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Abstract Stochastic and time-varying volatility models typically fail to cor-
rectly price out-of-the-money put options at short maturity. We extend Re-
alized Volatility option pricing models by adding a jump component which
provides a rapidly moving volatility factor, and improves on the fitting prop-
erties under the physical measure. The change of measure is performed adopt-
ing a stochastic discount factor with an equity and two variance risk premia,
associated to the continuous and jump components. Our choice preserves an-
alytical tractability and offers a new way of separately estimate variance risk
premia by coherently combining high-frequency returns and option data in a
multi-factor pricing model.

Keywords High-frequency · Realized volatility · HARG · Option pricing ·
Variance risk premium · Jumps

1 Introduction

Stochastic and time-varying volatility models, such as [24, 35, 36], are able to
qualitatively reproduce the smile (i.e. excess kurtosis) and the smirk (i.e. neg-

D. Alitab
Mediobanca S.p.A, Piazzetta E. Cuccia 1, 20121 Milano, Italy
E-mail: dario.alitab@gmail.com

G. Bormetti
University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
E-mail: giacomo.bormetti@unibo.it

F. Corsi
University of Pisa, via Ridolfi 10, 56100 Pisa, Italy
City University London, Northampton Square, London EC1V 0HB, United Kingdom
E-mail: fulvio.corsi@unipi.it

A. A. Majewski
Capital Fund Management, 23 Rue de l’Université, 75007 Paris, France
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2 Dario Alitab et al.

ative skewness) observed in short term equity options. However, they fail to
address these features quantitatively. As a result, they severely underprice out-
of-the-money put options. To cope with this problem, a variety of models have
been developed to include jumps in returns (see [7–9, 11, 13, 38, 39, 42, 43]
in continuous-time, and [18, 25, 40] in discrete-time) and jumps in volatil-
ity (see, e.g., [10, 28, 29]). [17] employ a modified version of the two-factor
component GARCH in [27] for option pricing, while [8] proposes a two-factor
jump-diffusion model to fit the implicit distribution of options on Standard
and Poor’s 500 (S&P500) futures. Similarly, the family of Realized Volatility
(RV) option pricing models recently proposed by [20] (i.e., ARG, HARG and
HARGL) has difficulties in generating realistic level and dynamics of the steep-
ness of the implied volatility at short maturity, although, the general shape
and dynamics of the smile is much closer to the empirical one compared to
the standard GARCH option pricing models. Therefore, the HARGL implies
some degree of underpricing for deep out-of-the-money (DOTM) put options.
This is a common feature of stochastic volatility option pricing models without
jumps, since they cannot completely capture the probability mass in the right
tail of the volatility density.

In this paper we extend the class of RV option pricing models by adding a
jump component in volatility and its associated risk premium. The inclusion
of jumps in the variance dynamics provides a rapidly moving volatility factor,
which will improve on the fitting properties under the physical measure, P, and
on the pricing performance under the risk-neutral measure, Q. Consequently,
our change of measure employs an SDF with three different risk premia: one
for equity, and two variance risk premia related to the continuous and jump
components. The proposed multiple risk premia SDF allows to improve the
flexibility of the option pricing model under the risk neutral dynamics while
preserving analytical tractability. In addition, it provides a new methodol-
ogy of separate estimation of the continuous and jump variance risk premia
which coherently combines information from both high-frequency returns and
option data. More specifically, we develop a model where the log-returns are
determined by RV dynamics following a process belonging to the HAR-RV
family. These processes, introduced by [19], successfully describe the impact
that past realized variances aggregated on different time scales (daily, weekly
and monthly) have on the current level of realized variance. Recently, [20]
have studied the application of these discrete-time models to option pricing
introducing the HARGL-RV extension which accounts for transition density
specified by noncentered gamma distribution and accounts for the leverage ef-
fect through a daily binary component. More recently, [41] have widened the
HARG-RV class and included a heterogeneous parabolic structure for leverage,
defining the LHARG-RV model.

In this work, we extend the LHARG-RV model to account for a possibil-
ity of extreme movements in the evolution of volatility. The newly proposed
model is labelled as JLHARG-RV. JLHARG-RV assumes that the dynamics
of realized variance is given by the sum of two independent random variables
which account for the continuous and the discontinuous components of the
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Title Suppressed Due to Excessive Length 3

volatility. We model the former as an autoregressive gamma process (see [33])
whose conditional mean is assumed to be a linear function of the past real-
ized variances and leverage terms aggregated over different time scales (daily,
weekly, and monthly). The latter is described as a compound Poisson process
where the jump size is sampled from a gamma distribution. For this model
we first show how to compute analytically the moment generating function
(MGF) of the log-returns, under the physical measure. In order to obtain an
analytical option pricing formula, we derive the MGF under the risk neutral
measure. The change of measure is performed adopting the same approach as
in [17, 20, 31], based on a discrete-time exponential affine SDF which allows to
incorporate risk premia for the continuous and discontinuous components of
the volatility, in addition to the equity risk premium. We stress the importance
of having risk premia for both the volatility factors in order to compensate
for two new sources of risk, in addition to the traditional premium related to
shocks in the log-return. In particular, including a premium for the jump com-
ponent represents an important novel contribution of this work which helps
to better understand the negative skew effect implied by out-of-the-money
(OTM) option prices quoted on the market. Due to the analytical tractability
of exponential-affine forms, we are able to derive the risk-neutral MGF and
show that the risk-neutral model still belongs to the JLHARG model class. In
particular, we prove the existence of a one-to-one mapping among the parame-
ters describing the physical and risk-neutral dynamics of the JLHARG model.
An additional advantage of JLHARG is related to the model estimation. This
is due to the observability of RV, directly built from the high-frequency time
series of log-returns. We compute the RV time series from tick-by-tick returns
for the S&P500 futures, from January 1, 1990 to December 31, 2007. In order
to separate the two dynamics of volatility, we exploit the Threshold Bipower
Variation methodology introduced in [21] which allows to detect the jumps in
the RV. Having the time-series for the continuous and discontinuous volatility
components, we estimate the parameters of the JLHARG processes employing
the Maximum Likelihood Estimator (MLE) on both sets of historical data.

