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Abstract

A growing line of research makes use of structural changes and different volatility regimes found

in the data in a constructive manner to improve the identification of structural parameters in

Structural Vector Autoregressions (SVARs). A standard assumption made in the literature is

that the reduced form unconditional error covariance matrix varies while the structural para-

meters remain constant. Under this hypothesis, it is possible to identify the SVAR without

needing to resort to additional restrictions. With macroeconomic data, the assumption that

the transmission mechanism of the shocks does not vary across volatility regimes is debatable.

We derive novel necessary and sufficient rank conditions for local identification of SVARs, where

both the error covariance matrix and the structural parameters are allowed to change across

volatility regimes. Our approach generalizes the existing literature on ‘identification through

changes in volatility’ to a broader framework and opens up interesting possibilities for practi-

tioners. An empirical illustration focuses on a small monetary policy SVAR of the U.S. economy

and suggests that monetary policy has become more effective at stabilizing the economy since

the 1980s.
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I. Introduction

Structural Vector Autoregressions (SVAR) are widely used for policy analysis and to provide

stylized facts about business cycle. As is known, it is necessary to identify the structural shocks

to run policy simulations. Magnusson and Mavroeidis (2014) have recently shown how struc-

tural changes, which are pervasive in the macroeconomy, can be used constructively to identify

structural relations which are time invariant. In this paper, we focus on the identification of

SVARs characterized by changes in the error covariance matrix, allowing for changes also in the

structural parameters.

The identification of structural dynamic macro models through heteroskedasticity was ori-

ginally proposed by Rigobon (2003), who formalized the intuition that the information that

there exist different volatility regimes in the data represents an ‘additional’ identification source

that can be exploited to identify the shocks without the need to resort to other type of restric-

tions.1 Lanne and Lütkepohl (2008) have extended this idea to the case of SVARs, see also

Lanne and Lütkepohl (2010), Lanne et al. (2010) and Ehrmann et al. (2011).2 However, this

literature is exclusively based on the idea that the structural parameters remain constant across

volatility regimes. This assumption appears reasonable in certain applications, but is in gen-

eral questionable with macroeconomic data, where there is widespread evidence of parameter

instability. It is well recognized that structural breaks may have marked consequences on both

the transmission and propagation mechanisms of the shocks.

This paper shows that the identification approach suggested by Rigobon (2003) and Lanne

and Lütkepohl (2008) can be generalized to a broader framework, opening up interesting pos-

sibilities for SVAR’s practitioners. By applying the seminal identification rules of Rothenberg

(1971), we derive novel necessary and sufficient rank conditions for local identification which

apply when discrete permanent (not recurring) breaks occur simultaneously in the reduced form

VAR error covariance matrix and in the (structural) parameters which define the relationships

between the VAR disturbances and the structural shocks. The results in Rigobon (2003) and

Lanne and Lütkepohl (2008) obtain as special cases of our analysis. Unlike Rigobon (2003) and

Lanne and Lütkepohl (2008), in our setup the patterns of SVAR impulse response functions

may vary across volatility regimes.

As is known, structural changes offer identifying power only if some parameters do not

change. The difficult open question is what these parameters are. In our approach, different

structural models are imposed on different volatility regimes through a balanced combination

of the statistical information provided by the data, and ‘conventional’ linear restrictions. It is

economic reasoning that provides indications about which are the structural parameters likely

1In the recent literature, Sentana (1992) and Sentana and Fiorentini (2001) have introduced similar ideas in
the context of factor models, Klein and Vella (2010) and Lewbel (2010) in the context of simultaneous systems
of equations. See also Keating (2004) for the case of SVARs.

2Other examples include Caporale et al. (2005a), King et al. (1994), Caporale et al. (2005b), Rigobon and
Sack (2003, 2004) and Normandin and Phaneuf (2004).
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to change across the volatility regimes, and which are the structural parameters which are likely

to remain unchanged.

Our approach opens up interesting possibilities for practitioners. We discuss new identific-

ation schemes that stem from our analysis, using examples taken from the empirical monetary

policy literature. SVARs which would typically be unidentified in the case of constant structural

parameters, can be identified or overidentified and hence tested against the data, when also the

structural parameters are allowed to vary across volatility regimes.

To illustrate the usefulness of our approach, we identify and estimate a small monetary

policy SVAR for the U.S. economy, using quarterly data and two regimes of volatility. Our

empirical evidence suggests that in spite of a general reduction in the volatility of the shocks,

the response of U.S. monetary policy changed in the move from the ‘pre-Volcker’ period to the

‘Great Moderation’ period.

The remainder of this paper is organized as follows. In Section II we discuss the back-

ground and motivations of our paper. In Section III we derive our main result by providing the

necessary and sufficient rank conditions for local identification. In Section IV we present an

empirical illustration where we estimate a small monetary policy SVAR of the U.S. economy,

using quarterly data and two volatility regimes. Section V contains some concluding remarks.

An online Technical Supplement complements the results of the paper in several dimensions.3

Throughout the paper we use the following notation, matrices and conventions, most of

which are taken from Magnus and Neudecker (2007). Kn is the n2 × n2 commutation matrix,

i.e. the matrix such that Knvec(M) = vec (M ′) where M is n × n, and Dn is the duplication

matrix, i.e. the n2 × 1
2n(n + 1) full column rank matrix such that Dnvech(M) = vec(M),

where vech(M) is the column obtained from vec(M) by eliminating all supra-diagonal elements.

Given Kn and Dn, Nn:=1
2 (In2 +Kn) is a n2 × n2 matrix such that rank(Nn) = 1

2n(n+ 1) and

D+
n :=(D′nDn)−1D′n is the Moore-Penrose inverse of Dn. Finally, when we say that the matrix

M :=M(v), whose elements depend (possibly nonlinearly) on the elements of the vector v, ‘has

rank r evaluated at v0’, we mean that v0 is a ‘regular point’, i.e. that rank(M)=r does not

change within a neighborhood of v0.

