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ABSTRACT
Dark matter models involving a very light bosonic particle, generally known as fuzzy dark matter (FDM), have been recently
attracting great interest in the cosmology community, as their wave-like phenomenology would simultaneously explain the
long-standing misdetection of a dark matter particle and help easing the small-scale issues related to the standard cold dark
matter (CDM) scenario. With this work, we initiate a series of papers aiming at investigating the evolution of FDM structures
in a cosmological framework performed with our N-body code AX-GADGET, detailing for the first time in the literature how
the actual scaling relations between solitonic cores and host haloes properties are significantly affected by the dynamical state,
morphology, and merger history of the individual systems. In particular, in this first paper we confirm the ability of AX-GADGET to
correctly reproduce the typical FDM solitonic core and we employ it to study the non-linear evolution of eight FDM haloes in
their cosmological context through the zoom-in simulation approach. We find that the scaling relations identified in previous
works for isolated systems are generally modified for haloes evolving in a realistic cosmological environment, and appear to be
valid only as a limit for the most relaxed and spherically symmetric systems.
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1 I N T RO D U C T I O N

Whether in the form of a yet undiscovered particle or phenomeno-
logically arising from a more complex mechanism, a cold and dark
matter (CDM) species are an established ingredient of the standard
cosmological paradigm. In fact, the presence of a collisionless type of
matter with negligible interaction with the electromagnetic field helps
explaining the formation and the dynamical properties of cosmic
structures over a large range of scales, from the rotation curves of
spiral galaxies (Rubin, Ford & Thonnard 1980; Bosma 1981; Persic,
Salucci & Stel 1996) through the inner dynamics of galaxy clusters
(Zwicky 1937; Clowe et al. 2006) up to the cosmological scales
probed with weak gravitational lensing generated by the large-scale
matter distribution (Mateo 1998; Heymans et al. 2013; Hildebrandt
et al. 2017; Planck Collaboration VI 2020a).

The identification of a fundamental CDM particle has been
critically elusive for a wide variety of direct and indirect detection
experiments (see e.g. Albert et al. 2017; Buonaura 2017; Danninger
2017), challenging the historical consensus that gathered around
the hypothesized dark matter particle arising in the context of the
so-called weakly interacting massive particles (WIMPs; Jungman,
Kamionkowski & Griest 1996) scenario.

From a cosmological point of view, a well-defined abundance of
dark matter with respect to the total cosmic energy budget (�CDM =
0.264 ± 0.003; Planck Collaboration VIII 2020b) is required in

� E-mail: matteo.nori3@unibo.it

order to be consistent with the cosmic expansion history and with
the observed properties of large-scale structures – as explicitly
emerging from the comparison between low-redshift surveys and
the angular power spectrum of the cosmic microwave background
(CMB) temperature anisotropies that seed the early Universe density
perturbations [observed e.g. from Wilkinson Microwave Anisotropy
Probe (WMAP) and Planck; Komatsu et al. 2011; Planck Collab-
oration VIII 2020b, respectively] – but no specific mass range is
enforced on the dark matter particle itself.

Therefore, to better substantiate the long-standing dark matter
particle misdetection, the scientific community efforts in the hunt
for direct dark matter observations have been shifting from the
GeV/c2 mass range of the WIMPs towards lighter candidates. A
well-motivated dark matter candidate in such lower mass range
is the axion particle arising from the charge conjugation parity
(CP)-symmetry break in quantum chromodynamics (QCD) theo-
ries (Peccei & Quinn 1977a,b). In recent years, a wide range of
experiments have been designed to detect axion particles and to
investigate their possible link to dark matter (see e.g. Banerjee et al.
2020, for a recent overview): these include e.g. resonant cavity
experiments at various frequencies [Axion Dark Matter eXperiment
(ADMX), Braine et al. 2020; Oscillating Resonant Group AxioN
(ORGAN), McAllister et al. 2017], dielectric haloscopes [MAgne-
tized Disc and Mirror Axion eXperiment (MADMAX); Majorovits
et al. 2020], detection-induced magnetic flux oscillations (ABRA-
CADABRA; Ouellet et al. 2019), and nuclear magnetic resonance
(NMR)-based techniques [Axion Resonant InterAction Detection
Experiment (ARIADNE), Arvanitaki & Geraci 2014; Cosmic Axion
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Spin Precession Experiment (CASPEr), Graham & Rajendran
2013].

The concept of a pseudo-scalar bosonic particle can be generalized
from the QCD axion, which is tightly related to the CP problem, to
a much broader category of axion-like particles (ALPs) potentially
representing dark matter, spanning over an astonishingly wide range
of masses of the order 10−24–100 eV/c2 (see Ferreira 2020, for
a comprehensive review on the subject). The typical wave-like
dynamics of the axion acts as an effective net repulsive force, thus
admitting a non-degenerate self-gravitating stable solution – called
soliton – whose properties scale with the ALP mass (see e.g. Marsh
2016).

Although – generally speaking – all ALPs share the same proper
dynamics, the specific ALP mass sets the cosmological epoch at
which the associated dark matter component exits from the oscilla-
tory regime – which is a peculiar feature of the axion potential – and
begins to cluster, thus exhibiting different behaviours when ALPs
potential role as dark matter is considered (see e.g. Sikivie 2008).
In particular, a crucial distinction concerns the relative timing of
the end of the oscillatory regime with respect to the time of matter-
radiation equality: for example, ALPs in the 10−10–100 eV/c2 range
begin to cluster before this time, thus effectively segregating a large
fraction of the total dark matter content in gravitationally bound axion
miniclusters by the time of baryon decoupling from radiation (see
e.g. the early works of Kolb & Tkachev 1993, 1994). On the contrary,
lighter ALPs density distribution at matter-radiation equality can be
essentially described by adding a small-scale correction – related
to its wave-like interaction – to the usual CDM density distribution
(Hu, Barkana & Gruzinov 2000). In this sense, the ALPs dark matter
translates in very different cosmological histories whether larger or
smaller masses are considered.

In this work, we focus on the lower end of the ALPs mass spectrum
– in the range of 10−24–10−19 eV/c2 – whose associated dark matter
models are often referred to as fuzzy dark matter (FDM). In FDM,
the wave-like interaction acts as an net repulsive force and modifies
the standard matter power spectrum of CDM at matter-radiation
equality, effectively smoothing out density perturbations at small
scales and thus leading to fewer collapsed structures at lower redshifts
(Hu et al. 2000). Moreover, the particle mass is so light that the
associated De Broglie wavelength and – as a direct consequence –
the self-gravitating objects that can be formed are comparable with
the galactic scales (see again Hu et al. 2000). These features are of
particular cosmological interest, since FDM would simultaneously
help solving the putative small-scales inconsistencies of the cusp–
core problem (Oh et al. 2011) and the missing satellite problem
(Klypin et al. 1999).

Numerical simulations of structure formation within FDM models
have been initially performed by means of highly numerically
intensive adaptive mesh refinement (AMR) algorithms able to solve
the Schrödinger–Poisson equations over a grid (see e.g. Schive,
Tsai & Chiueh 2010; Mocz et al. 2017; Schive et al. 2018), leading
to impressive and very detailed results on the properties of individual
FDM collapsed objects (see e.g. Woo & Chiueh 2009; Schive,
Chiueh & Broadhurst 2014; Veltmaat, Niemeyer & Schwabe 2018).
However, the computational cost of such approach hindered the
possibility to extend the investigation of late-time structure formation
to large cosmological volumes. To address this issue, N-body codes
were developed, initially only including the (linear) suppression
in the initial conditions but neglecting the integrated effect of
the FDM interaction during the subsequent dynamical evolution
(see e.g. Schive et al. 2016; Armengaud et al. 2017; Iršič et al.
2017) – i.e. basically treating FDM as standard dark matter with a
suppressed primordial power spectrum, similarly to what is routinely

done in warm dark matter simulations (Bode, Ostriker & Turok
2001).

In order to exploit the numerical advantages of an N-body
approach while not sacrificing the detailing of the FDM dynamics
– crucial in the process of soliton formation – throughout the
cosmological evolution, the AX-GADGET code was developed by
Nori & Baldi (2018). The latter is a modified version of the
N-body hydrodynamical cosmological code P-GADGET3 (Springel
2005), which includes the peculiar FDM dynamics through smoothed
particle hydrodynamics (SPH) numerical methods, following the
approach first proposed in Mocz & Succi (2015). The use of SPH
techniques to solve for the FDM quantum interactions results in a less
numerically demanding algorithm with respect to full-wave AMR
solvers, without compromising cosmological results. Therefore, it
is now possible with the use of AX-GADGET to scale up the volume
of FDM simulations related to structure formation and clustering
from individual objects to cosmologically representative portions
of the Universe (see e.g. Laguë et al. 2020, for a list of numerical
algorithms used to describe FDM, divided by redshift and scale of
interest).

In this paper, which is the first in a series devoted to the study of the
scaling relations that characterize the properties of FDM collapsed
objects, we present the results obtained in two sets of simulations
performed with the AX-GADGET code. The first set consists of two
sequential simulations of a single collapsing object, aiming to assess
the ability of AX-GADGET to reproduce the typical soliton solution of
FDM dynamics in the inner regions of dark matter structures. The
second set is composed of high-resolution zoom-in simulations of
eight objects extracted from a representative cosmological volume
that we use to study in detail the properties of the systems and the
scaling relations they exhibit, by allowing them to evolve within their
native cosmological context.

The zoom-in approach consists of a rationalized distribution of
resolution elements within the simulation box, which allows to detail
a region of interest – normally, a collapsed structure – with high
resolution while efficiently keeping track of its environment (see
e.g. Katz et al. 1994; Navarro & White 1994). In this sense, zoom-
in simulations represent an intermediate step bridging single object
simulations and bigger fixed-resolution cosmological simulations.
We will proceed towards even larger volumes and thoroughly inves-
tigate the possible impact of complex structure formation interactions
on scaling relations in the following entry of the series (Nori & Baldi,
in preparation).