To the best of our knowledge, among the approaches available in literature,
[14] is the closest to ours. However, a closer look reveals several important
differences. The first relevant difference is the method employed to identify
and separate the continuous and jump components of the integrated variance.
[14] compute a proxy of the continuous component of volatility by means of
the Bipower Variation from 5-minute returns and the jump contribution corre-
sponds to the difference, when positive, between the Realized Variance and the
Bipower Variation. The methodology does not consider any statistical test in
order to assess the significance of the jump contribution. The literature warns
about the bias in the estimation of the continuous component of the integrated
variance in finite sample, especially in presence of successive jump events. A
second major difference is that the approach by Christoffersen and co-authors
may be viewed as an improved and extended version of the Realized GARCH
approach of [34], while the LHARG-ARJ extends the class of RV gamma mod-
els [20, 41]. The role played by the observable realized measures in the two
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4 Dario Alitab et al.

classes is essentially different. In the former, the conditional variance is a latent
process with idiosyncratic shocks given by the RV measure – in the same spirit
of the Realized GARCH. The latter directly models the dynamics of the RV
components. The impact of the two modeling choices is relevant not only on
the estimation methodology – which is based on QMLE for the BPJVM and
on MLE for the LHARG-ARJ – but also, and more importantly, on the level
of persistence of the conditional variance in the two models. The persistence
of the BPJVM latent variance is nearly one, then a miss-specification of the
current level of the volatility may lead to the miss-fitting of the term structure
of ATM implied volatility.

To assess the pricing performance of our model, we benchmark it with [14].
Our analysis is performed on OTM Plain Vanilla options written on S&P500
Index whose valuation is given each Wednesday from January 1, 1996 to De-
cember 31, 2004. We calibrate risk premia on the whole implied volatility
surfaces and we compute the option prices using the efficient COS method
introduced by [30]. Our results clearly illustrate that JLHARG models repre-
sent a valid competitor class to state-of-the-art discrete-time models for the
valuation of S&P500 Index OTM options.

The rest of the paper is organized as follows. Section 2 defines our model
for log-return and RV under both the physical and risk-neutral probability
measures. Section 3 describes the estimation of the model and then analyses
its statistical features. In Section 4, we discuss option pricing performances
comparing them to the benchmark. Section 5 draws relevant conclusions.

2 The model

2.1 Real-World dynamics

We consider a risky asset with the following log-return dynamics

yt = r +

(
λ− 1

2

)
RVt +

√
RVtεt, (1)

where r is the risk-free rate, λ is the market price of risk1, εt are i.i.d. standard
normal innovations, and RVt is realized variance at day t. The aggregate daily
dynamics (1) is formally equivalent to that employed in [15, 20, 41]. As a major
difference, in this paper we distinguish two separate components of realized
variance: a continuous component RVc

t and a jump component RVj
t (details

on the measurement of RV components are provided in Section 3).
Our approach is motivated by the empirical analyses of [1], who find that

the distributions of daily equity returns standardized by the corresponding

1 As shown in Appendix B, the more general specification

yt = r + λcRVct + λjRVjt +

√
RVct + RVjt εt (2)

admits consistency with the no-arbitrage principle if and only if λc = λj = λ.
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Title Suppressed Due to Excessive Length 5

RV is approximately Gaussian and [2] who investigate the deviation from nor-
mality ascribed to a jump component in the price process. The latter results
indicate that the discontinuous component has a minor impact on the distri-
butional properties, since the jump-adjusted standardized series are not sys-
tematically closer to the Gaussian than the yt/

√
RVt standardized returns.2

This is especially true for time series generated from futures contracts on the
S&P500 Index, which are recognized in [2] to suffer from minimal microstruc-
ture distortion and low liquidity effects. As can be seen from the density plots

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
S&P log−returns

 

Standard Normal
Return/RV
Jump−Adj Ret/CRV

Fig. 1 Standardized log-return distribution. Comparison of the S&P500 futures log-return
distribution under different scaling measures: Standard normal distribution (red line), jump-
adjusted standardized log-return by RVc (green line) and standardized log-return by total
RV (blue line).

of Figure 1, we observe the same feature for the S&P500 futures in our sam-
pling period. The two-sample Kolmogorov-Smirnov test between the RV stan-
dardized and jump-adjusted series indicates that the two distributions cannot
be distinguished. If any, by judging on the value of the kurtosis of 3.64 for
the jump-adjusted distribution and 3.06 for the RV standardized, we conclude
that the latter is closer to a normal distribution than the former one.

Given the information at time t, Ft, a new realization of the RV components
is obtained by sampling at time t + 1 from two conditionally independent
distributions. The continuous part of RV depends on past realizations of RVc

and of a leverage component `t, which corresponds to a quadratic function of
the total realized variance

`t =

(
εt − γ

√
RVc

t + RVj
t

)2

.

2 “Perhaps surprisingly, the results indicate that neither of the jump-adjusted standard-
ized series are systematically closer to Gaussian than the non-adjusted realized volatility
standardized returns. [...] One reason is that jumps largely self-standardize: a large jump
tends to inflate the (absolute) value of both the return (numerator) and the realized volatility
(denominator) of standardized returns, so the impact is muted” [2].
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6 Dario Alitab et al.

Then, introducing the notation RVc
t = (RVc

t−21, . . . ,RVc
t) and Lt = (`t−21, . . . , `t),

the continuous component of RV is drawn from a noncentred gamma distri-
bution

RVc
t+1|Ft ∼ γ̄(δ,Θ(RVc

t,Lt), θ) , (3)

where δ is the shape parameter, and θ is the scale. The non-centrality is given
by

Θ(RVc
t,Lt) = d+βdRV

c (d)
t +βwRV

c (w)
t +βmRV

c (m)
t +αd`

(d)
t +αw`

(w)
t +αm`

(m)
t ,
(4)

where d ∈ R, βi ∈ R+, αi ∈ R+ are constant, and the quantities

RV
c (d)
t = RVc

t , `
(d)
t = `t ,

RV
c (w)
t = 1

4

∑4
i=1 RVc

t−i, `
(w)
t = 1

4

∑4
i=1 `t−i ,

RV
c (m)
t = 1

17

∑21
i=5 RVc

t−i, `
(m)
t = 1

17

∑21
i=5 `t−i

represent the heterogeneous components corresponding to the short-term or
daily (d), medium-term or weekly (w) and long-term or monthly (m) realized
variance and leverage terms, respectively on the left and right columns above.

The jump component of the realized variance is modelled as a compound
Poisson process with intensity Θ̃ and sizes sampled from a gamma distribution
with shape δ̃ and scale θ̃

RVj
t+1|Ft ∼

nt+1∑
i=1

Yi with nt+1 ∼ P(Θ̃) and Yi i.i.d. ∼ γ(δ̃, θ̃). (5)

Equations (1)-(5) completely characterise the log-return dynamics as an Au-
toregressive Gamma model in Realized Volatility with Heterogeneous Leverage
and Jumps, and we acronym it JLHARG-RV model. The crucial advantage
of the JLHARG model is that it satisfies the affine property. The importance
of affine processes in finance - due to their analytical tractability - has been
acknowledged in many studies (see [23, 26, 41] among others). We prove the
following

Proposition 1 Under P, the MGF of the log-return yt,T =
∑T
k=t+1 yk for

JLHARG model has the following form

φP (t, T, z) = EP [ezyt,T |Ft] = exp

(
at +

p∑
i=1

bt,iRVc
t+1−i +

q∑
i=1

ct,i`t+1−i

)
,

where at, bt,i and ct,i are given by recursive relations.

