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1 Introduction

Most econometric/statistical estimators can be defined as extremum estimators obtained

from optimizing a sample objective function. They include maximum likelihood estimators,

generalized method of moments estimators, empirical likelihood and minimum distance esti-

mators. Under certain conditions including smoothness of the sample objective function and

interior solution, the extremum estimator is a solution to the first order condition (FOC).

In many interesting cases, solving the FOC condition directly with respect to all the occur-

rences of the parameters of interest may be numerically cumbersome or impractical. This

paper provides a unified theory for efficient estimation algorithms that avoid solving the

FOC directly by iteratively solving much simpler problems.

Specifically consider a generic objective function LT (θ), where θ is a p-dimensional vector

of parameters. In the regular case, the parameter estimate θ̂T can be computed by solving

the first order conditions: ∂LT (θ)/∂θ = 0. Since analytical solutions are generally not avail-

able, the estimates are usually computed using iterative methods such as Newton-Raphson,

quasi-Newton methods or derivative-free methods, such as the simplex method or simulated

annealing. It is well known that in a neighborhood of θ̂T , the Newton-Raphson method

converges quadratically, but at the cost of requiring the computation of the Hessian matrix

of LT (θ). When the objective function is very complicated, analytical expressions of the

second derivatives are difficult or impossible to obtain. Numerical approximations based on

finite differences are possible, but can be costly, especially when p is large and/or evaluating

LT (θ) is time-consuming. Moreover, these approximations can be very sensitive to the choice

of the intervals used for differencing, and the results they provide are frequently unreliable.

For these reasons, the use of approximated second derivatives can worsen significantly the

performance of the Newton-Raphson algorithm, both in terms of convergence speed and of

computational cost. Alternatively, quasi-Newton algorithms (e.g., BFGS or DFP) can be

used. These methods exploit only the information in the gradient of LT (θ) and do not require

second derivatives, but their performance can be significantly worse than Newton-Raphson’s

in terms of speed, and tends to depend on problem scaling and algorithm parameter selec-

tion. Finally, in moderate-to large-scale problems derivative-free methods usually make the

search for the optimum very slow and inefficient.

In this paper we introduce a class of alternative iterative optimization algorithms that

may be considered as intermediate between Newton-Raphson and quasi-Newton methods. In

a nutshell, our algorithms do not require to evaluate the full Hessian matrix of LT (θ), but only
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the portion of it associated to the “simple” occurrences of θ in the objective function. This

should allow to exploit at least in part the information about the curvature of the objective

criterion, thus providing a computationally simple and yet effective method to compute the

efficient estimator θ̂T . The precise meaning of “simple” occurrence likely depends on the

problem under scrutiny. In this paper, we assume that the objective function LT (θ) can be

written as QT [θ, ν(θ)], where ν(·) is a vector of functions that collect all the problematic

occurrences of θ – i.e., difficult or heavy to evaluate and/or hard to differentiate. Pastorello,

Patilea and Renault (2003) (PPR hereafter) notice that such a structure naturally arises

in many examples in Economics and Finance. In this framework, computing the efficient

estimator θ̂T may be difficult because of the presence of ν(θ); for this reason PPR develop an

alternative iterative estimator of the parameters that does not require to maximize w.r.t. the

second occurrence of θ in QT [θ, ν(θ)]. If some conditions are satisfied, the PPR estimator is

consistent and much easier to compute than θ̂T , but generally inefficient w.r.t. to it because

it is based only on the “simple” occurrence of θ in the objective function, thus neglecting

the information contained in the second occurrence.

In this paper we present simple modifications of the PPR iterations which produce it-

erative algorithms that, upon convergence, yield the efficient estimator θ̂T . We do this by

extending to the general extremum estimation problem the idea of Maximization-By-Parts

(MBP) put forth by Song, Fan and Kalbfleisch (2005) (SFK hereafter) in the context of

Maximum Likelihood with a convenient separability property of the log-likelihood function.

It must be stressed that in terms of computational cost each iteration of our new algorithms

is not more complicated than a PPR iteration. The modification we consider is not unique;

in the text we will focus on the one closest to the PPR algorithm, but an alternative is illus-

trated in an Appendix. This flexibility of our algorithms allows to tailor our approach to the

specific details of a large variety of estimation criteria. Moreover, since the convergence to

θ̂T of the two algorithms imposes different requirements on QT , one is free to switch between

them if iterations fail to converge in reasonable time. We present conditions under which

our algorithms converge and establish asymptotic properties of the corresponding estimators.

We discuss the modifications that arise in these properties when the algorithm’s iterations

are started at a consistent estimator, and we also devote special attention to the case of a

GMM objective function.

The rest of this paper is organized as follows. In section 2, we present the main idea

underlying our new algorithms and highlight their connections with the backfitting estimator

of PPR and the MBP algorithm of SFK. Section 3 illustrates one example, and section 4
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discusses asymptotic results, including conditions that guarantee the convergence of the

algorithms for both consistent and inconsistent initial values. In section 5 we discuss the

implementation of the new algorithms for a GMM objective function and present a new

algorithm specific to it. A numerical example in the GMM context is studied in Section

6. The last section concludes. Technical proofs and additional details are relegated to two

appendices.

2 The Framework and a New Efficient Algorithm

Consider the objective function LT (θ) = QT [θ, ν(θ)] and the corresponding extremum esti-

mator defined by

θ̂T = arg max
θ∈Θ

QT [θ, ν(θ)].

In this paper we focus on the case that θ̂T is the only solution to the first order condition:

∂LT (θ)

∂θ
=
∂QT [θ, ν(θ)]

∂θ
+
∂ν(θ)′

∂θ

∂QT [θ, ν(θ)]

∂ν
= 0. (1)

We assume that solving directly (1) w.r.t. θ is difficult. Typically this occurs because the

first order condition depends on θ in several places and some terms, collected in ν(θ), are

much more complicated than others. PPR and SFK develop iterative algorithms that are

easier to implement than solving (1) directly. However, the algorithms in PPR may not

produce efficient estimators upon convergence and those in SFK only apply to the separable

likelihood framework motivating the current paper.

In the rest of this section, we first present a brief review of PPR and SFK and then

introduce a new efficient iterative algorithm.

2.1 Existing Iterative Estimators in PPR and SFK

To avoid maximization w.r.t. the second occurrence of θ in the objective function QT [θ, ν(θ)],

PPR observed that if the value ν(θ0) was known where θ0 denotes the true parameter value,

then an alternative and simpler estimator could be computed by solving maxθ∈Θ QT [θ, ν(θ0)].

Of course this is not directly feasible, but an estimator can nevertheless be computed as the

limit of an iterative backfitting procedure, θ̂
PPR

T = limk→∞ θ̂
(k)

T , where θ̂
(k)

T is implicitly

defined by:

∂QT [θ̂
(k)

T , ν(θ̂
(k−1)

T )]

∂θ
= 0.
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To compare θ̂T and θ̂
PPR

T , let us introduce the limit objective function L∞(θ) = Q∞[θ, ν(θ)] =

plimT→∞QT [θ, ν(θ)]. The consistency of θ̂T and θ̂
PPR

T requires that the true value θ0 is

the only solution of maxθ∈ΘQ∞[θ, ν(θ)] and maxθ∈ΘQ∞[θ, ν(θ0)], respectively. Under these

assumptions, the asymptotic variances of the two estimators will be determined by sample

counterparts of the first order conditions:

∂Q∞[θ0, ν(θ0)]

∂θ
+
∂ν(θ0)′

∂θ

∂Q∞[θ0, ν(θ0)]

∂ν
= 0 for θ̂T and (2)

∂Q∞[θ0, ν(θ0)]

∂θ
= 0 for θ̂

PPR

T . (3)

Taken jointly, (2) and (3) imply that

∂ν(θ0)′

∂θ

∂Q∞[θ0, ν(θ0)]

∂ν
= 0. (4)

Given that by assumption, (3) identifies θ0, we can think of (4) as an additional moment

condition, and look at (2) as the optimal way to combine these two sets of moment conditions.

In general, given that it uses (3) only, θ̂
PPR

T is asymptotically less efficient than θ̂T , except

if by chance (2) and (3) are equivalent. This case occurs when the function ν(θ) is (at least

asymptotically) the result of a preliminary concentration stage.1

SFK consider the special case in which the objective function is a loglikelihood function

taking the additive form: QT [θ, ν(θ)] = Q1,T (θ1)+Q2,T [ν(θ1), θ2], where θ = (θ′1, θ
′
2)′. In this

case, θ̂T is the MLE. SFK provide several examples for which the log-likelihood function is of

this form and the full MLE may be difficult to compute directly, as Q2,T [ν(θ1), θ2] depends

on θ1 in a complicated way. For separable estimation criteria, the PPR estimator can be

computed as the solution to

∂Q1,T (θ̂
PPR

1,T )

∂θ1

= 0 and
∂Q2,T [ν(θ̂

PPR

1,T ), θ̂
PPR

2,T ]

∂θ2

= 0,

where in the first step, θ̂
PPR

1,T is computed and then fixing θ̂
PPR

1,T , θ̂
PPR

2,T is computed in the

second step. This kind of two-step estimation procedures are extremely popular in Economics

and Finance because of their simplicity, but they are in general inefficient w.r.t. θ̂T .