II. Background and motivations

In this section, we present the basic econometric framework upon which our analysis will be

developed. To fix main ideas and notation, we first review the standard approach to the identi-

fication of SVARs, and then move to the mechanics of the ‘identification via changes in volatility’

method. Finally, we anticipate our contribution in this literature.

3The Technical Supplement is available at http://www.rimini.unibo.it/fanelli/TS Bacchiocchi Fanelli OBES.pdf
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Standard identification approach

Let Zt be the n× 1 vector of observable variables. Our reference reduced form model is given

by the VAR system with constant parameters:

Zt = A1Zt−1 + . . .+AkZt−k + ΨDt + εt , t = 1, ..., T (1)

where εt is a n-dimensional White Noise process with positive definite time-invariant covariance

matrix Σε:=E(εtε
′
t), Aj , j = 1, ..., k are n × n matrices of time-invariant coefficients, k is the

VAR lag order, Dt is an m-dimensional vector containing deterministic components (constant,

trend and dummies), and Ψ is the n × m matrix of associated coefficients. T is the sample

length.

We compact the VAR system (1) in the expression

Zt = ΠWt + εt , t = 1, ..., T (2)

where Wt:=(Z ′t−1, ..., Z
′
t−k, D

′
t) and Π:=(A,Ψ). The matrix Π is n× f , f :=dim(Wt):=nk +m,

and the VAR reduced form parameters are collected in the p-dimensional vector θ:=(π′, σ′+)′,

where π:=vec(Π) and σ+:=vech(Σ), p:=nf + 1
2n(n+ 1).

The SVAR we are interested in this paper is defined by

εt:=Cet , E(ete
′
t):=In , Σε=CC

′ (3)

where C is a non-singular n×n matrix of structural parameters and et is a n-dimensional i.i.d.

vector of structural shocks with covariance matrix normalized to In.4 As is known, the system

(2)-(3) is unidentified without any restriction on the elements of the C matrix. The standard

way to achieve identification is to include a set of linear restrictions on C that we write in

‘explicit form’

vec(C):=GC γ + gC . (4)

In Eq. (4), GC is a n2 × aC selection matrix, γ is aC × 1 and contains the ‘free’ elements of C,

and gC is a n2 × 1 vector. The information required to specify the matrix GC and the vector

gC usually comes from the economic theory or from structural and institutional knowledge

related to the problem under study. The condition aC :=dim(γ)≤ n(n + 1)/2 is necessary for

identification. Necessary and sufficient condition for identification is that the n(n+ 1)/2× aC
4We consider the formulation in Eq. (3) of the SVAR (the ‘C-model’, using the terminology in Amisano and

Giannini, 1997) because it is largely used in empirical analysis, although our approach is consistent with the
alternative specification

Kεt:=et , E(ete
′
t):=In

(termed ‘K-model’ in Amisano and Giannini, 1997) where K:=C−1.
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matrix

2D+
n (C ⊗ In)GC (5)

has full column rank evaluated at C0, where C0 denotes the counterpart of C that fulfills

the restriction vec(C0):=GCγ0 + gC , and γ0 is the ‘true’ value of γ, see e.g., Giannini (1992),

Hamilton (1994) and Amisano and Giannini (1997).5

To avoid confusion, throughout the paper we call ‘reduced form parameters’ the elements in

the vector θ, and ‘structural parameters’ the elements of the vector γ and, possibly, the variances

of the structural shocks et when these are not normalized to one. If the rank condition in Eq.

(5) holds, the orthogonalized impulse response functions (IRFs) are taken from the matrices

Ξh:=[ψlm,h]:=ΦhC̆:=(J ′ÅhJ)C̆, h = 0, 1, 2, ..., where

Å:=

(
A

In(k−1) , 0n(k−1)×n

)
(6)

is the VAR companion matrix, J :=(In, 0, . . . , 0) and C̆ denotes a specification of C such that

the matrix in Eq. (5) has full column rank. The coefficient ψlm,h captures the response of

variable l to a one-time impulse in variable m, h periods before.6

Identification through heteroskedasticity

In a seminal contribution, Rigobon (2003) proposed an alternative way to solve the identification

problem in simultaneous systems of equations that can be extended to the case of SVARs. The

distinctive feature of Rigobon’s (2003) approach is that when the data are characterized by (at

least) two different regimes of volatility, the identification of the shocks can be achieved without

linear constraints of the type in Eq. (4).

Without any loss of generality, we consider a bivariate SVAR model for the vector Zt =

(Z1t, Z2t)
′ and assume that the data generating process belongs to the class of models described

by the system (2)-(3). We further assume that at time t=TB, where 1 < TB < T , the variance

5Giannini (1992) and Amisano and Giannini (1997) derive the necessary and sufficient identification rank
condition by referring to linear restrictions in ‘implicit form’. The necessary and sufficient rank condition in Eq.
(5) can be checked ex-post at the ML estimate but also prior to estimation at random points drawn uniformly
from the parameter space, see e.g. Giannini (1992). Iskrev (2010) applies the same idea to check the identification
of DSGE models. Lucchetti (2006), instead, has shown that Eq. (5) can be replaced with a ‘structure condition’
which is independent on the knowledge of the structural parameters but is still confined to the local identification
case. Rubio-Ramirez et al. (2010) have established novel sufficient conditions for global identification in SVARs
and necessary and sufficient conditions for exactly identified systems.

