asymptotic analysis to evaluate the
behaviour of the spherical information as the source distance
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Fig. 1. Curvature of arrival of the wavefront impinging on a large array when
the source is in near—field in p;. When instead the source is in far—field in
P2, the wavefront can be approximated as planar.

increases compared to the maximum array size.

b) Contributions: In this paper, we investigate the fun-
damental limits in source tracking in a single-array scenario
to highlight the behavior of position information inside and
outside the Fresnel region, and we assess the accuracy and
complexity performance through practical algorithms working
with CoA in absence of synchronization between the array
and the source. To this end, we consider a wrapped phase-
difference observation model accounting for the near-field
wavefronts, and we derive compact formulas for different array
configurations to gain further insights on the capability to
infer the position information when moving from near—field to
far—field regions, conventionally delimited by the Fraunhofer
distance [44]. Through an asymptotic analysis, we evaluate
the role of ranging and bearing information on localization
when the source-array distance increases, showing that the
CoA provides both types of information only in the Fresnel
region while, elsewhere, only bearing data can be correctly
estimated. Further, we investigate different Bayesian tracking
algorithms to assess their robustness, accuracy, and complexity
in different situations.

The main contributions of the paper are as follows.

o We introduce a narrowband signal and observation model,
accounting for phase difference-of-arrival at a single
large co-located antenna array, that includes CoA of the
impinging wavefront;

« We derive the P-CRLB to assess the ultimate performance
of the CoA-based tracking in the near— and far—field
regions when the considered phase-difference model is
used;

o To highlight the role of the ratio between the source
distance and the array size for near-field localization
and tracking, we analyze the Fisher Information Ma-
trices (FIMs) on ranging and bearing information and
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their asymptotic behaviors. Moreover, we derive compact

formulas for three different array geometries;

o We evaluate the performance of different Bayesian filter-
ing approaches considering different models and param-
eters available at the receiver. We investigate the com-
plexity and robustness of the tracking algorithms under
model parameter mismatches, abrupt changes of direction
(i.e., model mismatches), and we show the impact of
movements inside and outside the Fresnel region.

c) Notation: Scalar variables, vectors and matrices are
represented with lower letters, lower bold letters, and capital
bold letters, respectively (e.g., x, x, and X, respectively).
The symbols ()7, ()", and ()T represent the transpose,
inverse and Moore-Penrose pseudo-inverse operators of their
arguments, respectively, and ||| is the 2-norm of its argument.
We use k for discrete temporal indexing, m for antenna
indexing, and m for particle indexing. As an example, T, j,
Xn,k» X,k Stand for a scalar, a vector or a matrix related to
the nth antenna at the kth time instant. With Iy and Oy we
represent the identity and all-zero matrices of size N x N.
A probability density function is denoted by p (-), and E {x}
is the expectation of a random vector x with respect to its
distribution. With N (x; &, ¥) we indicate that the random
vector x is distributed according to a Gaussian pdf with a
mean vector g and a covariance matrix 3. The notation X,
indicates the value of a vector x at time instant a estimated
by considering the measurements collected up to time instant
b. For example, xj,_1 is the value of x predicted at time
instant k — 1 for the next time instant k, whereas, once a new
measurement becomes available at k, this value is updated to
Xg|k- j = /—1 is the imaginary unit.

d) Organisation of the paper: The rest of the paper is
organized as follows. Section II provides the signal and state-
space model of the tracking problem, Sections III-IV describe
the fundamental limits of near—field tracking performance and
present practical algorithms for source tracking, respectively.
Simulation results are reported in Section V and conclusions
are drawn in Section VL.

II. SIGNAL AND STATE-SPACE MODEL

We consider a tracking scenario where a single antenna
array tracks a moving source by exploiting the phase profile
of the received signal caused by the CoA. We denote by
sk = [ph, VZ]T € R™: the state composed of the position and
velocity Cartesian coordinates of the source at time instant k,
respectively, defined by py = [z, yk,zk]T €R? and v, =
(Vs ks Uy ks vz,k]T € R3. Therefore, the state dimensionality is
N; = 6. We also consider that the array has N antennas
located at q,, = [, Yn,2n]' €R3, n=0,...,(N —1), with
reference location qq.

