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Abstract

We propose an innovative approach to model and predict the outcome of football matches based

on the Poisson AutoRegression with eXogenous covariates (PARX) model recently proposed by

Agosto, Cavaliere, Kristensen and Rahbek (2016). We show that this methodology is particularly

suited to model the goals distribution of a football team and provides a good forecast performance that

can be exploited to develop a profitable betting strategy. This paper improves the strand of literature

on Poisson-based models, by proposing a specification able to capture the main characteristics of

goals distribution. The betting strategy is based on the idea that the odds proposed by the market do

not reflect the true probability of the match because they may also incorporate the betting volumes

or strategic price settings in order to exploit bettors’ biases. The out-of-sample performance of the

PARX model is better than the reference approach by Dixon and Coles (1997). We also evaluate

our approach in a simple betting strategy which is applied to English football Premier League data

for the 2013/2014, 2014/2015, and 2015/2016 seasons. The results show that the return from the

betting strategy is larger than 30% in most of the cases considered and may even exceed 100% if

we consider an alternative strategy based on a predetermined threshold which makes it possible to

exploit the inefficiency of the betting market.

Keywords: Sports forecasting, Density forecasts, Count data, Poisson autoregression, Betting mar-

ket.
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1 Introduction

Over the last few years, the football betting market has experienced the fastest growth in gambling

markets (Constantinou et al., 2013). Not surprisingly, many different methodologies have been developed

to construct a profitable betting strategy which is able to capture the mispricing of odds. Starting with

the pioneering works of Maher (1982) and Dixon and Coles (1997), many econometric methods have

been proposed to predict football match results.

The purpose of our paper is twofold: (i) to develop an approach able to compute a set of probabil-

ities associated with each possible result, and (ii) to use these probabilities to profit from the potential

mispricing of the odds offered on the betting market. The odds proposed by the bookmakers may be

influenced by betting volumes and, therefore might not always reflect the true probability of the match

outcomes. Indeed, one of the aims of bookmakers is to encourage bettors to subdivide their wagers on

each odd (Vlastakis et al., 2009). In doing so, they minimise the risk and gain from the unfairness of

the proposed odds. Moreover, bookmakers may systematically set odds in order to take advantage of

bettors’ biases, such as the well-known preference for favourites and local teams, in order to increase

profits (Levitt, 2004). Therefore, the comparison between true probabilities and odds can be exploited to

define a profitable betting strategy.

The mainstream econometric approach to predict the probabilities associated with the outcomes of a

football match is to model the number of goals scored and conceded by the two teams based on Poisson

distributions. These probabilities are then aggregated to obtain the expectations of different match results

(Maher, 1982; Dixon and Coles, 1997; Lee, 1997; Karlis and Ntzoufras, 2003). Another approach

is to model these probabilities directly using discrete choice regression models such as ordered probit

regression models (Kuypers, 2000; Goddard and Asimakopoulos, 2004; Forrest et al., 2005; Goddard,

2005). An interesting overview of different forecasting methods is proposed by Spann and Skiera (2009).

Our proposal lines up with the first approach. In particular, our purpose is to compute the home and away

team goals probability distributions based on Poisson models. This approach is more flexible than the

one based on discrete choice regression because, once the distribution associated with the goals scored

by the two team is computed, it is possible to derive the probability for each possible match result. Dixon

and Coles (1997) propose a model based on the product of two univariate Poisson distributions which

generates probabilities for home and away team goals under the assumption of independence between

the goal distributions of two opposite teams. With respect to the original work of Maher (1982), Dixon

and Coles (1997) also take into account an additional parameter which governs the dependence between

home and away goals distributions for the results 0-0, 0-1, 1-0 and 1-1, which are found to be statistically

dependent in their sample. Conversely, Karlis and Ntzoufras (2003) use a bivariate Poisson distribution

arguing that the dependence parameter, albeit small, leads to a more accurate prediction of the number of

draws. Koopman and Lit (2015) extend this idea by proposing a dynamic bivariate Poisson distribution
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to jointly model the distribution of home and away team goals, thus allowing for a framework where the

attack and defence strengths of teams can slowly vary stochastically over time.