This paper is organized as follows. In Section 2, we briefly
describe the FDM models under consideration, providing all the basic
equations that enter our numerical implementation (Section 2.1), and
review the scaling relations previously found in the literature that
characterize the properties of FDM collapsed objects (Section 2.2).
In Section 3, we then recall how FDM dynamics is implemented in
the AX-GADGET code (Section 3.1), present how collapsed objects
are identified (Section 3.2), and their related observables are then
extracted and computed from the simulation (Section 3.3). We
present and describe the different simulation sets in Section 4 – in
particular, the collapse of a single object (Section 4.1) and the zoom-
in simulations (Section 4.2). The results are collected in Section 5,
again presented for the single object (Section 5.1) and the zoom-
in simulations (Section 5.2). Finally, in Section 6 we draw our
conclusions.

2 T H E O RY

In this section, we review the dynamical laws that characterize FDM
models, with a special attention to the scaling properties of FDM
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collapsed structures that arise from the symmetries of the equations
and from other assumptions on their morphology and dynamical
state.

2.1 Fuzzy dark matter models

As we mentioned above, in FDM models the dark matter particle is
extremely light, so that the dynamical treatment of dark matter has
to take into account quantum interactions. For this reason, FDM
is usually described through a quantum bosonic field φ̂, in the
assumption of condensation (Hu et al. 2000; Hui et al. 2017).

A massive bosonic field φ̂ evolves according to the Gross–
Pitaevskii–Poisson equation (Gross 1961; Pitaevskii 1961),

i
�

mχ

∂t φ̂ = − �
2

m2
χ

∇2φ̂ + �φ̂, (1)

where � is the Newtonian gravitational potential and mχ represents
the typical mass of the FDM particle.

With the use of the Madelung transformation (Madelung 1927),

ρ = ∣∣φ̂∣∣2
, (2)

v = �

mχ

�∇φ̂

φ̂
, (3)

it is possible to recast the problem into a mathematically equiv-
alent fluid description, mapping the field amplitude and phase
into a fluid density ρ and a fluid velocity v, respectively. In
the frame of an expanding universe – with a and H = ȧ/a

being the usual cosmological scale factor and Hubble function,
respectively – we refer to x as the comoving distance and to
the velocity u as the comoving equivalent of v. The real and
imaginary parts of equation (1) then translate into a continuity
equation,

ρ̇ + 3Hρ + ∇ · (ρu) = 0, (4)

and a modified Euler equation,

u̇ + 2H u + (u · ∇) u = −∇�

a2
+ ∇Q

a4
, (5)

where an additional potential Q – accounting for the wave-like
behaviour of the field – appears alongside the usual gravitational
potential �.

The gravitational potential � satisfies the standard Poisson equa-
tion,

∇2� = 4πGρb δ/a, (6)

where δ = (ρ − ρb)/ρb is the comoving density contrast with respect
to the comoving background density ρb (Peebles 1980).

The so-called quantum potential Q (hereafter QP) has the form

Q = �
2

2m2
χ

∇2√ρ√
ρ

= �
2

2m2
χ

(∇2ρ

2ρ
− |∇ρ|2

4ρ2

)
, (7)

and accounts for the purely quantum behaviour of the field (Bohm
1952). It is interesting to remark that, from a theoretical point of
view, the QP is present in the usual Euler equation used to describe
CDM in cosmology as well; however, it is just safely negligible
in the classical limit, as the factor �

2/m2
χ is extremely small for

the typical mass range that has been historically considered for
the CDM particle (see e.g. Bertone, Hooper & Silk 2005; Feng
2010).

2.2 Fuzzy dark matter: scaling relations

The Euler–Poisson (EP) system composed of equations (5) and (6)
that govern self-gravitating FDM dynamics reads{

u̇ + 2H u + (u · ∇) u = −∇�

a2
+ ∇Q

a4
,

∇2� = 4πGρb δ/a,
(8)

and it admits a spherically symmetric stable solution ρsol(r) – usually
referred to as the solitonic core, since its density profile is shown to
saturate to a constant value in the central regions – that has no
analytical form but can be well approximated (see e.g. Schive et al.
2014) by

ρsol(r, ρc, Rc) = ρc

[
1 + α

(
r

Rc

)2
]−8

, (9)

where ρc is the core density and

Rc : ρsol(Rc) = ρc/2 (10)

is the half-density comoving radius, simply referred to as core radius,
that sets the constant α = 8

√
2 − 1 by construction. In the literature

(Schive et al. 2014), the core mass Mc and the soliton total mass Msol

have been defined as

Mc = 4π
∫ Rc

0 r2ρsol(r) dr � 4π (0.2225) ρcR
3
c , (11)

Msol = 4π
∫ ∞

0 r2ρsol(r) dr � 4π (0.9296) ρcR
3
c , (12)

where the two quantities are roughly related by Mc ∼ Msol/4 due to
the different extremes of integration.

In cosmological terms, the net repulsive interaction typical of FDM
dynamics results in the presence of a solitonic core in the innermost
regions of dark matter structures while recovering the usual CDM
behaviour in the outskirts – as e.g. the typical Navarro–Frenk–White
(NFW) density profile – where the QP effects are negligible with
respect to the gravitational pull.

The EP system of equation (8) is invariant under the coordinate
transformation via a generic constant λ (Ji & Sin 1994),

{x, t, u, ρ,M,�,E}
→ {

λx̃, λ2 t̃ , λ−1ũ, λ−4ρ̃, λ−1M̃, λ−2�̃, λ−3Ẽ
}

, (13)

where we also included the mass M and the energy E of the system.
For a detailed treatment of this transformation including the scale
factor and the boson mass, see Appendix A.

It is possible to see that such transformation sets some scaling
relations, in particular the core density ρc, its radius Rc, and its mass
Mc are thus linked through

Rc ∝ (
a m2

χ ρc

)−1/4
(14)

and – using equation (11) –

Rc ∝ (
a m2

χ Mc

)−1
, (15)

thanks to the intrinsically symmetric nature of the system (see e.g.
Chavanis 2011; Chavanis & Delfini 2011, for a thorough analytical
and numerical study).

These scaling relations were first explicitly investigated in an
astrophysical scenario with dedicated numerical simulations by
Schive et al. (2014), where they were confirmed to hold for a sample
of haloes at different redshifts in the mass range 109–1011 M� h−1,
simulated by directly solving the Schrödinger equation on a three-
dimensional grid.

In the same work, another important scaling relation linking the
features of the soliton core to the properties of the host halo was
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noticed, namely a relation between the core mass Mc as defined in
equation (11) and the virial mass of the halo Mvir. In this work (as
in Schive et al. 2014), we use the definition of the virial mass Mvir,
radius Rvir, and density ρvir,

Mvir = 4

3
πR3

vir ρvir = 4

3
πR3

vir ζ (a) ρb, (16)

related to the overdensity parameter ζ (a) as in Bryan & Norman
(1998).

Linking the core mass to the virial mass is particularly valuable as
it allows to estimate properties of the solitonic core for an arbitrary
sample of dark matter haloes, based on structural halo properties that
can be easily computed e.g. in large-volume simulations of structure
formation (as done in e.g. Desjacques & Nusser 2019).

However, in order to safely predict core properties with the use
of this Mc–Mvir empirical relation, it is important to review the
theoretical assumptions proposed by Schive et al. (2014) to justify
such relation, as well as the particular conditions of the simulation
set-up in which this scaling relation was observed.

In fact, this new scaling relation can be heuristically derived
by making two strong assumptions regarding the core and halo
dynamical states.

(i) First, the host halo is considered to be in a virialized state in
order to be allowed to make use – in the derivation – of the well-
known scaling

σvir ∝
(

Mvir

Rvir

)1/2

∝ (
Mvir

√
ρvir

)1/3
(17)

between the virial mass of a halo and its virial velocity dispersion
σ vir.

(ii) Second, the velocity dispersion of the core σ c – defined as the
velocity dispersion within Rc – is assumed to be comparable to the
virial velocity dispersion σ c ∼ σ vir.

As a consequence of these two non-trivial assumptions, the core
radius Rc and the velocity dispersion of the halo σ vir are related via
σ virRc ∼ 1. Moreover, it becomes then possible to use equations (17)
and (14) to derive a scaling relation between the virial mass of the
halo and the solitonic mass,

Mc ∝ (Mvir
√

ρvir)1/3

√
a mχ

∝
(

Mvir

a m2
χ Rvir

)1/2

, (18)

suggesting that massive haloes host soliton cores with higher masses
but with smaller radii with respect to less massive systems – as from
equation (15).

In their study, Schive et al. (2014) tested this latter scaling relation
using a suite of numerically simulated FDM haloes and found it to
be valid for cores identified in haloes at different redshifts and for an
individual simulated core during its evolution. The subtle difference
between these two cases is of great importance: the former implies
that FDM haloes statistically satisfy equation (18) – i.e. averaging
on the possible dynamical states of a variety of haloes at a given
redshift – while the latter suggests that the scaling relation between
haloes and the core they host is verified individually throughout their
history – thereby implying that halo evolution does not alter such
scaling. However, it is worth to remark that in Schive et al. (2014),
due to the numerical restrictions on the simulation box size imposed
by the grid approach, the halo sample that is taken into account –
especially at low redshifts – seems to fall short in capturing the highly
non-linear processes involved in the interaction between different
systems – as e.g. merger events – in a broad cosmological set-up,
focusing on almost isolated and relaxed systems by construction.

The scaling relation between the core mass and the virial mass was
also investigated in two following works focused on the mergers of
FDM solitonic cores, namely Schwabe, Niemeyer & Engels (2016)
and Du et al. (2017).