6The identification of C can also be achieved by complementing the symmetry restrictions Σ = CC′ with a
proper set of constraints on the matrix

Ξ∞:=(In −A1 − · · · −Ak)−1C:=
∞∑

h=0

ΦhC:=J ′(Ink − Å)−1JC

which measures the long run impact of the structural shocks on the variables (Blanchard and Quah,1989).
Constraints on Ξ∞ can be used in place of, or in conjunction with, the ‘short run’ restrictions in Eq. (4).
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of the data changes in the sense that the two sets of observations Z1, ..., ZTB and ZTB+1, ..., ZT

are characterized by the two (distinct) VAR covariance matrices Σε,1 and Σε,2, respectively,

where

Σε,i:=

(
σ11.i σ12.i

σ22.i

)
, i = 1, 2.

Consider the relationship εt:=Cet, where et is the vector of structural shocks. Rigobon’s (2003)

identification approach is based on the joint use of the moment conditions

Σε,1 = CΛ1C
′ , Σε,2 = CΛ2C

′
(7)

where C, Λ1 and Λ2 are defined by

C:=

(
c11 c12

c21 c22

)
, Λ1:=

(
λ11.1 0

0 λ22.1

)
, Λ2:=

(
λ11.2 0

0 λ22.2

)

and the matrices Λ1 and Λ2 collect the variances of the structural shocks in the two volat-

ility regimes. Eq. (7) links the reduced form coefficients σ+:=(vech(Σε,1)
′, vech(Σε,1)

′)′ =

(σ11.1, σ22.1, σ21.1, σ11.2, σ22.2, σ21.2)
′ to the structural form parameters in the matrices C, Λ1

and Λ2. If, as is standard in the SVAR literature, Λ1 is normalized to be the identity matrix,

I2, the six structural parameters ϑ:=(c11, c12, c21, c22, λ11.2, λ22.2)
′, can be recovered uniquely

from σ+ by solving system (7).

This identification approach has been extended by Lanne and Lütkepohl (2008) to the case

of SVARs, where dim(Zt)=n > 2. Lanne and Lütkepohl (2008) exploit the algebraic result

according to which the condition Σε,1 6= Σε,2 guarantees the simultaneous factorization (e.g.

Horn and Johnson, 1985, Corollary 7.6.5)

Σε,1=PP
′ , Σε,2=PV P

′
(8)

where P is a n × n non-singular matrix and V :=diag(v1, ..., vn) 6= In is a diagonal matrix with

distinct positive elements vi > 0, i = 1, ..., n. Identification in this setup is achieved by setting

C:=P and Λ2:=V , where the choice C:=P is unique except for sign changes if all vi’s are distinct.

Our contribution

The ‘purely statistical’ approach to the identification of SVARs put forth by Rigobon (2003)

and Lanne and Lütkepohl (2008) has important implications for the transmission mechanisms

of the shocks. In their framework, the structural break at time TB affects only the VAR error

covariance matrix, hence the IRFs computed on the sub-samples Z1, ..., ZTB and ZTB+1, ..., ZT

remain unchanged, i.e. they have the same time patterns across the two volatility regimes.
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Our paper contributes to this literature by relaxing the restrictive assumption that the

changes in the volatility of the data have no impact on the transmission mechanisms of the

shocks. In the next sections, we develop a new theoretical framework where also the structural

parameters contained in the matrix C may vary across volatility regimes, still contributing to

the identification of the SVAR. When it is known that SVAR parameters, including the elements

of C, change at time TB, VAR practitioners typically deal with two distinct SVARs: one for the

sub-sample Z1, ..., ZTB and the other for the sub-sample ZTB+1, ..., ZT . Interestingly, we show

that our approach leads to new identification schemes, which can be fruitfully implemented

empirically, without the need to recur to distinct SVARs.

In the Technical Supplement, we show in detail that the results in Rigobon (2003) and

Lanne and Lütkepohl (2008) can be obtained as special cases of our approach.

III. Identification analysis

Consider the SVAR summarized in Eq.s (2)-(3) and assume that at time TB, 1 < TB < T , the

unconditional reduced form covariance matrix Σε changes. We denote with Σε,1 and Σε,2 the

covariance matrix before and after the break, respectively. Without any loss of generality, we

focus on the case of a single break, i.e. two volatility regimes. Results are extended to the case

of a finite number s ≥ 2 of breaks in the Technical Supplement. In this section, we discuss

the representation of the reference SVAR and then introduce our main necessary and sufficient

conditions for local identification in Proposition 1. Finally, we present some new identification

schemes, consistent with Proposition 1, by considering two examples taken from the empirical

monetary policy literature.

Representation

The reference reduced form VAR is given by:

Zt = Π(t)Wt + εt , Σε(t):=E(εtε
′
t) , t = 1, ..., T (9)

where

Π(t):=Π1 × 1 (t ≤ TB) + Π2 × 1 (t > TB) , t = 1, ..., T (10)

Σε(t):=Σε,1 × 1 (t ≤ TB) + Σε,2 × 1 (t > TB) , t = 1, ..., T, (11)

1 (·) is the indicator function, Π1:=(A1,Ψ1) and Π2:=(A2,Ψ2) are the n× f matrices contain-

ing the autoregressive coefficients before and after the break, respectively. As it stands, the

specification in Eq.s (9)-(11) covers the case in which the structural break affects both the

autoregressive coefficients and the error covariance matrix. The changes in the latter are of
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crucial importance in our approach. Thus we consider the following assumption.

Assumption 1 [Change in the reduced form error covariance matrix] Given the VAR

system in Eq.s (9)-(11), TB ≥ f and T − (TB + 1) ≥ f , and it holds that

σ+1:=vech(Σε,1) 6= σ+2:=vech(Σε,2).

