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Contractility has become one of the main readouts in computational and experimental
studies on cardiomyocytes. Following this trend, we propose a novel mathematical
model of human ventricular cardiomyocytes electromechanics, BPSLand, by coupling
a recent human contractile element to the BPS2020 model of electrophysiology.
BPSLand is the result of a hybrid optimization process and it reproduces all the
electrophysiology experimental indices captured by its predecessor BPS2020,
simultaneously enabling the simulation of realistic human active tension and its
potential abnormalities. The transmural heterogeneity in both electrophysiology and
contractility departments was simulated consistent with previous computational and
in vitro studies. Furthermore, our model could capture delayed afterdepolarizations
(DADs), early afterdepolarizations (EADs), and contraction abnormalities in terms of
aftercontractions triggered by either drug action or special pacing modes. Finally, we
further validated the mechanical results of the model against previous experimental and
in silico studies, e.g., the contractility dependence on pacing rate. Adding a new level of
applicability to the normative models of human cardiomyocytes, BPSLand represents a
robust, fully-human in silico model with promising capabilities for translational
cardiology.

Keywords: computational modeling, human ventricular cardiomyocyte model, action potential (AP), contractility,
aftercontraction

1 INTRODUCTION

The future of diagnosis and treatment in cardiology progressively depends on advanced methods in
imaging, gene profiling, and pharmaceutical technologies. Despite the recent advances in health
technologies, the current empirical clinical investigations face serious challenges as the complexity of
therapeutic interventions, prognosis, and the possibility of classifying the treatments grow.
Specifically, identifying the optimal treatment strategy with a degree of statistical significance
poses serious challenges to current empirical routes in cardiology (Niederer et al., 2019).
Furthermore, as precision medicine emerges (Forouzandehmehr et al., 2022), the proven
pathophysiological variability between individuals highly augments the detail in the diagnostic
process and data, thus, finding an optimal patient-specific solution becomes increasingly difficult
(Niederer et al., 2019). Cardiac computational models, based on established physiological and
engineering principles, offer a capable framework that not only can be fed by large datasets but also
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enable mechanistic and integrative simulations leading to disclose
novel insights in cardiac pathophysiology (Niederer et al., 2019).

Early physiologically constrained computational models of
cardiac cells could quantitatively translate the protein
functions into developing cellular phenotypes (Niederer et al.,
2019). During the past decade, these models have also
incorporated functional characteristics of ion channels, cellular
pumps, transporters, and buffers making them promising
candidates in preclinical studies (O’Hara et al., 2011; Tomek
et al., 2019; Bartolucci et al., 2020; Paci et al., 2021). Currently, as
the cardiac contractility data become increasingly available,
together with new recording techniques (Ahola et al., 2018),
mathematical models of cardiomyocytes (CMS) are developed
to predict dynamics of contraction combined with simulation of
drug effects alongside the electrophysiology. Toward building
models of myocyte electromechanics, elements of contractility
have been developed with different levels of complexity focusing
on animals (Rice et al., 2008; Campbell et al., 2010; Sheikh et al.,
2012; Land et al., 2013) and human CMs (Land et al., 2017).
Initial efforts on developing reliable models to capture the
electromechanics of human adult CMs have been initiated
recently (Lyon et al., 2020; Margara et al., 2021). Margara
et al., integrated an established human-based developed
contractile element (Land et al., 2017) into the gold standard
in silico model of human ventricular cell electrophysiology
(O’Hara et al., 2011) and into their new ToR-ORd model
(Tomek et al., 2019) to predict ventricular active tension
generation alongside action potential (AP) and calcium
transients (CaT). Also Lyon et al. complemented the ORd
model with a contractile element: their choice was the
MedChem model of sarcomere mechanics (Dupuis et al.,
2018), which they used to assess the impact of β-adrenergic
stimulation and sarcomere length on CaTs and force (Lyon
et al., 2020).

Our recently published BPS2020 model of the human adult
ventricular CM electrophysiology (Bartolucci et al., 2020), holds
significant improvements compared with the original ORd model
(e.g., the simulation of the experiments with the correct
extracellular K+ concentration used in vitro or the generation
of DADs) and includes specific mechanisms not simulated by
ToR-ORd (e.g., the inverse APD90-[Ca

2+]o dependence). Given
these improvements in simulating electrophysiology phenomena,
it is worth investigating how we can expand the spectrum of
BPS2020 simulation, by using it as the basis for a new
electromechanical human CM in silico model.

We have integrated one of the most recent human contractile
machinery (LandCE) (Land et al., 2017) into BPS2020 (Bartolucci
et al., 2020). As done inMargara et al. (2021), we chose LandCE as
it is a contractile element validated against human data. Our goal
was to investigate the capabilities of this newly integrated
electromechanical model, BPSLand, by evaluating active
tension generation and contractility abnormalities e.g.,
aftercontractions, that can be activated either by drug action
or special pacing conditions. BPSLand is a robust, fully-human, in
silico model meeting the computational expectations from both
departments, the electrophysiology and contractility, with the

potential for facilitating the translation of biophysical and
pharmacological functions into pre-clinical readouts.