In Schwabe et al. (2016), the modification of the properties of
solitonic cores during merger events was investigated in a non-
cosmological framework, by detailing binary merger processes of
synthetically produced FDM haloes with different mass ratios,
angular momentum, and phase difference, as well as multiple merger
events. Given the binary merger Mc = β(Mc, 1 + Mc, 2) with Mc, 1 and
Mc, 2 being the masses of two solitonic cores merging into a single
final solitonic core of mass Mc and β being the parameter describing
the mass lost in the process, the authors found that the final core
mass Mc depends almost entirely on the mass ratio of the two cores
involved in the merger. In particular, the final mass Mc is consistent
with a value of β ∼ 0.7 whenever 3/7 � Mc, 1/Mc, 2 � 7/3, while
mergers with more extreme mass ratios result in the dissolution of
the smaller core without any significant impact on the bigger one.
The authors additionally suggest that, in order to account for different
exponents characterizing the scaling relation between Mc and Mvir,
it is more appropriate to generalize it as

Mc

Mvir
∝

(
ρ1/3

vir

a m2
χ M

4/3
vir

)η

∝ (
a m2

χ MvirRvir

)−η
, (19)

such that this generalized scaling relation is equivalent to equa-
tion (18) in the case η = 1/2. Based on the relation between the
core mass and total mass of the final systems – where the total mass
can be associated with the virial mass – the authors were not able to
pinpoint a specific scaling due to the large scatter in the range η ∈
[1/2, 1/6].

Following up on the results of Schwabe et al. (2016), Du et al.
(2017) account neither for the combined evolution of the core mass
and halo virial mass after the initial collapse nor for the role of merger
events, and proposed a parametrization of the scaling exponent of
equation (18) as a function (solely) of the core mass-loss parameter β,
based on the estimate of the number of mergers that a typical system
undergoes during its evolution – and, in particular, the mergers with a
large enough mass ratio to alter the core mass – providing the scaling
relation

Mc ∝ B(β, a, mχ ) M log2(2β)
vir , (20)

where the normalization factor B(β, a, mχ ) accounts for an estimated
number and type of merger events for a given halo mass distribution,
which depends both on redshift and on the parameter β (see Du et al.
2017, for technical details). In their work, the authors expand the
exponent log2(2β) into (2β − 1)/ln (2) assuming β ∼ 0.5, but end up
using (2β − 1) for their analysis, in order to impose Mc ∝ Mvir for
β = 1. These various forms clearly generate some confusion, as the
value β ∼ 0.7 found by Schwabe et al. (2016) maps in quite different
exponents, namely η ∼ 0.386, 0.317, 0.45 expressed in terms of
equation (19) using the first, second, and third form, respectively.

An additional suggestion on the subject came from a work of
another independent group (Mocz et al. 2017), where a larger sample
of solitonic core mergers was simulated in a non-cosmological
framework. As in Schwabe et al. (2016), the scaling relation of
equation (18) was not confirmed and the alternative relation

Mc

Mvir
∝

(
ρ1/3

vir

a m2
χ M

4/3
vir

)1/3

∝ (
a m2

χ MvirRvir

)−1/3
(21)

was observed in its place, equivalent to equation (19) with the
exponent η = 1/3. Based on theoretical considerations, Mocz et al.
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(2017) point out that such relation is retrieved by replacing the close
connection between dispersion velocities of the core and the halo (σ c

∼ σ vir) that was invoked by Schive et al. (2014) by a similar relation
involving the core and halo energies Mcσ

2
c ∼ Mvirσ

2
vir.

The challenging task of estimating a universal scaling relation
between the core and the halo mass reflects the complexity of the
processes involved in halo formation and their impact on the solitonic
core properties (see e.g. Bar et al. 2018, for an interesting discussion
on such scaling relation). The mass of the core and the virial mass
of the host halo are related to each other due to their coevolution as
parts of the same larger system, yet they individually obey to different
dynamics and are in contact with different environments: restricting
the analysis only to relaxed systems (as in Schive et al. 2014; Schwabe
et al. 2016; Mocz et al. 2017) allows to reduce the impact of such
complexity, at the cost of predictability on cosmologically realistic
halo populations – which necessarily include systems in highly
different dynamical states and stages of evolution. This task becomes
even more daunting if non-linear cosmological time dependence is
taken into account – as Schwabe et al. (2016), Du et al. (2017), and
Mocz et al. (2017) did not – since the validity of the approximations
introduced in this section and of the very EP systems of equation (8)
may vary over time.

In order to be as general as possible, in the following we will
investigate the relation between the core and halo properties (Rc, ρc,
Mc, Mvir, Rvir) making use of the relations

Rc = κ

(
1010 M� h2 kpc−3

a m2
22 ρc

)μ

kpc h−1, (22)

Mc

Mvir
= τ

(
1010 M� h−1

a m2
22 Mvir

)η (
kpc h−1

Rvir

)η

, (23)

which we will term Scaling Relation I (SRI) and Scaling Relation
II (SRII), respectively, where κ and τ are normalization factors to
be estimated along with the μ and η exponents. Here, we used the
definition mχ = m22 × 10−22 eV c−2 to parametrize the boson mass.
The system of equations is closed by the definition of equation (11)
that we use to derive the soliton mass from its density and radius.
Using equation (16) it is possible to express Rvir in terms of ρvir,
but we prefer the latter over the former because of the more elegant
mathematical form of the resulting equations.

Let us remark once again that the scaling relations SRI and SRII are
linked to different and independent assumptions and approximations:
the former results from the symmetries of the spherical ground-state
solution of the EP system at the core scale, while the latter invokes
the analogy between the core and the halo velocity dispersions and
the virialization of the host system, thus implying the sphericity of
the whole dark matter halo and the relaxed nature of its dynamics.
The virialization assumption is more stringent and may easily imply
the sphericity at the core level, but not vice versa. Therefore, in
a cosmologically representative volume, it is reasonable to expect
particularly unrelaxed FDM systems, in which the core is not
yet stabilised in its ground-state solution – i.e. it is not yet a
proper solitonic core – to be inconsistent both with SRI and SRII,
while other haloes, harbouring spherically symmetric ground-state
solitonic cores, to satisfy SRI – satisfying or not SRII, depending
on their global virialization state. Hence, for a proper determination
of global scaling relations (and their associated scatter) between
the structural properties of the solitonic cores and those of their
host haloes, it is of great importance to investigate thoroughly the
dynamical state of the hosts to better discern cases in which scaling
relations should hold from cases where deviations are expected.

3 N U M E R I C A L M E T H O D S

In this section, we briefly review the relevant properties of the AX-
GADGET code (Nori & Baldi 2018) and the halo-finding algorithm
SUBFIND (Springel et al. 2001) that we employ to run and analyse
the simulations discussed in this work. We then define the main
observables of interest regarding collapsed objects and present the
numerical methods we use to extract them from simulations.

3.1 The code: AX-GADGET

AX-GADGET (presented in Nori & Baldi 2018) is a module of the
cosmological and hydrodynamical N-body code P-GADGET3 (a non-
public extension of the public GADGET2 code; Springel 2005) that
implements the physics of FDM models in cosmological simulations
of structure formation.

Following the N-body approach of P-GADGET3, the density field
and its derivatives – and, ultimately, accelerations – are reconstructed
from the distribution of discrete tracers – i.e. particles – via refined
SPH routines. For any technical detail that goes beyond the short
description provided below, we refer the reader to Nori & Baldi
(2018).

The general SPH approach relies on the concept that a continuous
observable O that underlies a discrete set of fluid-element particles
can be approximated at particle i position with the sum of neigh-
bouring particles j ∈ NN(i) – which includes particle i itself –
weighted on particle mass m and a kernel function Wij of choice.
Such approximation reads

Oi =
∑

j∈NN(i)

mj

Oj

ρj

Wij , (24)

and can be extended to spatial derivatives as

∇Oi =
∑

j∈NN(i)

mj

Oj − Oi√
ρjρi

∇Wij , (25)

where ρ is the density field, which can be calculated as

ρi =
∑

j∈NN(i)

mjWij , (26)

with the very same approach by taking O ≡ ρ.
The kernel function Wij has the physical dimension of an inverse

volume and heuristically represents the probability of finding particle
i at position r = |r i − rj |. The typical measure of this uncertainty
volume is given in terms of the so-called smoothing length hi, whose
extent is fixed by imposing

4

3
πh3

i ρi =
∑

j∈NN(i)

mj , (27)

which is equivalent to fixing the mass enclosed within r ≤ hi.
The complete scheme used by AX-GADGET to reconstruct the

particle acceleration due to the QP of equation (7) is then based
on the same SPH general approach, reading

∇Qi = �
2

2m2
χ

∑
j∈NN(i)

mj

fjρj

∇Wij

(
∇2ρj

2ρj

− |∇ρj |2
4ρ2

j

)
, (28)

where f is a factor that accounts for the adaptive adjustment of the
smoothing lengths of each single particle (see Nori & Baldi 2018,
for details).

In P-GADGET3, and AX-GADGET as well, N-body particles are
divided up to six different types that are meant to represent fluids
characterized by different dynamics: the historical reason behind this
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implementation is to numerically differentiate the collisionless dark
matter species from the hydrodynamical one representing baryonic
gas, as well as from the collisionless population of stars and black
holes that may include all possible non-linear radiative processes.
Since in AX-GADGET we introduce FDM particles as a separate
type, we can perform simulations of a mix of dark matter particles
following CDM and FDM dynamics: this feature will be used in
Section 4.2 to approximate the behaviour of FDM to the one of
CDM at the largest scales.

AX-GADGET has undergone various stability tests and has proven
to be not only less numerically intensive with respect to AMR
full-wave solvers (Schive et al. 2010), due to the intrinsic SPH
local approximation, but also to be accurate for cosmologically
relevant scales as it agrees both with the linear (Hlozek et al. 2015)
and the non-linear results (Woo & Chiueh 2009) available in the
literature, even if a proper convergence and code comparison test
among the various different implementations of FDM that have been
developed in the literature has not yet been performed, which would
be necessary to assess the consistency of different numerical methods
at very small scales.

3.2 Halo finder and merger tree construction

To identify collapsed structures in our simulations we used the SUB-
FIND friends-of-friends (FoF) algorithm (Davis et al. 1985) with an
unbinding procedure to identify gravitationally bound substructures
within the FoF ensembles (Springel et al. 2001).