Proof: See Appendix A.
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Title Suppressed Due to Excessive Length 7

2.2 Risk-neutralization

To preserve analytical tractability of the model under the martingale measure
we employ an SDF within the family of exponential affine factors, whose high
flexibility allows to incorporate multiple factor-dependent risk premia. This
approach has been extensively used in literature.3 We propose an SDF of the
following form

Ms,s+1 =
e−νcRV

c
s+1−νjRV

j
s+1−νyys+1

EP
[
e−νcRV

c
s+1−νjRV

j
s+1−νyys+1 |Fs

] , (6)

which represents the Esscher transform from the physical log-return density
to the risk neutral one (see [12, 32]). The main advantage of the SDF (6) is to
clearly identify the sources of risk and explicitly compensate them with sep-
arated risk premia. Specifically, this form allows to have both the continuous
(νc) and discontinuous (νj) variance risk premia, in addition to the standard
equity premium (νy). The equity premium has to satisfy the following no-
arbitrage condition

Proposition 2 The JLHARG model defined by equations (1) – (5) with SDF
given by (6) satisfies the no-arbitrage condition if and only if

νy = λ+
1

2
.

Proof: Appendix B.
Moreover, we are able to provide a one-to-one mapping of the parameters

under probability measure P to those under the Q measure, ensuring that the
risk-neutral log-return dynamics is still governed by a JLHARG process.

Proposition 3 Under risk-neutral measure Q the realized variance follows a
JLHARG process with parameters

β∗d =
βd

1− θyc ∗
, β∗w =

βw
1− θyc ∗

, β∗m =
βm

1− θyc ∗
,

α∗d =
αd

1− θyc ∗
, α∗w =

αw
1− θyc ∗

, α∗m =
αm

1− θyc ∗
,

θ∗ =
θ

1− θyc ∗
, δ∗ = δ, γ∗ = γ + λ+

1

2
, d∗ =

d

1− θyc ∗
, (7)

Θ̃∗ =
Θ̃(

1− θ̃yj ∗
)δ̃ , δ̃∗ = δ̃, θ̃∗ =

θ̃

1− θ̃yj ∗
,

where yc ∗ = −λ2/2− νc + 1
8 and yj ∗ = −λ2/2− νj + 1

8 .

3 For example, in [3, 16, 20, 31, 41].
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8 Dario Alitab et al.

Proof: Appendix C.
Knowing the dynamics of the process under Q, the moment generating

function under the risk-neutral measure is a straightforward consequence of
Proposition 1.

Corollary 1 Under Q the MGF of the JLHARG model is formally the same
as in Proposition 1 with equity risk premium λ∗ = −0.5, and d∗, δ∗, θ∗, Θ̃∗, δ̃∗, θ̃∗

γ∗, α∗l , β
∗
l for l = d,w,m as in (7).

We point out that the risk premia in the vector (νc, νj) are the only pa-
rameters that need to be calibrated on option data. Then, all the parameters
governing the dynamics of the process under Q can be explicitly computed
from the values estimated under P through the relations given by (7).

The JLHARG-RV family nests a variety of RV models as special cases.
The first instance is the JHARG model which preserves the heterogeneous
autoregressive structure for RV but lacks the leverage term. This model can
be seen as a natural extension of the HARG model, by [20], accounting for
a discontinuous component. The second model is the JLHARG model with
Parabolic Leverage (P-JLHARG) that we obtain setting d = 0 in (4). The
third one is a JLHARG with zero-mean leverage term (ZM-JLHARG) inspired
by the Component GARCH model of [17]. In that case, heterogeneous leverage
components are given by the following relations

¯̀(d)
t = ε2t − 1− 2εtγ

√
RVc

t + RVj
t ,

¯̀(w)
t =

1

4

4∑
i=1

(
ε2t−i − 1− 2εt−iγ

√
RVc

t−i + RVj
t−i

)
,

¯̀(m)
t =

1

17

21∑
i=5

(
ε2t−i − 1− 2εt−iγ

√
RVc

t−i + RVj
t−i

)
.

The linear Θ(RVc
t,Lt) reads

βdRV
c(d)
t + βwRV

c(w)
t + βmRV

c(m)
t + αd ¯̀(d)

t + αw ¯̀(w)
t + αm ¯̀(m)

t ,

which can be reduced to the form (4) setting d = −(αd + αw + αm), βl =
βl − αlγ2 for l = d,w,m. The larger flexibility of the leverage term ¯̀

t allows
the model to better describe the skewness and kurtosis of the empirical data.

3 Model estimation and statistical properties

The estimation of the parameter under P is greatly simplified by the direct
observability of RV which avoids the need of latent volatility filtering. In this
paper, the RV time series is obtained from tick-by-tick data for the S&P500
futures, from January 1, 1990 to December 31, 2007. Our estimation procedure
for the continuous and jump component is the following:
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Title Suppressed Due to Excessive Length 9

i) we estimate the total quadratic variation of the log-prices using the Two-
Scale estimator introduced by [45];

ii) we identify the discontinuous component using the Threshold Bipower vari-
ation method by [21] which detects the spikes in RV time series and sepa-
rates it from the continuous component.

The RV, so far defined, is built from open-to-close data, thus neglecting the
overnight contribution. We adjust our RV estimator by rescaling the time se-
ries so to match the unconditional mean of the squared daily returns (close-to-
close). We stress that the adopted jump detection method, according to point
(ii) of our procedure, represents a formal statistical test based on asymptotic
theory. This is important to statistically identify days with jumps and subse-
quently associate the most extreme intra-day price movements to jump events
(see for instance [2, 4, 5, 21, 37]).

Having the time series for the RV components and log-returns, we can
estimate the parameters of the JLHARG-RV processes via MLE. According
to the model specified in equation (3) and (5), the log-likelihood functions for
the continuous and jump RV components, respectively lct,T and ljt,T , are given
by the following series-expansions

lct,T (λ, δ, θ, d, βd, βw, βm, αd, αw, αm, γ) = −
T∑
t=1

(
RVc

t

θ
+Θ (RVc

t−1,Lt−1(λ))

)

+

T∑
t=1

log

( ∞∑
k=1

(RVc
t)
δ+k−1

θδ+kΓ (δ + k)

Θ (RVc
t−1,Lt−1(λ))

k

k!

)
,

ljt,T

(
δ̃, θ̃, Θ̃

)
= −

T∑
t=1

(
RVj

t

θ̃
+ Θ̃

)
+

T∑
t=1

log

 ∞∑
k=1

(
RVj

t

)kδ̃−1
θkδ̃Γ

(
kδ̃
) Θ̃k

k!

 .