To avoid the efficiency loss associated with θ̂
PPR

T , SFK proposed MBP, an iterative algo-

rithm which produces an estimator asymptotically equivalent to the MLE upon convergence.

1When ν(θ) derives from a concentration step, ∂Q∞[θ,ν(θ)]
∂ν = 0, for all θ. Also, note that even in this

case the assumption that ν(·) is known is not really restrictive since any sample dependence could always
be absorbed in QT (·).
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The generic iteration of MBP is based on the structure of the first order condition for θ̂T ,

and is implicitly defined as:

∂Q1,T (θ̂
(k)

1 )

∂θ1

= −∂Q2,T [ν(θ̂
(k−1)

1 ), θ̂
(k−1)

2 ]

∂θ1

, (5)

∂Q2,T [ν(θ̂
(k)

1 ), θ̂
(k)

2 ]

∂θ2

= 0. (6)

The key observation is that, for each single iteration, running MBP is not more involved than

running the PPR two-step estimator. The only difference is that the expression on the right

hand side in (5) is no longer stuck to zero. To start the algorithm, we can use the two-step

estimator above as an initial value for θ. SFK showed that, under an information dominance

condition, iterating from θ̂
PPR

T via (5)-(6) yields an estimator asymptotically equivalent to

the MLE upon convergence.

Computationally, each step in MBP is no more difficult than maximizing the first term

Q1,T (θ1) (as well as the second term for given θ1) and hence is well suited to examples in

which Q1,T (θ1) is of a much simpler form than the second term Q2,T [ν(θ1), θ2] (as a function

of θ1). In the next subsection we will show that a natural extension of the MBP idea to the

case of general, non-separable estimation criteria of the form QT [θ, ν(θ)] allows to overcome

the inefficiency of θ̂
PPR

T and provides simple iterative algorithms approaching the efficient

estimator θ̂T upon convergence.

2.2 An Efficient Iterative Backfitting Algorithm

The main contribution of this paper is to provide some simple iterative algorithms that upon

convergence yield the efficient extremum estimator, solution of (1) at the same computational

cost as the inefficient PPR algorithm reviewed in the previous section. Instead of trying to

solve the complete FOC (1), our algorithms iterate on the more complicated terms. In what

follows, we assume that iterations are started at θ̂
(0)

T , which may or may not be a consistent

estimator of θ. Consider the following iterative scheme.

Algorithm I. Given θ̂
(k−1)

T , let θ̂
(k)

T be the solution of:

∂QT [θ, ν(θ̂
(k−1)

T )]

∂θ
= −∂ν(θ̂

(k−1)

T )′

∂θ

∂QT [θ̂
(k−1)

T , ν(θ̂
(k−1)

T )]

∂ν
, k = 1, 2, . . . . (7)

Let θT (·) denote a function such that the solution of (7) obeys

θ̂
(k)

T = θT (θ̂
(k−1)

T ), k = 1, 2, . . . (8)
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Following Dominitz and Sherman (2005), if θT (·) is an asymptotic contraction mapping,

then there exists a fixed point that necessarily coincides with the efficient estimator θ̂T ,

and the sequence defined by (8) converges to it as k → ∞. With a scalar θ, it can be

checked that θT (·) is an asymptotic contraction mapping if the absolute value of its derivative

is asymptotically bounded between 0 and 1 with probability one. If θ̂
(0)

T is a consistent

estimator, the contraction mapping condition is a local one, in that it must hold only in θ0;

otherwise, it must hold globally, i.e. over the whole parameter space Θ.

An interesting variant of algorithm I is defined by the following updating rule.

Algorithm I (Newton version). Given θ̂
(k−1)

T , let θ̂
(k)

T be given by:

θ̂
(k)

T = θ̂
(k−1)

T −

[
∂2QT [θ̂

(k−1)

T , ν(θ̂
(k−1)

T )]

∂θ∂θ′

]−1 [
∂LT (θ̂

(k−1)

T )

∂θ

]
, k = 1, 2, . . . (9)

We will refer to this iterative rule as the Newton version of algorithm I, because it corre-

sponds to a single iteration of the Newton algorithm associated to the multivariate nonlinear

equations (7). The proof of Theorem 4.2 below shows that, under the same contraction map-

ping condition required for (7), the sequence θ̂
(k)

T defined by (9) converges as k → ∞ to an

estimator asymptotically equivalent (for large T ) to θ̂T .2 Note, however, that implementing

(9) is computationally much cheaper than (7).

It is also instructive to compare (9) with the Newton-Raphson iterates used to compute

θ̂T given by:

θ̃
(k)

T = θ̃
(k−1)

T −
[
D2LT (θ̃

(k−1)

T )
]−1

[
∂LT (θ̃

(k−1)

T )

∂θ

]
, k = 1, 2, . . . (10)

where

D2LT (θ) =
∂2QT [θ, ν(θ)]

∂θ∂θ′
+
∂2QT [θ, ν(θ)]

∂θ∂ν ′
∂ν(θ)

∂θ′
+
∂ν(θ)′

∂θ

∂2QT [θ, ν(θ)]

∂ν∂θ′

+
∂ν(θ)′

∂θ

∂2QT [θ, ν(θ)]

∂ν∂ν ′
∂ν(θ)

∂θ′
+

dim(ν)∑
j=1

∂QT [θ, ν(θ)]

∂νj

∂2νj(θ)

∂θ∂θ′
. (11)

Under standard regularity conditions, it is known that starting from a consistent estimator,

one-step iteration of (10) yields asymptotically efficient estimator. Robinson (1988) estab-

lishes higher order properties of θ̃
(k)

T for fixed k in terms of its stochastic difference with

the efficient estimator θ̂T . For GMM criterion function and criterion functions that can be

2Even if they share the same limit, the iterates originated by (7) and (9) will generally be different.
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written as sample averages, Andrews (2002) studies higher order efficiency properties of θ̃
(k)

T

for fixed k.

Instead of using the full Hessian as (10), the Newton version of algorithm I exploits

the first term on the right hand side of (11) only. This explains why, when started from

a consistent estimator, (9) will not deliver an asymptotically efficient estimator in a single

step; its advantage, however, lies in its computational ease, since only second derivatives

w.r.t. the first occurrence of θ are required.

In section 4 we detail the contraction mapping condition needed when the number of

parameters is larger than one, and we show that this condition can be alternatively repre-

sented in terms of information dominance (ID). The ID condition requires that the part of

the Hessian that is used in (9) dominates the part that is ignored.

It should be noticed that even if the limit criterion Q∞[·, ν(·)] satisfies the contraction

mapping condition, the finite sample criterion QT [·, ν(·)] may not. In this case the conver-

gence of the iterations (7) or (9) is not guaranteed. We present in appendix B.1 an alternative

algorithm based on different choices of the occurrences of θ in the full FOC (1) on which to

iterate. Using its Newton variant, this algorithm can be interpreted as exploiting an addi-

tional component of the full Hessian in (11). Upon convergence, it provides an asymptotically

efficient estimator but the required contraction mapping condition differs from algorithm I.

Depending on the specific application, one of the algorithms may be computationally more

convenient or exhibits superior small sample performance in terms of convergence rate.

The lack of small sample convergence of a given algorithm can alternatively be addressed

by letting the number of iterations k grow to infinity with T at a sufficiently fast rate. Let us

denote by k(T ) the number of iterations to highlight the dependence of k on T , and by θ̂
(k(T ))

T

the associated estimator. Proposition 3 in PPR implies that this estimator is consistent and

asymptotically equivalent to θ̂T if, in addition to the contraction mapping condition,

√
T
(
θ̂

(k(T ))

T − θ̂
(k(T )−1)

T

)
→ 0 in probability.

A sufficient condition for this property to hold is the “uniform contraction mapping assump-

tion” put forward by Dominitz and Sherman (2005) with k(T ) = T δ, for some δ > 0.

3 An Example—The Merton Credit Risk Model

In this section we use the Merton Credit Risk Model to demonstrate the flexibility of our

new algorithms and to establish their connections with well-known existing estimation ap-

proaches. In its simplest version, the Merton model assumes that the firm’s market value is
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a latent variable Y ∗t whose dynamics is described by a Geometric Brownian Motion:

dY ∗t
Y ∗t

= µdt+ σdWt,

where (Wt) is a standard Brownian motion. Suppose that the firm’s debt consists of a zero-

coupon bond with face value K expiring in τ , and let Yt denote the firm’s equity price. Since

at the debt’s maturity Yτ = max[Y ∗τ −K, 0], we can interpret the shares offered on the firm’s

value as European call options written on this value with strike K and maturity τ . Hence,

the observed equity prices Y0, Y1, Y2, . . . , YT can be seen as option prices written on latent

values Y ∗0 , Y
∗

1 , Y
∗

2 , . . . , Y
∗
T .

Let us denote with gt(Yt, σ
2) the inverse of the Black and Scholes pricing formula:

Y ∗t = gt(Yt, σ
2) ⇔ Yt = g−1

t (Y ∗t , σ
2) = Y ∗t Φ(dt(σ

2))−K e−r(τ−t)Φ(dt(σ
2)− σ

√
τ − t),

(12)

where Φ (·) is the cdf of the standard normal distribution, dt(σ
2) = [log(Y ∗t /K) + (r +

σ2

2
)(τ − t)]/(σ

√
τ − t), and r is the risk-free interest rate assumed to be deterministic and

time-invariant. Notice that the link function gt(·, σ2) relating latent and observed variables

depends on t through the residual time to maturity (τ − t) of the implicit option contract.