The unbinding procedure is based on energy balancing given by
the virial theorem that in the FDM framework includes the effects of
QP (Hui et al. 2017) and the ones of kinetic energy K and gravitational
potential �, extending 2K + � = 0 to 2K + � + 2Q = 0 with respect
to the standard CDM case.

Since our aim is to investigate the properties of solitonic cores –
which satisfy by construction the quantum virial theorem (Hui et al.
2017) – and describe them in terms of general global properties,
we decided to use SUBFIND with the standard virial theorem for
simplicity. We take care of noting that, given the net repulsive effects
of the QP on small scales, the use of the quantum version of the virial
theorem would have the following consequence: the particles in the
halo outskirts that are found to be weakly bound could instead not
bound at all to the main structure. Even though this does not impact on
the properties of the solitonic core when large systems are considered,
the smallest collapsed structures found in the simulations – described
by a small number of particles – could be de facto unbounded.
For these reasons and to avoid numerical artefacts related to poorly
resolved systems, it would be then advisable to discard haloes that
are described by a small amount of particles and restrict the analysis
on halo properties that are statistically insensitive to particles in the
outskirts – as suggested for the �CDM case e.g. in Neto et al. (2007),
by imposing a minimum threshold of 1000 total particles per halo.
In our case, the zoom-in simulated haloes that will be discussed
below have all more than 105 particles and have central densities that
are three to four orders of magnitude greater than the mean matter
density at redshift z = 0, so we can safely neglect the contribution of
the QP in the unbinding process for the estimation of core features.

Hereafter, we use the terms primary structures to identify the
substructures of each FoF group containing the most gravitationally
bound particle, subhaloes for the non-primary structures, and haloes
when we generally consider the whole sample of structures – i.e.
primary and non-primary – identified by our halo-finding procedure.

Since we are interested in the evolution of halo properties in
time, we will also need a procedure to link haloes across different

redshifts, by identifying connections between any given halo and its
progenitors/descendants in order to understand its formation history.
To this end, the halo catalogues were combined to form merger trees,
using the methods and definitions described in Springel (2005) and
Springel et al. (2008).

Given the hierarchical evolution of cosmological structures, the
reconstruction of mergers trees consists of identifying a common
share of particles within each halo at lower redshifts with the ones
of a halo – or more haloes, in the case of merger events – at higher
redshifts. To this end, N-body particles are flagged by a fixed and
unique ID throughout the simulation that is used in the identification
process.

The accuracy of this reconstruction is clearly bounded by the time
resolution of the finite set of redshifts {zn} at which outputs are
produced. Ideally, one would produce as many outputs as possible to
maximize the time resolution, however an extreme time resolution
can be redundant – i.e. if the redshift spacing is very small, outputs
would be almost identical to each other with a large majority
capturing no merger events – and quickly leads to exceeding the
available amount of memory storage. Our set of output redshifts is
such that in the interval 0 ≤ z ≤ 2 an output is produced every �z =
0.2, with the addition of outputs at higher redshifts z ∈ {2.33, 3, 4,
5, 9}, that allows for a good time resolution and no redundancy.

3.3 Halo properties

In this section, we list the physical observables that are relevant to
our analysis and describe the strategies we used to compute them
from the available simulation outputs.

3.3.1 Sphericity and centre offset

The shape of a halo can be a useful observable to understand its
dynamical state and has been shown to correlate with dynamical
features (see e.g. Neto et al. 2007; Macciò, Dutton & van den Bosch
2008, and references therein).

To define the shape of haloes, we use the inertia tensor of the
halo member particle ensemble as identified by SUBFIND to be
gravitationally bound:

Iij =
∑

particles

m (êi · êj ) |r|2 − (r · êi) (r · êj ), (29)

where ê are the unit vectors of the reference orthonormal base and r
and m are the particle position and mass, respectively. The equivalent
triaxial ellipsoid with uniform mass distribution can be built from
the eigenvalues and the eigenvectors of the tensor, each representing
the square moduli and unitary vectors of the main axes. We define a
≥ b ≥ c the lengths of the three axes and the sphericity s = c/a. Note
that s represents the sphericity of the total system comprehensive of
the core and the host halo: it would be tricky to define two separate
sphericities for the core and the halo, also because our identification
procedure for the cores is based on the typical density profile of
equation (9) that assumes sphericity at the core level.

Clearly, the calculation of the inertia tensor and, therefore, the
sphericity of a halo depends on the choice of the centre of the system.
The centre of a dark matter halo in N-body simulations is usually
identified either by the position of the most bounded particle rMB (i.e.
the particle closest to the local minimum of the halo gravitational
potential) or by the centre of mass of the system rCM. These two def-
initions are statistically equivalent for relaxed and isotropic systems,
where the particle spatial distribution and the gravitational potential
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are consistent. Conversely, unrelaxed and small systems may show
deviations between the two definitions, especially in particularly
anisotropic environments where the neighbouring systems effect on
the underlying gravitational potential is not negligible, as e.g. for
subhaloes. In fact, we will use the centre offset,

doff = |rMB − rCM|, (30)

to be coupled with the sphericity as a proxy for dynamical relaxation
(as e.g. done in Neto et al. 2007).

3.3.2 Density profile and soliton fit

To estimate the various observables related to the radial density
profile of haloes as the virial mass Mvir and the virial radius Rvir

of the halo and the density ρc and radius Rc of the core, we need
to define a consistent numerical procedure to build the halo density
profiles. In our analysis, we found that different strategies used to
compute the density profiles may have a non-negligible impact on
these quantities, especially on the estimate of ρc and Rc that are linked
to the inner region of the radial profile. In particular, the choice of the
halo centre (discussed in the previous subsection) and the numerical
evaluation of the density in each individual radial bin both play an
important role.

A straightforward approach to calculate the density profile ρ(r)
consists in counting the N-body particles in each of a set of radial bins
– corresponding to a spherical shell – and take the ratio between the
total particle mass in the bin and the bin volume. Because of the radial
nature of the observable and the discreteness of N-body simulations,
however, the estimate of the density in the innermost regions carries
a great statistical error, thus hindering a good evaluation of ρc and
the solitonic profile.

Thanks to the AX-GADGET design, we can instead rely on the
particle density as computed by the SPH routine, hence greatly
reducing the errors especially related to low particle counting in
the regions we are most interested in. The density profiles of haloes
are thus computed as the mean SPH density of particles in each
spherical shell. The quantities ρc and Rc are fitted independently on
the profiles by a two-parameter logarithmic fit, based on equation (9),
while Mvir and rvir are estimated as from equation (16).

3.3.3 Formation time and mass gained via merger

From our merger trees, we are able to extract very important
information about the formation and evolution of structures, in
particular, the approximate formation time of the halo and the mass
that has been accreted through mergers. As previously mentioned
in Section 3.2, the accuracy of these quantities is bounded by the
time resolution of the simulations snapshots, as they are restricted
to the finite set of available redshifts {zn}; however, they provide
very useful insights on the evolution of a system, which will be
particularly relevant for our discussion.

For each halo i of interest at a given time zn, we identify the haloes
P(i) found at zn − 1 > zn that merged into halo i as its progenitors,
and the one halo D(i) at zn + 1 < zn whose progenitor is the halo i
as its descendant. We refer to the sequence L(i) of i and its most
massive progenitors at each redshift ∀z ≥ zn as direct line, and we
define the redshift of formation zform as the highest redshift the direct
line extends to (see Fig. 1).

To estimate the impact of mergers on the halo properties in time,
we define the mass Mi

merg of halo i as the cumulative mass of the
progenitors of the haloes belonging to the direct line L(i) that do not

Figure 1. Schematic representation of haloes (circles) belonging to a single
merger tree in the mass–redshift plane, where we visually display the
ensembles and quantities defined in Section 3.3.3 for a given halo i at redshift
zn (highlighted in orange).

belong to the direct line themselves, i.e.

Mi
merg(zn) =

∑
j∈L(i)

∑
p∈P (j ) \L(i)

Mp, (31)

where zn and zm are part of the discrete set of redshifts. In this
way, Mi

merg(zn) physically represents the mass share that halo i has
cumulatively gained via mergers during its history, from its formation
up to zn. As an additional condition, in the calculation of Mmerg

we only take into account contributions related to merger events
characterized by a mass ratio of 1:20 or higher, in order for Mmerg to
be safely independent from resolution.

4 SI MULATI ONS

In this section, we introduce and describe the two simulation set-
ups that will be presented in this work: the first one focuses on the
collapse of a single object, to assess the ability of AX-GADGET to
correctly reproduce a solitonic core at the centre of haloes; the
other one is a set of zoom-in simulations of individual haloes –
extracted from a parent low-resolution cosmological run – aiming to
study the properties of FDM haloes and solitonic cores as individual
systems in a cosmologically realistic environment. The cosmological
background parameters used for all the simulations are �m = 0.317,
�� = 0.683, H0 = 67.27 km s−1 Mpc−1 together with the initial
power-spectrum parameters ns = 0.965 and σ 8 = 0.816. For all the
simulations, we assume the totality of matter to be composed of FDM
with a particle mass of m22 = 2.5h. To build the cosmological initial
conditions of our simulations, we used the code MUSIC (Hahn & Abel
2011) together with the AXIONCAMB (Hlozek et al. 2015) solver to
compute the correct suppressed matter power spectrum at the initial
redshift.

4.1 Single object collapse

The ability of AX-GADGET to correctly reproduce the typical solitonic
core feature in the innermost regions of dark matter haloes was
supported by the result of an idealized test (presented in Nori & Baldi
2018), but it was not possible to confirm it in a realistic cosmological
context, since the spatial resolution of the previous works involving
AX-GADGET applications was comparable with the typical scale of
core size (Nori et al. 2019).
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To assess whether AX-GADGET is actually able to reproduce proper
solitonic cores, we performed a simple yet meaningful test: we
simulated a cosmological box of side L = 500 kpc h−1 with 1283

particles, corresponding to a mass resolution and softening length of
5.244 × 103 M� h−1 and 100 pc h−1, respectively, and let it evolve
with periodic boundary conditions from redshift z = 99 to 0. The
box size was chosen to contain approximately one (quantum) Jeans
mass, in order to form a single object for which boundary conditions
ensure no loss of mass and energy.

