
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Measuring uncertainty and its impact on the economy / Carriero A; Todd Clark; Massimiliano Marcellino. -
In: THE REVIEW OF ECONOMICS AND STATISTICS. - ISSN 1530-9142. - ELETTRONICO. - 100:5(2018), pp.
799-815. [10.1162/REST_a_00693]

Published Version:

Measuring uncertainty and its impact on the economy

Published:
DOI: http://doi.org/10.1162/REST_a_00693

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/714516 since: 2022-04-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1162/REST_a_00693
https://hdl.handle.net/11585/714516


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Carriero, A., Clark, T. E., & Marcellino, M. (2018). Measuring uncertainty and its impact 
on the economy. Review of Economics and Statistics, 100(5), 799-815. 

The final published version is available online at: 

https://doi.org/10.1162/rest_a_00693 

 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing 
policy. For all terms of use and more information see the publisher's website.   

 



Measuring Uncertainty and its Impact on the Economy∗

Andrea Carriero

Queen Mary, University of London

Todd E. Clark

Federal Reserve Bank of Cleveland

Massimiliano Marcellino

Bocconi University, IGIER and CEPR

Abstract
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based on a large vector autoregression with stochastic volatility driven by common fac-
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1 Introduction

In the aftermath of the 2008 financial crisis and the Great Recession, the interest of economists

and policymakers is markedly focused on the analysis of macroeconomic and financial uncertainty

and their effects on the economy. Reflecting such an interest, the literature on the topic has

mushroomed in the last few years. Econometric studies on measuring uncertainty and its effects

on the economy started with the seminal paper by Bloom (2009), and other relevant contributions

include, among others, Bachmann, Elstner, and Sims (2013), Baker, Bloom and Davis (2016), Basu

and Bundick (2016), Berger, Grabert, and Kempa (2016), Caggiano, Castelnuovo and Groshenny

(2014), Gilchrist, Sim and Zakrajsek (2014), Jurado, Ludvigson, and Ng (2015), and Ludvigson,

Ma, and Ng (2016); Bloom (2014) surveys related work.

As noted in Creal and Wu (2016), in most of the literature, measures of uncertainty (either

macroeconomic or financial, or both) are estimated in a preliminary step and then used as if they

were observable data series in the subsequent econometric analysis of its impact on macroeconomic

variables. For example, Bloom (2009) and Caggiano, Castelnuovo and Groshenny (2014) use the

VIX, Basu and Bundick (2016) the VXO, Bachmann, Elstner, and Sims (2013) the disagreement

in business expectations, Jurado, Ludvigson, and Ng (2015) an average of the volatilities of the

residuals of a set of factor-augmented regressions, Jo and Sikkel (2015) the common factor in the

forecast errors resulting from the use of SPF forecasts for a few variables, Baker, Bloom and Davis

(2016) an index based on newspaper coverage frequency, and Gilchrist, et al. (2014) a sequence of

estimated time fixed effects capturing common shocks to (constructed) firm-specific idiosyncratic

volatilities. They all then include their preferred uncertainty measure, together with a small set

of macroeconomic variables, in a homoskedastic vector autoregression (VAR) and compute the

responses of the macro variables to the uncertainty shock.

While the approach outlined above has themerit of bringing to the fore the effects that uncertainty

can have on the macroeconomy, the fact that the uncertainty measure is not fully embedded in the

econometric model at the estimation stage inevitably can complicate the task of making statistical

inference on its effects, for several reasons. First, the two-step approach treats uncertainty—which
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is estimated in the first step — as an observable variable in the second step. It follows that the

second step can potentially suffer from measurement errors in the regressors, which might lead to

an endogeneity bias.1 A related problem is that the uncertainty around the uncertainty estimates

is not easily accounted for in such a setup, since the proxy for uncertainty is treated as data.

Second, even if in the first step a large enough cross section of variables is considered in estimating

uncertainty, the second step invariably relies on rather small systems, typically including a handful

of macroeconomic variables. The use of small VAR models to assess the effects of uncertainty

can make the results subject to the common omitted variable bias and non-fundamentalness of the

errors, besides the obvious shortcoming of providing results on the impact to just a few economic

indicators. Third, the models used in the first and second step are somewhat contradictory. While

the estimation of the uncertainty measure(s) in the first step is predicated on the assumptions that

macroeconomic data feature time-varying volatilities, the vector autoregression (VAR) used in the

second step features homoskedastic errors. Moreover, in the first step volatilities are assumed not

to affect the conditional means of the variables (even though the final goal is to actually assess

the conditional mean effects of uncertainty on economic variables), while in the second step the

uncertainty measure only affects the conditional means, but not the conditional variances (which

as mentioned above are assumed to be constant over time).

Motivated by these considerations, in this paper we develop an econometric model and method

for jointly and coherently (1) constructing measures of uncertainty (macroeconomic and financial)

1Carriero, et al. (2015) provide a Monte Carlo experiment showing that the attenuation bias

stemming frommeasurement error in the uncertaintymeasures can be sizable. Onemightworry less

about this in the case of factor based uncertainty measures using a cross-section of observable data

so large that factor estimation uncertainty is negligible (a typical condition being
√

T/N converging

to zero). However, if the uncertainty factors are based on generated rather than observable data,

as in for example Jurado, Ludvigson, and Ng (2015), the proper conditions for treating the factors

as known are not available. Moreover, even if one is not concerned with such complications, it is

preferable to have an approach which works well also in smaller cross sections.
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and (2) conducting inference on its impact on the macroeconomy in a way that avoids all of the

issues highlighted above. Specifically, we build a large, heteroskedastic VAR model in which the

error volatilities evolve over time according to a factor structure. The volatility of each variable

in the system is driven by a common component and an idiosyncratic component. Changes in the

common component of the volatilities of the VAR’s variables provide contemporaneous, identifying

information on uncertainty.

In our setup, uncertainty and its effects are estimated in a single step within the same model,

which avoids both the estimated regressors problem and the use of two contradictory models typical

of the two-step approach. The model uses a large cross section of data and allows for time variation

in the volatilities, which reduces problems of omitted variable bias, and non-fundamentalness.

In the discussion so far we have generically referred to uncertainty. More specifically, we con-

sider both macroeconomic and financial uncertainty. Each is modeled as the common component

of the volatilities of macroeconomic and financial variables, respectively. The vector containing

the two measures of uncertainty is assumed to depend on its own past values as well as past values

of macroeconomic and financial variables. Hence, macroeconomic uncertainty can affect financial

uncertainty and vice versa, and both can be affected by the business cycle and financial fluctua-

tions. Moreover, both macro and financial uncertainty enter the conditional mean of the large VAR.

As a consequence, macro and financial uncertainty are allowed to contemporaneously affect the

macroeconomy and financial conditions.

The model is estimated via a new, computationally efficient MCMC algorithm for estimating

large nonlinear VARs with unobserved variables. Since uncertainty is explicitly treated as an

unobservable random variable, the estimation procedure returns its entire posterior distribution,

which is readily available for inference and allows us to measure uncertainty around uncertainty.

The model can be also interpreted as a factor model, or a factor augmented VAR (FAVAR), in which

the factor affects not only the levels but also the conditional volatility of the variables. As such, it

relates to the vast literature on factor models; see, e.g., Stock and Watson (2015) for an overview.

We apply our proposedmodel to monthly U.S. data for the period 1959-2014, finding substantial
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evidence of commonality in volatilities, as well as not-negligible idiosyncratic movements in the

volatilities. Uncertainty around estimated uncertainty is sizable. Yet, a clear and significant pattern

of time variation emerges, with increases inmacro uncertainty associatedwith economic recessions.

However, we find less evidence of the “Great Moderation.” This appears to be mainly due to the

use of a large information set.

Our estimates of impulse responses indicate that macroeconomic uncertainty has large, sig-

nificant effects on real activity, but has a limited impact on financial variables, whereas financial

uncertainty shocks directly impact financial variables and subsequently transmit to the macroe-

conomy. Shocks (surprise increases) to macroeconomic and financial uncertainty both lead to

significant and persistent declines in economic activity. But a shock to financial uncertainty does

not affect some measures of economic activity (notably, housing and consumption) as much as a

shock tomacro uncertainty does. Both types of shocks also cause the credit spread to rise. However,

for other financial variables, results are more mixed: surprise increases to financial uncertainty

reduce aggregate stock prices and returns, whereas the effects of increases in macro uncertainty are

not significant. We show that these estimated uncertainty shocks are not significantly correlated

with conventional measures of shocks to monetary policy, fiscal policy, productivity, or oil prices.