Both log-likelihoods have a term involving an infinite series. To overcome this
issue we operate a truncation of the infinite sum to the 90th order as suggested
in [20]. The log-likelihood function of returns reads

lrt,T (λ) = −
T∑
t=1


(
yt − r −

(
1
2 − λ

) (
RVc

t + RVj
t

))2
2(RVc

t + RVj
t )

+
1

2
log(2π(RVc

t + RVj
t ))

 .

The estimation of the parameters is performed maximizing the whole log-
likelihood function lt,T (θ) = lctT +ljtT +lrtT , with θ = (λ, δ, θ, d, βd, βw, βm, αd, αw, αm, γ, δ̃, θ̃, Θ̃).

In order to reduce the dimension of the space of parameters, we fix δ and δ̃
by variance targeting, i.e. matching the sample mean of the realized variance.
Fed Funds rate are employed as proxy for the risk-free rate r.
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Parameter JHARG P-JLHARG ZM-JLHARG Parameter BPJVM

λ 2.74 (1.50) 2.38 (1.59) 2.69 (1.55) λz 1 (4)
θ 9.75e-06 (9e-08) 9.1e-06 (1e-07) 9.5e-06 (1e-07) λy 4e-05 (8e-05)
δ 1.36 1.25 1.83 γ 1.44e+04 (2e+02)
βd 4.67e+04 (8e+02) 3.5e+04 (2e+03) 3.9e+04 (1e+03) ωz 2.5e-08
βw 2.9e+04 (1e+03) 3.2e+04 (2e+03) 2.9e+04 (2e+03) ωy 0.04
βm 1.19e+04 (9e+02) 1.4e+04 (3e+03) 1.8e+04 (2e+03) σ 1.86e-07 (2e-09)
αd - 0.28 (0.03) 0.44 (0.04) θ 1e-05 (5e-05)
αw - 0.07 (0.03) 0.42 (0.06) δ 1.28e-03 (1e-05)
αm - 0.00 (0.06) 0.52 (0.10) ρ 3.3e-01 (2e-02)
γ - 173 (16) 120 (12) bz 6.5e-01 (3e-02)

θ̃ 4.7e-05 (3e-06) by 9.5e-01 (1e-02)

δ̃ 1.15 az 3.5e-01 (3e-02)

Θ̃ 0.299 (0.009) ay 2.2e+04 (5e+03)

νc 756 -1440 -2466 -807
νj -12396 -10239 -7609 -64550

Log-likelihood 10575 10248 10220 Persistencez 0.999
Persistence 0.85 0.82 0.81 Persistencey 0.986

Table 1 Maximum likelihood estimates, standard errors, and log-likelihood values. The
historical data for the JHARG, P-JLHARG, ZM-JLHARG, and BPJVM models are given
by the daily RV computed on tick-by-tick data for the S&P500 futures. For all models, the
estimation period ranges from 1990 to 2007.

In Table 1, first four columns, the parameter values estimated under P are re-
ported. We present estimates for three different models JHARG, P-JLHARG
and ZM-JLHARG together with the standard deviations and log-likelihood
values. Our results confirm that the impact of the past RV c components on
the current level of RV decreases with the increase of the aggregation hori-
zon. The same evidence has been documented by [19, 22, 41]. Skewness and
kurtosis term structures of the underlying distribution play an important role
in reproducing the shape of the implied volatility surface and option pricing.
Adding a heterogeneous leverage considerably improves the skewness and the
excess kurtosis of the log-return probability distribution. In this paper, we not
only preserve the heterogeneity of the leverage, but we also add a discontin-
uous component which captures extreme price movements. With this choice,
our JLHARG class of models is able to reproduce a stronger leverage effect.
In Figure 2 we show the skewness and the excess kurtosis from a simulation
of the P-JLHARG model with parameters from Table 1 at different aggrega-
tion time – from one 1 day to 250 days – under both P and Q measures. The
model is able to reproduce significant negative values of skewness and positive
excess kurtosis under the physical measure. When moving to the Q measure,
the effect is strengthened by the presence of the variance risk premia νc and
νj .
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Fig. 2 Skewness and excess kurtosis of the JLHARG process under physical and risk-neutral
measures.

4 Option valuation

Our data set consists of Plain Vanilla OTM options on S&P500 Index for
each Wednesday from January 1, 1996 to December 31, 2004. We first apply
a standard filter removing options with maturity less than 10 days or more
than 365 days, implied volatility larger than 70% and prices less than 0.05$
(see [6], [20] and [41]). Using K/St as definition of moneyness, we filter out
DOTM options with moneyness larger than 1.3 for call options and less than
0.7 for put options. This choice yields a total number of 46066 observations.
For our purposes, put options are identified as DOTM if their moneyness is
between 0.7 ≤ m ≤ 0.9 and OTM if 0.9 < m ≤ 0.98. On the other hand, call
options are said to be DOTM if 1.1 < m ≤ 1.3 and OTM if 1.02 < m ≤ 1.1.
Options are called at-the-money (ATM) if 0.98 < m ≤ 1.02. As far as the
time to maturity τ is concerned, we identify options as short maturity (τ ≤ 50
days), short-medium maturity (50 < τ ≤ 90 days), long-medium maturity
(90 < τ ≤ 160 days), and long maturity (τ > 160 days).

4.1 Model calibration and pricing method

In order to derive the risk-neutral dynamics, the values of risk premium pa-
rameters (νc, νj , νy) need to be identified. According to Proposition 2, νy is
fixed by the no-arbitrage condition, while νc and νj remain as free parameters
to be calibrated on option prices.

Calibration procedure is based on the unconditional minimization of the
distance between the market implied and the model implied volatility surface.
For this reason, we divide our dataset in different intervals of moneyness and
maturity obtaining a 5 × 4 moneyness-maturity grid. Then, for each subset,
we compute the unconditional mean of the market implied volatilities.

In this way, as shown in Table 2, we obtain a 20-point discrete representation
of the implied volatility surface. Finally, we compute the same discrete grid
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12 Dario Alitab et al.

Maturity

Moneyness τ ≤ 50 50 < τ ≤ 90 90 < τ ≤ 160 160 < τ

Implied Volatility

0.7 ≤ m ≤ 0.9 0.3564 0.3056 0.2866 0.2662
0.9 < m ≤ 0.98 0.2353 0.2269 0.2232 0.2230
0.98 < m ≤ 1.02 0.1958 0.2023 0.2059 0.2108
1.02 < m ≤ 1.1 0.1767 0.1790 0.1849 0.1923
1.1 < m ≤ 1.3 0.2317 0.1946 0.1836 0.1842

Table 2 Mean market implied volatilities of S&P500 Index options on each Wednesday
from January 1,1996 to December 31, 2004 (46066 observations) sorted by moneyness and
maturity. Moneyness is defined as m = K/St, where K and St are the strike and the
underlying price, respectively. Maturity is measured in calendar days.

for the model implied volatility and we identify the optimal values of (νc, νj)
which minimize the distance between the two grids, i.e.

arg min
(νc,νj)

{fobj(νc, νj)} .