Upon reaching z = 0, we extended the simulation by switching
off the expansion of the universe – i.e. effectively keeping z = 0
constant – to investigate the stability of the system independently of
redshift.

Although starting from cosmological initial conditions, this test
has numerical and physical yet limited cosmological value, since it
is a highly idealized system primarily focused on the ability of the
AX-GADGET code to reproduce a stable solitonic core within a dark
matter halo; to investigate cosmologically relevant systems we resort
to zoom-in simulations described in the next section.

4.2 Zoom-in simulations

In order to reconstruct in detail the solitonic core structure that forms
within FDM haloes, we performed a series of zoom-in cosmological
simulations (see e.g. Katz et al. 1994; Navarro & White 1994).
The zoom-in approach allows to reach high resolution in a selected
region of the simulation while still following the evolution of the
surrounding cosmological environment with a coarser resolution,
thus neglecting the fine details outside the region of interest to greatly
reduce the simulation run time with respect to a fixed resolution
approach. By differentiating the concentration of the resolution
elements – namely N-body particles or cells, depending on the nature
of the simulation – within the simulation domain, this technique is
particularly useful to study single objects in detail without losing
completely information on the cosmological environment, with a
great improvement on the computational cost with respect to a fixed-
resolution approach (see e.g. Kuhlen, Vogelsberger & Angulo 2012,
for a review on the subject).

This method involves three steps: first, a preliminary simulation
with low resolution is performed to identify the collapsed structures
at low redshift among which the target structures for the zoom-in runs
are selected; second, the particles belonging to the selected haloes
are mapped back to the initial conditions, to estimate the extent of
the original Lagrangian region of each halo; third, the Lagrangian
region is repopulated with a larger number of (less massive) particles
to characterize the density field with a higher resolution. Usually,
a tier of decreasing refinement levels is imposed outside the region
of interest to avoid a sharp transition in resolution, with the last
level accounting for the farthest regions having a significantly lower
resolution than the preliminary uniform simulation.

To implement this procedure we resorted to the public code
MUSIC (Hahn & Abel 2011), which we used in the first place to
build the initial conditions for the preliminary simulation – termed
COARSE – at redshift z = 99, with 2563 particles in a box of side
15 Mpc h−1, resulting in smoothing length of εres ∼ 1 kpc h−1. The
initial power spectrum provided to the MUSIC code to realize particle
displacements was computed with the code AXIONCAMB (Hlozek
et al. 2015), which coherently suppresses small-scale power as
required in the FDM framework.

As AX-GADGET allows for the QP interaction to be switched
on or off – i.e. evolve particles with a FDM or a standard CDM
dynamics, respectively – we choose not to include the QP interaction

Table 1. Technical properties of the preliminary and zoom-in simulations.
The minimum and maximum values of resolution levels – lmin and lmax –
and the volume at maximum resolution Vmax are given with respect to the
COARSE simulation.

Name lmin lmax Vmax Mres εres

(%) (M� h−1) (pc h−1)

COARSE 1 1 100 1.770 × 107 1000
A 2 1/4 5.89 2.765 × 105 250
B 2 1/4 3.98 2.765 × 105 250
C 4 1/4 2.16 2.765 × 105 250
D 4 1/4 1.41 2.765 × 105 250
E 4 1/4 1.01 2.765 × 105 250
F 4 1/8 0.65 3.456 × 104 125
G 4 1/8 0.10 3.456 × 104 125
H 4 1/8 0.13 3.456 × 104 125

in the dynamics of this preliminary COARSE simulation, due to the
marginal effects of the QP at the scales, redshifts and masses of
interest, and this first explorative nature of the simulation (as seen in
Nori et al. 2019).

From the structures identified in the COARSE simulation at redshift
z = 0, we chose eight haloes to be simulated again with a zoom-in
approach, which we label with letters from A to H, spanning over
more than two orders of magnitude in virial mass.

To avoid contamination with particles of different mass in the
central region of the haloes (and in line with previous works,
as Neto et al. 2007), we conservatively extended the region of
maximum resolution by 2.5 times in each direction with respect
to the smallest cuboid in the initial conditions that encloses all the
particles belonging to the target halo at z = 0.

Since MUSIC refines initial conditions using levels in a grid
approach with relative spacing in powers-of-two, we downgraded
the resolution of regions outside the domain of interest by a factor
of 4 or 2 with respect to the COARSE simulation – i.e. in N-body
terms, we reduced the mean interparticle distance by using less and
more massive particles – while the maximum refinement within the
high-resolution region reached a factor of 1/4 or 1/8 depending on
the system. The refinement factors of the low- and high-resolution
regions with respect to the COARSE simulation – termed lmin and lmax,
respectively – and the volume fraction Vmax identifying the region
of maximum resolution in the initial conditions are summarized in
Table 1, together with the mass Mres and softening length εres of the
smallest resolution elements.

In our work, intermediate levels of refinement devised to smoothly
transition between these extremes were assigned to a different
particle type of the P-GADGET3 particle data structure to allow for an
easier identification in post-processing analyses and for a different
treatment of their dynamics in terms of QP contribution. In fact, in
the spirit of performance enhancement of zoom-in simulations, we
decided to follow the full FDM dynamics including the effect of
the QP only for particles representing the highest level of resolution,
while neglecting this contribution for the low-resolution levels. Since
the solution of FDM dynamics in AX-GADGET relies on matter
density and its derivatives as calculated on neighbouring particles,
we also included particles representing the second-highest resolution
level in the calculation: for these particles, laying just outside the
region of interest, we compute the density and its derivatives as
discussed in Section 3.1 but no QP contribution to acceleration was
added, thus behaving as an effective buffer between high- and low-
resolution regions that greatly reduce the errors in the dynamics in
the outskirts of the high-resolution domain. As a further check of our
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Figure 2. Density profile of the halo formed in the single object collapse
test, as observed at different times in the non-cosmological extension of
its evolution (coloured solid lines). The dashed black line represents the
analytical profile of the solitonic core as fitted using equation (9).

implementation, we also simulate the same zoom-in systems without
including the QP, to have a direct proof of the role of the QP in the
formation and stability of the solitonic core in the innermost regions
of dark matter haloes.

In the selection process, we first defined a set of mass bins for the
target structures at z = 0, in order to include a variety of final halo
masses in our sample of zoom-in simulations. Then, within each
of these mass bins, we preferred – as a first selection criterion –
haloes with the smallest initial Lagrangian region. This preference
sourced from two main practical considerations: first, for obvious
numerical reasons, the smaller the high-resolution volume is, the
less computationally intensive the simulation becomes; second, we
wanted to avoid haloes undergoing extreme merger events during
their evolution that intuitively map – for fixed final halo mass –
into a larger portion of the simulation volume once traced back to the
initial conditions. We also preferred – as a second selection criterion –
haloes that formed quite early in order to have information on their
evolution in a larger number of simulation snapshots. The impact of
this selection bias will be addressed in Section 6 where results are
discussed.

5 RESULTS

In this section, we present the results obtained in the single object
collapse test and in the set of zoom-in simulations. In particular,
we first detail the properties of the core obtained in the former test,
we then present and discuss the properties of haloes and solitonic
cores forming in the latter set of simulations, extracting valuable
information on the scaling relations linking different observables as
discussed in Section 2.2, to investigate regimes of agreement and
deviation from global trends.

5.1 Single object collapse

As expected, only one halo forms within the simulation box of the
single object collapse test. In Fig. 2, the radial density profile of the
halo at z = 0 is shown, together with its evolution in the extended non-
cosmological part of the simulation. It is possible to see that the halo

Table 2. Properties of the solitonic core and the halo formed in the single
object collapse test.

Rc ρc Mc Rvir Mvir

(kpc h−1) (M� h2 kpc−3] (M� h−1) (kpc h−1) (M� h−1)

4.496 3.791 × 105 9.63 × 107 14.301 3.69 × 108

formed in this test consists almost entirely of the solitonic core with
negligible outer features. The density profile is properly described by
equation (9) represented by a black dashed curve, corresponding to
the mean core radius and density observed at the end of the extended
simulation beyond z = 0. The mean properties of the core and the
halo are summarized in Table 2. Let us remark that the virial mass
of this object is approximately Mvir ∼ 4Mc ∼ Msol, confirming that
what we identify here as halo coincides with the whole soliton.

For this single halo, it is possible to estimate the normalization
factor κ ∼ 0.457 for SRI and, similarly, the values of τ ∼ 0.320 for
SRII, by assuming μ = 1/4 and η = 1/2, respectively. Although
the bare value of these normalization factors does not hold any
particular physical meaning per se, it is possible to show that κ must
be of the order (�2/G)1/4 (see e.g. Chavanis 2011) and its value has
been estimated to be κ = 0.174 by numerical integration of the EP
system (see e.g. Chavanis & Delfini 2011; Hui et al. 2017, appendix
A), which is approximately ∼2.6 times smaller than our observed
mean value of κ in this single object test. This might be related to a
lower efficiency in system relaxation, as the small-scale oscillatory
granular structure that would amplify the system relaxation are not
fully captured here (see again Hui et al. 2017); however, proving this
hypothesis ventures beyond the scope of this work and we set it aside
for future investigation.

5.2 Zoom-in haloes

In this section, we present the properties of all zoom-in simulated
haloes, both in terms of their general structure and of the characteris-
tic properties of the solitonic cores they harbour. We will first outline
their properties individually, then move to the statistical analysis of
their properties as a unique population.

5.2.1 Presence of solitonic cores

For each zoom-in halo we computed the density profile as described
in Section 3.3.2, finding that a solitonic core is present in the
innermost region of all haloes. The soliton density profiles fit well
with the approximated analytical function equation (9), flattening the
typical central density divergence of �CDM haloes.