A further strand of the literature on football matches prediction focuses on machine learning-based

methods. Among others, Tsakonas et al. (2002) show the better forecasting performance of a genetic

programming-based technique compared to methods based on fuzzy models and neural network. Rot-

shtein et al. (2005) propose a combination of a genetic and neural optimisation techniques. More recently,

various authors underscore the importance of expert judgements in the evaluation of football matches and

their contribution to Bayesian networks (see, e.g., Joseph et al., 2006). Within this class of methods, Baio

and Blangiardo (2010) propose a hierarchical Bayesian model without subjective judgements while Con-

stantinou et al. (2012) consider a Bayesian network where subjective variables assume a central role in

the prediction of football matches.

Our paper focuses on football matches prediction using the Poisson Autoregression with eXogenous

covariates (PARX) model introduced by Agosto et al. (2016) which extends the Poisson Autoregression

(PAR) model originally proposed by Fokianos et al. (2009) to include covariates in its specification. This

model has been successfully used to predict corporate defaults and, within the framework of football

betting, it is particularly useful, since the intensity of the goals scored by a team is characterized by an

autoregressive persistence that the PARX model is able to account for. Therefore, these probabilities can

be compared with those implied by odds in order to detect potential mispricings in the betting market.

Our approach is slightly different from those proposed in the literature for football match predictions,

because the PARX model captures the dynamics of the conditional intensity of goal distribution. More

specifically, the adopted specification is able to model the autoregressive persistence in the propensity of

scoring goals by a football team. With respect to other Poisson-based methods proposed in the literature,

the dynamic specification of the PARX model allows to capture the form of a team and its recent perfor-

mance. To the best of our knowledge, the only paper which takes into account a dynamic specification

for the intensity has been proposed by Koopman and Lit (2015). The main difference of our method as

compared to Koopman and Lit (2015) is that we exploit additional information by including exogenous

covariates in the model specification which can greatly improve forecasting performances. The inclusion

of covariates such as proxies for the attack or defence abilities of the opposing teams can be particularly

useful for predicting football match results, as the information on the strength and/or form of the teams

is taken into account.

The one-step ahead forecast accuracy of the PARX-based approach is compared to that of Dixon

and Coles (1997), which is one of the main references in this context, as well as to that obtained on the

basis of a pure PAR model. According to the mean-squared forecasting error, our proposal outperforms

the one by Dixon and Coles (1997) in predicting the number of goals of the away team and provides an

overall better forecasting performance than the PAR-based approach.
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We finally propose a suitable betting strategy based on a set of different bookmaker odds to further

evaluate the out-of-sample forecasting performance of our model. Our betting strategy is based on the

comparison between the probabilities computed by the PARX model and the corresponding odds pro-

posed in the betting market. The results obtained when applying our PARX-based betting strategy to the

2013/2014, 2014/2015, and 2015/2016 seasons of the English Premier League show that our approach

is profitable and is able to detect the mispricing of the betting market by spotting the most underpriced

odds, i.e., payouts higher than expected. We also compare our betting strategy performances with those

of three ‘naive’ strategies: (i) always bet on the home team, (ii) always bet on the favourite team, and

(iii) the ‘longshot’ approach as described in Forrest and Simmons (2002).

The rest of the paper is organized as follows. The estimation of the PARX model and its model

selection are outlined in section 2. In section 3 we discuss how to predict the number of goals using the

PARX model and the forecasting evaluation, and we propose a simple and profitable betting strategy. In

section 4 we apply the PARX model to the English Premier League data. Section 5 concludes the paper.

2 Modelling football goals with PARX

In this section we propose an innovative approach to derive the probabilities associated with each pos-

sible outcome of a football match by taking into account the main features of the goal distributions.