The objective function fobj(νc, νj) is defined as

fobj(νc, νj) =

√√√√ 5∑
i=1

4∑
j=1

(
IVmod

ij (νc, νj)− IVmkt
ij

)2
,

and represents the quadratic distance between the model implied volatility
surface and the market one, whose elements are IVmod

ij (νc, νj) and IVmkt
ij ,

respectively. In order to compute the option prices – and associated implied
volatilities – we employ a numerical scheme introduced by [30], termed the
COS method. This method, based on Fourier-cosine expansions, efficiently
evaluates the price of Plain Vanilla options from the characteristic function of
log-returns.

At the bottom of Table 1 we report the calibrated variance risk premia for
JHARG models. It is worth recalling that the presence of a positive or a neg-
ative value of the risk premium reduces or amplifies the unconditional mean
of realized variance, respectively. Moreover, negative premia have the genuine
effect to induce more skew in the distribution of returns. The risk premium,
νc, associated with the continuous component varies from the positive value
of the JHARG model to a large negative value for the ZM-JLHARG model.
The risk premia, νj , associated with the jump component, are all negative
and increasing (decreasing in absolute terms) when a better specified form of
the leverage is adopted. The most negative jump premium corresponds to the
JHARG model and decreases for the P-JLHARG with heterogeneous parabolic
leverage. It reaches the highest value (smallest in absolute terms) for the ZM-
JLHARG where the heterogeneous leverage is centred. The compensation tak-
ing place between νc and νj is due to the fact that large negative innovations
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in the price rise the future variance through the leverage term. Then, a better
specification of the leverage component reduces the relative weight of the jump
premium in favour of the premium of the continuous component.

4.2 Pricing results

We can summarize the option pricing procedure in four steps: (i) estimation
of the parameters under the physical measure P; (ii) unconditional calibration
of the parameter vector (νc, νj); (iii) mapping of parameter values from P to
Q using expressions (7); (iv) numerical computation of option prices through
COS method using the MGF recursive formulas in (17).

As benchmark approach to assess the pricing performance of JHARG mod-
els, we use the BiPower Jump Variation Model (BPJVM) introduced by [14].4

The BPJVM model is a state-of-the-art approach incorporating a GARCH
structure for the latent volatility and jump intensity where bipower and jump
variations play a prominent role as idiosyncratic components. To ensure a fair
comparison with the ZM-JLHARG, risk-neutralization is achieved by means
of a four-dimensional Esscher transform. Two risk premia compensate for the
realized variance components - as in (6) - and two auxiliary premia, µc and
µj , compensate for the continuous and jump return components. The former
two parameters have to be calibrated on option data, while the latter are
fixed by no-arbitrage. All computational details are available from authors
upon request. The last two columns of Table 1 report the parameter values
for the BPJVM. Following [14], estimation is performed via quasi-maximum
likelihood. At variance with them, we solely use the physical information, and
only afterwards we calibrate the free parameters νc and νj on market option
prices. This choice is motivated by consistency with the approach proposed
in this paper. Here, we first estimate the physical parameters from historical
information and then we separately assess the impact of risk compensation on
the risk neutral dynamics.

As customary in literature ([20, 41, 44]), we employ the Root Mean Square
Error (RMSE) on the percentage IV as performance measure, i.e.

RMSEIV =

√√√√ N∑
i=1

(
IV modi − IV mkti

)2
N

,

where N is the number of options, and IV mod and IV mkt are the model and
the market implied volatility, respectively.

Preceding comparison with benchmark models, we perform an internal horse-
race to select the best candidate among JHARG models. In Table 3 we report
the global comparison of the option pricing performances between models be-
longing to the JHARG class. We build ratios between the RMSE of each couple

4 For practical implementation, we refer to the updated version available on SSRN includ-
ing some corrections to the published version. Link: http://ssrn.com/abstract=2494379.
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Implied Volatility RMSE

Moneyness
Model 0.9 < m < 1.1 0.7 < m < 1.3
JHARG 4.89 6.65
P-JLHARG/JHARG 0.91 0.93
ZM-JLHARG/JHARG 0.83 0.85
ZM-JLHARG/P-JLHARG 0.91 0.92
ZM-JLHARG/BPJVM 0.81 0.83

Table 3 Global option pricing performance for the JLHARG class of models and compar-
ison with the BPJVM model on S&P500 options from January 1, 1996 to December 31,
2004. The RV measure is estimated from 1990 to 2007. Parameter estimates are taken from
Table 1.

of models. The table shows that – in terms of RMSE – the performance im-
proves for models accounting for the leverage effect, as expected. Specifically,
fixing as benchmark the JHARG model with no leverage, performances in the
range of moneyness 0.9 < m < 1.1 improve by nearly 9% for P-JLHARG
and by 17% for ZM-JLHARG. In the range of moneyness 0.7 < m < 1.3 the
improvements are by 7% and by 15% for P-JLHARG and ZM-JLHARG, re-
spectively. These results confirm the well established fact that the inclusion of
a leverage component is essential for option pricing. Moreover, ZM-JLHARG
always outperforms P-JLHARG independently on the range of moneyness. In
accordance with [41] this finding reaffirms that the zero-mean leverage shows
more flexibility with respect to the parabolic leverage. The final row of Table
3 reveals the superior performance of the ZM-JLHARG model when bench-
marked with the BPJVM. Gains in performance vary from 19%, in the range
of moneyness close to ATM, to 17%, when more extreme moneyness are in-
cluded. The result for the central region of the volatility surface confirms that
the heterogeneous structure is a parsimonious and effective way to provide a
satisfactory description of the ATM implied volatility dynamics.

In Table 4, the focus is on a more detailed comparison between the ZM-
JLHARG model and the competitor BPJVM. Dividing the entire dataset of
options according to the grid used for model calibration (see Section 4.1), we
observe that for short maturities τ ≤ 50 the two models price with almost
the same accuracy in the at-the-money region 0.98 < m < 1.02. BPJVM in-
creases the pricing performance for OTM call options but for DOTM calls
the ZM-JLHARG performs better by a factor of 0.71. In the region of short-
maturity puts the ZM-JLHARG model consistently over-performs the com-
petitor BPJVM. This result is confirmed with slightly different percentages
for options with medium-short maturity 50 < τ ≤ 90 noting a worsening of
BPJVM performance in the ATM region with respect to ZM-JLHARG. As
concerns the medium-long maturity region 90 < τ ≤ 160 BPJVM maintains
a higher performance in pricing OTM calls and shows a better valuation of
DOTM puts than the ZM-JLHARG. Finally, valuation of long maturity op-
tions exhibits the consistent over-performance of the ZM-JLHARG model for
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Maturity