In the top panel of Fig. 3, the density profiles of the zoom-in
haloes simulated at z = 0 with the full FDM dynamics (solid lines)
are displayed along with the ones obtained from a set of identical
simulations run by switching off the QP contribution (dot–dashed
lines). By comparing the density profiles system-by-system, it is
possible to unequivocally attribute the suppression in the central
region – and eventually, the core formation – to the QP. This first
result establishes that an adequate treatment of the QP is necessary
and the suppression of the matter power spectrum in the initial
conditions alone is not enough to correctly reproduce the evolution
of FDM systems down to the core level. This result, obtained with
AX-GADGET, also confirms that the N-body approach is effective in
the representation of FDM collapsed objects.

To visually clarify the effect of the QP on FDM haloes profiles,
we gathered the ratios between profiles with and without QP in
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Figure 3. Upper panel: density profiles of zoom-in haloes at z = 0 (solid
lines) and the profiles extracted from the simulation without the QP (dot–
dashed lines). Lower panel: ratio of the density profiles with and without
the QP. In order to compare systems of different sizes, the radial distance is
rescaled by the respective core radii Rc.

the bottom panel of Fig. 3, where the distance from the halo
centre is expressed in terms of Rc to allow for a direct comparison
between systems with different size. As expected, the QP efficiently
counteracts gravity by pushing mass out of the central region –
process that is more efficient in the less massive haloes than in the
more massive ones – and the equivalence between the profiles with
and without QP is statistically found at a distance r ∼ Rc from the
centre.

In Fig. 4, density profiles (solid lines) and the solitonic profiles
(dashed lines) are displayed at three different redshifts. As it can
be seen, the soliton profiles are very well recovered, both for the
smallest and newly collapsed haloes – for which the soliton makes
up for a large fraction of the total mass, as observed in the single
object collapse test – as for haloes at lower redshifts, where the
solitonic cores are found to be embedded in a standard NFW-like
dark matter halo – as expected – with a smoothly decreasing density
profile scaling as ρ(r) ∝ r−(1/3).

The properties of the eight zoom-in haloes described in Section 3.3
are summarized in Table 3, while the 3D rendering of the dark matter
density of the eight systems is portrayed in Fig. 5 (plotted with the
YT toolkit; see Turk et al. 2011), as extracted from a cubic volume of

100 kpc h−1 per side at z = 0. The coloured manifolds represent the
isodensity loci as obtained by mapping the SPH density of particles
on to a 3D grid. The colour scheme used to identify the isodensity
levels is such that red corresponds to ρc/2 – thus ideally representing
the core, as defined by equation (10) – and purple corresponds to ρvir;
the other contours (orange, yellow, and blue) correspond to densities
in between the two, equispaced in logarithmic scale. In this picture, it
is possible to appreciate that the least massive and smallest systems
are isolated objects in which the core is particularly evident, while
the most massive and largest ones host one or few substructures
and are characterized by a smaller core relatively to the size of the
whole system – to the point of being barely visible in the picture –
as quantitatively detailed in Table 3.

As described in Section 3.3.3, we selected haloes that formed
relatively early with respect to haloes of the same mass range in the
COARSE simulation, in order to be able to have more data on their
evolution. Indeed, the merger tree analysis confirmed that all but two
haloes formed at a redshift zform ≥ 3, with G and H forming at zform =
2.33 and 1.2, respectively. It is clear that age correlates positively
with mass of a dark matter system, since the oldest haloes have been
continuously accreting mass for longer time. Moreover, old systems
had a higher chance to take part in a merger event with respect to
younger ones, although our selection criteria tend to exclude highly
interacting systems by construction.

All haloes are consistent with a solitonic profile from the time
of formation onward, with the special exception worth mentioning
represented by halo H, which forms from the radial collapse of
a filament (see e.g. Bar et al. 2019; Mocz et al. 2019, 2020,
for an example of FDM non-spherical core solutions). Indeed, its
density profile at the redshift of formation z = 1.8 shows the onset
of a solitonic cylindrical ‘core’ that then collapses longitudinally,
transitioning to a more spherical system by z = 1.2: for this reason,
we will exclude halo H data prior to z = 1.2 from our analysis. For a
detailed description of this interesting metamorphosis, we refer the
reader to Appendix B.

5.2.2 Statistical analysis: an agnostic approach

As described in Section 2.2, the core properties should statistically
satisfy SRI and SRII if the related assumptions are verified.

To place the properties of each zoom-in halo within the context
of the whole population, in Fig. 6 we collect a series of scatter
plots gathering the observables (Rc, ρc) (left-hand column) and
(Mc/Mvir, MvirRvir) (right-hand column) of all zoom-in haloes at all
redshifts. Black points represent independent measurements of all
haloes at different redshifts, and coloured curves visually highlight
the evolution of each single halo in redshift row-wise.

Gathered in this fashion, the distribution in these two property
spaces is qualitatively consistent with a power law, both individually
as single systems evolving in time and collectively as a whole
population. Moreover, it is possible to see that the most massive
systems statistically harbour the smallest cores – with respect to the
total population – in terms of absolute size and in mass, relatively to
the virial mass.

To quantify these features, we perform a statistical analysis based
on power-law fitting and bootstrap resampling. The total number
of data points Nsample in our sample is 104 – slightly less than
8 haloes × 15 redshifts available, since the smallest haloes were
not yet formed at the earliest redshifts – so it allows for a safe
bootstrap procedure to estimate the best values for the scaling
relations parameters and their confidence levels. At this stage, we

MNRAS 501, 1539–1556 (2021)



Scaling relations of fuzzy dark matter haloes I 1549

Figure 4. Density radial profiles of zoom-in haloes at different redshifts. Dashed lines represent the fitted solitonic core profiles. For each density profile only
the portion with r ≥ εres is shown (the values of εres softening length can be found in Table 1).

Table 3. Summary of zoom-in halo and core properties at redshift z = 0.

Name Npart Mtot Mvir Rvir Mc Rc s = a

c
doff Mmerg zform

(1010 M� h−1) (1010 M� h−1) (kpc h−1) (1010 M� h−1) (kpc h−1) (kpc h−1) (%)

A 2383 360 65.905 61.705 172.471 0.212 2.348 0.58 6.467 4.8 4
B 1049 930 29.033 27.803 132.222 0.217 2.131 0.59 6.785 11.0 5
C 505 523 13.979 13.667 104.352 0.131 1.966 0.68 1.609 0.0 5
D 286 746 7.929 7.795 86.538 0.156 2.236 0.76 2.526 0.0 5
E 147 959 4.091 3.881 68.588 0.020 1.477 0.55 0.965 2.3 3
F 611 880 2.115 2.050 55.440 0.044 3.198 0.70 0.918 3.1 3
G 257 709 0.891 0.832 41.049 0.034 3.307 0.44 0.662 0.0 2.33
H 123 644 0.428 0.389 31.860 0.010 2.104 0.64 0.719 0.5 1.2

do not differentiate haloes by redshift or any other property, thus
implicitly assuming that SRI and SRII are universally valid.

In practice, we performed a logarithmic fitting analysis for each
random draw of the bootstrap procedure – the total number of draws is
N2

sample, performed by substitution – to obtain the parameters (κ , μ, τ ,
η) of SRI and SRII as from equation (22). We then build an occurrence
statistics to study the distribution of such parameters and extract
confidence regions. We performed two fitting analyses in parallel:
one fixing the scaling exponent as in Schive et al. (2014) and one
allowing the exponents μ and η to vary. In the following discussion,
we will use the subscript μ and η for the κ and τ parameters resulting
from the varying exponents analysis, while we will specify the values
of the subscript when referring to the results obtained by fixing the
exponents – as e.g. κ1/4 obtained by fixing the exponent μ = 1/4.

In the upper panels of Fig. 7, we again display the distribution
of all haloes properties as in Fig. 6, together with the results of
the fitting analysis. The best parameter values describing the power
laws obtained with fixed and varying exponents (purple and orange,
respectively) are plotted as solid lines and are shown alongside their
68 per cent and 95 per cent confidence regions, depicted as colour-
matched shaded areas.

The parameter distributions obtained through the bootstrap proce-
dure are shown in the lower panels of Fig. 7 as histograms, where
again the solid vertical lines represent the best values – taken as
the median – and the shaded areas the 68 per cent and 95 per cent
confidence regions. Note that the median value is consistent with
the mode and the overall distributions are quite symmetrical in all
cases. We summarize the results in Table 4, where each parameter
value is accompanied by the 68 per cent percentile confidence range.
Because of the almost symmetrical nature of these distribution, the
68 per cent confidence ranges are expressed in symmetric fashion
for simplicity and approximated by excess; in the following, we will
refer to these values as σ when comparing different values of the SRI
and SRII parameters.

As a methodological note, let us remark that these confidence
ranges are not to be confused with the standard deviations associated
with the sample: the former is a measure of how probable the best-
fitting values are as compared to another random sample extracted
from the true (unknown) population, while the latter is a measure of
the intrinsic spread in the data set with respect to the best values. From
a statistical point of view, the relation between these two quantities
is analogous to the relation of the standard error of the mean to
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Figure 5. 3D renderings of the dark matter density of the zoom-in haloes at z = 0 in a cubic volume of 100 kpc h−1 side. The colour scheme identifying the
density levels is such that red corresponds to ρc/2 – thus ideally representing the core, as defined by equation (10) – and purple to ρvir; the other colours (orange,
yellow, and blue) correspond to values between these two, equispaced in logarithmic scale.

the standard deviation of a data set. As an example, the standard
deviations in the varying exponents case are �Rc ∼ 1.4 kpc h−1 and
�Mc/Mvir ∼ 0.02: these estimates are a proxy for the statistical
variability of the properties of a typical object and the ones predicted
by SRI and SRII identified by the best values.

Regarding the distribution of the μ exponents of SRI in this
agnostic approach, we find that the value μ = 1/4 lies at ∼7.5σ from
the most probable value obtained in the case where the exponent μ

is free to vary: the value μ = 1/4 thus seems inconsistent with the
data, but a lower exponent is preferred. Turning to the exponent η of
SRII, our best value is ∼1.5σ away from the value η = 1/3 as found
in Mocz et al. (2017), disfavouring the value η = 1/2 obtained by
Schive et al. (2014) which lies �10σ away from the mean.