The main implication of Assumption 1 is that the two sub-samples Z1, ..., ZTB and ZTB+1, ..., ZT

are characterized by two distinct regimes of volatility (and there are sufficient observations to

estimate the VAR in each regime). In our framework, the autoregressive coefficients in Eq. (10)

may change or may be equal at time TB, i.e. both cases Π1 6= Π2 and Π1=Π2 are consistent

with the identification analysis of the SVAR presented below. The break date, TB, can be either

known, a common assumption in macroeconomic analysis in which permanent (not recurring)

events that lead to relevant institutional or behavioral changes are typically identified ex-post,

or can be inferred from the data by applying any method suited to detect changes in the co-

variance matrix of the disturbances in multivariate regression models, see e.g. Qu and Perron

(2007) and references therein.

Given Assumption 1, we consider the following counterpart of the structural specification

in Eq. (3):

εt = Cet t ≤ TB (12)

εt = (C +Q) et t > TB (13)

where C and Q are two n × n matrices of structural parameters, and E(ete
′
t):=In. The non

zero elements of the matrix Q capture the changes in the structural parameters, if any, across

the two regimes.

The relationships in Eq.s (12)-(13) lead to the system of equations

Σε,1 = CC ′ (14)

Σε,2 = (C +Q) (C +Q)′ (15)

that links the reduced to the structural form parameters of the SVAR. The parametrization in

Eq.s (14)-(15) is more general that one might expect. Consider, for instance, the alternative

one

Σε,1 = CC ′

Σε,2 = (C +Q) Λ (C +Q)′ ,

in which the difference Σε,1 6= Σε,2 is (apparently) explained either by the change in the variance
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of the structural shocks et before (Λ1 = In) and after (Λ2 = Λ) the break, or by the different

impact of the shocks across volatility regimes if Q 6= 0n×n, or, possibly, by a combination of these

two factors. However, for every Q and any given Λ 6= In, one can always find a matrix Q∗ such

that the equality (C+Q)Λ(C+Q)′ = (C+Q∗)(C+Q∗)′ is respected, or Q∗ = (C+Q)Λ1/2−C.7

This means that any situation with apparent change in the volatilities of the structural shocks

across regimes, can be rewritten as one in which the volatility of the structural shocks remain

constant (and normalized to the identity matrix In), and only the structural parameters change

(via the Q matrix). This also explains why the parametrization in system (14)-(15) allows us

to nest the frameworks of Lanne and Lütkepohl (2008) and Rigobon (2003), see the Technical

Supplement for details.

The n(n+ 1) symmetry restrictions provided by Eq.s (14)-(15) are not in general sufficient

alone to identify the 2n2 elements in the matrices C and Q, hence it is necessary to add at least

2n2 − n(n + 1) = n(n − 1) restrictions on these matrices. Linear restrictions on the 2n2 × 1

vector ϑ:=(vec(C)′, vec(Q)′)′ can be imposed through a specification analogue to that in Eq.

(4), i.e. (
vec (C)

vec (Q)

)
:=

(
GC GI

0n2×aC GQ

) (
γ

q

)
+

(
gC

gQ

)
ϑ G ψ g

(16)

where the a×1 vector ψ:=(γ′, q′)′ contains the a = aC+aQ free elements of C andQ, respectively.

The matrix G and the vector g, of suitable dimensions, summarize the linear restrictions on C

and Q and GI is a selection sub-matrix through which it is possible to impose cross-restrictions

on the elements of these two matrices.

The next sub-section shows that the relationships in Eq.s (14)-(15) combined with the re-

strictions in Eq. (16) can be used to identify the reference SVAR.

Main result

Consider the VAR introduced in Eqs. (9)-(11), Assumption 1, and the set of restrictions in Eq.s

(14)-(16). We denote with γ0 and q0 the ‘true’ values of γ and q respectively, and with C0 and

Q0 the matrices obtained from Eq. (16) by replacing γ and q with γ0 and q0. Our main result

is summarized in the next proposition.

Proposition 1 [Identification of C and Q] Assume that the data generating process be-

longs to the class of SVARs in Eq.s (9)-(11) and Eq.s (12)-(13), and that the matrices C

and (C +Q) are non-singular, where C and Q are subject to the restrictions in Eq. (16).

Under Assumption 1, a necessary and sufficient rank condition for the SVAR to be locally

7We are indebted with a referee for this observation.



10
identified is that the n(n+ 1)× a matrix

(I2 ⊗D+
n )

(
(C ⊗ In) 0n2×n2

(C +Q)⊗ In (C +Q)⊗ In

)(
GC GI

0n2×aC GQ

)
(17)

has full column rank a evaluated at C:=C0 and Q:=Q0; necessary order condition is

a:=(aC + aQ) ≤ n(n+ 1). (18)

Proof. See Appendix.

When a=n (n+ 1) and the rank condition holds, the SVAR is ‘exactly identified’, while is

overidentified when a < n (n+ 1).

When the specified matrices C and Q meet the requirements of Proposition 1, the log-

likelihood of the SVAR can be maximized as described in the Technical Supplement and in

the working paper version of this article, see Bacchiocchi and Fanelli (2012). Moreover, if the

SVAR is overidentified, the n (n+ 1)−a overidentifying restrictions can be validated/rejected by

computing a (quasi-) likelihood ratio (LR) test that compares the log-likelihood of the structural

form and the log-likelihood of the reduced form. The (normalized) impulse responses implied

by the identified SVAR are given by

Ξ1,h:= [ψ1,lm,h] :=J ′(Å1)
hJC̆ , h = 0, 1, 2, ... ‘pre-change’ regime (19)

Ξ2,h:= [ψ2,lm,h] :=J ′(Å2)
hJ(C̆ + Q̆) , h = 0, 1, 2, ... ‘post-change’ regime (20)

where Å1 and Å2 are the companion matrices in the two volatility regimes, as described in Eq.