Moneyness τ ≤ 50 50 < τ ≤ 90 90 < τ ≤ 160 160 < τ

Panel A ZM-JLHARG Implied Volatility RMSE

0.7 ≤ m ≤ 0.9 12.02 7.53 6.06 4.93
0.9 < m ≤ 0.98 4.02 3.55 3.72 4.09
0.98 < m ≤ 1.02 3.43 3.71 4.01 4.52
1.02 < m ≤ 1.1 4.13 4.59 4.79 4.96
1.1 < m ≤ 1.3 4.70 3.93 4.58 5.10

Panel B ZM-JLHARG/BPJVM Implied Volatility RMSE

0.7 ≤ m ≤ 0.9 0.89 1.05 1.19 0.71
0.9 < m ≤ 0.98 0.72 0.81 0.85 0.59
0.98 < m ≤ 1.02 1.02 0.91 0.89 0.67
1.02 < m ≤ 1.1 1.03 1.02 0.95 0.63
1.1 < m ≤ 1.3 0.71 0.61 0.58 0.45

Table 4 Panel A: Percentage RMSEIV of the ZM-JLHARG model sorted by moneyness
and maturity. Panel B: RMSEIV ratios computed using BPJVM as benchmark model.

both puts and calls covering all ranges of moneyness under study. The smaller
error of ZM-JLHARG for long maturity options suggests that this model has
more flexibility than BPJVM to reproduce a realistic term structure of im-
plied volatilities. A possible reason for the rigidity of BPJVM could be the
extremely high persistence of both volatility and jump intensity processes, as
reported in Table 1. High persistence is a crucial feature to reproduce the long-
memory property of the volatility process, nevertheless an extreme level could
have the side effect of systematical miss-valuing options – either over-pricing
or under-pricing depending on the prevailing high or low level of volatility,
respectively.

5 Conclusions

In this paper, we present a class of heterogeneous autoregressive models ac-
counting for a discontinuous component in Realized Volatility. We demonstrate
how to analytically characterize the moment generating function of the log-
return process under physical and risk-neutral measure. Risk-neutralization is
done with a flexible exponential affine pricing kernel which identifies different
risks and separately compensates for them introducing three components of
risk premium: equity, continuous and jump variance. Then, we show the im-
provements of the novel class of models in reproducing different features of the
implied volatility surface compared with the state-of-the-art of discrete-time
pricing models encompassing both continuous and jump dynamics of underly-
ing assets.
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As a future perspective, we are aware that equation (5) implicitly assumes
that the jump intensity is constant. A stream of literature – consider for in-
stance the empirical conclusions drawn in [14] – advocates an extension con-
sidering a time-varying jump intensity. This development is left for future
research. Nonetheless, the current contribution shows the ability of JLHARG
model to over-perform the benchmark BPJVM model. Moreover, the degree
of jump persistence under P measure strongly depends on the methodology
employed for the jump identification. We believe that testing for the pres-
ence of jumps is an important step for a correct identification procedure. This
could partially prevent for over-identification and contamination of the jump
component with persistence due to the continuous component.
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3. Bandi, F.M., Renò, R.: Price and volatility co-jumps. Journal of Financial Economics
119, 107 – 146 (2016)

4. Barndorff-Nielsen, O.E., Shephard, N.: Power and bipower variation with stochastic
volatility and jumps. Journal of Financial Econometrics 2(1), 1–37 (2004)

5. Barndorff-Nielsen, O.E., Shephard, N.: Econometrics of testing for jumps in financial
economics using bipower variation. Journal of Financial Econometrics 4(1), 1–30 (2006)

6. Barone-Adesi, G., Engle, R., Mancini, L.: A GARCH option pricing with filtered his-
torical simulation. Review of Financial Studies 21, 1223–1258 (2008)

7. Bates, D.: Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche
mark options. Review of Financial Studies 9, 69–107 (1996)

8. Bates, D.: Post-’87 crash fears in the S&P 500 futures option market. Journal of Econo-
metrics 94(1-2), 181–238 (2000)

9. Bates, D.: Maximum likelihood estimation of latent affine processes. Review of Financial
Studies 19, 909–965 (2006)

10. Broadie, M., Chernov, M., Johannes, M.: Model specification and risk premia: evidence
from futures options. Journal of Finance 62, 1453–1490 (2007)

11. Broadie, M., Detemple, J.B.: Anniversary article: Option pricing: Valuation models and
applications. Management Science 50(9), 1145–1177 (2004)
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21. Corsi, F., Pirino, D., Renò, R.: Threshold bipower variation and the impact of jumps
on volatility forecasting. Journal of Econometrics 159(2), 276 – 288 (2010)

22. Corsi, F., Renò, R.: Discrete-time volatility forecasting with persistent leverage effect
and the link with continuous-time volatility modeling. Journal of Business & Economic
Statistics 30(3), 368–380 (2012)

23. Darolles, S., Gourieroux, C., Jasiak, J.: Structural laplace transform and compound
autoregressive models. Journal of Time Series Analysis 27, 477–503 (2006)

24. Duan, J.C.: The GARCH option pricing model. Mathematical Finance 5, 13–32 (1995)
25. Duan, J.C., Ritchken, P., Sun, Z.: Approximating garch-jump models, jump-diffusion

processes, and option pricing. Mathematical Finance 16, 21–52 (2006)
26. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-

diffusions. Econometrica 68, 1343–1376 (2000)
27. Engle, R., Lee, G.: A permanent and transitory component model of stock return

volatility, in ed. R. Engle and H. White Cointegration, Causality, and Forecasting: A
Festschrift in Honor of Clive W. J. Granger (1999)

28. Eraker, B.: Do stock prices and volatility jump? Reconciling evidence from spot and
option prices. Journal of Finance 59, 1367–1403 (2004)

29. Eraker, B., Johannes, M., Polson, N.: The impact of jumps in volatility and returns.
Journal of Finance 58, 1269–1300 (2003)

30. Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on
Fourier-Cosine series expansions. SIAM Journal on Scientific Computing 31, 826–848
(2008)

31. Gagliardini, P., Gouriéroux, C., Renault, E.: Efficient derivative pricing by the extended
method of moments. Econometrica 79(4), 1181–1232 (2011)

32. Gerber, H.U., Shiu, E.S.: Option pricing by esscher transforms. Transactions of the
Society of Actuaries 46(99), 140 (1994)

33. Gourieroux, C., Jasiak, J.: Autoregressive gamma process. Journal of Forecasting 25,
129–152 (2006)

34. Hansen, P.R., Huang, Z., Shek, H.H.: Realized GARCH: a joint model for returns and
realized measures of volatility. Journal of Applied Econometrics 27(6), 877–906 (2012)

35. Heston, S.: Options with stochastic volatiltiy with applications to bond and currency
options. The Review of Fiancial Studies 6, 327–343 (1993)