2 METHODS

2.1 In Vitro Data
To calibrate the BPSLand model, we used a dataset of isometric
active tension (Ta) biomarkers recorded from human isolated
ventricular CMs (Land et al., 2017; Margara et al., 2021) and a
dataset of action potential (AP) biomarkers from human isolated
ventricular endocardial CMs (O’Hara et al., 2011; Bartolucci et al.,
2020). The Ta biomarker dataset includes measures from strips of
the left ventricular myocardium (Mulieri et al., 1992), left
ventricular trabeculae (Pieske et al., 1996) and right
ventricular trabeculae (Rossman et al., 2004) (additionally
considered by Margara et al., 2021). Both datasets were
recorded at 37°C. Ta biomarkers are the peak tension
(TaPeak), the relaxation time at 50% and 95% (TaRT50,
TaRT95) and the time-to-peak (TaTTP). AP biomarkers are
the duration at 30%, 40%, 50%, 70% and 90% (APD30, APD40,
APD50, APD70, APD90), the maximum upstroke velocity (dV/
dtmax), the peak voltage (VPeak) and the resting membrane
potential (RMP). In silico biomarkers were computed as in
Margara et al. (2021). As we previously reported in Bartolucci
et al. (2020), we simulated the AP biomarkers for calibration at
[K+]o = 4 mM. Conversely, as no information was reported on the
in vitro Ta biomarker ranges, we run our simulations at the
standard concentration [K+]o = 5.4 mM.

To validate BPSLand, we used the following human data: 1)
APD rate dependence, restitution and accommodation data in
control condition and with current blockers from endocardial
CMs (O’Hara et al., 2011) (see Supplementary Methods for
details and Supplementary Table S1); 2) TaPeak, TaRT50 and
CaT relaxation time at 50% (CaRT50) rate adaptation data (Pieske
et al., 1995; Janssen and Periasamy, 2007); 3) TaPeak transmural
heterogeneity data from sub-epicardial, mid-myocardial, and
sub-endocardial specimens (Haynes et al., 2014).

2.2 Integration of the Land Contractile
Element Into the BPS2020 Model
The original BPS2020model (Bartolucci et al., 2020) was based on
the seminal O’Hara-Rudy model of the human ventricular AP
(O’Hara et al., 2011) and it features two cytosolic compartments,
the subspace and the bulk myoplasm, and the sarcoplasmic
reticulum (SR) represented with a single compartment. It
includes the following ion currents: fast and late Na+ currents
(INaF, INaL), transient outward K+ current (Ito), L-type Ca2+

current (ICaL), also with its Na+ and K+ components (ICaNa,
ICaK), the rapid, slow and inward rectifying K+ currents (IKr,
IKs, IK1), the Na+/Ca2+ exchanger divided in its cytosolic and
subspace components (INCXi, INCXss), the Na+/K+ pump (INaK),
Na+, K+ and Ca2+ background currents (INab, IKb, ICab) and the
sarcolemmal Ca2+ pump (IpCa). Ca

2+
fluxes from/to SR are the

RyR-sensitive Ca2+ release (Jrel), the SERCA pump (Jup) and a
leakage flux (Jleak).
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We integrated LandCE into BPS2020 following the approach
presented in (Margara et al., 2021). Shortly, LandCE takes as
input the intracellular Ca2+ concentration [Ca2+]i computed by
BPS2020, to update a new state variable CaTRPN, representing
the fraction of troponin C units which bound to Ca2+.

dCaTRPN
dt

� kTRPN( [Ca2+]i
[Ca2+]T50)

nTRPN

(1 − CaTRPN)

− CaTRPN)
BPS2020 receives as feedback the amount of Ca2+ buffered by

troponin C, [Ca2+]TRPN, to update the intracellular Ca2+

concentration.

d[Ca2+]i
dt

� βCai( − (IpCa + ICab − 2INaCa,i) Acap

2Fvmyo
− Jup

vsr
vmyo

+ Jdiff ,Ca
vss
vmyo

− d[EGTA]i
dt

− d[Ca2+]TRPN
dt

)
d[Ca2+]TRPN

dt
� [Ca2+]TRPN ,max

dCaTRPN
dt

where [Ca2+]TRPN,max represents the maximum Ca2+

concentration that can bind to troponin C.

2.3 Optimization of the BPSLand Model
The structure of the cost function used for both optimizations is
the same as in Paci et al. (2018b)

Cost � ∑Nbiom

1

wi p Costi

Cos ti � (bi,sim < LBi)(bi,sim − LBi)2 + (bi,sim > UBi)(bi,sim − UBi)2
0.5(LBi + UBi)

where bi,sim is the ith simulated biomarker, LBi the ith
experimental lower bound for bi,sim, UBi the ith experimental
upper bound for bi,sim, wi the weight for each biomarker’s cost
(Supplementary Table S2) and Nbiom the number of biomarkers
used for optimization. Briefly, if the simulated ith biomarker is
smaller than LBi or greater than UBi, the error is computed as the
squared distance between the simulated biomarker and the
bound, normalized by the center of mass of [LBi, UBi]. Finally,
in order to minimize the active tension Ta, we included one
additional term to Cost, obtaining the final cost function

CostTOT � wminTa pmin(Ta) + Cost

with wminTa the weight of the minimun active tension.