At each time instant, the geometric relationships between
the reference location and the source are given by

Ty xo + dj, cos (¢r) sin (0)
Pr=| Yt |=| vo+dksin(ex)sin(@x) |, (1)
2k zo + dj cos (Hk)
with dp £ dop = |Ipe — @ll, & £ dor =
atan2 (yx — yo, T — Xo), and Oy, ég@k =acos Z’“d_kzo being

Z
Curve wavefront H
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q [ - " —,_/‘-"4--..
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X

Fig. 2. Considered antenna array and system geometry. The receiver antenna
array (the antennas are indicated with gray squares with reference location
in qo in green), tracks a moving source at py (purple square marker) whose
trajectory is depicted with a dashed line.

the true distance, azimuth, and elevation angles, respectively,
as represented in Fig. 2.

The collaborative source/user emits a narrowband signal
such as a pilot in a resource block of an orthogonal frequency
division multiplexing (OFDM) scheme centered at a frequency
fp, dedicated to positioning, which is received by the antenna
array and processed for tracking purposes.’ By considering a
direct line-of-sight (LOS) link between each antenna and the
source, the received signal at the nth antenna, during the pth
OFDM symbol of duration 7', is

o (t) = ani cos (27 fpt — Vi) + vy (£), 2)

47;4d’7\%k € R and ¥, £ 27 fp (d—c" + 1o
the received signal amplitude and phase at the nth antenna of
the array observed at discrete time k. The distance between
the considered nth array antenna and the source is d,, . The
received signal amplitude is A = /2 P, with P, being the
transmitted power. The wavelength is indicated as A = f—cp,
with ¢ being the speed of light.

We assume that the source is not synchronized with the
receiver so that any TOA information cannot be inferred from
the signal, and the phase offset between the source and the
array is not known. The unknown clock offset due to the
lack of synchronization between the array and the source
is to. Finally, v, (t) is the observation noise modeled as
additive white Gaussian noise (AWGN) with double-sided
power spectral density %

Starting from the received signals, the sequential state
estimation problem (tracking) can be formulated starting from
a discrete-time state-space representation given by [45]

A
where a, , = ) are

Sk =8, + Wg =Arsp_1+ wWg, 3)
z, = h (px) + Mk, 4)
where the motion model is considered a linear function of

the state, with s, = Ajysi_; being the predicted state,

3Thanks to a proper allocation of radio resources through OFDM, the
extension of this work to tracking of multiple sources is straightforward as
the association problem is implicitly solved by the orthogonality of the pilot
tones, and by the fact that the source is cooperative (active) with the receiver.
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and A, € RN being the transition matrix of size Ny X
Ng, whereas the observation model is a nonlinear function
h : RNs/2 — RN that will be defined in the sequel, and
wi ~ N (wi;0,Qp) € RM and mp ~ N (m4;0,Ry) € RY
are zero-mean noise processes with Qj and Ry being the
transition and observation noise covariance matrices of sizes
Ng x Ng and N x N, respectively. In the next, we will assume
a time invariant transition matrix and covariance matrix, e.g.,
Ap = A and Q; = Q, as well as Ry = R = 07 1y, where
Jf] is the variance associated to the phase-difference noise.
The observation function provides, for a given source posi-
tion, the phase-differences at each antenna, i.e., the difference
of phases gathered at the considered antenna and at the

reference location. More specifically,

h(Px) = [ho (k) -+ b (PE) - hv -1 (PR)]T 5 (9)

of size N x 1, where the generic element is a phase difference
between 0 and 27, given by*

hyn, (Pr) = A9y, mod 2w, 6)
2
Ady k= 55 Ad g (G Pe) )

where A, i £ Uk — Vo, represents the difference of
phases collected at locations q,, and at the reference location
qo- The modulo operator is denoted with mod and returns
the remainder after division (of A, ;/27) preserving the
same sign of A, i, and Ad, i (qn, Px) is the extra-distance
traveled by the waveform to arrive to the nth antenna with
respect to the reference one, represented in Fig. 2. In particular,
this extra-distance is given by

Adn,k (Qna pk) - dn,k (qna pk) - dk (Clo» pk) . (8)
According to trigonometric rules, we have
dy o = dpg + di, = 2d dno gn ©)

where d,,0 = ||dn — qol|, with n > 0, is the distance between
the nth antenna and the reference location, and

gnk = 9 (0no, Do, Ok, dr) = sin (Ono) sin (0x) cos (¢no — d1)
+ cos (0p0) cos (0k) , (10)

is a geometric term with 6,y and ¢, being the nth antenna
elevation and azimuth angles with respect to the reference
location, respectively (for the reference antenna it is ¢g9 =
foo = 0). Consequently, the extra-distance in (8) can be written
as [7], [31]

Adp i (An, Pr) = dy (\/fn,k - 1) , (11)
with the CoA information gathered in f,, j as
doo\>  _dy
fn,k éf’n,k (qnapk) =1+ —no _270.gn,k:- (12)
dy, dy,

Note that the observation function in (6) is highly nonlinear
with respect to the source position as highlighted in (11)-
(12). The velocity is exclusively inferred using the transition

4Note that the phase uncertainty due to source-array clock mismatches
disappears thanks to the difference between the phases at the array antennas
and the reference.

model and the latest position estimates (without measurement
correction/update that only applies for position estimation) [2].