Hence the impulse response functions we present appear to be capturing a “variance” phenomenon

rather than masking some kind of conventional “level” shocks.

Although shocks to uncertainty have significant effects, estimates of historical decompositions

indicate that they are not a primary driver of fluctuations in macroeconomic and financial variables.

For example, over the period of the Great Recession and subsequent recovery, shocks to uncertainty

made small to modest contributions to the paths of economic and financial variables, whereas

shocks to the VAR’s variables played a much larger role.

The paper is structured as follows. Section 2 discusses model specification and estimation.

Section 3 presents the data. Section 4 presents our estimates of aggregate uncertainty. Section

5 studies its effects on the economy. Section 6 summarizes our main findings and concludes. A

supplemental appendix contains additional details on the priors, estimation algorithm, and results.
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2 A joint model of uncertainty and business cycle fluctuations

The model for the macroeconomic and financial variables of interest — collected in the vector yt

— is a heteroskedastic VAR, similar to those widely used in macroeconomic analysis since the

contributions of Cogley and Sargent (2005) and Primiceri (2005). However, rather than using a

small cross section and assuming that volatilities for each variable evolve independently, we use a

large cross section of variables, and we assume that volatilities follow a factor structure, i.e. have a

common and an idiosyncratic component.2

Our measures of macroeconomic and financial uncertainty are defined as the common compo-

nents in the volatility of either macroeconomic or financial variables. These common components

are state variables of the model, and they are assumed to follow a bivariate VAR augmented with

lags of the macroeconomic and financial variables of interest. Hence, the economic and financial

variables of yt are allowed to have a feedback effect on uncertainty. The measures of uncertainty

enter the conditional mean of the VAR in yt . Actually, the latter is the key idea in this literature,

but often the relationship is only imposed in a separate auxiliary model and not used at the uncer-

tainty estimation level, so that the estimated measure of uncertainty only reflects the conditional

second moments of the variables. In our specification, instead, the measure of uncertainty reflects

information in the levels of the variables as well.3

2The literature on forecasting with large datasets — see, e.g., Banbura, Giannone and Reichlin

(2010) and Stock and Watson (2002) — has shown that typically the size of the information set

matters and can reduce forecast errors and their volatility, even though there is a debate on how

large “large” is; studies such as Koop (2013) and Carriero, Clark and Marcellino (2015) suggest

that about 20 selected macroeconomic and financial variables could be sufficient.

3Conditional heteroskedasticity in-mean was introduced by French, et al. (1987) with the

GARCH-in-mean model. Koopman and Uspensky (2002) and Chan (2017) introduce univari-

ate stochastic volatility-in-mean models. Mumtaz (2011), Mumtaz and Zanetti (2013), Jo (2014)

and Shin and Zhong (2015) consider multivariate extensions with independent volatility processes.
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2.1 Model specification

Let yt denote the n × 1 vector of variables of interest, split into nm macroeconomic and n f =

n− nm financial variables. Let vt be the corresponding n× 1 vector of reduced form shocks to these

variables, also split into two groups of nm and n f components. The reduced form shocks are:

vt = A−1Λ0.5
t ε t, ε t ∼ iid N (0, I), (1)

where A is an n × n lower triangular matrix with ones on the main diagonal, and Λt is a diagonal

matrix of volatilities, with the log-volatilities following a linear factor model:

ln λ jt =




βm, j lnmt + ln h j,t, j = 1, . . . , nm

β f , j ln f t + ln h j,t, j = nm + 1, . . . , n.
(2)

We discuss below the rationale for the block specification of (2), in which only the factor m enters

the λ process of macro variables, and only the factor f enters the λ process of financial variables.

The variables h j,t — which do not enter the conditional mean of the VAR, specified below —

capture idiosyncratic volatility components associated with the j-th variable in the VAR, and are

assumed to follow (in logs) an autoregressive process:

ln h j,t = γ j,0 + γ j,1 ln h j,t−1 + e j,t, j = 1, . . . , n, (3)

with νt = (e1,t, ..., en,t )′ jointly distributed as i.i.d. N (0,Φν) and independent among themselves,

so that Φν = diag(φ1, ..., φn). These shocks are also independent from the conditional errors ε t .

The variable mt is our measure of (unobservable) aggregate macroeconomic uncertainty, and

the variable f t is our measure of (unobservable) aggregate financial uncertainty. Although our

specification does not rule out the inclusion of additional uncertainty factors, we believe two factors

to be appropriate. One reason is that we are interested in aggregate uncertainty, which suggests the

use of a single macro factor and a single financial factor, in keeping with the concepts of studies
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such as Jurado, Ludvigson and Ng (2015) [hereafter, JLN] and Ludvigson, Ma, and Ng (2016)

[hereafter, LMN]. A second reason is that two dynamic factors appear sufficient. As we note

below, there does not appear to be a common component remaining in the estimated idiosyncratic

components of our model. Moreover, Carriero, Clark, and Marcellino (2016b) estimate a Bayesian

VAR (BVAR) with stochastic volatility with 125 variables (including macroeconomic indicators,

an array of interest rates, some stock return measures, and exchange rates). Their factor analysis of

innovations to volatility indicates two components account for the vast majority of innovations to

volatilities.

Together, the two measures of uncertainty (in logs) follow an augmented VAR process:



lnmt

ln f t


= D(L)



lnmt−1

ln f t−1


+



δ′m

δ′f


yt−1 +



um,t

u f ,t


, (4)

where D(L) is a lag-matrix polynomial of order d. The shocks to the uncertainty factors um,t

and u f ,t are independent from the shocks to the idiosyncratic volatilities e j,t and the conditional

errors ε t , and they are jointly normal with mean 0 and variance var(ut ) = var((um,t, u f ,t )′) = Φu =


φn+1 φn+3

φn+3 φn+2


. The specification in (4) implies that the uncertainty factors depend on their own

past values as well as the previous values of the variables in the model, and therefore they respond

to business cycle fluctuations. Importantly, financial uncertainty affects macro uncertainty and

vice-versa, and the error terms um,t and u f ,t are allowed to be correlated, with correlation φn+3,

reflecting the idea that a common shock can affect both uncertainties.

For identification, we set βm,1 = 1 and β f ,nm+1 = 1 and assume lnmt and ln f t to have zero

unconditional mean.4 In addition, we deliberately include the block restrictions of factor loadings in

4More precisely, identification simply requires fixing the values of at least one of the loadings

βm and at least one of the loadings β f to some value. This will uniquely pin down the state

variables. The choice of fixing the loadings βm,1 and β f ,nm+1 as well as the choice of 1 for their

value is simply an arbitrary normalization that sets up the units of the unobservable state variables.

7



the volatilities specification of (2) in order to allow the comovement between uncertainties captured

in the VAR structure and correlated innovations of (4). Conceptually, these block restrictions are

consistent with broad definitions of uncertainty: macro uncertainty is the common factor in the

error variances of macro variables, and financial uncertainty is the common factor in the error

variances of finance variables. However, these uncertainties may move together due to correlated

innovations to the uncertainties, the VAR dynamics of uncertainty captured in D(L), and responses

to past fluctuations in macro and finance variables (yt−1).

The uncertainty variables mt and f t can also affect the levels of the macro and finance variables

contained in yt , contemporaneously and with lags. In particular, yt is assumed to follow:

yt = Π(L)yt−1 + Πm(L) lnmt + Π f (L) ln f t + vt, (5)

where p denotes the number of yt lags in the VAR, Π(L) = Π1 − Π2L − · · · − ΠpLp−1, with Πi an

n × n matrix, i = 1, ..., p, and Πm(L) and Π f (L) are n × 1 lag-matrix polynomials of order pm and

p f . This model allows the business cycle to respond to movements in uncertainty, both through

the conditional variances (contemporaneously, via movements in vt) and through the conditional

means (contemporaneously and with lag, via the coefficients collected in Πm(L) and Π f (L)).5

Note that, as a general matter of identification, our modeling strategy separates the total variance

of the residual Avt = Λ
0.5
t ε t into three orthogonal components: a common component, an idiosyn-

cratic component (both reflected in the matrix Λ0.5
t ), and a component due to the conditionally

Different normalizations would provide different units for the states and hence different values for

the loadings, but would still provide exactly the same results in terms of likelihood of the system,

and hence all the results presented in the paper are independent from this normalization choice.