2.3.1 Step 1: Hybrid Optimization on the LandCE
Parameters
After integrating LandCE into BPS2020, we first optimized the
LandCE parameters using a hybrid approach combining first a
genetic optimization (Matlab function ga), followed by the
simplex optimization [Matlab function fminsearchbnd
(D’Errico, 2022)]. The parameters optimized in this first step
are only the LandCE parameters listed in Table 1. The
optimization ranges for the LandCE parameters are the same
as in the original LandCE publication (Land et al., 2017), except
for the tropomyosin Ca2+ sensitivity ([Ca2+]T50), for which we
chose [0.5, 0.6] instead of [0.8, 0.9]. As the original range [0.8, 0.9]
increased substantially the CaT peak, i.e. the systolic Ca2+

(+22%), we decided not to affect the BPS2020
electrophysiology and chose [0.5, 0.6] as it preserved the
original BPS2020 CaT peak.

For this first optimization step, we considered five
contractility and two electrophysiology biomarkers: active
tension peak (TaPeak), time-to-peak (TaTTP), relaxation
time to 50% and 95% of the diastolic level (TaRT50 and
TaRT95) and the minimum of the diastolic active tension,
systolic and diastolic intracellular free Ca2+ (CaSys and
CaDiast). The acceptable ranges for these biomarkers were
taken from the original Land publication (Land et al., 2017) for
TaTTP, TaRT50 and TaRT95, from Margara et al. (2021) for
TaPeak, while we chose to set the ranges for CaSys and CaDias
as ±5% of their original values (Bartolucci et al., 2020), in order
to keep the electrophysiology the most similar to the original
BPS2020 model. At the end of this first step, we obtained an

TABLE 1 | Contractility and electrophysiology biomarkers used for the BPSLand optimization, with their ranges.

Model Step Parameter Range

LandCE 1 Tropomyosin rate constant ku (1/ms) [0.01, 0.2]
Hill coefficient ntm [3, 7]
Unbound-to-weak crossbridge transition scaling factor ] [1, 12]
Weak-to-strong crossbridge transition scaling factor μ [1, 12]
Tropomyosin Ca2+ sensitivity ([Ca2+]T50) (μM) [0.5, 0.6]

BPS2020 2 Maximum Ca2+ release flux from SR Jrel,max (1/ms) [0.016, 0.024]
Maximum SERCA pump flux Jup,max (mM/ms) [2.504, 3.756]

TABLE 2 | In vitro contractility and electrophysiology biomarkers used in the cost
function and their goal ranges.

Biomarker Range [LB, UB]

Active tension peak TaPeak (kPa) [15, 25]
Active tension time-to-peak TaTTP (ms) [109, 125]
Active tension relaxation time to 50% TaRT50 (ms) [147, 172]
Active tension relaxation time to 95% TaRT95 (ms) [291, 377]
Minimum active tension min (Ta) (kPa) —

Systolic intracellular Ca2+ CaSys (mM) [3.004755, 3.321045]e-4
Diastolic intracellular Ca2+ CaDias (mM) [7.712955, 8.524845]e-4
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electromechanical model whose electrophysiology biomarkers
were not significantly affected by the LandCE and correctly
simulated TaRT95 while the remaining contractility
biomarkers were close to their respective lower bounds.

2.3.2 Step 2: Simplex Only
In order to capture the remaining contractility biomarkers, we
then run a second simplex optimization on the Ca2+ fluxes of the
SERCA pump (Jup) and the RyR-sensitive release (Jrel), using all
the constraints in Table 2, and additional constraints on the AP
biomarkers. In particular, for resting potential (RMP), peak
voltage (VPeak), maximum upstroke velocity (dV/dtmax), AP
duration at 40%, 50% and 90% (APD40, APD50 and APD90),
and the triangulation metric (Tri9040), we set the lower and upper
bounds as ±5% of their values in the original BPS2020 model,
which were fit against the experimental data (O’Hara et al., 2011)
at [K+]o = 4 mM. We chose these parameters as we did not want
to change the ion current parameters of BPS2020, derived from
the ORd model and partially fit experimental data in Bartolucci
et al. (2020). As ranged for manually tune Jrel,max and Jup,max, we
chose ±20% of their original values 20e-3 (1/ms) and 3.13 (mM/
ms), respectively. At the end of this second step, the
electromechanical model correctly simulated TaRT95 and
TaPeak while the remaining contractility biomarkers were
close to their respective lower bounds. However, we missed
one of the key features of BPS2020, i.e., the inverse
relationship [Ca2+]o – APD90, which was otherwise simulated
at the end of the first step.

2.3.3 Step 3: Manual Tuning
In order to restore the [Ca2+]o – APD90 relationship, we added
one final step to our pipeline, where we did a minor manual re-
tuning of Jrel,max (0.0240→0.0220 1/ms) and Jup,max (3.1333→
3 mM/ms), still considering their lower and upper bounds as in
Table 1. The final model is named BPSLand and its parameter
values are reported in Table 3. Supplementary Tables S2–S4
summarize the weights, parameters and biomarkers obtained
after each of the three optimizations steps. Supplementary
Table S5 shows the impact of the manual tuning of Jrel,max and
Jup,max on the [Ca2+]o – APD90 relationship.

2.3.4 Rate Dependence
To test the active tension dependence on the applied pacing rate,
we paced BPSLand at 0.5, 1, 1.5, 2, 2.5 and 3 Hz for 1,000 beats to
reach the steady state, using [K+]o = 5.4 mM, [Ca2+]o = 1.8 mM

and [Na+]o = 144 mM as extracellular ion concentration. We then
compared simulated TaPeak, TaRT50 and CaRT50 with the
in vitro data by Pieske et al., (1995) and Janssen and
Periasamy (2007).