36. Heston, S., Nandi, S.: A closed-form GARCH option valuation model. Review of Fi-
nancial Studies 13(3), 585–625 (2000)

37. Huang, X., Tauchen, G.: The relative contribution of jumps to total price variance.
Journal of Financial Econometrics 3(4), 456–499 (2005)

38. Huang, X., Wu, L.: Specification analysis of option pricing model s base on time-changed
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A MGF under P measure

The relations which follow are derived for the log-return dynamics specified in Eq. (2). For
the ease of computation, the expression (4) is rewritten as

Θ(RVc
t,Lt) = d+

22∑
i=1

βiRVct+1−i +

22∑
i=1

αi

(
εt+1−i − γ

√
RVct+1−i + RVjt+1−i

)2

,

with

βi =


βd for i = 1

βw/4 for 2 ≤ i ≤ 5

βw/17 for 6 ≤ i ≤ 22

αi =


αd for i = 1

αw/4 for 2 ≤ i ≤ 5

αw/17 for 6 ≤ i ≤ 22

. (8)

We start showing that JLHARG processes satisfy the affine relation

E
[
ezys+1+b·RVs+1+c`s+1 |Fs

]
= e
A(z,b,c)+

∑p
i=1 Bi(z,b,c)·RVs+1−i+

∑q
j=1 Cj(z,b,c)`s+1−j ,

(9)
for some functions A : R × R2 × R → R, Bi : R × R2 × R → R2, Cj : R × R2 × R → R,

where RVt = (RVct ,RVjt ), b ∈ R2, c ∈ R, and · is the scalar product in R2. To derive the
explicit form of the functions A, Bi, Cj which allows to characterise the MGF we show that

EP
[
ezyt+b·RVt+c`t |Ft−1

]
= EP

[
ez(r+λcRVct+λjRV

j
t+

√
RVct+RV

j
tεt)+b·RVt+c`t |Ft−1

]
= EP

[
ez(r+λcRVct+λjRV

j
t )+b·RVtEP

[
ez

√
RVct+RV

j
tεt+c(εt−γ

√
RVct+RV

j
t )

2

|RVt

]
|Ft−1

]

= EP

e

z(r+λcRVct+λjRV
j
t )+b1RVct+b2RV

j
t−

1
2
ln(1−2c)+

 z2

2
+γ2c−2cγz

1−2c

(RVct+RV
j
t )

|Ft−1



= EP

e

zr− 1
2
ln(1−2c)+

zλc+b1+ z2

2
+γ2c−2cγz

1−2c

RVct+

zλj+b2+ z2

2
+γ2c−2cγz

1−2c

RV
j
t

|Ft−1



= ezr−
1
2
ln(1−2c)EP

e

zλc+b1+ z2

2
+γ2c−2cγz

1−2c

RVct

|Ft−1

EP

e

zλj+b2+ z2

2
+γ2c−2cγz

1−2c

RV
j
t

|Ft−1

 .
(10)

In the third line we have used the result that if Z ∼ N (0, 1) then

E
[
exp

(
x (Z + y)2

)]
= exp

(
−

1

2
ln (1− 2x) +

xy2

1− 2x

)
.

For a noncentred gamma random variable, from [33] we know that

EP
[
ex1RVct |Ft−1

]
= exp

−δW (x1, θ) + V (x1, θ)

d+

p∑
i=1

βiRVcs−i +

q∑
j=1

αj`s−j

 ,

where

V(x1, θ) =
θx1

1− θx1
, W(x1, θ) = ln(1− x1θ),
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and

x1(z, b1, c) = zλc + b1 +
1
2
z2 + γ2c− 2cγz

1− 2c
. (11)

For the computation of the last expectation in the final line of (10), we use the property
that if Zt is a compound Poisson process with rate ω and i.i.d. jump sizes Di, then

E
[
exZt |Ft−1

]
= exp (ω (MD(x)− 1)) , (12)

where MD(x) is the MGF of the jump size random variable D. Since sizes are distributed
according to a gamma distribution, we have

MD(x) =
1(

1− xθ̃
)δ̃ . (13)

From expressions (12) and (13) we obtain

EP
[
ex2RV

j
t |Ft−1

]
= exp

(
Θ̃J

(
x2, θ̃, δ̃

))
,

where

J (x2, θ̃, δ̃) =
1− (1− θ̃x2)δ̃

(1− θ̃x)δ̃
and x2(z, b2, c) = zλj + b2 +

1
2
z2 + γ2c− 2cγz

1− 2c
.

Gathering all the previous results, we finally conclude

EP
[
ezyt+b·RVt+c`t |Ft−1

]
=

exp

zr − 1

2
ln(1− 2c) + V(x1, θ)

d+

p∑
i=1

βiRVct−i +

q∑
j=1

αj`t−j


−δW(x1, θ) + Θ̃J (x2, θ̃, δ̃)

 .
The direct comparison of the last expression with (9) allows to derive the following explicit
expressions

A(z,b, c) = zr −
1

2
ln(1− 2c)− δW(x1, θ) + dV(x1, θ) + Θ̃J (x2, θ̃, δ̃) , (14)

Bi(z, b1, c) = V(x1, θ)βi , (15)

Cj(z, b1, c) = V(x1, θ)αj . (16)

As shown in [41], once we have above expressions we obtain

φP (t, T, z) = EP [ezyt,T |Ft] = exp

(
at +

p∑
i=1

bt,iRVct+1−i +

q∑
i=1

ct,i`t+1−i

)

where

as = as+1 + zr −
1

2
log(1− 2cs+1,1) + dV(xcs+1, θ)− δW(xcs+1, θ) + Θ̃J (xjs+1, θ̃)

bs,i =

{
bs+1,i + V(xcs+1, θ)βi for 1 ≤ i ≤ p− 1

V(xcs+1, θ)βi for i = p
(17)

cs,i =

{
cs+1,i + V(xcs+1, θ)αi for 1 ≤ i ≤ q − 1

V(xcs+1, θ)αi for i = q
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with

xcs+1 = zλc + bs+1,1 +
1
2
z2 + γ2cs+1,1 − 2cs+1,1γz

1− 2cs+1,1
, (18)

xjs+1 = zλj +
1
2
z2 + γ2cs+1,1 − 2cs+1,1γz

1− 2cs+1,1
. (19)

The functions V, W and J are defined as above. The terminal conditions read aT = bT,i =
cT,j = 0 for i = 1, 2, ..., p and j = 1, 2, ..., q.