5In line with the macroeconomic literature, we use log-states instead of levels, as this choice

allows us to efficiently impose positivity of mt and f t , and it makes the system composed of the

VAR and the factor dynamics linear in y and ln(mt ) and ln( f t ). Hence, it is straightforward to

perform structural analysis and compute impulse responses in the standard fashion.
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independent shock ε t .6 When a large shock (represented by Λ0.5
t ε t) hits the economy, we let the

data distinguish whether this is a large shock in the conditional error ε t (so an outlier in a standard

normal distribution, with a variance that is not moving) or rather a relatively ordinary shock (in

terms of size of ε t) accompanied by an increase in the variance Λ0.5
t .

The model above differs some in timing with respect to Creal and Wu (2016). In our model,

volatility and uncertainty are contemporaneous with yt , in line with some other studies of macroe-

conomic uncertainty (e.g., Alessandri and Mumtaz 2014).7 In contrast, in Creal and Wu (2016),

the volatility that affects the size of shocks to yt and the conditional mean of yt is from period

t − 1. We find our approach natural for assessing the effects of macro and financial uncertainty,

but other approaches are certainly feasible. Other contributions in the literature have also proposed

the inclusion of volatility in the conditional mean of a small VAR, without resorting to a common

factor specification for the volatilities, notably Jo (2014) and Shin and Zhong (2015).

The model in (1)-(5) is related to several other previous specifications in the literature. These

precedents includeCogley andSargent (2005) andPrimiceri (2005), who imposeΠm(L) = Π f (L) =

0 and have no factor structure in the volatilities, which amounts to setting β j = 0.8 The model

in (1)-(5) is also related to parametric factor models, such as Stock and Watson (1989), where

Π(L) = 0 and vt ∼ iid N (0, Σ), or Marcellino, Porqueddu and Venditti (2016), who allow for

6The errors Avt are structural in the sense that they are mutually uncorrelated, and condition-

ally (on Λ0.5
t ) independent. However, they are unconditionally mutually dependent because their

conditional variances co-move.

7Our model also differs in timing with respect to some finance models. The inclusion of yt−1

in the volatility factor processes can be seen as a version of the leverage effect in some stochastic

volatility models of financial returns. Whereas volatility and uncertainty are contemporaneous with

yt in our model, in finance applications such as Omori, et al. (2007), volatility is lagged.

8However, Primiceri’s (2005) model permits the innovations to the volatilities to be correlated

across variables, while in our specification they are not, and any correlation among volatilities are

forced onto the common factor, a restriction that is standard in factor model analysis.
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stochastic volatility both in vt and in the error driving the common factor, ut . In another precedent,

Carriero, Clark and Marcellino (2016a) impose Πm(L) = Π f (L) = 0 and consider a small model

for computational reasons. However, as discussed in the introduction and emphasized in JLN, when

measuring uncertainty it is necessary to allow n to be large. In addition, we believe it is important

to permit direct effects of uncertainty on the endogenous macroeconomic and financial variables

(Πm(L) , 0, Π f (L) , 0).9 In an analysis of a four-variable model, Alessandri and Mumtaz (2014)

assume that β j = 1 and ln h j,t = 0 for all j. Augmented by allowing the common volatility factor to

affect the conditional mean of yt , this corresponds to the CSV specification of Carriero, Clark and

Marcellino (2016a), which, however, is not suitable in this context, as with n large both restrictions

are not likely to hold in the data. Finally, Creal and Wu (2016) develop a model of bond yields and

a small set of macro variables that jointly treats uncertainty about monetary policy as a factor in

volatility and in conditional means of macro variables and interest rates.

Working with a model as general as (1)-(5) substantially complicates estimation, as we discuss

in the next subsection.10 The reader not interested in technicalities can skip to Section 3.

In implementation with monthly data, we set the VAR lag order at p = 6, the lag order for

the uncertainty factors in the VAR’s conditional mean (pm and p f ) at 2, and the lag order of the

9Although other work, noted above, has emphasized the importance of a large cross section, it is

not the case that estimation error surrounding our factor vanishes as the cross-section becomes very

large. As a check, we estimated a single-factor macro model with different numbers of variables.

Precision of the uncertainty estimate increased as the number of variables went from relatively

small to mid-sized but didn’t change much as the number went from mid-sized to large. Therefore,

a methodology which takes into account such estimation error is needed in order to make proper

inference on uncertainty and its effects.

10More general specifications would feature time-variation in the conditional means, in the

A−1 matrix, and in the factor loadings. However, these modifications are computationally very

demanding with a large model. We have evaluated the effects of a time-varying A−1 matrix in a

smaller model and found very limited differences in the responses to uncertainty shocks.
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bivariate VAR in the uncertainty factors (d) to 2.11

2.2 General steps of MCMC algorithm

We estimate themodel using anMCMC sampler. All results in the paper are based on 5,000 retained

draws, obtained by sampling a total of 30,000 draws, discarding the first 5,000, and retaining every

5th draw of the post-burn sample. The inefficiency statistics provided in the supplemental appendix

indicate the efficiency and mixing of the algorithm are reasonably good.

Our exposition of priors, posteriors, and estimation makes use of the following additional

notation. The vector a j , j = 2, . . . , n, contains the jth row of the matrix A (for columns 1

through j − 1). We define the vector γ = {γ1, ..., γn} as the set of coefficients appearing in the

conditional means of the transition equations for the states h1:T , and δ = {D(L), δ′m, δ
′
f } as the

set of the coefficients in the conditional means of the transition equations for the states m1:T and

f1:T . The coefficient matrices Φv and Φu defined above collect the variances of the shocks to the

transition equations for the idiosyncratic states h1:T and the common uncertainty factors m1:T and

f1:T , respectively. In addition, we group the parameters of the model in (1)-(5), except the vector

of factor loadings β, into Θ = {Π, A, γ, δ,Φv,Φu}. Finally, let s1:T denote the time series of the

mixture states used (as explained below) to draw h1:T .

We use an MCMC algorithm to obtain draws from the joint posterior distribution of model

parameters Θ, loadings β, and latent states h1:T , m1:T , f1:T , s1:T . Specifically, we sample in

turn from the following two conditional posteriors (for simplicity, we suppress notation for the

dependence of each conditional posterior on the data sample y1:T ): (1) h1:T , β | Θ, s1:T , m1:T , f1:T ,

and (2) Θ, s1:T , m1:T , f1:T | h1:T , β.

11These choices balance data fit with parsimony and computational time. In a simple Normal-

Wishart BVAR in our 30 variables, with parameter priors similar to those of our complicated model,

over a lag choice range of 1 through 6, the model with 6 lags yields the highest marginal likelihood.

For the other lags, as these relate to latent states, we follow studies such as Alessandri and Mumtaz

(2014) and Creal and Wu (2016) in using low-order processes.
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The first step relies on a state space system. Defining the rescaled residuals ṽt = Avt , taking

the log squares of (1), and subtracting out the known (in the conditional posterior) contributions

of the common factors yields the observation equations (c̄ denotes an offset constant used to avoid

potential problems with near-zero values):




ln(ṽ2j,t + c̄) − βm, j lnmt = ln h j,t + ln ε2j,t, j = 1, . . . , nm

ln(ṽ2j,t + c̄) − β f , j ln f t = ln h j,t + ln ε2j,t, j = nm + 1, . . . , n.
(6)

For the idiosyncratic volatility components, the transition and measurement equations of the state-

space system are given by (3) and (6), respectively. The system is linear but not Gaussian, due to

the error terms ln ε2j,t . However, ε j,t is a Gaussian process with unit variance; therefore, we can use

the mixture of normals approximation of Kim, Shepard and Chib (1998) to obtain an approximate

Gaussian system, conditional on the mixture of states s1:T . To produce a draw from h1:T , β | Θ, s1:T ,

m1:T , f1:T we then proceed as usual by (a) drawing the time series of the states given the loadings

using (h1:T | β, Θ, s1:T , m1:T , f1:T ), following Del Negro and Primiceri’s (2015) implementation of

the Kim, Shepard and Chib (1998) algorithm, and by then (b) drawing the loadings given the states

using (β | h1:T , Θ, s1:T , m1:T , f1:T ), using the conditional posterior detailed below in (16).