2.3.5 Heterogeneity
To simulate transmural heterogeneity, i.e., simulating epicardial
(EPI) and mid-myocardial (M) CMs in addition to endocardial
(ENDO), we used the same scaling factors reported in Bartolucci
et al. (2020) for INaL, Ito, ICaL, IKr, IKs, IK1, INCX, INaK, IKb, Jrel and
Jup (Supplementary Table S6).

TABLE 3 | Final BPSLand parameter set.

Parameter Original value Optimized value

ku (1/ms) 1 1.5230
Ntm 5 3.0899
N 7 1.002
M 3 2.0779
[Ca2+]T50 (μM) 0.805 0.5
Jrel,max (1/ms) 20e-3 22e-3
Jup,max (mM/ms) 3.13 3

FIGURE 1 | Illustrative traces simulated by BPSLand ([K+]o = 5.4 mM).
(A) Action potential. (B) Cytosolic Ca2+ concentration. (C) Subspace Ca2+

concentration. (D) Active tension. (E) Inverse action potential duration
dependence on the extracellular Ca2+ concentration.
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2.3.6 EAD and DAD Simulations to Trigger Active
Tension Abnormalities
We assessed the occurrence of early-afterdepolarization (EADs)
and aftercontractions in the BPSLand following three different
protocols. First, we simulated the administration of quinidine
considering the drug effects on INa, IKr, ICaL, IKs and Ito, using the
IC50 and Hill’s coefficients reported in Passini et al. (2017) and
Paci et al. (2018a) and the single pore block model, as in Paci et al.
(2021) (Supplementary Table S7). We tested three drug
concentrations, namely 10, 15 and 20 μM at the standard
extracellular ion concentrations ([K+]o = 5.4 mM, [Ca2+]o =
1.8 mM, [Na+]o = 144 mM) and cycle length (CL) of 4,000 ms.
The second EAD protocol simulated dofetilide, similarly to what
we did in Bartolucci et al. (2020). Shortly, we simulated the
administration of 0.1 µM dofetilide at CL = 5,000 ms and
extracellular concentrations experimentally used by Guo et al.
(2011) ([K+]o = 5 mM, [Ca2+]o = 2 mM, [Na+]o = 137 mM), using
the IKr drug binding values reported by Dutta et al. (2017). We
simulated quinidine and dofetilide effects on the endocardial
BPSLand model and we anticipate no EADs nor
aftercontractions, despite the remarkable AP prolongation.
Conversely, the same tests performed on the M cell version,
resulted in EADs and aftercontraction.

To assess the occurrence of delayed afterdepolarizations
(DADs) we used the same protocol as in Li and Rudy (2011):
we fast paced BPSLand for 1,500 beats (BCL = 275 ms) and then
we triggered one long beat (BCL = 10,000 ms).

3 RESULTS

3.1 The BPSLand Model
We report the AP, [Ca2+]i, [Ca

2+]ss and Ta traces simulated at
[K+]o = 5.4 mM in Figure 1, together with the simulations for
variable [Ca2+]o to highlight the inverse APD90-[Ca

2+]o
dependence, which was described first by Severi et al. (2009)

and then observed in vitro and in vivo (Leitch, 1996; Nagy et al.,
2013), but failed to be simulated by many in silico models,
including the original ORd (O’Hara et al., 2011) and ToR-
ORd (Tomek et al., 2019). In details, for increasing [Ca2+]o =
0.9, 1.8 and 2.4 mM, APD90 equals to 251.4, 239.9 and 237.1 ms.
Table 4 reports the AP and Ta biomarkers, with the in vitro
ranges used for the BPSLand calibration, together with additional
CaT biomarkers: CaT duration at 50% and 90% (CTD50, CTD90)
and amplitude (CaAmp). All the AP biomarkers are within the

TABLE 4 | The electrophysiology and contractility biomarkers simulated by the original BPS2020 and the new BPSLand models, compared to in vitro data.

Biomarker [K+]o = 5.4 mM [K+]o = 4 mM

BPS2020 BPSLand In vitro BPS2020 BPSLand In vitro

APD90 (ms) 239.9 239.9 — 267.6 268.4 [180, 440]
APD50 (ms) 177.1 175.9 — 200.1 200.0 [110, 350]
APD40 (ms) 160.1 158.9 — 178.3 177.3 [85, 320]
Tri9040 79.8 81.0 — 89.3 91.1 [50, 150]
dV/dtmax (V/s) 248.1 248.8 — 305.3 305.7 [100, 1,000]
VPeak (mV) 42.2 42.2 — 43.7 43.8 [10, 55]
RMP (mV) -87.6 -87.7 — -95.6 -95.7 [-103, -88]
CTD90 (ms) 247.9 251.3 — 247.6 254.9 —

CTD50 (ms) 124.1 138.9 — 125.3 140.3 —

CaSys (nM) 316.3 303.3 — 328.7 311.7 —

CaAmp (nM) 235.1 225.0 — 244.6 230.5 —

CaDias (nM) 81.2 78.2 — 84.1 81.2 —

TaPeak (kPa) — 15.6 [15, 25] — 17.4 —

TaTTP (ms) — 142.9 [147, 172] — 145.3 —

TaRT95 (ms) — 307.4 [291, 377] — 308.1 —

TaRT50 (ms) — 108.4 [109, 125] — 108.2 —

TaMin (kPa) — 0.100 — — 0.112 —

FIGURE 2 | Active tension dependence on pacing rate and comparison
with the in vitro data from Pieske et al. (1995) and Janssen and Periasamy
(2007). (A) Normalized active tension peak. (B) Active tension relaxation time.
(C) Ca2+ transient relaxation time.
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experimental ranges, as well as TaPeak and TaRT95. Conversely,
TaRT50 and TaTTP are very close to their respective experimental
lower bounds, although out of the in vitro ranges. The
comparison of AP, Ca2+ and Ta traces simulated with [K+]o =
4 mM and [K+]o = 5.4 mM is presented in Supplementary
Figure S1.