In particular, PAR and PARX denote a class of models which are characterized by a linear autoregres-

sive intensity and allow to fit data that show serial dependence, a typical characteristic of football goals

distributions.

These models also capture the phenomenon of goal clustering which, analogously to the well-known

volatility clustering in financial literature, identifies periods during which football teams tend to score

more goals than during other periods. A further advantage of PAR and PARX models is that they account

for overdispersion, a feature observed in numerous count data, including goals scored by a football team.

The difference between PAR and PARX models is that the latter makes it possible to include exogenous

covariates in the model specification. This model extension is particularly suitable in our framework as

it enables us to incorporate additional information about the team’s strength, ability, and/or form, with

the aim of improving the forecast accuracy.

Let yt denote the number of goals scored by a football team at time t, where t = 1, ...,T . The PARX

model of intensity λt can be specified as

yt|Ft−1 ∼ Pois (λt) , t = 1, ...,T (1)

λt = ω +

p∑
j=1

α jλt− j +

q∑
j=1

β jyt− j + γxt−1 (2)
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where xt−1 denotes a vector of m exogenous (non-negative) covariates and Ft−1 is the information set

available at time t−1, i.e., Ft−1 = {yt−m, xt−m : m ≥ 1}. The parametersω > 0 and α1, ..., αp, β1, ..., βq, γ ≥

0 are time-invariant and, when γ = 0, the PARX reduces to the PAR model. As for ARMA-type pro-

cesses, the system in (1)-(2) is labelled as PARX(p, q). One particular feature of the model in (1)-(2) is

that, in the case of a single covariate, xt−1 = xt−1, the expected value of the number of goals is given by

E
[
yt
]

= E [λt] =
ω + E [xt−1]

1 −
∑max(p,q)

j=1

(
α j + β j

) (3)

and Var
[
yt
]
≥ E

[
yt
]
, that is the model is able to capture overdispersion in the marginal distribution. The

reader is referred to Agosto et al. (2016) for more details and properties of the PARX model.1

2.1 Estimation, model selection and specification tests

Following the formalization in Agosto et al. (2016) the conditional log-likelihood of the model in (1)-(2)

for the parameter vector θ =
(
ω, α1, ..., αp, β1, ..., βq, γ

)′
is given by

`T (θ) =

T∑
t=1

lt (θ) , lt (θ) := yt log λt (θ) − λt (θ) .

The maximum likelihood estimator of θ is given by

θ̂ = arg maxθ `T (θ) . (4)

The maximization problem in (4) is subject to the restrictions ω > 0, α1, ..., αp, β1, ..., βq, γ ≥ 0, and∑max(p,q)
j=1

(
α j + β j

)
< 1. The first set of conditions are required to ensure that λt > 0 while the latter

is used to ensure the stability of the process. The innovations are assumed to be i.i.d. and jointly i.i.d.

with yt over time. The latter assumption does not imply that innovations and the current number of

goals are independent. On the contrary, simultaneous dependence between yt and innovations to the

exogenous variables is allowed. These conditions imply that the PARX model admits a stationary and

weakly dependent solution. The above restrictions mimic the ones used in GARCHX(p, q) models (see

Han and Kristensen, 2014) and are discussed more in detail in Agosto et al. (2016). Model selection,

i.e., the selection of the lags of λt and yt in (2) (p and q, respectively), can be performed according to

an information criterion. One of the commonly used criteria is the Akaike Information Criterion (AIC;

Akaike, 1974):

AIC(θ̂) = −2`T (θ̂) + 2k

1The specification of (3) in Agosto et al. (2016) consider E
[
f (xt−1)

]
instead of E [xt−1] to ensure that the covariates xt−1 are

positive.
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where k denotes the number of model parameters. In spite of its well known tendency to overparametrise

models also in large samples, AIC is particularly useful in a forecasting context as it is asymptotically

equivalent to cross-validation (Stone, 1977).