The second step conditions on the idiosyncratic volatilities and factor loadings to produce draws

of the model coefficients Θ, common uncertainty factors m1:T and f1:T , and the mixture states s1:T .

Draws from the posterior Θ, s1:T , f1:T | h1:T , β are obtained in three sub-steps from, respectively:

(a) Θ | m1:T , f1:T , h1:T , β; (b) m1:T , f1:T | Θ, h1:T , β; and (c) s1:T | Θ, m1:T , f1:T , h1:T , β. More

specifically, for Θ | m1:T , f1:T , h1:T , β we use the posteriors detailed below, in equations (14), (15),

(17), (18), (19), and (20). For m1:T , f1:T | Θ, h1:T , β, we use the particle Gibbs step proposed

by Andrieu, Doucet, and Holenstein (2010). For s1:T | Θ, m1:T , f1:T , h1:T , β, we use the 10-state

mixture approximation of Omori, et al. (2007).
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2.2.1 Coefficient priors and posteriors

We specify the following (independent) priors for the parameter blocks of the model (parameteri-

zation details are given in the supplemental appendix):

vec(Π) ∼ N (vec(µ
Π

),Ω
Π

), (7)

a j ∼ N (µ
a, j
,Ωa, j ), j = 2, . . . , n, (8)

β j ∼ N (µ
β
,Ωβ), j = 2, . . . , nm, nm+2, ..., n, (9)

γ j ∼ N (µ
γ
,Ωγ), j = 1, . . . , n, (10)

δ ∼ N (µ
δ
,Ωδ), (11)

φ j ∼ IG(dφ · φ, dφ), j = 1, . . . , n, (12)

Φu ∼ IW (dΦu · Φu, dΦu ). (13)

Under these priors, the parameters Π, A, β, γ, δ, Φv, and Φu have the following closed form

conditional posterior distributions:

vec(Π) |A, β,m1:T, f1:T, h1:T, y1:T ∼ N (vec( µ̄Π), Ω̄Π), (14)

a j |Π, β,m1:T, f1:T, h1:T, y1:T ∼ N ( µ̄a, j, Ω̄a, j ), j = 2, . . . , n, (15)

β j |Π, A, γ,Φ,m1:T, f1:T, h1:T, s1:T, y1:T ∼ N ( µ̄β, Ω̄β), j = 2, . . . , nm, nm+2, ..., n, (16)

γ j |Π, A, β,Φ,m1:T, f1:T, h1:T, y1:T ∼ N ( µ̄γ, Ω̄γ), j = 1, . . . , n, (17)

δ |Π, A, γ, β,Φ,m1:T, f1:T, h1:T, y1:T ∼ N ( µ̄δ, Ω̄δ), (18)

φ j |Π, A, β, γ,m1:T, f1:T, h1:T, y1:T ∼ IG
(
dφ · φ + ΣT

t=1ν
2
jt, dφ + T

)
, j = 1, . . . , n, (19)

Φu |Π, A, β, δ, γ,m1:T, f1:T, h1:T, y1:T ∼ IW (dΦu · Φu + Σ
T
t=1u

2
t , dΦu + T ). (20)

Expressions for µ̄a, j , µ̄δ, µ̄γ, Ω̄a, j , Ω̄δ, and Ω̄γ are straightforward to obtain using standard

results from the linear regression model. To save space, we omit details for these posteriors;

general solutions are readily available in other sources (e.g., Cogley and Sargent (2005) for µ̄a, j).
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In the posterior for the factor loadings β, the mean and variance take a GLS-based form, with

dependence on the mixture states used to draw volatility. For the VAR coefficients Π, with smaller

models it is common to rely on a GLS solution for the posterior mean (e.g., Carriero, Clark and

Marcellino 2015). However, with large models it is far faster to exploit the triangularization —

obtaining the same posterior provided by standard system solutions — discussed in Carriero, Clark

and Marcellino (2016b) and estimate the VAR coefficients on an equation-by-equation basis.

Specifically, using the factorization given in the supplemental appendix allows us to draw the

coefficients of the matrix Π in separate blocks. Let π( j) denote the j-th row of the matrix Π, and

let π(1: j−1) denote all the previous rows. Then draws of π( j) can be obtained from:

π( j) | π(1: j−1), A, β, f1:T,m1:T, h1:T, y1:T ∼ N ( µ̄π( j ),Ωπ( j ) ), (21)

µ̄π( j ) = Ωπ( j )

{
Σ

T
t=1X j,tλ

−1
j,t y
∗′
j,t +Ω

−1
π( j ) (µπ( j ) )

}
, (22)

Ω
−1
π( j ) = Ω−1

π( j ) + Σ
T
t=1X j,tλ

−1
j,t X ′j,t, (23)

where y∗j,t = y j,t − (a∗j,1λ
0.5
1,t ε1,t + · · · + a∗j,, j−1λ

0.5
j−1,tε j−1,t ), with a∗j,i denoting the generic element of

the matrix A−1 and Ω−1
π( j ) and µπ( j ) denoting the prior moments on the j-th equation, given by the

j-th column of µ
Π
and the j-th block on the diagonal of Ω−1

Π
.

2.2.2 Unobservable states

For the unobserved volatility states f t , mt , and h j,t , j = 1, ..., n, given the law of motion for

the unobservable states in (3)-(4) and priors on the period 0 values detailed in the supplemental

appendix, draws from the posteriors can be obtained using the algorithm of Kim, Shepard and

Chib (1998) for the idiosyncratic volatilities and the particle Gibbs sampler of Andrieu, Doucet,

and Holenstein (2010) for the common volatility factors. In the particle Gibbs sampler of the

uncertainty factors, we follow Creal and Wu (2016) in using 300 particles.12

12In the results provided in the appendix, for computational speed we use a setting of 50 particles.

Efficiency, mixing, and our baseline results are very similar with 50 and 300 particles.
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3 Data

Our results are based on a VAR including 30 macroeconomic and financial variables, which are

listed in Table 1. Following common practice in the factor model literature as well as studies such

as JLN, after transforming each series for stationarity as needed, we standardize the data (demean

and divide by the simple standard deviation) before estimating the model.

Our variable set includes 18 macroeconomic series, chosen for being major indicators within

broad categories (production, labor market, etc.). We take these series and some financial indicators

from the FRED-MD monthly dataset detailed in McCracken and Ng (2016), which is similar to

that underlying common factor model analyses, such as Stock and Watson (2006).

Our variable set also includes 12 financial series, consisting of the return on the S&P 500, the

spread between the Baa bond rate and the 10-year Treasury yield, and a set of additional variables

made available by Kenneth French.13 Specifically, we use the French series on CRSP excess

returns, four risk factors— for SMB (Small Minus Big), HML (High minus Low), R15_R11 (small

stock value spread), and momentum — and sector-level returns for a breakdown of five industries

(consumer, manufacturing, high technology, health, other).

This specification reflects some choice as to what constitutes a macroeconomic variable rather

than a financial variable. Reflecting the typical factor model analysis, the McCracken-Ng dataset

includes a number of indicators — of stock prices, interest rates, and exchange rates — that may be

13We obtained similar results when, instead of the 10 additional variables from the French

datasets, we used more detailed breakdowns of returns (by industry and portfolios sorted on size

and book-to-market) available from his datasets. Although our main results are robust across the

choices of the variable set considered, the set of financial variables chosen has some effect on the

responsiveness of financial variables to macro shocks (in some specifications, we obtained larger

effects on asset returns than we report for the baseline), as well as on the correlation between

the estimated macro and financial uncertainty factors (in some specifications, this correlation was

modestly higher than in the baseline).
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considered financial indicators. In our model specification, the variables in question are the federal

funds rate, the credit spread, and the S&P 500 index. As the instrument of monetary policy, it

seems most appropriate to treat the funds rate as a macro variable. For the other two variables, the

distinction between macro and finance is admittedly less clear. Whereas JLN and LMN treat these

indicators as macro variables that bear on macroeconomic uncertainty and not directly on financial

uncertainty (in LMN, financial uncertainty is based on the volatilities of various measures of stock

returns and risk factors), it seems more natural to consider these indicators as financial variables,

in keeping with such precedents as Koop and Korobilis (2014) on the measurement of financial

conditions. Accordingly, we instead include the credit spread and the S&P 500 index in the set of

financial variables. In the supplemental appendix, we discuss robustness to these choices.