3.2 Electrophysiology and Contractility
Dependence on Pacing Rate
The APD rate adaptation tests reported in Bartolucci et al. (2020)
were repeated using BPSLand, to show that introducing LandCE
did not affect the capability of the new model in simulating the
old data. Briefly, BPSLand simulated the in vitro data as
satisfactorily as BPS 2020, outperforming the original ORd
model (Supplementary Figures S2, S3).

In this section we validate BPSLand against two additional
in vitro datasets of rate adaptation of TaPeak, TaRT50 and
CaRT50, not considered for BPS2020. Figure 2A shows the
qualitative agreement of our model with the data published by

Janssen and Periasamy (2007) in terms of TaPeak-pacing rate
dependence. In particular, we successfully simulate the linearity
of such dependence. In Figure 2B, we considered the rate
dependence of TaRT50, considering in vitro data by Pieske
et al., 1995 and Janssen and Periasamy (2007). BPSLand
simulations qualitatively agree both with the Janssen07 and
the Pieske95 experiments, although TaRT50 is lower at the
slowest pacing rates. This discrepancy is due to the TaRT50

in vitro range used to calibrate the BPSLand model at 1 Hz,
i.e. [109, 125] ms (purple line). BPSLand is positioned at the
interval lower bound (108.4 ms), while Janssen07 data at the
upper bound (125 ms) and Pieske95 is out of bound (137.2 ms).
Conversely, BPSLand shows quantitative agreement with the
Pieske95 CaRT50 data (Figure 2C). A comparison with the
ToR-ORd+Land model is shown in Supplementary Figure S4.
Furthermore, the length dependence properties of the BPSLand
model is presented in Supplementary Figure S5 and was
performed in the same way proposed by Margara et al. (2021)
in their original Supplementary Section S6.

3.3 Transmural Heterogeneity
Figure 3 shows how BPSLand simulates the transmural
heterogeneity in terms of electrophysiology and contractility.
Our simulations are in agreement with the ToR-ORd+Land
and ORd+Land models presented in Margara et al. (2021). In
terms of APD, the M model has the longest APs, followed by the
ENDO and EPI models. In terms of CaTs and active tension, the
M model shows the highest peaks, followed by EPI and ENDO.
Haynes et al. reported transmural heterogeneity data of isometric
active tension peaks in human heart preparations, showing
similar average active tension in EPI and ENDO preparations
(although EPI < ENDO), and greater in M specimens (Haynes
et al., 2014). We simulate an EPI TaPeak (17.4 kPa) slightly
greater than ENDO (15.6 kPa), while the M model produces
greater TaPeak (34.8 kPa). This is the same trend simulated by the
ToR-ORd+Land model (TaPeakM > EPI > ENDO), although the
absolute TaPeak values are considerably greater in ToR-
ORd+Land than in BPSLand. As in (Margara et al., 2021) the
authors suggested that the Ca2+ sensitivity in ENDO CMs could
be higher than in EPI cells, we tested how much upscaling of
[Ca2+]T50 is required in EPI BPSLand to bring the simulated EPI
TaPeak even closer to the experiments (Haynes et al., 2014). In
fact, [Ca2+]T50 is not considered as one of the parameters to
change when switching from ENDO to EPI models. The purple
star in Figure 3E show that a ×1.1 upscale produces an EPI
TaPeak matching the experiments. A comparison of the
transmural heterogeneity with the ToR-ORd+Land model is
also reported in Supplementary Figure S6.

3.4 EADs, DADs and Aftercontractions
The endocardial BPSLand model did not produce EADs just by
administering quinidine or dofetilide, despite the extreme APD90

prolongation up to +272%with 0.1 µM dofetilide; +398%, +489%,
+563% with the three increasing quinidine doses.

Conversely, the M cell version, characterized by smaller IKr
and larger ICaL, reacted to both drugs with EADs and, in some

FIGURE 3 | Transmural heterogeneity simulations with BPSLand in
endocardial (green), epicardial (blue) and mid-myocardial (red) modes. (A)
Action potentials. (B) Cytosolic Ca2+ concentration. (C) Active tension. (D–E)
Comparison of the simulated and experimental active tension peak
magnitude across endocardial, epicardial and mid-myocardial cell types. The
simulated purple star represents an additional epicardial simulation where we
tested a small increments of the calcium sensitivity, ×1.1 the baseline [Ca2+]T50
value, to obtain an active tension even closer to the experimental data (Haynes
et al., 2014).
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cases, aftercontractions. The simulations shown in Figure 4
are noteworthy: for both the intermediate and high quinidine
concentrations (15 µM in the second row and 20 µM in the
third row) quinidine triggers EADs, but only some of them
have a correspondent aftercontraction. This is due to the
different mechanisms underlying each EAD and it is well
summarized in case of 20 µM quinidine, reported in more
detail in Figure 5. The smaller EADs due to ICaL reactivation
(ICaL-driven), e.g., t ~ 1.3 s or t ~ 5.3 s do not have a
corresponding aftercontractions. On the other hand, other
EADs are triggered by a spontaneous Ca2+ release from the
SR through Jrel, e.g., t ~ 2.2 s or t ~ 10.2 s, which pours into the
cytosol enough Ca2+ to trigger the contractile element to
produce an aftercontraction. Therefore, from this result, we
can hypothesize there is not a 1:1 EAD-aftercontraction
correspondence, since aftercontractions require enough
Ca2+ to start, as in the case of Jrel intervention.