(6), and C̆ and Q̆ denote counterparts of C and Q such that the rank condition implied by

Proposition 1 is fulfilled. Note that irrespective of whether Å1 = Å2 or Å1 6= Å2, the two sets

of population impulse responses in Eq. (19) and Eq. (20) differ across volatility regimes when

Q 6= 0n×n. The coefficient ψi,lm,h captures the response of variable l to a one-time impulse in

variable m, h periods before, in the volatility regime i.

Identification schemes: some examples

Proposition 1 opens up new identification schemes for SVARs that we discuss with some ex-

amples taken from the monetary policy literature. The models presented below would not

be identified through the ‘standard’ identification approach summarized in Section II, or by

considering two distinct SVARs on the sub-samples Z1, ..., ZTB and ZTB+1, ..., ZT .

Example 1 [‘DSGE-consistent SVAR’] Consider the three-variable monetary policy SVAR



11
in which Zt:=(ỹt, πt, Rt)

′ (n:=3), where ỹt is a measure of the output gap, πt the inflation

rate and Rt a nominal policy interest rate. Imagine that a structural break changes the

error covariance matrix at time TB, and that the structural specification in Eq.s (12)-(13)

specializes to


ε1,t

ε2,t

ε3,t


εt

:=




c11 c12 c13

c21 c22 c23

c31 c32 c33


C

+


q11 0 0

0 q22 0

0 0 q33


Q

× 1 (t > TB)




e1,t

e2,t

e3,t

 . (21)

We interpret e3,t as the ‘monetary policy shock’, e1,t as the ‘output shock’ and e2,t as the

‘inflation shock’. Apparently, the SVAR in Eq. (21) is ‘close’ to the one based on the

factorization in Eq. (8). However, in Eq. (21) the instantaneous impact of the shock ej,t

on the variable Zj,t, j = 1, 2, 3 varies from cjj in the first volatility regime to cjj + qjj in

the second volatility regime. The specification in Eq. (21) is interesting because it can be

to some extent related to the debate about the consistency between SVAR analysis and

dynamic stochastic general equilibrium (DSGE) modeling, see Bacchiocchi et al. (2014).

As is known, small-scale new-Keynesian DSGE models of the type discussed, among many

others, in e.g. Lubik and Schorfheide (2004) and Carlstrom et al. (2009), typically ad-

mit an immediate reaction of output and inflation to monetary policy impulses, while

‘conventional’ triangular (Cholesky-based) SVARs feature a lag in such reactions. The

existing empirical evidence seems to suggest that monetary policy shocks exert a non-zero

instantaneous impact on macroeconomic variables like prices and output. For instance,

by employing their ‘DSGE-VAR’ approach, Del Negro et al. (2007) find Cholesky-based

SVARs to be implausible due to the very likely immediate reaction of output to a policy

shock. Likewise, Faust et al. (2004) show that the zero response of prices to a monetary

policy shock imposed by Cholesky-based SVARs is not supported by the data when dis-

turbances are inferred using high frequency futures data in a two-step procedure. Thus,

under the null of a valid DSGE model, triangular SVARs offer a misspecified represent-

ation of monetary policy shocks and their propagation, and can produce price puzzles

and muted responses of inflation and the output gap to monetary shocks, see Castelnuovo

and Surico (2010), Castelnuovo (2012b) and Bacchiocchi et al. (2014). In other words,

given εt:=Cet, the C matrix must be full with highly restricted non-zero coefficients for

the SVAR to be consistent with the predictions of a DSGE model. Eq. (21) suggests

that an identified SVAR featuring a full matrix C can be obtained on condition that the

response on impact of Zj,t to ej,t varies across volatility regimes. It is worth remarking,

however, that in our framework the SVAR does not embody the whole set of restrictions

on the VAR lag structure implied by DSGE models under rational expectations, and that
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the matrix C does not feature the highly nonlinear cross-equation restrictions implied by

these models. With a slight abuse of language, we denote the system defined by Eq. (21)

as ‘DSGE-consistent SVAR’, where by this term we mean a SVAR which, aside from the

cross-equation restrictions, features a full matrix C, so that all shocks hitting the modeled

economy are allowed to affect all variables contemporaneously, as typically predicted by

DSGE models.

Example 2 [SVAR with changing policy reaction function] Consider the same three-variable

monetary policy SVAR of the previous example, and the structural specification


ε1,t

ε2,t

ε3,t


εt

:=




c11 0 c13

0 c22 c23

c31 c32 c33


C

+


q11 0 0

0 q22 0

q31 q32 q33


Q

× 1 (t > TB)




e1,t

e2,t

e3,t


et

(22)

This model describes an heteroskedastic SVAR in which, in addition to the non-triangular

(non-recursive) structure similar to that in the Example 1, the last row of the specified

matrix Q accommodates changes in the parameters governing the response of the policy

reaction function to the structural shocks. In particular, the response on impact of the

nominal short term interest rate Rt to e1,t, e2,t and e3,t, is postulated to change from

the levels c3j in the ‘pre-break’ regime, to the levels c3j + q3j in the ‘post-break’ regime,

j = 1, 2, 3. Moreover, this system shares with the ‘DSGE-consistent SVAR’ presented

in the Example 1 the fact that the monetary policy shock may have an instantaneous

impact on the macroeconomic variables ỹt and πt in both volatility regimes, as implied

by the non-zero specification of the last column of the matrix C. As it stands, however,

the specification in Eq.s (22) meets the necessary order condition of Proposition 1 (indeed

aC :=dim(γ)=7, aQ:=dim(q) = 5, so that there are a=12 structural parameters and n(n+

1)=12 estimable moments in the covariance matrices Σε,1 and Σε,2), but does not satisfy

the necessary and sufficient rank condition in Eq. (17). (Over)identification is achieved

by imposing e.g. the (testable) restriction q33 = 0 in the Q matrix. This restriction

maintains that the response of the short term interest rate to monetary policy shocks is

invariant across the two volatility regimes. The specification in Eq. (22) will be estimated

and tested in the next section, using U.S. quarterly data.