Furthermore, the results previously obtained in the single object
collapse test are plotted as a green diamond in Fig. 7. These data
points of non-cosmological origin are interestingly consistent with
the scaling relations with fixed exponents, in contrast with what found
when exponents are free to vary: this result suggests that scaling
relations may be altered by the cosmological context in which haloes
and cores form and coevolve.

Indeed, the inconsistency between our data sets and the theoretical
predictions – especially regarding SRI – might seem troublesome at
first sight, but let us recall that these results are obtained considering
the total sample of observables without taking into account dynamical
and morphological information of the host haloes, which we are
going to include in the analysis in the following sections.

5.2.3 Dynamical and morphological information of the host haloes

As we discussed in Section 2.2, SRI and SRII both rely on the
assumption of spherical symmetry and relaxed dynamical state of
the system at all times. In this section, we check the validity of
these assumptions for our data set by investigating the observables
discussed in Section 3.3. In Fig. 8, we replicate the results in the same

parameter space as in Fig. 7, with data points in each row are here
colour coded according to a different property: from top to bottom,
the colours are representative of the scale factor a, the mass accreted
via merger Mmerg, the sphericity s, and the centre offset (in units of
the halo virial radius) doff/Rvir.

Starting from the first row depicting the scale factor distribution
of core and halo properties, we expect a general trend to be evident:
as a system evolves, the density of the core increases and its radius
gradually shrinks, so that the core mass decreases with respect to
the virial mass. In fact, as SRI and SRII are explicit functions of a,
evolution in time can be identified in both the spaces with a flow of
data points from the upper left-hand corner toward the bottom right-
hand corner, with the direction of the flow depending on the specific
exponent assumed to be true. In addition, the global time evolution
arises also as an implicit (and non-linear) dependence of each halo
property – e.g. the implicit time dependence ρc(a) and Mvir(a)Rvir(a)
in our case – which complicates the overall description of the relation
between scale factor and the core/halo properties.

For SRI, it seems that there is indeed a statistical correspondence
between the scale factor and the locus where different systems are
found along the relation. Specifically, different systems at early times
have rather similar values of (ρc, Rc) and coherently evolve in time,
though with increasing spread as time progresses. For SRII, instead, a
global scale factor correlation with (Mc/Mvir, MvirRvir) is not evident,
as different systems at the same redshift occupy distant positions
along the power-law curve with no clear trend; however, comparing
this information with Fig. 6, it is possible to see that the time evolution
of all systems is individually consistent with a progression along the
power-law curve – with the Mc/Mvir ratio becoming smaller and
smaller in time – yet the starting and ending points of the trajectories
of more massive systems are systematically shifted along the power
law towards smaller Mc/Mvir ratios, so that a global correspondence
between the scale factor and the distribution of data points in the
SRII parameter space it is not particularly evident.
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2 2]

Figure 6. Properties of zoom-in haloes, gathered in (ρc, Rc) (left-hand panels) and (Mc/Mvir, MvirRvir) (right-hand panels) parameter spaces, where black data
points represent all haloes at all redshifts. The data points related to a particular zoom-in halo are highlighted row-wise as coloured lines. In both parameter
spaces, time flows from the top left to bottom right; however, the exact time evolution – as described by equation (22) – depends on the scaling exponents.

Looking at the panels in the second row, we note that the merger
analysis shows that the large majority of systems have none or
negligible mass contribution accreted via merger with respect to their
virial mass. In fact, for 43 out of 104 total data points we have that
Mmerg is identically zero while the overall mean and maximum values
of Mmerg/Mvir are ∼2.8 per cent and ∼16.5 per cent, respectively,
with only seven data points having a contribution Mmerg/Mvir >

10 per cent. The mass contribution has no clear correlation with the
SRI or SRII distribution. Nevertheless, it is possible to note that
the systems with a highest mass contribution seem to be found in
two main regions in the parameter spaces: one consistent with the
young and small systems in the upper left-hand corner of the plots
– for which a single merger makes up for a larger contribution,
due to the small virial mass – and for old and big systems in the
opposite corner – for which, instead, there is a higher incoming mass
contribution, as resulting from a larger number of major merger
events. In the end, no conclusive and univocal link can be drawn

between mass accreted via merger and any scaling relation in our
data set; as detailed in Section 3.3.3, this comes as no surprise, as
our selection procedure for the zoom-in haloes introduced a bias in
our sample, effectively excluding strongly interacting systems. We
will overcome this limitation and thoroughly investigate the role of
mergers in the onset of scaling relations in an upcoming companion
paper (Nori & Baldi, in preparation).

Moving on to the halo shape in the third row of Fig. 8, we find
that the distribution of halo sphericity is extremely interesting, as it
clearly correlates with the parameter space distribution of both SRI
and SRII: the least spherical objects (i.e. the darkest data points in
the figure) mostly placed in the left-hand side of the plot are the ones
that deviate the most with respect to the SRI with μ = 1/4 found
by Schive et al. (2014), whose core radius and density (and mass)
appear to be underestimated, probably as a consequence of the invalid
assumption of sphericity. It is visually clear that these systems are
responsible for a systematic deviation of the bootstrap results from
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Figure 7. Properties of the zoom-in haloes at different redshifts (top panels), portrayed in the parameter spaced used to fit SRI (top left-hand panel) and SRII
(top right-hand panel) with the bootstrap statistical approach, with the addition of the data point related to the single object test (green diamond). The resulting
parameter distributions are displayed in the lower panels). In all panels, solid coloured lines represent the value of best fit, and shaded areas represent the
68 per cent and 95 per cent percentile-equivalent confidence region of both the fixed (magenta) and varying (orange) exponent agnostic approach.

Table 4. Values of the parameters of SRI and SRII of equation (22) obtained through bootstrap sampling with different strategies.

Sample restrictions Nsample κ1/4 τ 1/2 κμ μ τν η

s doff/Rvir

– – 104 0.498 ± 0.015 0.260 ± 0.016 1.053 ± 0.095 0.148 ± 0.013 0.090 ± 0.006 0.301 ± 0.019
>0.4 <0.10 59 0.550 ± 0.017 0.318 ± 0.024 0.889 ± 0.098 0.176 ± 0.017 0.108 ± 0.022 0.324 ± 0.031
>0.6 <0.07 25 0.549 ± 0.024 0.327 ± 0.038 0.855 ± 0.111 0.185 ± 0.020 0.122 ± 0.046 0.319 ± 0.071

SRI in the agnostic case. With respect to SRII, the systems with
low sphericity occupy a specific region in the parameter space – in
particular, the upper left-hand corner characterizing the youngest
haloes with the highest Mc/Mvir ratio, consistently with the shape
evolution of standard structure formation (Zel’dovich 1970) – and,
also in this case, they show a systematic deviation from the η = 1/2
power-law trend of Schive et al. (2014).

The least spherical systems are also the ones that exhibit a large
centre offset, shown in the fourth and last row. In fact, the centre
offset distribution seemingly overlaps with the sphericity one, as
they both are pivots for the dynamical state of the halo.1 The systems

1The tight correlation between sphericity and the logarithm of the centre
offset can be indeed measured, resulting in a correlation factor of ∼−0.75.

that are least spherical and have the largest centre offset represent
a subpopulation that occupies a specific region in the left-hand side
of the two property spaces far from the power laws with exponents
found by Schive et al. (2014). At the same time, they are the smallest
simulated haloes at the highest redshifts available, for which we
expect a dynamical state far from relaxed. Yet, these objects are
real physical structures – just in an early stage of their evolution –
and might host visible galaxies that would be indeed present (and
observable) in a FDM-dominated universe, so that they should not
be excluded from the assessment of general scaling relations.

5.2.4 Statistical analysis: a biased approach

The core and halo properties we detailed above give us an important
insight on the dynamical state and morphological features of each
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Figure 8. Replicas of the properties of the zoom-in haloes at different redshifts, as in Fig. 7. Each data point is here coloured according to an additional property.
From top to bottom: scale factor a, mass gained via merger Mmerg, sphericity s, and centre offset doff/Rvir.
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system. As we discussed in Section 2.2, this information plays a
significant role as a check on the assumptions supporting SRI and
SRII. In particular, we noted that the sphericity s and the centre offset
in units of the virial radius doff/Rvir of systems seem to correlate with
the distance of system properties from the ones predicted with the
best fit obtained with an agnostic approach. Moreover, these two
quantities are directly linked to the spherical symmetry and relaxed
dynamics assumptions, so including them in the fit analysis is of
great significance.

To quantitatively describe the connection between the sphericity s,
the centre offset in units of the virial radius doff/Rvir, and the scaling
relations, we repeated our bootstrap analysis on two subsamples of
haloes, defined by an increasingly stringent cut-offs on sphericity
and centre offset. The first subsample is characterized by s > 0.4 and
doff/Rvir < 0.10 and the second one by s > 0.6 and doff/Rvir < 0.07.
The values for the sphericity cut were chosen to exclude the lower
end of the sphericity distribution while keeping Nsample high enough
to be statistically relevant, taking into account that the maximum
sphericity in the sample is �0.8. The same is valid for the centre
offset cut-off values that we chose also consistently with the value
(0.07) used in Neto et al. (2007) to identify relaxed objects.

The parameters obtained by the bootstrap analysis, summarized in
Table 4, show how the exponent μ systematically (and significantly)
shifts towards the theoretically predicted value μ = 1/4 for spheri-
cally symmetric systems, with best-fitting values of μ = 0.176 and
μ = 0.185 for the two increasingly selective subsamples – i.e. with
a ∼30 per cent increase with respect to the agnostic case. Having
in mind that our sample does not include haloes with sphericity
higher than s > 0.8 – which are very rare among FDM structures
(as also seen in Nori et al. 2019) – this result suggests that the
exponent μ = 1/4 of SRI may only represent an asymptotic limit
that can be retrieved from systems for which the spherical symmetry
assumption is approximately valid. The perfect sphericity of all dark
matter haloes, as a matter of fact, is never realized – not even at low
redshift – in a realistic cosmological context, where the sphericity
distribution is continuous and broad, encompassing a large number
of less spherical systems. From a different point of view, we can say
that it is possible – and reasonable – to interpret the inconsistency
between the youngest and least spherical system with the exponent
μ = 1/4 of SRI as a sign of the excited state of these cores, as they
may have not yet fully stabilized in the solitonic ground state (see
e.g. the excited state of a FDM core observed in Veltmaat et al. 2018).