B No-arbitrage condition

The no-arbitrage conditions are

EP [Ms,s+1|Fs] = 1 for s ∈ N ,

EP [Ms,s+1e
ys+1 |Fs] = er for s ∈ N. (20)

The first relation is satisfied by definition of Ms,s+1. From a general result in [41], condi-
tion (20) is satified if, and only if

A(1− νy ,−ν, 0) = r +A(−νy ,−ν, 0) ,

Bi(1− νy ,−ν, 0) = Bi(−νy ,−ν, 0) ,

Cj(1− νy ,−ν, 0) = Cj(−νy ,−ν, 0) ,

with ν = (νc, νj). To conclude, it is sufficient to show under which conditions the following
two relations hold true

x1(1− νy ,−νc, 0) = x1(−νy ,−νc, 0) ,

x2(1− νy ,−νj , 0) = x2(−νy ,−νj , 0) .

Simple computations show that the latter equations are satisfied if and only if

νy = λc +
1

2
= λj +

1

2
.

Remarkably, the only specification for the log-return dynamics in Eq. (2) which ensures
consistency with no-arbitrage is the dynamics where the equity premia λc and λj are equal
and coincide to λ. Then, we obtain

νy = λ+
1

2
.

It is important to notice that the no-arbitrage condition for the equity premium does not
constrain the value of the variance risk premia νc and νj .

C Risk-neutral dynamics

JLHARG models imply a risk-neutral MGF for log-returns whose exponential affine terms
can be re-parametrized in order to obtain an expression formally equivalent to the physical
MGF. Firstly we observe that the risk-neutral MGF can be expressed with a recursive set of
expressions, involving a combination of the functions A, Bi, Cj . Then, recalling the results
given in [41], the MGF for JLHARG model under measure Q has the following form

φQνc νj νy (t, T, z) = EQ [ezyt,T |Ft] = exp

(
a∗t +

p∑
i=1

b∗t,iRVct+1−i +

q∑
i=1

c∗t,i`t+1−i

)
,
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where

a∗s = a∗s+1 + zr −
1

2
log(1− 2c∗s+1,1) + dV(xc ∗s+1, θ)− dV(yc ∗s+1, θ)

− δW(xc ∗s+1, θ) + δW(yc ∗s+1, θ) + Θ̃J (xj ∗s+1, θ̃)− Θ̃J (yj ∗s+1, θ̃)

b∗s,i =

{
b∗s+1,i +

(
V(xc ∗s+1, θ)− V(yc ∗s+1, θ)

)
βi for 1 ≤ i ≤ p− 1(

V(xc ∗s+1, θ)− V(yc ∗s+1, θ)
)
βi for i = p

(21)

c∗s,j =

{
c∗s+1,j +

(
V(xc ∗s+1, θ)− V(yc ∗s+1, θ)

)
αj for 1 ≤ j ≤ q − 1(

V(xc ∗s+1, θ)− V(yc ∗s+1, θ)
)
αj for j = q

where

xc ∗s+1 = (z − νy)λ+ b∗s+1,1 − νc +

1
2

(z − νy)2 + γ2c∗s+1,1 − 2c∗s+1,1γ(z − νy)

1− 2c∗s+1,1

xj ∗s+1 = (z − νy)λ− νj +

1
2

(z − νy)2 + γ2c∗s+1,1 − 2c∗s+1,1γ(z − νy)

1− 2c∗s+1,1

yl ∗s+1 = −νyλ− νl +
1

2
ν2y ,

with l = c, j and the terminal conditions are a∗T = b∗T,i = c∗T,j = 0 for i = 1, 2, ..., p and
j = 1, 2, ..., q.

The first passage consists in comparing expression (21) with (17). We have to find a set
of new parameters for which the recursive expressions for a∗t , b

∗
t , c
∗
t under Q correspond to

the expressions under P. We start defining

xc ∗∗s+1,i = zλ∗ + b∗s+1,1 +

1
2
z2 + (γ∗)2c∗s+1,1 − 2c∗s+1,1γ

∗z

1− 2c∗s+1,1

,

xj ∗∗s+1,i = zλ∗ +

1
2
z2 + (γ∗)2c∗s+1,1 − 2c∗s+1,1γ

∗z

1− 2c∗s+1,1

.

Then, the following relations have to hold

δ
(
W
(
xc ∗s+1, θ

)
−W (yc ∗, θ)

)
= δ∗W

(
xc ∗∗s+1, θ

∗) (22)

βi
(
V
(
xc ∗s+1, θ

)
− V (yc ∗, θ)

)
= β∗i V

(
xc ∗∗s+1, θ

∗) (23)

αj
(
V
(
xc ∗s+1, θ

)
− V (yc ∗, θ)

)
= α∗jV

(
xc ∗∗s+1, θ

∗) (24)

Θ̃
(
J
(

xj ∗s+1, θ̃
)
− J

(
yj ∗, θ̃

))
= Θ̃∗J

(
xj ∗∗s+1, θ̃

∗
)

(25)

with yc ∗ = −λ2/2− νc + 1
8

and yj ∗ = −λ2/2− νj + 1
8

.
Equation (22) can be explicitly written as

δ log

[
1−

θ

1− θyc ∗
(
xc ∗s+1 − yc ∗

)]
= δ∗ log

(
1− θ∗xc ∗∗s+1

)
,

which implies the following three sufficient conditions

δ∗ = δ

θ∗ =
θ

1− θyc ∗

xc ∗∗s+1 = xc ∗s+1 − yc ∗. (26)
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It can be easily verified that the last condition (26) is satisfied by substituting

λ∗c = −
1

2
,

γ∗ = γ + λ+
1

2
.

The equation (23) can be equivalently expressed in the form

βi

1− θyc ∗
θ

1− θyc ∗
xc ∗s+1 − yc ∗

1− θ/(1− θyc ∗)
(

xc ∗s+1 − yc ∗
) = β∗i

θ∗xc ∗∗s+1

1− θ∗xc ∗∗s+1

which gives another sufficient condition for the mapping

β∗i =
βi

1− θyc ∗
.

An analogous consideration about the third condition (24) allows to obtain the condition
on α∗i ,

α∗i =
αi

1− θyc ∗
.

Relation (8) gives us the expressions for β∗d , β∗w, β∗m, α∗d, α∗w and α∗m. Finally, equation (25)
provides the last sufficient condition

Θ̃(
1− θ̃yj ∗

)δ̃ 1−
((

1− θ̃xj ∗s+1

)
/
(

1− θ̃yj ∗
))δ̃

((
1− θ̃xj ∗s+1

)
/
(

1− θ̃yj ∗
))δ̃ = Θ̃∗

1− (1− θ̃∗xj ∗∗s+1)δ̃
∗

(1− θ̃∗xj ∗∗s+1)δ̃∗
,

which is satisfied if

δ̃∗ = δ̃ ,

Θ̃∗ =
Θ̃(

1− θ̃yj ∗
)δ̃ ,

θ̃∗ =
θ̃

1− θ̃yj ∗
,

xj ∗∗s+1 = xj ∗s+1 − yj ∗ . (27)

As it can be seen the last condition (27) is redundant when compared to the condition (26).
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