4 Measuring Aggregate Uncertainty

In the following results, we focus on estimates of our baseline model with 30 variables, in monthly

data. To save space, we present volatility estimates for a subset of 18 variables; the full set

of estimates is shown in the supplemental appendix. The appendix also provides other results,

showing, e.g., that most of the factor loadings are clustered around a value of 1.

Figure 1 displays the posterior distribution of the measures of macro (top panel) and financial

uncertainty (bottom panel). In these charts, we define macro uncertainty as the square root of

the common volatility factor (
√

mt) and financial uncertainty as the square root of the common

volatility factor (
√

f t), corresponding to standard deviations. In the interest of brevity, we do not

compare our uncertainty measures with other proposals in the literature, such as the VIX or the

cross-sectional variation in SPF forecasts or in firms’ profits; studies such as JLN and Caldara, et

al. (2016) provide such comparisons. Although not reported directly in Figure 1, the correlations

of our uncertainty estimates with the JLN and LMN estimates are quite high, about 0.76 in each

case. However, our estimates are more variable than the JLN and LMN estimates, partly due to the

inclusion of yt−1 in the VAR process of the factors. Figure 1 also reports the 15%-85% credible set
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bands around our estimated measures of uncertainty, which, as mentioned, are correctly considered

random variables in our approach. These bands indicate that the uncertainty around uncertainty

estimates is sizable.

The estimated macro and financial uncertainties in Figure 1 have some tendency to co-move,

with a correlation of 0.39. About the financial uncertainty factor, it is worth noting that it increases

during recessions, as does the macro uncertainty factor, as well as in other periods of financial

turmoil. This different temporal pattern may help in disentangling macroeconomic and financial

uncertainty. As indicated in Figure 1, our estimates of uncertainty show significant increases around

some of the political and economic events that Bloom (2009) highlights as periods of uncertainty.

For example, financial uncertainty rises sharply with the Black Monday event of 1987.

From a broader macroeconomic point of view, it is interesting that our measures of aggregate

uncertainty do not present clear evidence of the sharp decline in volatility commonly referred to as

the Great Moderation. This finding is in line with Giannone, Lenza and Reichlin (2008), who stress

that the Great Moderation appears smaller with models based on larger datasets than with models

based on smaller datasets. However, they do not consider large models with stochastic volatility,

as methodology existing before our paper did not make it tractable.

In Figure 2 we report the reduced form volatilities of the variables in our model, i.e., the

diagonal elements of Σ0.5t , which reflect both the common uncertainty factors and idiosyncratic

components. Great Moderation effects become evident for some variables, and particularly the

volatility of the federal funds rate exhibits a major decrease after the early 1980s, suggesting that a

more predictable monetary policy contributed to the stabilization of the other volatilities.

Figure 2 also plots the estimated idiosyncratic volatilities (reported in the chart as h0.5i,t ).

For some variables, notably employment and the federal funds rate, the idiosyncratic variation is

preponderant, explainingmost of the overall variation in the volatility. In other cases, the variation in

the idiosyncratic component is small. Importantly, the estimated pattern of idiosyncratic volatilities

shows no residual factor structure, which we consider a reassuring result in favor of our two-factor

structure. A principal components analysis on the idiosyncratic volatilities shows that the share of
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variance explained by the first principal component is about 11%, indicating that there is no sizable

residual factor structure in the idiosyncratic volatilities.

Finally, an important issue is whether the unobserved uncertainty state variables merely pick up

some kind of “level” shock rather than isolating uncertainty. For example, Bloom’s (2009) uncer-

tainty shocks are thought to be correlated with identified shocks to monetary policy, productivity,

etc., estimated in other work. Once these “level” shocks are partialed out from Bloom’s uncertainty

shocks, the effects of uncertainty shocks seem to be rather reduced. To assess whether the same

correlations are evident in our uncertainty estimates, we compute the correlations of our estimated

macroeconomic and financial uncertainty shocks with some well-known macro shocks, drawing

on comparable exercises in Stock and Watson (2012) and Caldara, et al. (2016). Specifically, we

consider productivity shocks (Fernald’s updates of Basu, Fernald, and Kimball 2006), oil supply

shocks (Hamilton 2003 and Kilian 2008), monetary policy shocks (Gurkaynak, et al. 2005 and

Coibion, et al. 2016), and fiscal policy shocks (Ramey 2011 and Mertens and Ravn 2012).14

As indicated by the results in Table 2, our uncertainty shocks are not very correlated with

“known” macroeconomic shocks. Accordingly, our estimated uncertainty shocks seem to truly

represent a second order “variance” phenomenon, rather than a first order “level” shock.

5 Measuring the impact of uncertainty

5.1 Identification

With our uncertainty measures entering each of the equations of the VAR in yt , we can compute

impulse responses for uncertainty shocks. From equation (4) it is clear that the VAR shocks ε t do

not appear in the law of motion of the factors. This restriction on the uncertainty dynamics is

14The productivity shocks correspond to growth rates of utilization-adjusted TFP. The oil price

shock measure of Hamilton (2003) is the net-oil price increase series. The monetary policy shocks

of Coibion, et al. (2016) update the estimates of Romer and Romer (2004).
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similar to that imposed by other uncertainty VARs (with the recursive ordering as in Bloom 2009

or JLN), and it is somewhat similar to adding an uncertainty proxy to a VAR, ordered first.

Differently from other uncertainty VARs, though, our uncertainty measure is estimated within

the model, and the shocks to this measure are orthogonal to the VAR shocks by construction. This

means that our identification scheme is very similar to the one typical of factor-augmented VAR

models, such as Bernanke, Boivin and Eliasz (2005).

Indeed, a look at equations (1) and (5) makes clear that the model proposed here can be seen

as a factor model like that of Bernanke, Boivin and Eliasz (2005), with the additional feature that

the factors appear also in the conditional variance of the system. Just as it happens in the factor

and FAVAR literatures, there is no contemporaneous correlation between factor shocks and VAR

shocks, and there are no VAR shocks in the dynamics of the factors, which provides identification.

A shock to an uncertainty factor has a clear interpretation as a contemporaneous, sudden increase

of the conditional variance of all the variables in the macroeconomy, but it is orthogonal to the

shocks to the variables themselves.

Note that the ordering of the variables within the VAR does not have an effect on impulse

responses for shocks to the uncertainty factors. To see this point, consider again our model, which

using together expressions (5), (2) , and (1) can be written as

yt = Π(L)yt−1 + Πm(L) lnmt + Π f (L) ln f t + A−1 ·



m
βm, j

t h1,t 0 0

0 . . . 0

0 0 f
β f , j

t hn,t

︸                                ︷︷                                ︸
Λt

0.5

·ε t, (24)

and consider the effects of a shock to lnmt or ln f t . In our setup the shocks to uncertainty contem-

poraneously affect yt and are orthogonal to ε t . With that orthogonality and with the shocks ε t set to

zero when the impulse response from a shock to uncertainty is computed, it follows that the resulting

impulse response is independent from the matrix A−1. A shock to uncertainty is transferred onto

the yt only through the matrix Πm(L) on impact, and then it propagates in the future via the other
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conditional mean parameters, but at no point does the matrix A−1 enter the picture. It follows that

the ordering of the variables within the vector yt is irrelevant as far as impulse responses to shocks

to the uncertainty factors are concerned.15

However, beyond impulse responses, our model has some features or complexities that differ

from those of FAVAR specifications, as well as those of past work on uncertainty (e.g., Bloom

2009, JLN, and Caldara, et al. 2016). In our specification (24), a shock to uncertainty affects not

only the conditional mean of yt but also its conditional variance. Put another way, while the shocks

to the factors (ut) and the shocks to the variables (vt = A−1Λ0.5
t ε t) are uncorrelated, they are not

independent: a large positive shock to the uncertainty measures will amplify the size of the shock

to the variables vt via the pre-multiplication of the i.i.d. shocks ε t by the matrix Λ0.5
t , as is clear

from (24). Hence, the unconditional distribution of the data can be asymmetric and non-Gaussian,

and the conditional distribution features time variation in its variance.