To evaluate the goodness of fit of the specified PARX models, we consider two different tools de-

signed for time series count data.2

The first diagnostic tool is the analysis of the standardised Pearson residuals given by

εt =
yt − E (yt|Ft−1)√

Var (yt|Ft−1)
(5)

where, since yt|Ft−1 ∼ Pois (λt), E (yt|Ft−1) = Var (yt|Ft−1) = λt. If the model is correctly specified, the

estimated counterparts of the standardised Pearson residuals in (5) should be a white noise process.

The second tool is the (randomised) probability integral transform (PIT) introduced by Brockwell

(2007) and generally adopted to evaluate the misspecification of Poisson autoregressive models as in

Davis and Liu (2015), Agosto et al. (2016) and Liboschik et al. (2016). For any t, the PIT is defined as

ũt = Ft(yt − 1) + υt[Ft(yt) − Ft(yt − 1)] (6)

where υt is a sequence of i.i.d. uniform (0,1) random variables and Ft(·) is the predictive cumulative

distribution, which in our case is the CDF of a Poisson with parameter λt. If the model is correctly

specified, then ũt is an i.i.d. sequence of uniform (0,1) random variables.3

Recently, Kheifets (2015) argues that applying Kolmogorov-Smirnov type tests to check the func-

tional form of a marginal distribution and whether it is i.i.d. is a mistake, since this test is designed to

verify the marginal distribution of i.i.d. random variables and should not be used with generalised residu-

als as in (6). In particular, the null hypothesis requires that ũt is simultaneously uniform and independent

(and not uniform under independence). Therefore, standard Kolmogorov-Smirnov tests may miss impor-

tant deviations from the null as does not control the dynamics in ũt. The new test proposed by Kheifets

(2015) allows to measure how far ũt is from being independent and uniform. Specifically, under the

null for r = (r1, r2) ∈ [0, 1]2 and for the l-th lag (l = 1, 2, ...), we test for pairwise independence, i.e.,

P(ũt ≤ r1, ũt−l ≤ r2) = r1r2. Following Kheifets (2015), we define the process

V2T,l(r) =
1

√
T − l

T∑
t=l+1

(I(ũt ≤ r1)I(ũt−l ≤ r2) − r1r2),

2For more details on these methods, see Davis et al. (2003), Jung and Tremayne (2011) and Davis and Liu (2015).
3Note that the asymptotic distribution of the Kolmogorov-Smirnov tests is invalid due to the estimation of the model param-

eters (Kheifets, 2015). Therefore, we also consider an i.i.d. bootstrap approximation of the test critical values.
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where I(·) is the indicator function, and the test statistics

D2T,l(r) = max
[0,1]2

∣∣∣V2T,l(r)
∣∣∣ . (7)

Critical values for (7) can be obtained by i.i.d. bootstrap approximation as in Kheifets (2015).

3 Forecasting football matches with PARX

In this section we outline how the PARX model can be applied to forecast football match outcomes. We

also discuss forecasting accuracy and how forecasts can be used to develop a profitable betting strategy.

First, we show that the Poisson distribution is not the suitable probability distribution for analysing

and forecasting football match outcomes and that PARX models are useful in this context. In particular,

Figure 1 shows some preliminary analysis on the goal distribution of four teams which played the last

seasons of the English Premier League (from season 2005/2006 to season 2015/2016). In Panel A (B)

of Figure 1 we depict the empirical home (away) goals distribution and the corresponding reference

theoretical Poisson distribution with parameter λ (black lines in Figure 1), where λ is the mean of goals

scored in the sample considered. The comparison between the (marginal) empirical distributions and the

corresponding Poisson distributions shows the presence of overdispersion as stressed by the results in

Panel C of Figure 1 where, for all the teams considered, the mean of goals is smaller than the variance.4

All these results underscore the fact that the (marginal) empirical goals distribution is not a Poisson,

and this is mainly due to overdispersion. As discussed in Agosto et al. (2016; section 3), PARX models

are able to capture overdispersion in marginal distributions and therefore are potentially suitable for

analysing and forecasting the dynamics of the goals distribution.