We observed a similar result with dofetilide in Figure 6
where the dofetilide simulation resulted in EADs and
aftercontractions. Also in this case, the EADs are triggered
by spontaneous Ca2+ release from the SR through Jrel, as shown
in the third panel.

Following the DAD Li et al. protocol, BPSLand triggered an
unpaced beat further followed by several DADs (Figure 7).
The fast pacing protocol led to the accumulation of Ca2+ in the
SR (oscillations in [1.76, 2.12] mM instead of [1.20, 1.47] mM),
which was spontaneously released by Jrel during the diastolic
phase of the last long beat. These unpaced releases of
sarcoplasmic Ca2+ not only triggered the anticipated AP
and DADs (as we already showed in Bartolucci et al., 2020),
but it also was enough to trigger aftercontractions (Figure 7D
inset).

4 DISCUSSION

In this work, we present an updated version of our BPS2020
model of the human ventricular AP (Bartolucci et al., 2020), that
we enhanced with the contractility model presented by Land et al.
(2017). The potential of in silicomodels is getting more and more
recognition both by industry and regulators for specific
applications, e.g., cardiac safety pharmacology (Li et al., 2020;
Musuamba et al., 2021). However, most of the current cardiac cell
models focus mainly on electrophysiology, i.e., AP and Ca2+

handling, not considering the fact that the heart behaves like a
pump, and therefore the contractile activity of CMs is surely
worth of interest. Most of the diseases of interest modelled so far
within silico CM models mainly affected specific ion channels
[long QT syndrome (Clancy and Rudy, 2002; Paci et al., 2017,
2018a; Kernik et al., 2020)] or Ca2+ handling [catecholaminergic
polymorphic ventricular tachycardia (CPVT) (Koivumäki et al.,
2018)]. Conversely, hypertrophic cardiomyopathy (HCM), the
most widespread genetic cardiac disorder, primarily associates
with pathogenic variants in protein genes of sarcomere (Santini
et al., 2020). In fact, most of pathogenic variants in HCM are
hosted by myosin binding protein C and adult cardiac myosin
isoforms that are mainly programmed by MYBPS3 and MYH7
genes, respectively, (Toepfer et al., 2020). These variants are
responsible for myocardium hypercontractility (Sarkar et al.,
2020), impaired contractile relaxation (Toepfer et al., 2020),
arrhythmogenesis, diastolic dysfunction and heart failure
(Sarkar et al., 2020). Furthermore, the hypoxia-induced lack of
oxygenation in ischemia impairs the orchestrate of molecular
events leading to normal ventricular contraction (Katz, 1973).
Finally, the glycation of myofilaments in diabetes, a major risk
factor in heart failure, correlates with significant reduction in

FIGURE 4 | Illustrative traces of the membrane potential (left column) and active tension (right column) simulated by the M cell BPSLand with low (10 µM),
intermediate (15 µM) and high (20 µM) quinidine concentrations. The intermediate and high doses trigger early afterdepolarizations and aftercontractions.
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calcium sensitivity of the sarcomere (Papadaki et al., 2022) that
cannot be captured in electrophysiology-only models. The same
applies to new drugs directly targeting sarcomere dynamics, e.g.,
blebbistatin, omecamtiv mecarbil and mavacamten (Rahman
et al., 2018; Awinda et al., 2020; Fülöp et al., 2021): with no in
silico contractility description, it is not possible to properly
simulate them.

Therefore, the goal of our work was to provide the new and
validated BPSLand in silico model of human adult CMs,
combining both electrophysiology and contractility. As the
electrophysiology description by BPS2020 carried a few
novelties, especially the APD-[Ca2+]o relationship and an
extended and more reliable description of Ca2+ handling,
including the generation of DADs, it was important to us to
create a model able to translate such novelties also to contractility.
Of note, we did not aim to simulate here specific pathological
conditions affecting contractility, as this will be topic for
future works.

4.1 Development of the BPSLand Model
We followed the same strategy published by Margara et al. (2021)
for their ToR-ORd+Land model, to integrate the
electrophysiology described by BPS2020 and the contractility

of LandCE: as forward mechanism, LandCE takes as input the
cytosolic Ca2+ concentration computed by BPS2020, to compute
the fraction of troponin C units bound to Ca2+, and this new flux
of Ca2+ towards the sarcomere is then included in the equation
regulating the BPS2020 cytosolic Ca2+ concentration, to close the
loop. In terms of mathematical formulation, the process was
straightforward, as BPS2020 and ToR-ORd are both based on the
original ORd model. For the optimization of the model, we built
our cost function with the same biomarkers (TaPeak, TaTTP,
TaRT50 and TaRT95) and experimental ranges as in Land et al.
andMargara et al., and we tuned the same parameters (ku, ntm, ν,
µ and [Ca2+]T50) within the same ranges, except for the Ca2+

sensitivity [Ca2+]T50. In both Land et al. and Margara et al.,
[Ca2+]T50 was optimized within [0.8, 0.9]. However, values in that
range would have altered too much the CaT amplitude of BPS
2020. Land et al. already reported that such parameter “needs to
be fit depending on the calcium transient used to drive the
model,” as it is not consistent inter-species and also variable
in their experiments on skinned human CMs. Therefore, we
optimized [Ca2+]T50 in the range [0.5, 0.6], which allowed us to
keep the same CaT morphology and magnitude of the original
BPS 2020. As we reported in Section 2, we followed a hybrid
optimization approach based on genetic algorithm (Step 1, as in