It is also worth reminding that the Black-Scholes price is continuously differentiable with

respect to the underlying stock price, and the derivative is the so-called delta of the option

contract given by ( see e.g. Hull (1999) p 312):

∂Yt
∂Y ∗t

= Φ[dt(σ
2)]. (13)

Maximum likelihood inference about unknown parameters (µ, σ2) would be straightforward

if we had observed the time series Y ∗t , t = 0, 1, . . . , T of latent firm values. By Ito’s lemma,

we know that the latent log-returns R∗t = log Y ∗t − log Y ∗t−1, t = 1, . . . , T , are independent,

identically normally distributed with mean (µ − σ2/2) and variance σ2 so that, conditional

on the first observation, the likelihood function is simply:

lT (Y ∗1 , . . . , Y
∗
T |Y ∗0 ;µ, σ2) =

T∏
t=1

(2πσ2)−1/2 exp

{
− 1

2σ2

(
R∗t − µ+

σ2

2

)2
}

T∏
t=1

1

Y ∗t
. (14)

Since we only observe Yt = g−1
t (Y ∗t , σ

2), t = 0, 1, ..., T , the Jacobian formula gives us:

lT (Y1, . . . , YT |Y0;µ, σ2) = (15)

T∏
t=1

(2πσ2)−1/2 exp

{
− 1

2σ2

(
Rt(σ

2)− µ+
σ2

2

)2
}[

T∏
t=1

Φ(dt(σ
2))

]−1 T∏
t=1

1

gt(Yt, σ2)
,

9



where implicit returns Rt(σ
2) that can be backed out from option prices for each value of σ2

are given by:

Rt(σ
2) = ln gt(Yt, σ

2)− ln gt−1(Yt−1, σ
2).

Since µ is not a parameter of interest, it is simpler to concentrate w.r.t. µ. Let:

R̄T (σ2) =
1

T

T∑
t=1

Rt(σ
2)

and, by maximization of (15), µT (σ2) = R̄T (σ2) + σ2

2
. The concentrated likelihood is then

given by:

lcT (Y1, . . . , YT |Y0;σ2) = (16)

T∏
t=1

(2πσ2)−1/2 exp

{
− 1

2σ2

(
Rt(σ

2)− R̄T (σ2)
)2
}[ T∏

t=1

Φ(dt(σ
2))

]−1 T∏
t=1

1

gt(Yt, σ2)
.

Obviously, direct maximization of the concentrated likelihood function (16) with respect to σ2

does not deliver a user-friendly estimator, neither for computation nor for interpretation. By

contrast, the infeasible estimator of σ2 obtained by maximization of the latent likelihood (14)

would have coincided with the natural idea of historical volatility. To overcome this difficulty,

let us dub problematic occurence of σ2 all the occurences that show up in (16) and not in

(14). These problematic occurences, due to Jacobian formula and/or inversion of Black-

Scholes formula, will be singled out thanks to a specific notation ν(σ2) (with ν(σ2) = σ2).

We end up with the objective function:

QT [σ2, ν(σ2)] = −1

2
log(2πσ2)− 1

2T

T∑
t=1

[
Rt[ν(σ2)]−RT [ν(σ2)]

]2
σ2

(17)

− 1

T

T∑
t=1

log gt[Yt, ν(σ2)]− 1

T

T∑
t=1

log Φ
[
dt(ν(σ2))

]
.

It is then worth comparing in this context the k-th PPR iteration with the k-th iteration of

our efficient algorithm I. Starting from an estimator at the (k−1)-th iteration stage denoted

as σ̂
2(k−1)
T , the PPR iteration will update it by picking as value for the k-th iteration the

solution σ2 of:
∂QT [σ2, ν(σ̂

2(k−1)
T )]

∂σ2
= 0,

that is:

− 1

2σ2
+

1

2σ4
σ̃2
T [σ̂

2(k−1)
T ] = 0, (18)
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where σ̃2
T [σ2] stands for the infeasible historical (squared) volatility estimator that one would

deduce from the prior knowledge of σ2:

σ̃2
T [σ2] =

1

T

T∑
t=1

[
Rt[σ

2]−RT [σ2]
]2
.

By contrast, the efficient algorithm I will update the (k− 1)-th iteration stage, still denoted

as σ̂
2(k−1)
T , by picking as value for the k-th iteration the solution σ2 of:

∂QT [σ2, ν(σ̂
2(k−1)
T )]

∂σ2
+
∂QT [σ̂

2(k−1)
T , ν(σ̂

2(k−1)
T )]

∂ν
= 0,

that is:

− 1

2σ2
+

1

2σ4
σ̃2
T [σ̂

2(k−1)
T ] +

∂QT [σ̂
2(k−1)
T , ν(σ̂

2(k−1)
T )]

∂ν
= 0.

It is convenient to rewrite the latter equation as a second degree equation w.r.t. σ2:

AT (σ̂
2(k−1)
T )σ4 − σ2 + σ̃2

T [σ̂
2(k−1)
T ] = 0, with AT (σ2) = 2

∂QT [σ2, ν(σ2)]

∂ν
. (19)

Obviously (see solution of (18)) the k-th PPR iteration is given by

σ̂
2(k)
T = σ̃2

T [σ̂
2(k−1)
T ] =

1

T

T∑
t=1

[
Rt[σ̂

2(k−1)
T ]−RT [σ̂

2(k−1)
T ]

]2

. (20)

This expression implies that the PPR algorithm coincides with the popular KMV iterative

technique developed by Kealhofer, Mcquown and Vasicek (see Crouhy, Galai and Mark,

2000 for more details on this method). It can actually be seen as a version of the EM

algorithm (see Duan, Gauthier and Simonato, 2005) since it amounts to maximizing the

latent likelihood (14) for the predicted values gt(Yt, σ̂
2(k−1)
T ) of the latent variables Y ∗t . It is

unfortunately a case where the EM algorithm does not deliver an estimate asymptotically

equivalent to MLE (see PPR and references therein). This is the reason why the efficient

algorithm I involves a correction of the naive updating rule (20) by solving instead the second

degree equation (19). Note however that the PPR/KMV estimator is consistent because the

correction term AT (σ2) vanishes for large T . Therefore, the discriminant of (19) is positive

for large T . The intuition of the efficiency gain when moving from PPR/KMV to algorithm

I is as follows: when AT (σ̂
2(k−1)
T ) > 0, the two solutions of (19) are both larger than the

naive estimator σ̃2
T [σ̂

2(k−1)
T ]. By just computing the empirical variance of (implied) returns,

the naive PPR/KMV estimator overlooks that the implied returns actually depend on the

input σ̂
2(k−1)
T , coming from the previous iteration. Since at this level, the partial derivative

∂QT/∂ν is positive, there is some likelihood gain to take an estimator of σ2 larger than the

11



naive one. When AT (σ̂
2(k−1)
T ) < 0, it is the other way around. Note that in this case equation

(19) will have only one positive solution.

The bottom line is that, even though the Black and Scholes is the simplest possible option

pricing formula, everybody would prefer, both for sake of computation and of interpretation,

to keep the simple sequence of empirical variances (20) as a benchmark, rather than to

maximize directly (17). Our algorithm I allows us to do so, by just correcting the naive

PPR/KMV estimator (which coincides exactly with the empirical variance) through the

solution of a simple second degree equation.

To illustrate the usefulness of the efficient algorithms in the context of a Merton’s struc-

tural credit risk model, we set up a couple of Monte Carlo experiments comparing the

KMV/PPR estimator and the full MLE estimator computed using the Newton version of

the efficient algorithms I and II described in section 2.2 and in appendix B.1. The results of

the first experiment are detailed in table 2, and are based on 5,000 synthetic samples of 500

time series observations of daily returns. Each firm’s value trajectory was initialized at 104,

and the debt face value was fixed at K = 9000. We directly focused on the concentrated

loglikelihood function, and set the parameters at µ = 0.1 and σ2 = 0.09. The estimates

obtained using the KMV/PPR algorithm were used as starting values for the efficient al-

gorithms iterations. The average number of iterations needed to attain convergence to the

MLE ranged from 34 to 38, depending on the specific technique used.

The results in table 2 show that the KMV/PPR and the efficient estimators are almost

equivalent, both in terms of bias and of dispersion, with, as expected, a slight advantage to

MLE as far as the latter is concerned.

These results refer to a univariate model, which is clearly a very simple set up, not only

because in real life applications the correlations between the values of different firms play a

crucial role in evaluating the credit riskiness of a portfolio return, but also because it features

a single parameter. Intuitively, this crucially simplifies the search for the MLE using the

efficient algorithms, because there is essentially only one possible search direction, and for

an algorithm to work, it is sufficient that it points the updating rule to the correct direction.

To check the contracting behavior of the efficient algorithms in a more complicated model

we set up a second Monte Carlo experiment based on 5,000 samples of 500 time series of

daily returns for 2 firms. In this model the concentrated loglikelihood contains 3 parameters,

the instantaneous variances of the two firms, and their correlation: θ = (σ2
1, σ

2
2, ρ)′. We fixed

both variances to 0.09, and ρ to 0.5. The results of this experiment are illustrated in table

3.