[Figure 1 about here]

The analysis and forecast of the outcomes of football matches is obtained as follows. For each

match, we estimate two PARX models, one for the home team and one for the away team. In particular,

we define two different (conditional) Poisson distributions for each match. Let H denote the home team

and A the away team in a specific match, so that yH
t |Ft−1 ∼ Pois(λH

t ) is the distribution of the goals scored

by the home team when it plays at home, and yA
t |Ft−1 ∼ Pois(λA

t ) is the number of goals scored by the

away team when it plays away. Once the two (conditional) Poisson distributions for home and away

4Overdispersion has been formally tested using the equidispersion test by Cameron and Trivedi (1990) where the null
hypothesis of mean-variance equality H0 : Var(yt) = E(yt) = λt is checked against the alternative H1 : Var(yt) = λt + αg(λt),
where g(·) is a specific function that maps from R+ to R+. The results for the four teams considered in Figure 1 show significant
overdispersion for the empirical distributions of Aston Villa’s home goals and Manchester City’s home and away goals, for
different choices of the specific function g(·). However, it should be noted that Cameron and Trivedi (1990)’s test must be
employed with caution in our context as it assumes independence across observations.
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goals are estimated using the PARX model in (1)-(2), it is easy to derive the two forecast distributions.

As we consider two different models, one for the home team and one for the away team, there is no

need to take into account any additional parameters for home advantage as, e.g., in Dixon and Coles

(1997). Indeed, the sample considered for estimating the PARX model for team H (team A) consists of

the matches played by H at home (A away) only. The two different and independent PARX models for

H and A teams allow to capture the home advantage and takes into account the fact that the means (and

the variances) of the number of goals scored at home and away by a team are usually different. The use

of the PARX model for forecasting is discussed in Agosto et al. (2016; section 4.3) and it is shown to

be very similar to forecasting with GARCH models (Hansen et al., 2012). In our case, we are interested

in one-step ahead forecasts, i.e., yi
T+1|FT , for i = H, A, which denotes the number of goals scored by a

team in the next match conditional on the information available at time T . The conditional distribution

of yi
T+1|FT is a Poisson of parameter λi

T+1, so it is necessary to compute λi
T+1 to obtain a forecast of the

number of goals in the next match. Given the information available at time T and the vector of parameters

θ, the value λi
T+1|T is given by the process

λi
T+1|T (θ) = ω +

p∑
j=1

α jλ
i
T+1− j (θ) +

q∑
j=1

β jyi
T+1− j + γxT , i = H, A.

Once we have computed a point forecast of the underlying intensity, λi
T+1|T (θ), it is straightforward to

forecast the distribution of yi
T+1 as

P̂
(
yi

T+1 = yi|FT
)

= Pois
(
yi|λi

T+1|T (θ)
)
, y ∈ {0, 1, 2, ...}, (8)

where Pois(y|λ) = λy exp(−λ)/y!. For our purposes, we first derive the forecast distribution in (8) for

the home and away teams, P̂
(
yH

T+1 = yH |FT
)

and P̂
(
yA

T+1 = yA|FT
)
, respectively, and then, assuming the

independence of the two distributions, we can derive the joint forecast distribution5

P̂
(
yH

T+1 = yH , yA
T+1 = yA|FT

)
= P̂

(
yH

T+1 = yH |FT
)
· P̂

(
yA

T+1 = yA|FT
)
, (9)

for yi ∈ {0, 1, 2, ...}. In other words, the estimation of the intensities λH
T+1|T and λA

T+1|T allows to derive

the probability associated with any possible match outcome. For instance, given λ̂H
T+1|T and λ̂A