IV. Empirical illustration

In this section, we apply the identification rules derived in Section III to estimate a small monet-

ary policy SVAR using U.S. quarterly data. As in Lanne and Lütkepohl (2008), we identify the

shocks by exploiting the change in volatility that occurred across several macroeconomic time
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series in the transition from the ‘pre-Volcker’ (or ‘Great Inflation’) to the ‘Great Moderation’

regimes, documented, among many others, in McConnell and Perez-Quiros (2002) and Boivin

and Giannoni (2006). Our SVAR is based on the vector Zt:=(ỹt, πt, Rt)
′ (n:=3), where ỹt is

a measure of the output gap, πt the inflation rate and Rt a nominal policy interest rate. We

deal with quarterly data, sample 1954.q3-2008.q3 (including initial values). The measure of real

activity, ỹt, is the Congressional Budget Office (CBO) output gap, constructed as percentage

log-deviations of real GDP with respect to CBO potential output. The measure of inflation, πt,

is the annualized quarter-on-quarter GDP deflator inflation rate, while the policy instrument,

Rt, is the Federal funds rate (average of monthly observations). The data were collected from

the website of the Federal Reserve Bank of St. Louis.

Here below we discuss the identification and estimation of the SVAR for Zt:=(ỹt, πt, Rt)
′

and then we summarize some robustness checks.

A small monetary policy SVAR

In line with the empirical literature on the ‘Great Moderation’, we divide the postwar period

1954.q3-2008.q3 into two sub-samples: the ‘pre-Volcker’ period, 1954.q3-1979.q2, and the ‘Great-

Moderation’ period, 1979.q3-2008.q3. This choice is consistent with Boivin and Giannoni

(2006).8 In our notation, TB:=1979.q2, and hereafter this date will be treated as known.

Our statistical tests, presented below, confirm that the two sub-periods 1954.q3-1979.q2 and

1979.q3-2008.q3 can be regarded as two periods characterized by different volatilities. The

modeled reduced form VAR is a system with six lags (k:=6) and a constant. The VAR lag or-

der is obtained by combining LR-type reduction tests with standard information criteria. Table

1 reports the estimated covariance matrices of the VAR and some (multivariate) residual dia-

gnostic tests relative to the entire period and the two sub-periods, respectively. The Technical

Supplement motivates our choice of treating the VAR for Zt:=(ỹt, πt, Rt)
′ as an approximately

stationary system on both sub-periods, and checks the robustness of our specification to a

different choice of the VAR lag order.

Table 1 roughly here

We test for the occurrence of a break at time TB:=1979.q2 in the reduced form coefficients

θ:=(π′, σ′+)′ of the VAR, in particular in the error covariance matrix σ+. We first apply a

8We are aware that many other choices for TB are equally possible: an alternative would be to start the
second period in 1984.q1 as in e.g. McConnell and Perez-Quiros (2002). It is worth observing that the period
1979.q3-2008.q3 includes the three-year window, 1979-1982, known as the ‘Volcker experiment’, during which the
Federal Reserve implemented monetary policy actions by dealing with non-borrowed reserves, more than with
the federal fund rate. As a result, the IRFs we compute on the ‘post-Volcker’ period (see Figure 1 and Figure
2 below) might be affected by the course of this ‘non-standard’ policy. Unfortunately, the sub-period 1979.q3-
1984.q1 is not long enough to allow for the consideration of two break dates and three potential volatility regimes
in the empirical analysis.
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standard Chow-type (quasi-)LR test for the (joint) null H0: θ1=θ2:=θ against the alternative

H1: θ1 6= θ2, where p:=dim(θ):=63. The results (Table 1) suggest that H0 is strongly rejected

because the (quasi-)LR test is equal to LR:=-2[719.98-(322.86+488.96)]=183.68 and has a p-

value of 0.000 (taken from the χ2(63) distribution). We then test the null H
(1)
0 :σ+1 = σ+2 =

σ+ vs H
(1)
1 :σ+1 6= σ+2 while maintaining the assumption that π1=π2=π. The results of the

computed (quasi-)LR test also lead us to strongly reject the null H
(1)
0 . We find formal support

to the hypothesis that our ‘pre-Volcker’ and ‘Great moderation’ samples are characterized by

two distinct volatility regimes.

We next move to the identification of the structural shocks, considering the schemes dis-

cussed in the two examples of Section III. We denote with M1 the exactly identified ‘DSGE-

consistent SVAR’ in the Example 1, see Eq. (21), and with M2 the ‘SVAR with changing

policy reaction function’ in the Example 2, see Eq. (22). Given the vector of structural shocks

et:=(eỹt , e
π
t , e

R
t )′, we call eRt the ‘monetary policy shock’, eỹt the ‘output shock’ and eπt the

‘inflation shock’.

The (quasi-)ML estimates of the structural parameters of M1 and M2 are summarized in

Table 2, which also reports the log-likelihood associated with each model and the (quasi-)LR

test for the overidentifying restriction for M2. Many studies based on SVARs typically find

that U.S. monetary policy shocks have had a much smaller impact on output gap and inflation

since the beginning of the 1980s. Overall, the results in Table 2 seem to confirm such evidence.