12



Again, the overall performance of the inefficient KMV/PPR estimates and the MLE is

quite close, with some slight edge for MLE. Algorithms I and II converged to the MLE in

every replication and needed on average slightly less than 17 iterations to converge.

4 Asymptotics

4.1 Consistency

In this section we establish the consistency of the estimators defined via the algorithms

presented in section 2.2 and appendix B.1. To provide a unified treatment, we introduce for

each algorithm a score function ST (θ, θ1) that depends not only on the parameter of interest

θ through its own occurrence but also through the other occurrence θ1 treated as a nuisance

parameter. For algorithm I, we have:

ST (θ, θ1) =
∂QT [θ, ν(θ1)]

∂θ
+
∂ν(θ1)′

∂θ

∂QT [θ1, ν(θ1)]

∂ν
.

The expression for ST (θ, θ1) for algorithm II introduced in appendix B.1 is provided in the

same appendix. Let θ̂
(k)

T be the iterative estimator obtained from step k in either algorithm

I or II. Then it satisfies

θ̂
(k)

T = arg max
θ∈Θ

[
−
∥∥∥ST (θ, θ̂

(k−1)

T )
∥∥∥] .

To establish the consistency of θ̂
(k)

T , we first make the following standard assumptions for

proving consistency of extremum estimators.

Assumption C1. [Uniform convergence of criterion function] a) For any T ≥ 1, ST (θ, θ1)

satisfies the standard measurability and continuity conditions; that is, it is measurable as a

function of observations and it is continuous as a function of parameters (θ, θ1);

b) There exists a limit function S∞(θ, θ1) such that supθ,θ1∈Θ ‖ST (θ, θ1)− S∞(θ, θ1)‖ p→ 0.

Assumption C2. [Identification] a) For any θ1 ∈ Θ, the function θ → ||S∞(θ, θ1)|| admits a

unique minimizer θ∞(θ1);

b) Θ is a compact subset of Rp and the map θ∞(·) : Θ→ Θ is continuous on Θ;

c) θ0 is a fixed point of this map: θ0 = θ∞(θ0).

Under standard regularity and concavity conditions, θ0 = θ∞(θ0) can be interpreted

from the limit first order conditions (2). The true unknown value θ0 is the unique solution of

maxθ∈Θ Q∞[θ, ν(θ)]. Since this problem is not solved directly but only through an iterative

algorithm, consistency of the proposed estimator may take an additional assumption about

13



uniqueness of fixed point of the map θ∞(·). To see that, it is worth considering the following

triangle inequality:∥∥∥θ̂(k)

T − θ0
∥∥∥ ≤ ∥∥∥θT (θ̂

(k−1)

T )− θ∞(θ̂
(k−1)

T )
∥∥∥+

∥∥∥θ∞(θ̂
(k−1)

T )− θ∞(θ0)
∥∥∥ (21)

where θT (θ1) is the minimizer of ‖ST (θ, θ1)‖ over θ ∈ Θ defined by (8). With different, albeit

similar in spirit, functions θT (.) and θ∞(·), PPR are able to show (see their proposition 1 on

page 463) that the former converges in probability (when T → ∞) to the latter uniformly

on Θ. This result remains obviously valid in our context, based on regularity conditions C1

and C2 above. Then we see from the inequality (21) that:

(i) The consistency (when T →∞) of θ̂
(k)

T as an estimator of θ0 results from the consis-

tency of θ̂
(k−1)

T by virtue of the continuity of the map θ∞(·). In other words, an iteration with

a starting point θ̂
(0)

T that is already a consistent estimator would deliver another consistent

estimator θ̂
(k)

T at each step k = 1, 2, ... of the algorithm.

(ii) By contrast, but still with an argument of proof put forward by PPR (see their

proposition 2 on page 463) and not reproduced here, starting the algorithm with an arbitrary

value θ̂
(0)

T will in general deliver a consistent estimator θ̂
(k)

T only if the number of iterations

is pushed to infinity with the sample size (k ≡ k(T )→∞ when T →∞) and a contraction

mapping argument allows us to write:∥∥∥θ∞(θ̂
(k)

T )− θ∞(θ0)
∥∥∥ ≤ c

∥∥∥θ̂(k)

T − θ0
∥∥∥ , 0 < c < 1.

We can then state the following assumptions and theorem, without need of any additional

proof.

Assumption C3. [Consistent starting point ] θ̂
(0)

T is a weakly consistent estimator of θ0.

Assumption C4. [Contraction mapping ] θ∞(·) is contracting on Θ, that is, there is a constant

c ∈]0, 1[ such that, for any θ1, θ2 ∈ Θ :∥∥θ∞(θ1)− θ∞(θ2)
∥∥ ≤ c ‖θ1 − θ2‖ .

Theorem 4.1 If assumptions C1 and C2 hold, then:

(i) under assumption C3, θ̂
(k)

T is weakly consistent for any k = 1, 2, ...;

(ii) under assumption C4, θ̂
(k)

T is weakly consistent if k ≡ k(T )→∞ when T →∞.

We emphasize here that Assumption C4, the contraction mapping condition on θ∞(·),
is only required when Assumption C3 does not hold, i.e. the initial estimator θ̂

(0)
is not a
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consistent estimator. Otherwise, if θ̂
(0)

is consistent (e.g., because it is provided by the PPR

algorithm), Assumption C4 is not needed and in addition, we get the stronger result that

θ̂
(k)

T is consistent for any k.

A couple of remarks are in order here. First, using a similar approach, we can show

that the results in Theorem 4.1 hold for the Newton versions of the algorithms. Second,

consistency will likely need a contraction mapping condition at some level. We document in

subsection 4.3 that all relevant contraction mapping conditions are implied, at least locally,

by an Information Dominance (ID) condition. We use this terminology to stress that the

relevant conditions are not ad hoc high level assumptions but on the contrary are implied

by the structure of the inference problem at hand. In a particular context, it is natural to

assume that one part of the model is more informative than another one about the unknown

structural parameters. This natural assumption will provide the necessary ID condition.

Additional interpretations are provided by the GMM framework as discussed in section 5

below.

4.2 Asymptotic Distribution

For the asymptotic distribution of θ̂T , we adopt the following assumptions.

Assumption E1.

√
T
∂LT (θ0)

∂θ

d→ Np[0,Ω(θ0)], with Ω(θ0) = lim
T→∞

Var

[√
T
∂LT (θ0)

∂θ

]
,

which is supposed to be positive definite.

Assumption E2.

sup
θ∈Θ

∣∣∣∣∂2LT (θ)

∂θ∂θ′
− ∂2L∞(θ)

∂θ∂θ′

∣∣∣∣ p→ 0.

It is known that under assumptions E1 and E2, θ̂T is asymptotically normally distributed

with asymptotic variance given by[
∂2L∞(θ0)

∂θ∂θ′

]−1

Ω(θ0)

[
∂2L∞(θ0)

∂θ∂θ′

]−1

.

We now state our main result about the asymptotic distribution of the efficient iterative

estimators.

Theorem 4.2 Suppose assumptions E1, E2, C1, and C2 hold. Then (i) under assumption

C3 and if θ∞(·) is contracting in the neighborhood of θ0, we obtain:
√
T (θ̂

(k)

T − θ̂
(k−1)

T )→ 0 in
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probability and θ̂
(k)

T has the same asymptotic distribution as θ̂T as long as k = k(T ) ≥ log T ;

(ii) under assumption C4, we obtain:
√
T (θ̂

(k)

T − θ̂
(k−1)

T ) → 0 in probability and θ̂
(k)

T has the

same asymptotic distribution as θ̂T as long as k = k(T ) ≥ T δ for some δ > 0.

Theorem 4.2 implies that among other things, the asymptotic efficiency of our iterative

estimators relies on a contraction mapping condition. If the initial estimator is inconsistent,

then this condition is the global contraction mapping condition C4; on the other hand, if

the initial estimator is
√
T -consistent, then this condition is local and it requires θ∞(·) to be

contracting in the neighborhood of θ0.

Efficiency of our algorithms does not come without cost. The original PPR algorithm

requires only the evaluation of the function ν(θ). To attain efficiency, we need to make use

of the full “score function”, which requires the evaluation of the derivative ∂ν(θ)/∂θ′. This

can be cumbersome in some cases, but there are important applications for which one can

evaluate ∂ν(θ)/∂θ′ relatively easily.

4.3 Information Dominance

For each efficient algorithm, there exists a representation of the local contraction mapping

condition in terms of information dominance. We present Information Dominance I for

algorithm I below. Information Dominance II for algorithm II is provided in appendix B.1.