In the next sections, we will investigate the theoretical limits
on source tracking as well as some practical algorithms by
considering the source located both in the radiating near—
and far—field regions. Conventionally, the boundary between

the reactive and the radiating near—field region is 0.62 ﬁ ,
whereas the far—field region corresponds to distances larger
than the Fraunhofer limit given by dp 2 g, where D is
the array aperture, i.e., the largest distance between any two
antennas of the array. Consequently, the radiating near—field

region is [44]
D3
0.62 - < di < dp.

III. FUNDAMENTAL LIMITS ON NEAR—FIELD TRACKING

(13)

A. Posterior CRLB

We now derive the P-CRLB [46]-[49] for the discrete-time
nonlinear problem described in this paper. As introduced in
[46], [49], different Bayesian bounds can be derived depending
on the choice of the probability distribution from which the
Bayesian Fisher Information Matrix (FIM) is computed.

The joint distribution of the state and measurements, pg.;, =
P (S0:k, Zo:k ), allows for the computation of the Bayesian FIM
from the state history, i.e., Jo.x of size (k 4+ 1) Ny x (k +
1) Ns, and the derivation of the tightest P-CRLB for nonlinear
filtering problems. The P-CRLB of the joint distribution can
be written as the inverse of the Bayesian FIM

Pox > Jo (14)
where J.; is the Bayesian FIM defined as
Jo:k = ESo;k,Zo;k {AZS: lnp (So:k:7 ZO:k‘)} bl (15)

with AP = VIV, and V, = 8%17 Ce %} being the
gradient with respect to the vector a of size 1 x A. From
(15), it is possible to derive the P-CRLB on s; by taking the
N x Ny lower-right sub-matrix of the inverse of Jg.;,. A more
elegant approach that avoids the inversion of the large FIM
Jo.r 1s a recursive formula proposed in [46], which permits to
express the FIM of sy, namely J; of size Ng x Nj, as

ch = Dial - D21,1 (kal + Dllglfl)il D]1€2,1 5 (16)
where the initial information matrix Jo = Eg, {AS Inp (so) }
is derived from the prior distribution of the state [50] and
where

D'y =E,,, [-AS I Inp(splsi-1)] = ATQ'A, (17)
D}2, =By, [~A%, Inp(silsi-1)| = —ATQ!, (18)

DL, = (D2, (19)
D? | =E,,, [~AZ Inp (sklsk—1) — A Inp (zk|sy)]
=Q '+J7, (20)
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where J} is the expectation of the Hessian matrix with respect
to the state and measurements as [50]
JE = Epou {—A3 Inp (z4lsi) }

k

= ]ESk\Sk—l {]Ezklsk {_A:]; Inp (zk|sk)}}
= ]Esk‘sk—l {jg} )

with j]k) being the non-Bayesian data FIM of size Ny x Ng.
Unfortunately, the expectation in (21) cannot be easily derived,
but it is often approximated using Monte Carlo integration
[50]. Indeed, we can separate the contribution deriving from
the collected data and the prior information, thus writing

21

Ji=Jyp1 +I7, (22)
where JF, , =Q~' = D?!, (Jy_ + D} )" D}?, con-
tains the propagation information. In the sequel, we will
find closed-form solutions for j? to better investigate the
behaviour in near— and far—field regions. In the case study
of Sec. V, we use the Bayesian FIM in (22) as a benchmark
for practical tracking algorithms.

B. A Near-Field vs. Far—field Fisher Information Analysis

We now investigate the behavior of the non-Bayesian data
FIM when the target approaches the Fraunhofer distance, that
is, when dj = dg, and when it is far from the radiating near—
field region, i.e., di > dp (far-field).