FIGURE 5 | Early afterdepolarizations (EADs) triggered by 20 µM of quinidine and their underlying mechanisms in the M cell BPSLand. The smaller EADs due to ICaL
reactivation (ICaL-driven), e.g., t ~ 1.3 s or t ~ 5.3 s do not have a corresponding aftercontraction. Conversely, EADs trigger by a spontaneous Ca2+ release from the
sarcoplasmic reticulum through Jrel, e.g., t = ~ 2.2 s or t = ~ 10.2 s, have a corresponding aftercontraction, since Jrel pours into the cytosol enough Ca2+ to trigger the
contractile element.
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Land et al. and Margara et al.) to avoid being stuck in local
minima, followed by a simplex (Step 2) on the sarcoplasmic Ca2+

fluxes again to keep the BPSLand Ca2+ handling the most similar
to BPS2020. Already at this stage, the resulting model would have
satisfactorily simulated the considered AP and Ta biomarkers.
However, it lost the ability to simulate the inverse APD-[Ca2+]o
dependence for high [Ca2+]o values. Such dependence was one of
the key-novelties of BPS2020 (Bartolucci et al., 2020). In order to
restore it (Figure 1), we added one step of manual tuning on the
sarcoplasmic maximal fluxes Jrel,max and Jup,max, applying only
minor changes fully consistent with the physiological formulation
(Step 3). The final BPSLandmodel satisfactorily simulates AP and
Ta biomarkers, together with the APD-[Ca2+]o inverse
dependence (Figure 1; Table 4).

4.2 Validation of the Model Against In Vitro
Data and Comparison With Other In Silico
Models
We first validated BPSLand against the same AP data (APD
rate dependence and restitution in control condition and with
current blocker) used to validate BPS2020 and the original
ORd model. The rationale is we want BPSLand to work as well
as BPS2020 in simulating electrophysiology data. As we
already presented in detail those simulations in Bartolucci
et al. (2020), here we report our results and the used protocols

in the Supplementary Section S1 and Supplementary Figures
S2, S3). These results confirm that adding the mechanical
model have not altered the behaviour of the model
electrophysiology. Nevertheless, it should be taken into
account that having a single experimental dataset, including
both electrical and mechanical measurements, would be the
ideal setting to better calibrate and validate an
electromechanical model (same in vitro preparations, clearer
assessment of the mechanoelectric feedback, etc.). However, to
our current knowledge, there is no such kind of data collection.

In terms of contractile properties, we compared BPSLand
simulations to in vitro experiments performed on human CMs
and cardiac preparations (Section 2.1). BPSLand successfully
simulated the linear force-frequency dependence reported by
Janssen and Periasamy (2007) (Figure 2). Such dependence
was previously simulated by Lyon et al. (2020), although
obtaining lower values of normalized force compared to
BPSLand and to in vitro data in the range [1, 2.5] Hz (see
Figure 2B in the original Lyon et al. paper). In terms of
relaxation time, BPSLand optimally replicated the CaRT50 data
by Pieske et al., and very well the TaRT50 by Pieske et al. (1995)
and Janssen and Periasamy (2007). BPSLand TaRT50 is lower at
the slowest pacing rates (Figure 2). We ascribe this discrepancy to
the TaRT50 interval we used at 1 Hz during the model
optimization: BPSLand and Janssen07 TaRT50 are positioned
at the opposite sides of such interval (purple line in Figure 2)

FIGURE 6 | Illustrative early afterdepolarizations and aftercontractions triggered by 0.1 µM of dofetilide in the M cell BPSLand.
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while Pieske95 is out of bound. In terms of transmural
heterogeneity (Figure 3), BPSLand simulations are in
agreement with the in silico results of ToR-ORd+Land in
terms of APD (M > ENDO > EPI) and TaPeak (M > EPI >
ENDO) sequences, although the TaPeak values are greater in
ToR-ORd+Land than in our model (M ~ 60 kPa, EPI ~ 40 kPa,
ENDO ~ 20 kPa). In fact, although we used the same TaPeak
range as in Margara et al. (2021), i.e., [15, 25] kPa, BPSLand
simulates a reference ENDO TaPeak equals to 15.6 kPa, which is
more in line with the Haynes et al. (2014) in vitro values
(Figure 3), especially for the small difference we observed in
our ENDO vs. EPI TaPeak. As in Margara et al. (2021), we have
tested heterogeneities in myofilament calcium sensitivities by
acting on the baseline [Ca2+]T50 value for the epicardial cell
type (Figure 3E), showing that a small change of the
[Ca2+]T50 parameter replicates better the experiments. This
result suggests that simulating transmural heterogeneity with
electromechanical models may not only require re-calibration

of the electrophysiological part but also of the mechanical part of
the chosen model (Haynes et al., 2014).