Recall that θ∞(θ1) satisfies S∞
[
θ∞(θ1), θ1

]
= 0, implying:

∂S∞
[
θ∞(θ1), θ1

]
∂θ′

∂θ∞(θ1)

∂θ′1
+
∂S∞

[
θ∞(θ1), θ1

]
∂θ′1

= 0,

where ∂S∞[·,·]
∂θ′

and ∂S∞[·,·]
∂θ′1

are the partial derivatives of S∞[·, ·] with respect to the first and

second argument, respectively. Thus, the local contraction mapping condition is equivalent

to ∥∥∥∥∥
[
∂S∞[θ0, θ0]

∂θ′

]−1
∂S∞[θ0, θ0]

∂θ′1

∥∥∥∥∥ < 1. (22)

(22) immediately yields the ID conditions I and II suitable for algorithms I and II. In the

first one, the ID condition is given by:

Information Dominance I.∥∥∥∥∥
[
∂2Q∞[θ0, ν(θ0)]

∂θ∂θ′

]−1 [
D2L∞(θ0)− ∂2Q∞[θ0, ν(θ0)]

∂θ∂θ′

]∥∥∥∥∥ < 1.
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Heuristically, the ID condition requires that the part of the Hessian that is used in the

algorithm must dominate the part that is ignored. As a result, eventually, the impact of

the part of the Hessian that is not used is negligible and the algorithm, upon convergence,

produces an asymptotically efficient estimator of θ0. If the algorithm starts from a
√
T -

consistent estimator, the contraction mapping condition is only imposed locally at θ0 and

there is no requirement on the rate of divergence of k(T ), provided that it increases to ∞
with T ; otherwise, the global contraction mapping condition is required and k(T ) ≥ T δ for

some small δ > 0.

5 Implied-States GMM

The term Implied-States (IS) GMM was coined by Pan (2002) in the context of an option

pricing model with latent variables. As in the example of section 3, the idea is to back out

from observed option price data the latent state variables that summarize stochastic time

variations in volatility, jump size and intensity through a one-to-one relationship analogous

to (12). In general, the true parameter value θ0 is identified by a set of moment conditions

about the law of motion of the state variables:

E[ψ∗(Y ∗t , θ)] = 0 ⇔ θ = θ0. (23)

To implement a GMM estimator, it is natural to consider the moment conditions obtained

by substituting in (23) the latent states Y ∗t with the “implied states” gt[Yt, ν(θ)] computed

from the option pricing model:

E [ψ[Yt, θ, ν(θ)]] = 0, where ψ[Yt, θ, ν(θ)] = ψ∗[gt(Yt, ν(θ)), θ]. (24)

Note that in (24), θ occurs twice: from the latent moment (23) and from the option pricing

model through ν(θ). We expect the former occurrence to be much more user-friendly than

the latter.

It is interesting to observe that, when θ is identified, the iterative procedures outlined

in section 2.2 improve on the PPR approach in terms of efficiency only in the overidentified

case, when the dimension H of ψ∗(·, ·) (and of ψ(·, ·, ·) as well) is strictly larger than the

dimension p of θ. When H = p, θ̂T can be computed as the solution of

1

T

T∑
t=1

ψ[Yt, θ̂T , ν(θ̂T )] = 0,
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and such an estimator can always be computed as the limit of the PPR algorithm:

1

T

T∑
t=1

ψ[Yt, θ̂
(k)

T , ν(θ̂
(k−1)

T ))] = 0.

The efficiency issue is quite different in the overidentified case, because a subset of esti-

mating equations could be selected in a suboptimal way. Consider the quadratic form for

the two-step efficient GMM estimator of Hansen (1982):

QT [θ, ν(θ)] = −ψ̄T [θ, ν(θ)]′WT (θ̃T )−1ψ̄T [θ, ν(θ)], (25)

where ψ̄T [θ, ν(θ)] = 1
T

∑T
t=1 ψ[Yt, θ, ν(θ)] and WT (θ̃T ) with θ̃T being a preliminary consis-

tent estimator of θ0 is a consistent estimator of W (θ0), the long term variance matrix of

ψ̄T [θ0, ν(θ0)]. Recall from section 2.1 that the PPR estimator θ̂
PPR

T solves ∂QT [θ, ν(θ)]/∂θ =

0. For an objective function like (25), this is equivalent to solving

∂ψ̄T [θ, ν(θ)]′

∂θ
WT (θ̃T )−1ψ̄T [θ, ν(θ)] = 0

In this GMM context, the inefficiency of PPR is caused by a suboptimal selection of p linear

combinations of estimating equations. The selection matrix used by PPR is a consistent

estimator of:

E

[
∂ψ[Yt, θ

0, ν(θ0)]′

∂θ

]
W (θ0)−1.

By contrast, the efficient estimator θ̂T is based on a consistent estimator of the optimal

selection matrix:

Γ(θ0) =

{
E

[
∂ψ[Yt, θ

0, ν(θ0)]′

∂θ

]
+ E

[
∂ν(θ0)′

∂θ

∂ψ[Yt, θ
0, ν(θ0)]′

∂ν

]}
W (θ0)−1.

A similar inefficiency issue appears when it comes to the choice of optimal instruments for

conditional moment restrictions. See Pan (2002, section 3.2).

Any one of the efficient algorithms introduced in section 2.2 and appendix B.1 can be

used to define estimators that are asymptotically equivalent to θ̂T ; we provide some details

in appendix B.2. The special structure of the GMM objective function, however, naturally

suggests a new algorithm that exhibits significant implementation advantages. Its iteration

scheme is defined as follows.

Algorithm III. Given θ̂
(k−1)

T , let θ̂
(k)

T be the solution of:

ΓT (θ̂
(k−1)

T )ψ̄T [θ̂
(k)

T , ν(θ̂
(k−1)

T )] = 0, (26)
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where

ΓT (θ) =

[
∂ψ̄T [θ, ν(θ)]′

∂θ
+
∂ν(θ)′

∂θ

∂ψ̄T [θ, ν(θ)]′

∂ν

]
WT (θ)−1

is the sample counterpart of the optimal selection matrix Γ(θ0). As for algorithms I and

II, algorithm III delivers upon convergence an efficient estimator without paying the com-

putational price of solving w.r.t. θ equations involving ν(θ). To check this, note that the

benchmark estimator θ̂T must solve:

ΓT (θ̂T )ψ̄T [θ̂T , ν(θ̂T )] = 0.

As we have seen, all efficient algorithms admit an equivalent Newton version. In the case of

a GMM estimation criterion, however, these alternative iterative schemes are complicated

by the need to differentiate w.r.t. θ in not only the sample moments ψ̄T [θ, ν(θ)], but also

the selection matrix ΓT (θ).3 The main advantage of algorithm III over algorithms I and II

is that in (26) the updated estimator θ̂
(k)

T does not occur in the Jacobian matrix, but only

in the sample moment conditions. This feature simplifies significantly the evaluation of the

weighting matrix, yielding the following Newton type algorithm:

θ̂
(k)

T = θ̂
(k−1)

T −

[
ΓT (θ̂

(k−1)

T )
∂ψ̄T [θ̂

(k−1)

T , ν(θ̂
(k−1)

T )]

∂θ

]−1

ΓT (θ̂
(k−1)

T )ψ̄T [θ̂
(k−1)

T , ν(θ̂
(k−1)

T )], k = 1, 2, . . .

The asymptotic theory of algorithm III can be studied in the same way as that of algorithms

I and II; further details are provided in appendix B.2.

6 A GMM Example

In this section we illustrate an application of Algorithm III to the GMM estimation of a

stochastic volatility (SV) option pricing model.

6.1 The Framework

We consider the same framework analyzed in Garcia et al. (2011), in which the informa-

tion contained in realized volatilities (computed using high frequency observations of the

underlying price) and option prices is combined to jointly estimate by GMM the parameters

3It should be noted that in ΓT (·) the vector θ occurs in many places. Depending on the algorithm, some

(but not all) of these are set to θ̂
(k−1)
T in the k-th iteration, and hence it is not necessary to differentiate

w.r.t. to these instances. Nevertheless, some degree of differentiation of ΓT (·) w.r.t. θ is required for any
one of algorithms I and II.
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of a continuous time SV option pricing model. We now briefly review the model and the

estimator; we defer the reader to the paper for a detailed description.

Let St and Vt be the date t price and volatility of the underlying asset. The objective

process is given by the bivariate affine SDE

d

[
St
Vt

]
=

[
µtSt

κ(V̄ − Vt)

]
dt+

√
Vt

[
St 0

γρ γ
√

1− ρ2

] [
dW 1

t

dW 2
t

]
(27)

and the risk-neutral process by the bivariate affine SDE

d

[
St
Vt

]
=

[
rtSt

κ∗(V̄ ∗ − Vt)

]
dt+

√
Vt

[
St 0

γρ γ
√

1− ρ2

] [
dW̃ 1

t

dW̃ 2
t

]
(28)

The relationship between the objective and the risk-neutral parameters is given by κ∗ = κ−λ
and κV̄ = κ∗V̄ ∗. The vector of parameters is θ = (κ, V̄ , γ, ρ, λ)′4.

To estimate θ we use a GMM approach based on two distinct sets of moment conditions.