The exponent η related to SRII appears to be less affected by
these sample restrictions, shifting the exponent towards ∼15 per cent
higher values. However, the associated error on this estimate in-
creases dramatically, so it is unclear if this shift is statistically
significant. We can confirm nevertheless that the value η ∼ 1/3
found in the agnostic approach is preferred over η ∼ 1/2 also in
the restricted subsamples.

To summarize, the comparison between the results obtained by
this biased approach – i.e. by imposing a cut in sphericity and centre
offset – with the ones obtained with an agnostic approach suggest
that the scaling relations obtained by Schive et al. (2014) may be not
suitable to describe a cosmologically representative sample of dark
matter haloes, since it includes a much more diverse population of
systems for which the underlying assumptions are not valid.

6 C O N C L U S I O N S

With the ultimate goal of detailing the scaling relations that hold
between the solitonic cores – characterizing the innermost regions
of FDM collapsed structures – and their hosting haloes properties

in a realistic cosmological set-up, we have developed a suite of
cosmological simulations performed with the AX-GADGET code. The
simulations span over a wide range of scales and environments, in
order to understand the dependence of such relations on the formation
history of individual haloes.

In this work, which is the first of a series, we started from the most
idealized situation of a single object forming from the collapse of
a single quantum Jeans wavelength of the primordial FDM density
field. With such simple and idealized test, we have confirmed the
capability of the AX-GADGET code to reproduce the typical solitonic
core of FDM systems that exhibits a density profile as described by
equation (9): it confirms that the N-body approach is effective in the
representation of the FDM framework.

We then moved to a less idealized and more cosmologically
relevant scenario, in which we simulated eight individual haloes
within their native cosmological environment by means of the zoom-
in resimulation technique. We found that every simulated halo forms
a solitonic core and we confirm the general trend of haloes to feature
a NFW-like density profile in the outer regions, far from the solitonic
core.

Moreover, from the structural properties and the time evolution
of our eight simulated haloes, we were able to estimate the main
parameters (i.e. the normalization factor and – more importantly –
the exponent) of the scaling relations that link the core density to
the core radius and the core mass to the halo virial properties, which
we termed SRI and SRII, respectively. We performed a bootstrap
sampling including all haloes at all redshifts independently from
their structural, evolutionary, and environmental properties, finding
that our sample is inconsistent with the SRI observed in Schive et al.
(2014), while it is much more consistent with the SRII found in Mocz
et al. (2017) than the one observed in Schive et al. (2014).

Taking into account the dynamical state of the systems through the
analysis of their sphericity and offset between centre of mass and the
gravitational potential minimum, which we assumed to be a proxy
for their relaxation, we demonstrated that unrelaxed systems (i.e.
objects characterized by a low sphericity and a large centre offset)
represent a subsample that systematically deviates from SRI and SRII
of Schive et al. (2014), suggesting that the scaling relations presented
in that work may be natively biased towards relaxed systems and not
representative of a cosmological sample of haloes with a realistic
distribution of relaxation states. In fact, by restricting the analysis
only to a biased subsample of the most spherical and relaxed systems
within our sample, it is possible to draw near to the expected values
of the exponent of SRI found by Schive et al. (2014) and of SRII
by Mocz et al. (2017), thus supporting this claim. Given the fact
that relaxed haloes are only a fraction of the total halo population
found in the Universe, scaling relations meant to describe all haloes
independently of their dynamical state are expected to be different
from the relaxed case. In this sense, the scaling relations provided
in this work are a better – yet still partial – representation of the
relations between core and halo properties in a realistic cosmological
sample. Let us note that the subhalo small-scale oscillatory granular
structures are not here fully captured, possibly altering the relaxation
process (Hui et al. 2017); such possible alteration will be addressed
in dedicated future works.

The results obtained through the analysis of merger histories
confirmed that the zoom-in halo sample is biased towards weakly
interacting systems, due to our selection procedure, therefore pre-
venting a solid quantitative investigation of the impact of mergers
on the onset of scaling relations. Nevertheless, mergers are the most
effective way to alter the dynamical state of a systems and disrupt
relaxation, thus they may play an important role in changing the
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effective scaling relations characterizing FDM systems. In the next
entry of this series (Nori & Baldi, in preparation), we will address
this topic with large cosmological simulations at fixed resolution,
providing a close study of mergers in a cosmological context.

To summarize, with this work we initiated a series of papers aiming
at investigating the scaling relations arising between solitonic cores
properties and their host haloes in FDM cosmologies. With the use
of AX-GADGET, we built a sample of FDM haloes fully integrated in a
common cosmological environment, simulated through the zoom-in
approach. In particular, we focused on the impact of the morpho-
logical and dynamical state of the systems on the scaling relations
previously found in the literature, which rely on the assumptions
of sphericity and dynamical relaxation. We found that such scaling
relations are not generally valid for our cosmological sample of
haloes, as it includes systems that do not satisfy these conditions.
These unspherical and unrelaxed systems, which are legitimately
part of a cosmological sample nevertheless, are responsible for
the statistical deviation from the scaling relations obtained in the
literature, thereby suggesting that these scaling relations are only
valid for highly idealized systems and must be corrected for a
realistic cosmological sample of haloes. We also find suggestions
of an important role of merger events in the modifications of the
scaling relations that will be investigated in detail in an upcoming
companion paper.
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APPENDIX A : ABSORBING THE SCALE
FAC TO R A N D B O S O N M A S S D E P E N D E N C E S

The EP system described in equation (8) can be recast in a scale factor
a and boson mass mχ independent fashion through the coordinate
transformation:⎧⎪⎪⎨
⎪⎪⎩

x = x̃ aε mδ
χ ,

t = t̃ a2+2ε m1+2δ
χ ,

u = ũ a−2−ε m−1−δ
χ ,

ρ = ρ̃ a−1−4ε m−2−4δ
χ ,

⎧⎨
⎩

M = M̃ a−1−ε m−2−δ
χ ,

� = �̃ a−2−2ε m−2−2δ
χ ,

E = Ẽ a−5−3ε m−4−3δ
χ ,

(A1)

where ε and δ are parameters of choice. Note that this is the more
general form of equation (13), where any dependence of λ on scale
factor or boson mass λ ∝ aεmδ

χ is here taken into account. It is
easy to see that the choice of ε (as it was for the parameter λ) is
completely irrelevant to the validity of any scaling relation presented
in Section 2.2, as long as equation (8) is valid. In fact, both SRI
and SRII are a and mχ independent when expressed in the tilted
coordinates. In this work, we will adopt ε = δ = 0, meaning that
we do not apply any transformation to the comoving frame; as a
comparison, ε = −1/4 was used in Schive et al. (2014), so that ρ̃/ρ

is not a function of time. It is interesting to note also that ε = −1
maps the comoving frame into the physical one.

The assumption of constant scale factor in time a �= a(t) is
obviously not valid in a cosmological scenario. In this case, the
terms involving ȧ = aH originating by the transformation cannot
be neglected, effectively breaking the scale factor independence. It
is possible to neglect such derivatives assuming that the time for
the solitonic solution to form tsol is much shorter than the cosmic
expansion time-scale tsol � 1/H, so that a solution to equation (8)
can form on a much faster time-scale in which the scale factor can
be regarded as almost constant (see Levkov, Panin & Tkachev 2018,
for analyses on time evolution of solitons).

A P P E N D I X B : F RO M C Y L I N D R I C A L TO
SPHER ICAL SOLITON

A peculiar case worth mentioning is represented by the H zoom-in
halo: the smallest halo of our set forms via cylindrical collapse of a
filament around z = 1.8 and sets into a spherical configuration around
z = 1.2. The collapse of a filament and the consequential formation
of a ‘core’ – though the term ‘core’ in this case may sound dissonant
with the cylindrical shape of the system – was also recently observed

Figure B1. 3D renderings (top panels) and radial density profiles (bottom
panels) of the H halo at different times. The renderings represent density
levels in a 50 kpc h−1 cube, coloured consistently as in Fig. 5. Spherical
(blue) and cylindrical (orange) radial profiles (solid) are plotted together with
their core profiles (dashed).

in a simulation in Mocz et al. (2019, 2020). The authors provided
a numerical approximation for the cylindrical solution equivalent to
equation (9), finding the same functional form but with a constant
α = 0.127.

In Fig. B1, we present the 3D rendering of the density distribution
(upper panels), in a cube of side 50 kpc h−1 during the transition
from cylindrical to spherical symmetry, with the corresponding
radial density profiles (lower panels). The colour scheme of the 3D
rendering is the same as Fig. 5 for consistency. For each redshift,
the radial profile is shown as computed on spherical shells and
fitting the core using equation (9) (solid and dashed blue lines)
and obtained considering cylindrical shells and using the cylindrical
version of the core equation suggested by Mocz et al. (2019) (solid
and dashed orange lines). Technically, the cylindrical density profile
is computed on radial cylindrical shells generated around the major
semi-axis a that is taken as the axis of symmetry; as the profile
is computed on particles belonging to the halo, the longitudinal
extent is limited by the farthest particle from the halo centre.
Note that, although presented in the same plot for visual purposes,
the radial coordinate on the x-axis has different meaning for the
two observables, representing either the spherical or the cylindrical
radius, respectively.

It is qualitatively interesting that the cylindrical profile exhibits the
presence of a ‘core’ from the beginning, while this feature emerges
only at the end of the transition in the spherical profile. For the first
time in the literature – to the best of our knowledge – we presented
here the transition between a cylindrical and spherical regime of a
FDM core; more generally, this system represents an example of
the complex FDM halo evolution that can take place in filaments,
which can have interesting astrophysical implications (as suggested
by Mocz et al. 2019, 2020).
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