In addition, we detect significant changes to the structural parameters in the move from the

‘pre-Volcker’ to the ‘Great Moderation’ period, because the specified elements in the Q matrices

are found to be highly significant in both estimated SVARs. However, we also notice that as

concerns model M1, the sign of the estimated parameters relative to the ‘Great Moderation’

period (i.e. the elements of the matrices Ĉ + Q̂, last column of Table 2) are not consistent

with what a small monetary policy DSGE model would predict. This result admits at least two

explanations. First, the estimated SVAR M1 does not feature the cross-equation restrictions

implied by a monetary DSGE model (see the discussion in the Example 1). Second, the system

might omit, as it stands, important transmission mechanisms, see Bacchiocchi et al. (2014).

Table 2 roughly here

The results stemming from the SVAR M2 are more interesting. Table 2 shows that model

M2 is strongly supported by the data by the (quasi-)LR test for the overidentifying restriction,

which has a p-value equal to 0.34. Figure 1 displays, for both volatility regimes, the IRFs

implied by M2 relative to the monetary policy shock, eRt , with associated 95% (asymptotic)

confidence interval, over a horizon of 20 periods. To improve the comparability of the IRFs, we

have normalized the quarterly response on impact of the Federal funds rate Rt to a monetary

policy shock eRt at the value 0.25 in both volatility regimes. The pattern of the two sets of
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impulse responses reveals the change in the monetary policy conduct. The key result from the

comparison of the ‘pre-Volcker’ period (left column) and the ‘Great Moderation’ period (right

column) in Figure 1 is that the effect of a monetary policy shock was stronger before the 1980s.9

Figure 2 displays instead the response of the Federal funds rate to the shocks eỹt and eπt , re-

spectively, for both samples. While the sensitivity of the short term nominal interest rate to the

two shocks seems to be weak prior to the 1980s, the Fed’s responsiveness to these two shocks is

clear cut in the ‘Great Moderation’ period. According to a large (but much debated) strand of

the literature, this evidence reflects the switch to a more aggressive (‘active’) policy intended

to rule out the possibility of sunspot fluctuations induced by self-fulfilling expectations, see e.g.

Clarida et al. (2000).

Robustness of the results

We conduct some experiments to check the robustness of our results to the specification of a

different VAR lag order, the use of output growth in place of the output gap, and the inclusion

of monetary balances. The details of these analyses are reported in the Technical Supplement,

and unequivocally indicate that the core results discussed in the previous sub-section are indeed

robust. We briefly summarize the main findings.

Different lag order. We consider a different dynamic specification based on a VAR with four

lags, as suggested by many empirical contributions in the literature, see, among many others,

Christiano et al. (2005). We strongly reject the null hypothesis of constant covariance matrices

before and after time TB:=1979.q2, and the set of IRFs implied by the SVAR M2 does not

differ qualitatively from the IRFs reported in Figure 1 and Figure 2.

Output growth. The output gap is largely used in the empirical literature and should be

preferred, in our context, to other measures of economic activity for reasons discussed in e.g.

Giordani (2004). However, it might reasonably be affected by measurement errors. The natural

alternative is to replace the output gap with real output growth, ∆yt (under the hypothesis that

yt is integrated of order one and πt and Rt are stationary). The estimation of the SVAR M2

based on Z∗t :=(∆yt, πt, Rt)
′ shows that there are still two distinct regimes of volatility before

and after TB:=1979.q2, and that the implied IRFs do not differ qualitatively from the IRFs

reported in Figure 1 and Figure 2.

Omitted variables: the role of money. A variety of recent empirical studies suggests that

omitting money balances in the analysis of the monetary transmission mechanisms can produce

severely distorted inference, see, inter alia, Canova and Menz (2009), Favara and Giordani

9A further remarkable fact that emerges from the impulse responses in Figure 1 is the absence of the ‘price
puzzle’ in the ‘post-Volcker’ period. This evidence, which is also documented in e.g. Barth and Ramey (2001),
Hanson (2004), Boivin and Giannoni (2006) and Castelnuovo and Surico (2010), supports the view that the ‘price
puzzle’ phenomenon is far more evident in situations in which the central bank responds weakly to inflationary
dynamics.
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(2009) and Castelnuovo (2012a). A thorough investigation of the role of monetary aggregates

in the dynamics of U.S. business cycle and the actual transmission mechanisms at work goes well

beyond the scopes of our paper. We limit our attention to check the robustness of our results to

considering the identification and estimation of a SVAR based on Z∗∗t :=(ỹt, πt, Rt,∆mrt)
′, where

∆mrt is the growth rate of real money balances. The variable mrt:=mt − pt is constructed by

taking the log of the M2 money stock divided by the GDP deflator (source: website of the Federal

Reserve Bank of St. Louis). Also in this case, we strongly reject the null hypothesis of constant

covariance matrices for the VAR for Z∗∗t :=(ỹt, πt, Rt,∆mrt)
′ before and after time TB:=1979.q2.

To identify the SVAR, we exploit part of the (non-triangular) identifying restrictions already

used for the SVAR M2, see the Technical Supplement. In addition, we postulate that the

response on impact of real money growth to the output gap shock is non-zero on the ‘pre-Volcker’

period and is zero on the ‘Great Moderation’ period, as a consequence of the increasing attention

of firms towards financial markets. Overall, our empirical results show that even controlling for

real money growth, the IRFs obtained with our baseline three-equation SVAR M2 in Figure 1

and Figure 2 remain qualitatively unchanged.

V. Conclusions

A recent strand of the literature makes use of the heteroskedasticity found in the data to identify

SVARs. The maintained assumption in this literature is that the structural parameters remain

constant when the VAR covariance matrix changes. This approach reflects the intuition that

structural changes may offer identifying power if some parameters do not change, see Magnusson

and Mavroeidis (2014) for a comprehensive discussion.