The first set exploits the information contained in high frequency measures of returns which

can be used to consistently approximate Vt,t+1, the integrated volatility of the process Vt

between date t and t + 1, using the quadratic variation estimator. These estimates can be

plugged in the following set of orthogonality conditions:

ψVt(θ) =



Vkt+1,t+2 − E(Vkt+1,t+2|Ft), k = 1, 2, 3
(Vkt+1,t+2 − E(Vkt+1,t+2|Ft))Vkt−1,t, k = 1, 2, 3

Rt+1Vt+1,t+2 − E(Rt+1Vt+1,t+2|Ft)
(Rt+1Vt+1,t+2 − E(Rt+1Vt+1,t+2|Ft))Rt−1Vt−1,t

R2
t+1Vt+1,t+2 − E(R2

t+1Vt+1,t+2|Ft)
(R2

t+1Vt+1,t+2 − E(R2
t+1Vt+1,t+2|Ft))R2

t−1Vt−1,t

Rt+1V2
t+1,t+2 − E(Rt+1V2

t+1,t+2|Ft)
(Rt+1V2

t+1,t+2 − E(Rt+1V2
t+1,t+2|Ft))Rt−1V2

t−1,t


where Rt = logSt − logSt−1, Ft is the discrete filtration generated by the observed prices

and realized volatilities and the conditional expectations in ψVt(θ) are known functions of θ.

The second set of orthogonality conditions exploits the information contained in option

prices using the approach proposed in Pan (2002). The idea is to invert the option pricing

formula to retrieve the implied spot volatility as a function of θ, St and the option character-

istics. The implied volatilities Vt(θ) can then be plugged in the following set of orthogonality

4We leave unspecified the drift term µt because it doesn’t matter for option pricing and the inference
method is robust to its specification.
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conditions:

ψV t(θ) =



Vt+1(θ)k − E(V k
t+1|Ft), k = 1, 2, 3

(Vt+1(θ)k − E(V k
t+1|Ft))Vt(θ)k, k = 1, 2, 3

Rt+1Vt+1(θ)− E(Rt+1Vt+1|Ft)
(Rt+1Vt+1(θ)− E(Rt+1Vt+1|Ft))Rt−1Vt(θ)

R2
t+1Vt+1(θ)− E(R2

t+1Vt+1|Ft)
(R2

t+1Vt+1(θ)− E(R2
t+1Vt+1|Ft))R2

t−1Vt(θ)
Rt+1Vt+1(θ)2 − E(Rt+1V

2
t+1|Ft)

(Rt+1Vt+1(θ)2 − E(Rt+1V
2
t+1|Ft))Rt−1Vt(θ)

2


where again the conditional expectations in ψV t(θ) are known functions of θ. To simplify

the option price inversion step, Garcia et al. (2011) rewrite the pricing formula as a power

series w.r.t. γ around zero, for which the model can be analytically solved, and then invert

it to retrieve a series expansion for the implied volatility. We adopt the same approach in

the Monte Carlo experiment; additional details are available in Garcia et al. (2011).

Finally, let ψ[Yt, θ, ν(θ)] = [ψVt(θ)
′, ψV t(θ)

′]′ denote the joint vector of 24 orthogonality

conditions, where Yt contains the option price, the integrated volatility and the observed

option prices at date t. The GMM estimation is conducted using a Newey-West kernel

with a lag length of two, to take into account the autocorrelation structure of the moment

conditions.

In implementing Algorithm III we must specify the partition of the occurrences of θ in

the orthogonality conditions between the “easy” (θ) and the “nasty” (ν(θ)) ones. It would be

tempting to separate the occurrences on the basis of whether they come from the analytical

expressions of the conditional moments in ψVT or ψV t (“easy”) or from the implied spot

volatilities (“nasty”). Such a partition, however, does not allow to identify the parameters

on the basis of the easy occurrences only, since the conditional moments do not depend on

the risk premium parameter λ. To overcome this, we also include in the easy subset all the

occurrences of κ, V̄ and λ in the implied spot volatilities.

6.2 Results

To assess the performance of GMM estimation using the MBP algorithm III in section 5

for the parameters of the SV option pricing model we conducted a Monte Carlo study using

the same design adopted in Garcia et al. (2011). We generated 5,000 independent sets of

T = 960 daily observations, corresponding to approximately 4 years. Each day is subdivided

in 80 five-minute periods over which the quadratic variations are aggregated; each 5-min

interval is subdivided in ten 30 seconds subintervals, used to simulate the SDE. The stock

and option prices are observed at the beginning of the period over which the quadratic
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variation is computed (opening prices). We assume that each date 15 options are observed,

corresponding to 5 different strike prices and 3 maturities. The date t implied volatility Vt(θ)

is the average over the 15 implied volatilities associated to the individual options. All the

computation were conducted in Fortran using analytical first derivatives on a Dell Precision

T5600 workstation with two Intel Xeon CPUs running at 2.40 Ghz. No parallelization was

used.

Garcia et al. (2011) consider four parameters sets, but for the sake of simplicity we report

here only the results relative to the first one, (κ, V̄ , γ, ρ, λ) = (0.10, 0.25, 0.10,−0.50, 0.05)

(daily percent values). Table 4 reports summary statistics for the two-step and iterated

GMM estimates computed using a state-of-the-art Quasi-Newton optimizer (Liu and No-

cedal, 1989); on all Monte Carlo samples, however, our Algorithm III provides exactly the

same estimates. We will later compare the performance of the two algorithms in terms of

CPU time required to attain convergence. The estimation results of the two-step procedure

are broadly in line with those reported in Table 2, first panel of Garcia et al. (2011) (iterated

GMM were not considered in that paper). The estimates seem to be almost unbiased and

quite accurate, as witnessed by their standard deviations and RMSE, with the only par-

tial exception of ρ. From the Table it is also apparent that iterated GMM performs only

marginally better than two-step GMM in terms of accuracy, mostly because the distribution

of the latter seems to be quite concentrated around the true values. Table 4 also reports

summary statistics for the parameter estimates obtained using the inefficient PPR algorithm

based on the same partition of the occurrences of θ in the moment conditions underlying

the efficient Algorithm III; as for the latter, we again consider the two-step and the iterated

version of the PPR estimator. In both cases, the results show that the inefficient estimator

behaves significantly worse than the efficient one. The performance difference is especially

apparent in the correlation parameter ρ, but even for the remaining parameters the PPR

approach yields estimates with a MC RMSE which is at least 20% higher, but in some cases

the increase is much larger. Overall, the Table suggests that in this example Algorithm III

brings compelling improvements w.r.t. PPR.

Table 5 reports some selected percentiles of the CPU time required to compute the

GMM estimates. For two-step and iterated GMM we compared the results obtained using

a state-of-the-art Quasi-Newton method (L-BFGS) with those based on the Newton version

of Algorithm III. Both algorithms used analytical first derivatives. As far as the standard

Quasi-Newton method (L-BFGS) is concerned, it is not surprising to observe that iterated

GMM takes a significantly larger computation time, required by the need to repeatedly
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minimize the GMM quadratic form for a sequence of weighting matrices. For L-BFGS, the

CPU time seems to grow linearly with the number of these “outer” iterations. However,

this is not true for Algorithm III. The latter is almost always faster than L-BFGS even for

two-step GMM, but the speed difference becomes striking for iterated GMM: with Algorithm

III, the CPU time required by iterated GMM is only marginally larger than that required

by two-step GMM, and is an order of magnitude smaller than the CPU time required by

L-BFGS to complete iterated GMM. The reason for this result is that in Algorithm III the

updating of the weighting matrix (the “outer” cycle) is absorbed in the iterations leading

to the parameter estimates. Of course this could also be done with L-BFGS, which would

essentially be equivalent to consider Continuous Updating GMM instead of Iterated GMM,

but this would require to differentiate the weighting matrix w.r.t. θ. Such derivatives

are difficult to compute analytically and their numerical evaluation would take time and

provide less accurate results (see Hansen, Heaton and Yaron, 1996 for a numerical analysis

of alternative GMM strategies based on MC experiments and for a discussion of the numerical

issues typical of Continuous Updating GMM).

7 Conclusions

The development of non-linear structural econometrics, especially in relation to intertempo-

ral optimization of representative agents, has put on the table estimation problems that are

often viewed as computationally difficult. They typically involve optimality or equilibrium

restrictions that may be computationally unpalatable when repeated at each step of an es-

timation algorithm (see also Su and Judd, 2011). This potential computational burden has

led to the development of computationally light estimators like simulation based estimators

(like indirect inference of Gouriéroux, Monfort and Renault, 1993) or two-step estimators

as the so-called method of inference functions for margins (see the copula example in Joe,

1997, chap. 10, or the DCC example in Engle, 2002) or more generally inefficient iterative

procedures studied in a systematic way in PPR (see also Dominitz and Sherman, 2005).

The nonlinear dynamic models with latent state variables that are popular in modern asset

pricing have led to the so-called implied states estimation procedures that may display the

same kind of inefficiency. In this paper, we have shown that this inefficiency is always due to

the overlook of the information content of some awkward occurrences of parameters in the

criterion function.

Popular iterative (or two-step) procedures are precisely devised to allow this kind of over-
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looking, possibly at the cost of efficiency loss. The goal of this paper was to propose efficient

iterative estimation procedures whose computational cost, at each step of the iteration, is

not higher than that of popular inefficient inference procedures. This is made possible by the

fact that our algorithms iterate on the occurrences of the parameters that people would like

to overlook. In this way, their informational content is not ignored anymore. In this respect,

the efficient estimation procedures in this paper generalize the algorithms put forward in

SFK in the special case of a separable loglikelihood criterion.