Abnormalities in the ionic regulations of cardiomyocytes e.g.,
EADs and DADs can trigger the occurrence of a contractile
irregularity in form of aftercontractions (Nguyen et al., 2017) the
incidence of which has been reported in animal models of heart
failure associated with arrhythmogenesis (Pogwizd et al., 2001). We
observed that the endocardial BPSLand, as the original BPS2020,
reacts to dofetilide and quinidine not producing EADs nor
aftercontractions, but with an extreme prolongation of APD. This
is not surprising, since we designed BPSLand carefully maintaining
the electrophysiology of BPS2020. On the other hand, the M cell
model reacted to both drugs with such abnormalities in
electrophysiology and contractility. From the modelling point of
view, it is not surprising: compared to the endocardial model, the M
cell model has smaller GKr (thus smaller repolarization reserve),
larger GCaL (thus being prone to more significant reactivation of ICaL
during phase 3 of the AP) and Jrel,max (i.e., larger releases, also

FIGURE 7 | Aftercontractions triggered by anticipated beats and DADs in the endocardial (left column) and M cell (right column) BPS 2020. The action potential at
t = 0 is the long beat at BCL = 10,000 ms, following 1,500 beats at BCL = 275 ms. The action potential at t ~ 6 s (left) and t ~ 4.2 s/4.7 s/6.4 s (right) is triggered by the
spontaneous Ca2+ release from the sarcoplasmic reticulum and not by external pacing. (A)Membrane potential. (B) Ca2+ release flux from the sarcoplasmic reticulum.
(C) Cytosolic Ca2+ concentration. (D) Active tension with aftercontractions. The zoomed inset on the left column highlights the small aftercontractions
corresponding to the DADs following the anticipated action potential.
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spontaneous, of Ca2+ from SR). From the in vitro point of view, the
higher sensitivity of M cells to drugs affecting repolarizing ion
currents compared to endocardial and epicardial was reported by
Antzelevitch et al. (1999), with a panel of 13 drugs. Nonetheless, we
did not observe a 1:1 correspondence between EADs and
aftercontractions. We previously observed (see Figure 6C in the
original BPS2020 paper) EADs triggered by two different
mechanisms: ICaL reactivation-driven and RyR spontaneous
opening-driven EADs, as we also report here in Figure 5. Only
in the case of a RyR spontaneous opening-driven EAD, we also have
the corresponding aftercontraction, which is not present for ICaL-
driven EADs. Similarly to RyR spontaneous opening-driven EADs,
also DADs are source of aftercontractions (Desantiago et al., 2008).
BPSLand correctly simulated them using a protocol aimed to stress
the model. Aftercontractions have been reported in vitro following
the administration of diverse compounds or in presence of
mutations in several cardiac preparations, e.g., cardiac tissues and
trabeculae following dofetilide administration (Nguyen et al., 2017),
in myocardial slices containing titin and collagen administered with
isoproterenol (Watson et al., 2019), or in CPVT human induced
pluripotent stem cell-derived CMs (Novak et al., 2012).

4.3 Limitations
The proposed computational model can be used to better
understand the electromechanical interactions and the strong
relationship between Ca2+ regulation and mechanics. Despite this,
the experimental in vitro human data, taking into account both
electrical and mechanical aspects, are still few, and urgently required
to ensure better insight in electromechanical coupling and design
more accurate models. The BPSLand model itself has some
limitations. Preload and afterload conditions contribute to
contractility response and should be considered in future model
developments by including a mathematical description of dynamic
changes in sarcomere length, since now only the isometric condition
can be simulated. Other previously published mechanical models,
e.g., Rice et al. (2008), Dupuis et al. (2016), and Dupuis et al. (2018),
also include a mechanical description of sarcomere lengthening and
shortening, thus expanding the range of possible simulations. Our
choice to use Land model is based on the fact that it is validated
against human experimental data. BPSLand model describes
mechano-electric feedback only through the binding of calcium
to troponin, but this phenomenon also includes other actors, for
example stretch-activated ion channels (Peyronnet et al., 2016),
which are modulated by membrane stretch and yield a current
acting on the cardiomyocyte membrane potential. Future works
should include into the model also these channels. Figures 2B,C
show another limitation of BPSLand: while the model captures well
the CaRT50 in vitro data, it slightly underestimates the TaRT50, as
BPSLand simulates very similar CaRT50 and TaRT50 for each tested
rate. One reason could be a slightly too fast relaxation dynamic in the
contractile element. However, we replicated the same test with a
second in silico model (Supplementary Figure S4) and an even
more different behavior emerges. As cardiomyocyte
electromechanical models are not so common yet as
electrophysiology only models, it is clear that further iterations of
optimization and validation shall be made in the future. Finally, we
did not test the application of the model to multiscale simulations

(2D or 3D) since it was beyond the scope of the work, although it will
be interesting to check BPSLand behaviour also in this field of
applicability.

5 CONCLUSION

In this paper, we presented our new electromechanical model of
human adult ventricular cardiomyocyte, built and validated using
several sets of human in vitro experiments. In addition to
replicate correctly the results produced by its predecessor
BPS2020, BPSLand adds an accurate simulation of active
tension and contractility abnormalities, which can be triggered
by drugs or specific pacing protocols. Therefore, BPSLand
expands the domain of applicability of in silico model, which
traditionally focus mainly on the simulation of the cardiac cell
electrophysiology.
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