Proposition 1 (FIM on Source State). Under the observation
model in (6)-(7) and weak regularity conditions for p (zy|sk)
[51], the positioning information carried by the data FIM
vanishes when the distance increases, i.e.,

I A E,, s, (VI Inp(zilsk) Vs, Inp(zilsi)}

L ot
= ;% Vs, h(Pk) Vs, b (Pr) P On,, (23)
where O, is an all-zero matrix of size Ng X Ng.
Proof. All the entries of the data FIM,> given by
{3} - 1 ( 27r)2 = OAd g OAdy
" o2 \N ) &= dlsk);  Olskl; desdn
(24)
Vi,j =1,..., Ng, tend to be zero since
aAdn k .
: Vi=1,..., Ns. 25
0 [Sk]i dp>dp ! ’ s @5)
as demonstrated in Appendix A. U

In the next, we will show that, when moving towards the
far—field region, such vanishing of information is only caused
by the loss of the distance information, whereas the angles
can still be inferred from the collected phases. To analyze this
point, we derive the single components of the FIM on the

SIn order to meet the regurality conditions, e.g., to let Vs, Inp (z|sk)
exist and be finite, the derivatives of hy (px) with respect to sy are taken
equal to the left and right derivatives in the discontinuous points, which is
equivalent to substituting hy (pg) with Ad,, 1 in the derivatives.

distance and angle parameters, namely & € {dy, 0%, Px }. We

have
2
TP (&) 2 Eyppe, { <8m%(;'“|&)) } €R, (26)

where the gradient of the log-likelihood is given by

dInp (2 L~ ohy
pa(gzkkgk) - ﬁ Z # (271,,k‘, - h'fl (gk))

M n=0 Ce
In the next, for notation simplicity, we omit the time index k.
Moreover, we refer to JP (£) as FIM even if it is a scalar.

27)

Proposition 2 (FIMs on Distance and Angles). Under the
observation model in (6)-(7) and weak regularity conditions
Sor p(z1|&), the FIMs for distance and angles for both near—
and far—field regions (for any value of d) and for any geometry
(ie., for any d,o, gn) are

2d2 + d%O (gi + 1) - 4gn dd71,0+

- 2(d - gnan)\/d2 + d1210 - 2gnd an] 5 (28)

. 472 T d? @2 90\’
JD — n0 n 29
= Sez X i S (35) @
where B € {0, ¢} can be either the elevation or azimuth angle.
Proof. See Appendix B. O

Because the FIMs in (28)-(29) are not easy to interpret, we
further simplify them by focusing on different planar array
geometries, i.e., on the uniform circular array (UCA) and on
URA, as well as on uniform linear array (ULA) as a specific
case of URA. However, note that, for 3D localization, a planar
geometry is needed to estimate the elevation angle and allows
positioning.

C. UCA Configuration

We now provide assumptions, propositions and remarks
when a UCA geometry is considered at the receiver side.

Assumption 1 (UCA). The distance and azimuth angle be-
tween the nth antenna and the reference location are d,g =
D/2, ¢no = 5,Vn =1,...,(N — 1), whereas the elevation

n

angle is set to 0,0 = ]%,’T (lying on Y Z plane).

Proposition 3 (FIMs for UCA). Under Assumption 1 of UCA,
the FIMs in (28)-(29) for a generic source position are

4 = 1

T N02 4 4d?+ D2~ 4g,dD

JP (d)

: [8d2+D2(g§+1)—8gndD+

—2(2d — g,D)\/4d? + D? — 4gndD}, (30)
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d2 D2 gn \ >
= (g) , (3D
« D2 +4d2 —4g,dD \ 95

4.71'2 N-1

A o2 =
with B € {0, ¢}.

Proof. From (28)-(29), they are obtained by substituting
(dnos Pno, Ono) with the values in Assumption 1. O

I (B) =

Remark 1 (Asymptotic Analysis for UCA). From the FIMs in
(30)-(31) valid for a UCA and without any assumption of the
source position, we obtain the FIMs at the boundary of the
Fresnel region (i.e., for d = dg) that are

2 N-—-1
o (
J - QZ X
0 n=o 16D2_9nﬁ
2 2 gn
'[2+16D2(9"+1)_ D "
A A2 A
(2—g )1 D g 2
( gnw)\/ R
2D2N—1 1 an 2
0= 702 2 ( ;ﬁ)y (33)
n n=0 +16D2 g"2D

with 3 € {6, ¢}, and the FIMs for d > d that are
JP (d)=0,
2 p2 N1 dgn 2
Moy — ( ap >
Note that the expressions in (32)-(33) coincide with those in
(34)-(35) when A < D, e.g., when mm-waves are considered.

(34)

JP(8) =

(35)

Now to further simplify the expressions, we constrain the
source position along the central perpendicular line (CPL) as
in [37].

Assumption 2 (Source Position). The source is on the central
perpendicular line, along the X-axis, so that § = 5,¢ = 0,
such that g, =0, Vn=0,...,N — 1.