While we relax in this paper the separability conditions of SFK, we do not fully address

yet the issue of making efficient all procedures considered in PPR. First, we do not explicitly

consider the case of some nuisance parameters popping up due to error terms (respectively

risk premiums) in financial asset prices due to market frictions (respectively market incom-

pleteness). Second, recursive procedures also studied in PPR are not considered in this paper.

Such procedures would be especially useful for inference on asset pricing models where in-

vestors are simultaneously learning about latent state variables. As recently emphasized

by Hansen, Polson and Sargent (2010), investors of the asset pricing model are themselves

faced with an implied-state inference problem where they must solve simultaneously filtering

and estimation problems given signal histories. While Hansen, Polson and Sargent (2010)

put forward particle filtering methods as attractive alternatives to quasi-analytical recursive

algorithms based on Kalman filtering or discretization of the state space, Robbins-Monroe

procedures considered in PPR could be coupled with the efficient estimation algorithms

devised in the present paper.

References

Andrews, D.W.K. (2002), “Equivalence of the Higher Order Asymptotic Efficiency of k-step

and Extremum Statistics”,Econometric Theory, 18, 1040-1085.

Crouhy M., Galai D. and Mark R. (2000), “A comparative analysis of current credit risk

models”, Journal of Banking and Finance, 56(5), 24, 59-117.

Dominitz J. and Sherman R. P. (2005), “Some Convergence Theory for Iterative Estimation

Procedures With an Application to Semiparametric Estimation”, Econometric Theory 21,

838-863.

Duan J.-C., Gauthier G. and Simonato J.-G. (2005), “On the Equivalence of the KMV and

Maximum Likelihood Methods for Structural Credit Risk Models”, mimeo, HEC Montréal.
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A Technical Proofs

Theorem 4.2 The proof involves two steps: first, we show that
√
T (θ̂

(k)

T − θ̂
(k−1)

T )
p→ 0;

second, we establish the asymptotic distribution of θ̂
(k)

T .

We provide a sketch of the proof for algorithm I only. Theorem 4.1 implies the consistency

of θ̂
(k)

T under the conditions in (i) and (ii) in Theorem 4.2. Applying Taylor expansion to

both sides of

∂QT [θ̂
(k)

T , ν(θ̂
(k−1)

T )]

∂θ
= −∂ν(θ̂

(k−1)

T )′

∂θ

∂QT [θ̂
(k−1)

T , ν(θ̂
(k−1)

T )]

∂ν
,

at θ0, collecting terms, and ignoring higher order terms, we obtain:

θ̂
(k)

T − θ0 = fT (θ0) + F (θ0)
(
θ̂

(k−1)

T − θ0
)
,

where:

fT (θ0) =

[
−∂

2Q∞[θ0, ν(θ0)]

∂θ∂θ′

]−1 [
∂LT (θ0)

∂θ

]
,

F (θ0) =

[
−∂

2Q∞[θ0, ν(θ0)]

∂θ∂θ′

]−1 [
D2L∞(θ0)− ∂2Q∞[θ0, ν(θ0)]

∂θ∂θ′

]
.

Iterating the above equation, we get:

θ̂
(k)

T − θ0 =
k−1∑
j=0

F (θ0)jfT (θ0) + F (θ0)k(θ̂
(0)

T − θ0).

The local contraction mapping condition of θ∞(·) at θ0 implies that
∥∥F (θ0)

∥∥ < 1, see section

4.3. Thus, we obtain that

√
T (θ̂

(k)

T − θ̂
(k−1)

T ) = F (θ0)k−1
√
TfT +

{√
TF (θ0)k−1

} [
F (θ0)− I

]
(θ̂

(0)

T − θ0) = op(1)
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under the respective conditions in (i) and (ii) in Theorem 4.2.

For the second step, by expanding terms involving θ̂
(k)

T in its definition and collecting

terms, we get

θ̂
(k)

T = θ̂
(k−1)

T −
[
GT (θ̂

(∗1)

T , θ̂
(∗2)

T )
]−1

[
∂LT (θ̂

(k−1)

T )

∂θ

]
,

where the expression of GT (θ, θ1) for algorithm I is:

GT (θ, θ1) =
∂2QT [θ, ν(θ1)]

∂θ∂θ′

and θ̂
(∗1)

T , θ̂
(∗2)

T lie between θ̂
(k)

T and θ̂
(k−1)

T . The expression of GT (θ, θ1) for algorithm II is

given in appendix B.1.

Using

∂LT (θ̂
(k−1)

T )

∂θ
=
∂LT (θ0)

∂θ
+
∂2LT (θ̂

(∗0)

T )

∂θ∂θ′
(θ̂

(k−1)

T − θ0),

we get

θ̂
(k)

T = θ̂
(k−1)

T −
[
GT (θ̂

(∗1)

T , θ̂
(∗2)

T )
]−1

[
∂LT (θ0)

∂θ
+
∂2LT (θ̂

(∗0)

T )

∂θ∂θ′
(θ̂

(k−1)

T − θ0)

]
.

Hence, ignoring the higher order terms:

θ̂
(k)

T − θ0

= −
[
GT (θ0, θ0)

]−1
[
∂LT (θ0)

∂θ

]
−
[
GT (θ0, θ0)

]−1
[D2LT (θ0)−GT (θ0, θ0)](θ̂

(k−1)

T − θ0)

= −
[
GT (θ0, θ0)

]−1
[
∂LT (θ0)

∂θ

]
−
[
GT (θ0, θ0)

]−1
[D2LT (θ0)−GT (θ0, θ0)](θ̂

(k)

T − θ0) + op(T
−1/2),

because
√
T (θ̂

(k)

T − θ̂
(k−1)

T )→ 0.

Rearranging the above equation leads to

[
D2LT (θ0)

]
(θ̂

(k)

T − θ0) = −∂LT (θ0)

∂θ
+ op(T

−1/2)

and hence the conclusion that the asymptotic distribution of θ̂
(k)

T is the same as that of θ̂T .�

B Additional Efficient Algorithms

In this appendix, we discuss some additional efficient algorithms.
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B.1 General Extremum Estimation Criterion

For the case of an estimation criterion LT (θ) = QT [θ, ν(θ)], let us introduce algorithm II

using the following iterative scheme. We assume that iterations are started at some initial

value θ̂
(0)

T , that may or may not be a consistent estimator of θ0.

Algorithm II. For k = 1, 2, 3, . . ., let θ̂
(k)

T solve:

∂QT [θ, ν(θ̂
(k−1)

T )]

∂θ
= −∂ν(θ̂

(k−1)

T )′

∂θ

∂QT [θ, ν(θ̂
(k−1)

T )]

∂ν
.

The algorithm admits an alternative and computationally convenient Newton version. It

is listed below. To simplify the notation, let

HT (θ, θ1) =
∂2QT [θ, ν(θ1)]

∂θν ′
∂ν(θ1)

∂θ′
and ΣT (θ, θ1) =

∂2QT [θ, ν(θ1)]

∂θ∂θ′
.

To simplify the comparison between the algorithms, we also rewrite here the Newton version

of algorithm I (formula (9)) using the simplified notation.

Algorithm I (Newton version). For k = 1, 2, 3, . . ., compute θ̂
(k)

T as:

θ̂
(k)

T = θ̂
(k−1)

T −
[
ΣT (θ̂

(k−1)

T , θ̂
(k−1)

T )
]−1

[
∂LT (θ̂

(k−1)

T )

∂θ

]
.

Algorithm II (Newton version). For k = 1, 2, 3, . . ., compute θ̂
(k)

T as:

θ̂
(k)

T = θ̂
(k−1)

T −
[
ΣT (θ̂

(k−1)

T , θ̂
(k−1)

T ) +HT (θ̂
(k−1)

T , θ̂
(k−1)

T )′
]−1

[
∂LT (θ̂

(k−1)

T )

∂θ

]
.

The asymptotic behavior of algorithm II is the same as algorithm I. To show this, it is

sufficient to apply Theorems 4.1 and 4.2 in section 4 with the following definition of the score

function ST (θ, θ1) and weighting matrix GT (θ, θ1):

ST (θ, θ1) =
∂QT [θ, ν(θ1)]

∂θ
+
∂ν(θ1)′

∂θ

∂QT [θ, ν(θ1)]

∂ν
,

GT (θ, θ1) = ΣT (θ, θ1) +HT (θ, θ1)′

Finally, the information dominance condition for algorithm II is as follows. To simplify

the notation, let Σ(θ, θ) and H(θ, θ) denote the population counterparts of ΣT (θ, θ) and

HT (θ, θ), respectively. Again, to facilitate comparisons we also include the Information

Dominance I condition introduced in section 4.3.
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Information Dominance I.∥∥∥[Σ(θ0, θ0)
]−1 [

D2L∞(θ0)− Σ(θ0, θ0)
]∥∥∥ < 1.

Information Dominance II.∥∥∥[Σ(θ0, θ0) +H(θ0, θ0)′
]−1 [

D2L∞(θ0)− Σ(θ0, θ0)−H(θ0, θ0)′
]∥∥∥ < 1.

B.2 GMM Estimation Criterion

In section 5 we considered an estimation criterion given by the quadratic form for efficient

GMM estimation. The following expressions describe the iterative schemes characterizing

the two efficient algorithms introduced in section 2.2 and appendix B.1 in this case. As

usual, we assume that the iterations are started at some initial value θ̂
(0)

T , that may or may

not be a consistent estimator of θ0.