With regards to this aspect it is important to stress that since the impulse response measures

the conditional mean response to a shock, any analysis focusing on impulse responses only would

15Of course, as we stressed at the beginning of this Section, the absence of the VAR shocks in

the factor dynamics can be considered a form of Cholesky ordering in a larger VAR which includes

the uncertainty factors among the endogenous variables. Here we are focusing on the ordering

within the block of observable variables yt . However, the joint distribution of the system might

be affected by the ordering of the variables in the system due to an entirely different reason: the

diagonalization typically used for the error variance Σt in stochastic volatility models. Since priors

are elicited separately for A and Λt , the implied prior of Σt will change if one changes the equation

ordering, and therefore different orderings would result in different prior specifications and then

potentially different joint posteriors. This problem is not a feature of our triangular algorithm,

but rather it is inherent to all models using the diagonalization of Σt . As noted by Sims and Zha

(1998) and Primiceri (2005), this problem will be mitigated in the case (as the one considered in

this paper) in which the covariances A do not vary with time, because the likelihood information

will soon dominate the prior.
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not capture the conditional variance effect. In addition, the interactions noted above complicate

the computation of historical decompositions of fluctuations in the data to contributions from the

model’s various shocks; we describe below an approximate decomposition we use for that purpose.

To reflect conditional variance and distributional effects, we use the period of the Great Recession

and subsequent recovery to show the impact of uncertainty on the predictive distribution of yt .16

Finally, we stress that our approach takes into account the uncertainty around uncertainty,

while earlier studies condition on the point estimates of uncertainty, abstracting from the variance

of uncertainty estimates. Our estimates of impulse responses, historical decompositions, and

predictive densities account for the variance of the uncertainty measure in the sense that our

estimates of the VAR’s coefficients reflect that uncertainty is a latent state and not observed data.

5.2 Results

5.2.1 Impulse responses

Wecompute impulse response functions for each of the 5000 retained draws of theVAR’s parameters

and latent states and report the posterior medians and 70 percent credible sets of these functions.

While the vector of uncertainty measures ut = (um,t, u f ,t )′ is identified for the reasons outlined

16Importantly, while the Cholesky ordering of the variables within the VAR does not have an

effect on the impulse responses to uncertainty shocks (as discussed above), it does have an impact

on the effect of uncertainty shocks on the conditional variances. To see this point consider again

our model in (24). Clearly, the conditional variance of yt is impacted by shocks to the uncertainty

factors through the elements of the matrix Λt . Since the matrix Λt gets pre-multiplied by the

matrix A−1, which is a lower triangular matrix whose elements reflect the particular order chosen

for the variables in the vector yt , it follows that the effects on the conditional variance of yt will

be influenced by the specific order in which the variables enter the VAR. We thank a referee for

pointing this out. As we discuss in Section 5.2.2, empirically the effects through this channel seem

to be small in our application, and we abstract from them.
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in the previous Subsection, in order to separately identify the effects of macro and financial

uncertainty, an identification assumption is needed for the system in (5). In line with common

wisdom that financial variables are “fast” while macroeconomic variables are “slow,” we assume

a Cholesky identification scheme in which financial uncertainty f t is ordered last, and hence it

contemporaneously responds to both um,t and u f ,t , whereas macroeconomic uncertainty responds

contemporaneously to um,t but responds to u f ,t with some delay.

Figure 3 provides the impulse response estimates of a one-standard deviation shock to log

macro uncertainty (lnmt). Note that, although the model is estimated with standardized data, for

comparability to previous studies the impulse responses are scaled and transformed back to the units

typical in the literature. We do so by using the model estimates to: (1) obtain impulse responses

in standardized, sometimes (i.e., for some variables) differenced data; (2) multiply the impulse

responses for each variable by the standard deviations used in standardizing the data before model

estimation; and (3) accumulate the impulse responses of step (2) as appropriate to get back impulse

responses in levels or log levels.17 Accordingly, the units of the reported impulse responses are

percentage point changes (based on 100 times log levels for variables in logs or rates for variables

not in log terms).18

As shown in the penultimate panel of Figure 3, the shock to log macro uncertainty produces a

17The fact that the model is estimated using some variables differenced for stationarity (e.g.,

employment and industrial production) implies that, for some of these variables, the long run

effects of transitory shocks do not die out. This is in line with what typically happens when

analyzing the effects of shocks within a factor model. We have verified in somewhat smaller

versions of the model that, without transformation of the variables, we obtain similar results but

with effects on activity levels that die out over time.

18However, there is one complication to the reading of results on stock prices and returns, relating

to the source data: for the S&P 500 variable, we display the response in percentage changes of the

price level, but for the CRSP excess return, we display the response of the monthly return, rather

than a price level.
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rise in uncertainty that gradually dies out, over the course of about one year. As indicated in the

last panel of Figure 3, financial uncertainty rises in response, also for about a year, although the

response of financial uncertainty is estimated less precisely than the response of macro uncertainty.

Now consider the effects of the macro uncertainty shock on industrial production and employ-

ment, which are both significantly negative, with a modestly larger response of production than

employment. The responses are qualitatively similar to those obtained by JLN, who only focus

on these two variables, but in their case the effects are more short-lived, becoming not significant

about one year after the shock.

In the labour market, we also find that hours worked generally decrease (with peak effect after

about six months) and unemployment increases (with peak effect after about 20 months), in line

with firms trying to avoid hiring adjustment costs, as, e.g., in Bloom (2009). Interestingly, in detail

provided in the supplementary appendix, there are no significant effects on hourly earnings (average

hourly earnings decline, but the estimate is too imprecise to be meaningful), suggesting that wages

are rather sticky in the face of uncertainty shocks.

The overall effects on real personal income (reported in the appendix), consumption expendi-

tures and real M&T (manufacturing and trade) sales are significantly negative and persistent. The

fall in consumption is likely due to lower current and future expected income but also, likely, to

the need to increase precautionary savings (e.g., Bansal and Yaron 2004) and the preference to

postpone buying durable goods until uncertainty declines (e.g., Eberly 1994 and Bertola, Guiso

and Pistaferri 2005).

In other indicators of production, we detect a significant, persistent decrease in capacity uti-

lization. Utilization bottoms out after about 15 months (with a peak response of about 30 basis

points) and then slowly rises. Orders of durable goods and the new orders component of the ISM

index also fall significantly, signaling a clear decrease in actual and expected investment. This is in

line with the presence of sizable investment adjustment costs, e.g. Ramey and Shapiro (2001) and

Cooper and Haltiwanger (2006), that firms try to avoid in the presence of higher uncertainty. An

even more significant effect emerges in the building sector, where adjustment costs can be expected
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to be even higher, with prolonged decreases in housing starts and building permits.

One other notable result in the responses of economic activity to the shock in macro uncertainty

concerns timing: for some, but not all indicators, the response to the shock is immediate and

sizable. Relatively quick, large responses occur for housing starts and permits, the ISM index of

new orders, and weekly hours worked (which presumably reflects an intensive margin, rather than

the extensive margin captured by employment). Slower, although eventually large and significant,

responses occur for variables such as employment, unemployment, and industrial production.

Despite the significant decline of economic activity in response to the macro uncertainty

shock, there doesn’t appear to be evidence of a broad decline in prices. The PPI for finished

goods declines steadily and by as much as 2 percentage points, although the response is estimated

relatively imprecisely. But overall consumer prices as captured by the PCE price index fail to

display a significant change. Overall, this picture of price responses is in line with New-Keynesian

models, such as Leduc and Liu (2016), Basu and Bundick (2016), and Fernández-Villaverde,

Guerrón-Quintana, Kuester, and Rubio-Ramirez (2015), which predict a small effect of uncertainty

on inflation due to sticky prices (and possibly wages).

In the face of this sizable deterioration in the real economy and absence of much movement

in prices, the federal funds rate gradually falls. The reaction of the federal funds rate is minimal

for the first few months. Then, there is a steady, statistically significant decline for about 20-22

months. The response of the funds rate reaches about -20 basis points, not quite as large as the

movement in employment but almost double the peak response of the unemployment rate. Such

a response appears to be about in line with the parameterization of the Taylor (1999) rule, if one

replaces the rule’s output gap with an unemployment gap and assumes that Okun’s law justifies

roughly doubling Taylor’s coefficient of 1 on the output gap.