Proposition 4 (FIMs for UCA and Source on CPL). Under
Assumptions 1 and 2, the FIMs in (28)-(29) for a UCA on the
Y Z-plane and a target on the X-axis are

2
4 N 72 2—|—D7—21/1+
s . 4d? 4d2, (36)

JP(d) =
“ Ao L+ £
- ~ N 72 D?
JP(0)=JP (¢) = . 37
O =) = 5332 11 27 (37)
Proof. See Appendix C. O

Remark 2 (Asymptotic Analysis for UCA and Source on CPL).
From (36)-(37), we obtain the FIMs at the boundary of the
Fresnel region (dj, = dp),

2
_ ANZ2 2 + 857 —24/1+
JD (d): : 7; 16 D2 16D2’ (38)
Aoy 1+ 252
. - N D?
P (8) = JP (¢) = N — (39)
2)‘202 +16D2

6
and, for d > dp (far—field region), we get
JP (d) =0, (40)
- - D? N 2
D) =JP (¢) = =—F—-. 41
PO =10 = 35 @1

The results show the dependence of the FIMs on the diameter
D of the array and the number of measurements V. Further,
they also reveal that the FIMs are inversely proportional to the
measurement noise variance J?] and squared wavelength \2.

Note that JP () and J® () in (39) tend to their asymptotic
values in (41) because 16/\% < 1. Consequently, the perfor-
mance is constant within the Fresnel region. According to this
result, outside the near—field region bounded by dp, it is not
possible to retrieve the target position because the CoA tends
to vanish, despite the feasibility of estimating the angles.

D. URA and ULA Configurations

We now provide assumptions, propositions and remarks
when a URA geometry is considered at the receiver, and we
draw the ULA as a specific case of URA.

We consider a URA lying on the Y Z-plane with q¢p =
[0,0,0] and antennas equally spaced by /2. The generic nth
antenna is located at q,, = 3 [0,ny,n,] with n, = | x| and
n, = (n mod N,) being the antenna index along the Y- and
Z-axis, respectively. Moreover, it can be noted that a ULA
lying along the Y-axis is a special case of URA with N, = 0,
ie,q, = % [0,n,0], withn =0,..., (N —1). We, thus, have
the following two assumptions

Assumption 3 (URA). The distance, azimuth and elevation

angles between the nth antenna and the reference location

A
are dpg = 2 n2 +ni =

2
acos (%) € [0
Assumption 4 (ULA). The distance, azimuth and elevation
angles between the nth antenna and the reference location
are d,og = %n ¢no = 5, and 09 = 5 Y =0,..., (N —1),
respectively. In this case, we have g, = sin(0) sin(¢), Vn.

A us
577,, QSnO = Vn, and 0"0 =

], respectively.

Following the same principle as for the UCA, starting from
(28)-(29), we can derive the FIMs for distance and angles valid
for the URA and ULA.

Proposition 5 (FIMs for URA and ULA). Under Assumptions
3 and 4, considering a URA on the Y Z-plane, the FIMs in
(28)-(29) become

9 N—1

. 87 1
JP (d) = 22 52 n:04d2+)\2ﬁ2_4gn)\ﬁd'
.[4d2+ 72 (g2 +1) —4dgnd A+
—(2d—gn)\ﬁ)\/4d2+>\2ﬁ2—4gnd)\ﬁ}, 42)
T (%),
o2 7L=O4d2—|—)\2n2—4gnd)\n 0B

(43)

with 8 € {0,¢}. The FIMs for ULA can be obtained by
replacing 1 with n.
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D =0.14 m, URA vs. UCA
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[J b (d)] as a function of the source distance
d. We set f, = 28 GHz and o, = 20°, NF and FF stand for near—field
and far—field, respectively. We considered an URA and UCA geometry for a
fixed D = 0.14 m. The threshold, indicated with a dashed line, corresponds
to ranging error of 1/10 of the actual distance.

Fig. 3. Ranging error

Remark 3 (Asymptotic Analysis for URA and ULA). From
the FIMs in (42)-(43) valid for URA and ULA and without
any assumption on the source position, we obtain the FIMs at
the boundary of the Fresnel region that are

- 8 1
D
TP (d) = 15 — —
T 14 () <20
no(n
1+ —— (= (ga+1)—4 n)+
oz (NQ(g ) —4g
i i\? 0
o N—1 ~9 2
~ T n Ogn
TP (B) =~ — - <86) ;45
1014+ ()~ 200
with 8 € {0,¢}, D = 3N £ 3, /N2 + N2, and the FIMs
for d > dp that are
JP (d)=0, (46)
o N—1 2
D ™ ~2