Algorithm I (GMM criterion). For k = 1, 2, 3, . . ., let θ̂
(k)

T solve:

∂ψ̄T [θ̂
(k)

T , ν(θ̂
(k−1)

T )]′

∂θ
WT (θ̂

(k−1)

T )−1ψ̄T [θ̂
(k)

T , ν(θ̂
(k−1)

T )] =

−∂ν(θ̂
(k−1)

T )′

∂θ

∂ψ̄T [θ̂
(k−1)

T , ν(θ̂
(k−1)

T )]′

∂ν
WT (θ̂

(k−1)

T )−1ψ̄T [θ̂
(k−1)

T , ν(θ̂
(k−1)

T )]

Algorithm II (GMM criterion). For k = 1, 2, 3, . . ., let θ̂
(k)

T solve:

∂ψ̄
′
T [θ̂

(k)

T , ν(θ̂
(k−1)

T )]

∂θ
WT (θ̂

(k−1)

T )−1ψ̄T [θ̂
(k)

T , ν(θ̂
(k−1)

T )] =

−∂ν(θ̂
(k−1)

T )′

∂θ

∂ψ̄
′
T [θ̂

(k)

T , ν(θ̂
(k−1)

T )]

∂ν
WT (θ̂

(k−1)

T )−1ψ̄T [θ̂
(k)

T , ν(θ̂
(k−1)

T )]

The asymptotic behavior of the efficient algorithms I-II applied to a GMM estimation

criterion is simply a special case of the general results provided by Theorems 4.1 and 4.2

in section 4. The expressions of the score function ST (θ, θ1) and weighting matrix GT (θ, θ1)

are tedious but straightforward to derive. Finally, using (22), it is easy to show that the

information dominance conditions for algorithms I and II are described by the following

expressions. To simplify the notation, let Ψ(θ0) = Ψ0(θ0) + Ψ1(θ0), where

Ψ0(θ0) = E

[
∂ψ[Yt, θ

0, ν(θ0)]

∂θ′

]
and Ψ1(θ0) = E

[
∂ψ[Yt, θ

0, ν(θ0)]

∂ν ′
∂ν(θ0)

∂θ′

]
.

Information Dominance I (GMM criterion).∥∥∥[Ψ0(θ0)′W (θ0)−1Ψ0(θ0)
]−1 [

Ψ(θ0)′W (θ0)−1Ψ(θ0)−Ψ0(θ0)′W (θ0)−1Ψ0(θ0)
]∥∥∥ < 1.
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Information Dominance II (GMM criterion).∥∥∥[Ψ(θ0)′W (θ0)−1Ψ0(θ0)
]−1 [

Ψ(θ0)′W (θ0)−1Ψ1(θ0)
]∥∥∥ < 1.

Finally, to study the asymptotic theory of algorithm III, it is sufficient to introduce the

score function:

SVT (θ, θ1) = ΓT (θ1)ψ̄T [θ, ν(θ1)].

Consistency and asymptotic efficiency then follow from Theorems 4.1 and 4.2. It is also

straightforward to show that the Information Dominance III condition coincides with Infor-

mation Dominance II (GMM criterion) above.
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Table 1: Descriptive statistics of the results of a Monte Carlo experiment comparing two
estimators of the parameters of a DCC model: the two steps estimator proposed by Engle
(2002), and the MLE computed using the Newton version of the MBP algorithm. The
results are based on 5,000 synthetic samples of 1,000 time series observations of 2 daily
returns. In terms of the MBP algorithm described in section 2.1, θ1 = (ω1, κ1, λ1, ω2, κ2, λ2)′

is the subvector of GARCH parameters, and θ2 = (a, b)′ is the subvector of the correlation
parameters. The estimates obtained with the two-step procedure were used as starting values
for the MBP iterations. The average number of MBB iterations needed to attain convergence
was 12.58, with a standard deviation of 5.11.

Two steps estimator MLE
True Mean Std. Dev. RMSE Mean Std. Dev. RMSE

ω1 1.000 1.031 0.299 0.301 1.038 0.295 0.298
κ1 0.050 0.050 0.014 0.014 0.050 0.013 0.013
λ1 0.940 0.930 0.030 0.032 0.933 0.026 0.028
ω2 1.667 1.670 0.135 0.135 1.667 0.128 0.128
κ2 0.200 0.200 0.046 0.046 0.200 0.040 0.040
λ2 0.500 0.483 0.117 0.119 0.485 0.101 0.103
a 0.050 0.050 0.012 0.012 0.050 0.012 0.012
b 0.940 0.933 0.024 0.026 0.933 0.019 0.020

Table 2: Descriptive statistics of the results of a Monte Carlo experiment comparing two
estimators of the σ2 parameter of the Merton’s structural credit risk model with one firm: the
KMV/PPR estimator outlined in subsection 2.1, and the MLE computed using the Newton
versions of the efficient algorithms developed in subsection 2.2 and appendix B.1 in the text.
The results are based on 5,000 synthetic samples of 500 time series observations of daily
returns (see the text for further details on the MC experiment setup). The KMV/PPR
estimates were used as starting values for the efficient algorithms’ iterations. The average
number of iterations needed to attain convergence to MLE ranged from 34 to 38, depending
on the specific algorithm.

KMV/PPR MLE
Parameter True Mean Std. Dev. RMSE Mean Std. Dev. RMSE

σ2 0.0900 0.0903 0.0895 0.0126 0.0902 0.0894 0.0122
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Table 3: Descriptive statistics of the results of a Monte Carlo experiment comparing two
estimators of the parameters of the Merton’s structural credit risk model with two firms:
the KMV/PPR estimator outlined in subsection 3, and the full MLE computed using the
Newton versions of the efficient algorithms developed in subsection 2.2 and appendix B.1 in
the text. The results are based on 5,000 synthetic samples of 500 time series observations of
daily returns (see the text for further details on the MC experiment setup). The KMV/PPR
estimates were used as starting values for the efficient algorithms’ iterations. Of the two
efficient algorithms, only algorithm I converged to the MLE in every replication; algorithm
II converged to the MLE in 89.92% of the replications. The former needed on average slightly
less than 17 iterations, whereas the latter needed roughly 44 iterations.

KMV/PPR MLE
Parameter True Mean Std. Dev. RMSE Mean Std. Dev. RMSE

σ2
1 0.0900 0.0905 0.0128 0.0128 0.0903 0.0121 0.0121
σ2

2 0.0900 0.0903 0.0125 0.0125 0.0902 0.0120 0.0120
ρ 0.5000 0.5001 0.0336 0.0336 0.5000 0.0334 0.0334
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Table 4: Descriptive statistics of the results of a Monte Carlo experiment comparing two
GMM (two-step and iterated) and two PPR estimators of the parameters of the SV option
pricing model model considered in Garcia et al. (2011) and outlined in section 6.1. The
results are based on 5,000 synthetic samples of 960 observations of the daily return, quadratic
variation and 15 option prices (see the text for further details on the MC experiment setup).
The table reports summary statistics of the parameter estimates.

Parameter κ V̄ γ ρ λ
True 0.100 0.250 0.100 -0.500 0.050

Mean 0.100 0.246 0.097 -0.501 0.051
Two-step Median 0.100 0.245 0.097 -0.501 0.051

GMM Std. Dev. 0.008 0.016 0.006 0.032 0.006
RMSE 0.008 0.016 0.007 0.032 0.006
Mean 0.098 0.247 0.096 -0.480 0.051

Two-step Median 0.100 0.246 0.098 -0.429 0.051
PPR Std. Dev. 0.012 0.023 0.008 0.123 0.008

RMSE 0.012 0.023 0.009 0.125 0.008

Mean 0.101 0.247 0.098 -0.501 0.051
Iterated Median 0.101 0.247 0.099 -0.501 0.051
GMM Dev. Std. 0.007 0.014 0.005 0.030 0.006

RMSE 0.007 0.014 0.005 0.030 0.006
Mean 0.100 0.247 0.098 -0.485 0.051

Iterated Median 0.100 0.247 0.098 -0.438 0.050
PPR Dev. Std. 0.010 0.016 0.006 0.118 0.007

RMSE 0.010 0.016 0.006 0.119 0.007
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Table 5: Descriptive statistics of the results of a Monte Carlo experiment comparing two
GMM (two-step and iterated) estimators of the parameters of the SV option pricing model
model considered in Garcia et al. (2011) and outlined in section 6.1. The results are based
on 5,000 synthetic samples of 960 observations of the daily return, quadratic variation and
15 option prices (see the text for further details on the MC experiment setup). The table
reports selected percentiles of the CPU times (in seconds) required to attain convergence
by two algorithms, L-BFGS (a state-of-the-art Quasi-Newton method; see Liu and Nocedal,
1989) and Algorithm III (see section 5). Both algorithms converged in all samples.

Two-step GMM Iterated GMM
Percentile L-BFGS Algorithm III L-BFGS Algorithm III

0.5% 6.0 2.3 42.1 3.1
2.5% 8.6 3.2 54.4 4.1
25% 11.6 5.1 90.3 6.4
50% 16.0 6.2 114.6 7.7
75% 23.3 7.9 145.3 9.6

97.5% 34.1 18.5 249.6 20.0
99.5% 39.6 50.8 418.8 34.1
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