The responses of financial indicators to the shock to macro uncertainty are — collectively

speaking—muted and imprecisely estimated (however, in some specificationswith different choices

of financial variables, we obtained more notable responses of asset returns to macro uncertainty).

The one exception is the spread between the Baa and 10 year Treasury yields, which displays a

24



modest, but persistent and significant, rise, with a hump-shape pattern. The substantial increase

in the credit spread likely increases borrowing costs for firms, further reducing their investment,

as in studies looking at the effects of uncertainty in models with financial constraints, such as

Arellano, Bai, and Kehoe (2016), Christiano, Motto, and Rostagno (2014), and Gilchrist, Sim, and

Zakrasjek (2014). Aggregate stock prices and returns as captured by the S&P 500 price index

and the excess CRSP return decline, in line with common wisdom and the finance literature (e.g.,

Bansal andYaron 2004), but the estimated responses are imprecise. The responses of other financial

indicators, including the risk factors and industry-level returns, are also overall insignificant.

The effects of a shock to financial uncertainty are displayed in Figure 4. As reported in the last

panel, the shock to log financial uncertainty produces a rise in uncertainty that only gradually dies

out, over the course of almost two years. In response, macro uncertainty changes very little, by

an amount that is not significant. Based on this and the corresponding result for a shock to macro

uncertainty, our estimates and identification attribute the comovement between macro and financial

uncertainty to financial uncertainty (relatively fast moving) moving in response to a change in

macro uncertainty (relatively slow moving).

As to broader effects of financial uncertainty, when compared to a macro uncertainty shock, a

financial uncertainty shock has similar, but sometimes smaller and more delayed, macroeconomic

effects and larger financial effects. More specifically, the effects on industrial production and

employment follow patterns similar to those obtained for a shock to macroeconomic uncertainty,

with a significantly negative response. The unemployment rate rises and hours worked fall, but the

reaction of the latter is smaller on impact and in general slower than what happens in the case of the

macroeconomic uncertainty shock. In perhaps the most notable difference with respect to results

for a macro uncertainty shock, a financial uncertainty shock does not have significant effects on the

housing sector (starts and permits).

Turning our attention to the financial variables, on balance they respond more to the financial

uncertainty shock than the macro uncertainty shock, although in some cases the responses are

imprecisely estimated. The shock to financial uncertainty produces a persistent and significant rise
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in the credit spread, with a hump-shape pattern. It also produces a sizable falloff in aggregate stock

prices and returns. The response of the S&P500 price level is negative and significant. The CRSP

excess returns display a negative jump and recover only after six months. However, the responses

of the risk factors included in the model are insignificant.

5.2.2 Historical decompositions

To assess the broader importance of uncertainty shocks to the macroeconomy and financial markets,

we estimate historical decompositions. In a standard linear model, an historical decomposition of

the total s-step ahead prediction error variance of yt+s can be easily obtained by constructing a

baseline path (forecast) without shocks, and then constructing the contribution of shocks. With

linearity, the sums of the shock contributions and the baseline path equal the data. In our case,

the usual decomposition cannot be directly applied because of interactions between Λt+s and ε t+s:

shocks to log uncertainty affect the forecast errors through Λt+sε t+s, and, over time, shocks ε t+s

affect Λt+s through the response of uncertainty to lagged y. However, it is possible to decompose

the total contribution of the shocks into three parts: (i) the direct contributions of the uncertainty

shocks ut+s to the evolution of y; (ii) the direct contributions of the VAR “structural” shocks ε t+s

to the path of y taking account of movements in Σt+s that arise as uncertainty responds to y but

abstracting from movements in Σt+s due to uncertainty shocks; and (iii) the interaction between

shocks to uncertainty and the structural shocks ε t+s.

To be more specific, consider a simple one-factor model with lag orders of 1:




yt = Πyt−1 + Γ1mt + Γ2mt−1 + vt

mt = δyt−1 + γmt−1 + ut

, (25)

where vt and ut are independent, with variances Σt and Φu, respectively. So we can replace vt

above with Σ0.5t ε t , where Σ0.5t is a short-cut notation for the Cholesky decomposition of Σt and ε t

is N (0, In). The one step ahead forecast errors are yt+1 − Et yt+1 = Σ
0.5
t+1ε t+1 + Γ1ut+1. Now let

Σ̂t+s |t denote the future error variance matrix that would prevail in the absence of future shocks
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to uncertainty. This would be constructed from forecasts of future uncertainty accounting for

movements in y driven by ε shocks and the path of idiosyncratic volatility terms (incorporating

shocks to these terms). The following decomposition can be obtained by adding and subtracting

Σ̂t+1|t terms in the forecast error:

yt+1 − Et yt+1 = Γ1ut+1 + Σ̂
0.5
t+1|tε t+1 + (Σ0.5t+1 − Σ̂

0.5
t+1|t )ε t+1. (26)

In this decomposition, the first term gives the direct contribution of the uncertainty shock, the second

term gives the direct contribution of the structural shocks to the VAR, and the third term gives the

interaction component. The third term can be simply measured as a residual contribution, as the

data less the direct contributions from the uncertainty shock and the structural shocks to the VAR.

We apply this basic decomposition to our more general model to obtain historical decompositions.

One potential complication with this approach is that, in the interaction components, there is

not a good way to separate the roles of aggregate uncertainty and idiosyncratic volatility, because

Σt is the product of such terms containing innovations to aggregate uncertainty and innovations to

idiosyncratic components. Since the terms aremultiplicative and not additive, there isn’t a clear way

to isolate the role of aggregate uncertainty from the role of idiosyncratic components. Moreover,

any attempt to do so would be dependent on the ordering of the variables within the VAR, because as

we discussed in Section 5.1, the effect of uncertainty on the conditional variance of yt is influenced

by the matrix A−1 and hence the ordering of the variables within the VAR matters. Because of

these complications, and because the interaction effects are empirically much less pronounced than

the direct effects, we chose to leave the interaction component as is, without attempting to separate

the roles of aggregate uncertainty and idiosyncratic volatility in the interaction component.

Partly out of concern for chart readability, and light of general interest in the contributions of

uncertainty to the Great Recession and the ensuring recovery, we provide results for the period from

2003 through 2014. (The appendix provides results for a sample 1985 to 2002, which includes

periods of economic expansion and two relatively mild recessions. These results are qualitatively
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similar. It also provides a color version of the chart for 2003 through 2014.) The charts show

the standardized data series, a baseline path corresponding to the unconditional forecast, the direct

contributions of shocks to (separately) macroeconomic and financial uncertainty, and the direct

contributions of the VAR’s shocks. The reported estimates are posterior medians of decompositions

computed for each draw from the posterior. Finally, in light of space constraints, the charts below

provide results for a subset of selected variables; results for the full set of variables are available in

the supplemental appendix.

As indicated in Figure 5, the decomposition estimates indicate that around the Great Recession,

shocks to uncertainty contribute materially to fluctuations in economic activity, the federal funds

rate, the credit spread, and uncertainty itself, but not much to inflation or stock prices (or other

financial indicators). However, for the macroeconomic and financial variables of the model, the

effects of uncertainty shocks are generally dominated by the contributions of the VAR’s shocks.

Benati (2016) obtains a broadly similar result, with a different approach.

5.2.3 Predictive densities

To assess the distributional effects described in section 5.1, we estimate predictive densities for all

of the variables in the system under two scenarios— a baseline scenario and an alternative scenario

with additional shocks to uncertainty, in line with those estimated from our model. The densities

cover a period spanning the Great Recession and much of subsequent recovery, from December

2007 (the NBER peak) through December 2012.

To obtain a baseline predictive density, for each retained posterior draw, we simulate draws of

the time series of fundamental shocks to i) log idiosyncratic volatility (e j,t), ii) log uncertainty (ut),

and iii) the VAR’s variables (ε t). Using these draws, we compute the baseline path of idiosyncratic

volatility, uncertainty (Σt follows from the value of idiosyncratic volatility and uncertainty), and yt .

To create the alternative path, we augment the baseline draws of shocks with additional shocks

to uncertainty. In particular, we use additional shocks for the period of the NBER-dated recession,

from December 2007 through June 2009, that are equal to the estimated shocks (posterior medians)
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to uncertainty from our model. With the baseline paths of e j,t and ε t and the alternative paths of

ut that add our estimated shocks to the baseline paths, we compute forward the alternative paths of

uncertainty (Σt follows from the value of idiosyncratic volatility and uncertainty) and yt ; the path

of idiosyncratic volatility is exactly the same as in the baseline.