In this paper, we have relaxed the assumption that all structural parameters are invariant

to volatility regimes. We have derived novel necessary and sufficient rank conditions that

generalize the contributions of other authors on the identification of heteroskedastic SVARs.

We have illustrated the usefulness of our approach by focusing on a small-scale monetary policy

SVAR model estimated using U.S. quarterly data. Overall, our results support the view that

monetary policy has become more effective at stabilizing the economy since the 1980s.

Appendix: Proof of Proposition 1

We write the mapping between the reduced- and structural-form parameters in Eq.s (14)-(15)

in the form

σ∗+ = h(ψ)

where σ+:=(σ′+1, σ
′
+2)
′, ψ:=(γ′, q′)′, and h(·) is a nonlinear differentiable vector function. Given

the constraints in Eq. (16) and following Rothenberg (1971), necessary and sufficient condition
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for local identification is that the n(n+ 1)× a Jacobian matrix

∂σ∗+
∂ψ′

:=
∂σ∗+
∂ϑ′
× ∂ϑ

∂ψ′
=
∂σ∗+
∂ϑ′
×G (23)

has full column rank a:=aC + aQ, evaluated a ψ0. The necessary order condition a ≤ n(n+ 1)

is therefore obvious.

To compute the n (n+ 1)×
(
2n2 + n

)
matrix

∂σ∗+
∂ϑ′ , it is convenient to apply the first differ-

ential and standard matrix algebra rules to the system in Eqs. (14)-(15), obtaining

2Nn (C ⊗ In) vecdC = 0n2×1 (24)

2Nn ((C +Q)⊗ In) vecdC + 2Nn ((C +Q)⊗ In) vecdQ = 0n2×1. (25)

However, Nn = DnD
+
n , implying that among the set of n2 equations of the system (24)-(25),

only n (n+ 1) /2 are linearly independent, and in particular, those given by

2D+
n (C ⊗ In) vecdC = 0 1

2
n(n+1)×1

2D+
n ((C +Q)⊗ In) vecdC + 2D+

n ((C +Q)⊗ In) vecdQ = 0 1
2
n(n+1)×1.

It turns out that up the the multiplicative scalar “2”, the derivative
∂σ∗+
∂ϑ′ can be written as

∂σ∗+
∂ϑ′

=

 D+
n 0 1

2
n(n+1)×n2

0 1
2
n(n+1)×n2 D+

n

×( (C ⊗ In) 0n2×n2

((C +Q)⊗ In) ((C +Q)⊗ In)

)
(26)

and coming back to Eq. (23), the result is obtained. �
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TABLE 1

Estimated covariance matrices and diagnostic tests from the VAR with six lags. Break date

TB := 1979.q2.

Overall period 1954.q3-2008.q3 (T=211) dim(θ):=63

LMAR5:= 1.064
[0.363]

Σ̂ε:=


0.762 -0.012 0.037

0.273 0.007

0.191

 log-Likelihood:=719.98

JBN :=186.27
[0.000]

‘pre-Volcker’ period 1954.q3-1979.q2 (T=94) dim(θ1):=63

LMAR5:= 0.838
[0.753]

Σ̂ε,1:=


0.989 -0.021 0.036

0.314 0.007

0.152

 log-Likelihood:=322.86

JBN := 14.525
[0.0234]

‘Great Moderation’ period 1979.q3-2008.q3 (T=117) dim(θ2):=63

LMAR5:= 1.69
[0.010]

Σ̂ε,2:=


0.562 0.010 0.045

0.204 0.007

0.194

 log-Likelihood:=488.96

JBN := 50.91
[0.000]

Notes: LMAR5 is the Lagrange Multiplier vector test for the absence of residuals autocorrelation against

the alternative of autocorrelated VAR disturbances up to lag 5; JBN is the Jarque-Bera multivariate

test for Gaussian disturbances. Number in brackets are p-values.



22
TABLE 2

Estimated SVARs with break date TB := 1979.q3 on U.S. quarterly data Zt := (ỹt, πt, Rt)
′,

et := (eỹt , e
π
t , e

R
t )′

Model: C(t):=C +Q× 1 (t > TB) , t = 1, ..., T

Ĉ Q̂ (Ĉ + Q̂), t > TB

M1


0.876

(0.065)
-0.045
(0.055)

-0.105
(0.054)

-0.020
(0.022)

0.255
(0.030)

-0.115
(0.038)

0.049
(0.012)

0.072
(0.027)

0.105
(0.018)




-0.374
(0.073)

-0.402
(0.052)

-0.260
(0.032)




0.502 0.045 0.105

-0.020 0.147 0.115

0.049 -0.072 0.155


Log-Likelihood = 811.81 exact identification

M2


0.883

(0.064)
-0.058
(0.102)

0.263
(0.031)

-0.100
(0.051)

0.042
(0.020)

0.067
(0.028)

0.112
(0.018)




-0.373
(0.073)

-0.105
(0.027)

0.044
(0.025)

0.042
(0.023)




0.510 -0.058

0.158 -0.100

0.086 0.108 0.112


Log-Likelihood =811.37 LR test = 0.90

[0.34]

Notes: Standard errors in parenthesis, p-values in squared brackets. The columns of the matrix (C +Q)

have been normalized such that the elements on the main diagonal are positive. Empty entries correspond

to zeros. The reduced form associated with the estimated SVAR is a VAR with six lags.
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FIGURE 1. Impulse responses of the variables in Zt to a same-size monetary policy shock eRt with 95%

(analytic) confidence bands, based on the SVAR model M2 estimated in Table 2.
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FIGURE 2. Impulse responses of Rt to same-size output and inflation shocks eỹt and eπt with 95%

(analytic) confidence bands based on the SVAR model M2 estimated in Table 2.
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