Figure 6 shows the effects of uncertainty shocks on the predictive distributions of selected

variables (results for the full set of variables are available in the supplemental appendix). The

solid black line and gray shading report the predictive density of a baseline path for the variables.

The alternative path denoted by the dotted (median) and dashed lines (15 and 85 percent quantiles)

instead shows the predictive density with additional uncertainty shocks (for December 2007 through

June 2009) corresponding to those obtained with our estimated model. Note that, as in the impulse

responses, the estimated predictive distributions have been scaled and transformed back to the units

typical in the literature, as described in the section on impulse responses.

Consistent with the simple impulse responses, the shocks to uncertainty cause the path of eco-

nomic activity to shift down. For many but not all variables, the shocks also have a distributional

effect beyond just moving the center of the distribution: they also cause the distribution to rotate

downward. The 15th percentile of the 70 percent credible set appears to fall more than does the

85th percentile. These effects are most evident for those variables for which an uncertainty shock

affects the median of the distribution, particularly for measures of economic activity (employment,

industrial production, etc.), the federal funds rate, and the credit spread. For variables for which the

median responses are smaller (e.g., for the PCE price index), there are no obvious distributional ef-

fects. Overall, these estimates show effects on predictive distributions that conventional approaches

of inserting an uncertainty measure in a linear, homoskedastic VAR are not able to capture.

5.3 Robustness

We have examined the robustness of our results along a wide variety of dimensions and found our

main results to be robust. The supplementary appendix details these checks and their results. In

the interest of space, in this section we briefly describe a few of these checks, as follows.
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• Using quarterly data yields results qualitatively very similar to those for monthly data.

• Using a sample ending before the Great Recession shows that our results are not driven by

the volatility of that period.

• Restricting the model to make the idiosyncratic volatility components constants and not time-

varying has little effect on financial uncertainty. However, the restriction makes the estimate

of macroeconomic uncertainty far more variable and reduces its effects on the economy. Our

baseline estimates indicate that idiosyncratic components are sizable, and we believe them

to be important in many settings, including a model in monthly data such as ours.

• To assess the potential importance of restricting the matrix A to be constant, we considered

(out of computational considerations) smaller, one-factor models in which A is time-varying

as in Primiceri (2005). In these settings, allowing A to be time-varying yields results similar

to those with a constant A. These results suggest this particular restriction is unlikely to have

a material effect on our results.

• Alternative settings on the volatility-related priors yield results very similar to those reported.

6 Conclusions

This paper develops a new framework for measuring uncertainty and its effects on the macroe-

conomy and financial conditions. Specifically, we develop a VAR model for a possibly large set

of variables whose volatility is driven by two common unobservable factors, corresponding to

aggregate macroeconomic and financial uncertainty. These uncertainty measures reflect common

changes in the volatility of the variables under analysis, but can also influence their levels.

Our approach allows simultaneous estimation of the uncertainty measures and their impact

on the economy, providing also a coherent measure of the uncertainty around them, while most

existing studies (with the notable exception of Creal and Wu 2016) rely on a two-step approach

with one model used to estimate uncertainty and a second one to assess its effects.
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In estimates of the model with U.S. data, we find substantial commonality in uncertainty,

sizable effects of uncertainty on key macroeconomic and financial variables with responses in line

with economic theory, and some uncertainty about uncertainty and its effects. We provide results

separately for macroeconomic and financial uncertainty, showing that macro uncertainty shocks

have a major impact on macroeconomic variables but their effects do not transmit substantially

to financial variables, whereas financial uncertainty shocks have significant effects on financial

variables but also substantially transmit to the macroeconomy. However, looking at the historical

contribution of realized uncertainty shocks to macroeconomic fluctuations, the general picture is

that while shocks to uncertainty contribute to the Great Recession and subsequent recovery, they are

dominated by the VAR’s shocks, and as a general matter they play a modest role in macroeconomic

and financial fluctuations. Finally, in an assessment of predictive distributions over recent years,

we find that shocks (increases) to uncertainty affect not only the centers of the distributions but also

the shapes of the distributions, causing the distributions to rotate downward.
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Table 1: Variables in the baseline model

Macroeconomic variables Financial variables

All employees: total nonfarm (∆ ln) S&P 500 (∆ ln)

Industrial production index (∆ ln) Spread, Baa-10y Treasury

Capacity utilization: manufacturing (∆) Excess return

Help wanted to unemployed ratio (∆) SMB FF factor

Unemployment rate (∆) HML FF factor

Real personal income (∆ ln) Momentum factor

Weekly hours: goods-producing R15_R11

Housing starts (ln) Industry 1 return

Housing permits (ln) Industry 2 return

Real consumer spending (∆ ln) Industry 3 return

Real manuf. and trade sales (∆ ln) Industry 4 return

ISM: new orders index Industry 5 return

Orders for durable goods (∆ ln)

Avg. hourly earnings, goods-producing (∆2 ln)

PPI, finished goods (∆2 ln)

PPI, commodities (∆2 ln)

PCE price index (∆2 ln)

Federal funds rate (∆)

Note: For those variables transformed for use in the model, the table indicates the transfor-

mation in parentheses following the variable description.
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Table 2: Correlations of uncertainty shocks with other shocks

macro financial

known uncertainty uncertainty

shock shock shock

Productivity: Fernald TFP 0.057 0.120

(1960:Q4-2014:Q2) (0.425) (0.137)

Oil supply: Hamilton (2003) 0.059 0.052

(1960:Q4-2014:Q2) (0.333) (0.388)

Oil supply: Kilian (2008) -0.115 -0.025

(1971:Q1-2004:Q3) (0.241) (0.827)

Monetary policy: Guykaynak, et al. (2005) -0.009 0.128

(1990:Q1-2004:Q4) (0.928) (0.136)

Monetary policy: Coibion, et al. (2016) -0.097 0.001

(1969:Q1-2008:Q4) (0.451) (0.995)

Fiscal policy: Ramey (2011) 0.044 0.087

(1960:Q4-2008:Q4) (0.681) (0.118)

Fiscal policy: Mertens and Ravn (2012) -0.031 -0.027

(1960:Q4-2006:Q4) (0.692) (0.592)

Notes: The table provides the correlations of the orthogonalized shocks to uncertainty

(measured as the posterior medians ofC−1
Φ

ut , whereCΦ denotes the Choleski decomposition

of Φ) with selected macroeconomic shocks. The monthly shocks from the model are

averaged to the quarterly frequency. Entries in parentheses provide the sample period of the

correlation estimate (column 1) and the p-values of t-statistics of the coefficient obtained

by regressing the uncertainty shock on the macroeconomic shock (and a constant). The

variances underlying the t-statistics are computed with the pre-whitened quadratic spectral

estimator of Andrews and Monaghan (1992).
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Figure 1: Uncertainty estimates: posterior median (solid black line) and 15%/85% quantiles (dotted

lines), with macro uncertainty (m0.5
t ) in the top panel and financial uncertainty ( f 0.5t ) in the bottom

panel. The gray shading indicates periods of NBER recessions. The periods indicated by black

vertical lines or regions correspond to the uncertainty events highlighted in Bloom (2009). Labels

for these events are indicated in text horizontally centered on the event’s start date.
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Figure 2: Reduced-form (black line) and idiosyncratic volatilities (h0.5i,t , gray line), selected vari-

ables, posterior medians
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Figure 3: Impulse responses for one standard deviation shock to macro uncertainty, selected

variables, posterior median (black line) and 15%/85% quantiles (gray shading)
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Figure 4: Impulse responses for one standard deviation shock to financial uncertainty, selected

variables, posterior median (black line) and 15%/85% quantiles (gray shading)
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Figure 5: Historical decomposition for 2003-2014, selected variables, posterior medians, with

actual data series in solid black line
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Figure 6: Effects of uncertainty shocks on predictive distributions, December 2007 through De-

cember 2012, selected variables. The baseline path is reported as the solid black line (median) with

gray shading (15%/85% quantiles). The path with the effects of the estimated uncertainty shocks

over the period is reported as the dotted line (median) with dashed lines (15%/85% quantiles).
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