T+1|T ,

the probability that the home team wins is given by P̂(yH
T+1 > yA

T+1|FT ), the probability of a draw is

P̂(yH
t = yA

t |FT ), and the probability of an away win is P̂(yH
t < yA

t |FT ). On the basis of the estimated

5In their paper, Dixon and Coles (1997) find that the assumption of independence between scores is reasonable except for
the results 0-0, 1-0, 0-1 and 1-1. However, by replicating their analysis based on the Pearson’s chi-squared test for independence
considering the matches played in the Premier League seasons from 2005/2006 to 2015/2016, we find that the test statistic is
46.18 (DF = 36, p-value = 0.1190). Therefore, we do not reject the null hypothesis of independence between home and away
goals.

8



joint probabilities, we can also compute the aggregate probability for other popular bets such as the total

number of goals and under/over, e.g., the probability that the number of total goals in the match will be

equal to 1 is P̂(yH
T+1 + yA

T+1 = 1|FT ), while the probability of over 2.5 goals is P̂(yH
T+1 + yA

T+1 ≥ 3|FT ).

In our analysis, we consider the mean of the goals conceded by the opponent team as the only

covariate, so that xt−1 = xt−1 in (2). This covariate plays a decisive role in our framework, as the mean

of the goals conceded by the opponent can be interpreted as a proxy of the defensive ability of the team.

Indeed, a team with a good defence (a small value of xt−1) tends to concede fewer goals than a team with

a poor defence (a high value of xt−1). We have also tried other covariates as proxies of team ability and/or

form. However, we empirically find that the covariate of the mean of goals conceded by the opponent

team provides the best results in terms of return of the proposed betting strategy.6

As an example, consider the match played between Aston Villa and Chelsea on March 15th, 2014.

The match ended with the (true) result of 1-0. The data we consider for home (Aston Villa) and away

(Chelsea) teams are summarised in Table 1.

[Table 1 about here]

The value of xt−1 = 1.09 reported in the fourth column and last row of Table 1 indicates that Chelsea

conceded, on average, 1.09 goals in the last three seasons7 (prior to March 15th, 2014) when it played

away. Analogously, the value of xt−1 = 1.32 is the mean of the goals conceded by Aston Villa in

the last three seasons, when it played at home. Figure 2 shows the time series dynamics of the goals

scored at home by Aston Villa (first panel) and away by Chelsea (second panel) and the respective

autocorrelation functions. From this figure, we can observe that there are periods in which the teams

tend to score more goals than in other periods thanks to, for instance, an improvement of the physical

(or tactical) condition. This phenomenon can be interpreted as ‘goal clustering’, analogous to the well-

known volatility clustering in finance literature which is usually modelled by GARCH models and is

well captured by PARX models. Indeed, 90% confidence bands represented by blue lines in Figure 2

show statistically significant autocorrelations, in particular lag 3 and lag 2 for Aston Villa and Chelsea,

respectively.

[Figure 2 about here]

The model selection approach based on the AIC described in section 2.1 select a PARX(0,2) to

model the goals scored by Aston Villa while a PARX(3,0) model is suggested to model the goals scored

by Chelsea. The estimated parameters for the two models are reported in Table 2. The results in Table 2

6The results for other covariates are available upon request.
7In our analysis we consider the last three seasons before the date of the match. This choice is a compromise between the

need to have a sufficient number of observations for estimating purposes and the issue of the presence of structural breaks which
obviously may occur among different seasons.
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show that the estimated covariate coefficients γ are both highly statistically significant as well as β3 and

α2 for Aston Villa’s PARX(0,3) and Chelsea’s PARX(2,0), respectively. The significance of the autore-

gressive coefficients are in line with the autocorrelation functions shown in Figure 2 and the significance

of γ coefficients strengthens the use of the PARX specification over the simple PAR model.8

[Table 2 about here]

The forecast distribution of the goals scored by Aston Villa (home team) against Chelsea (away team)

is P̂
(
yH

T+1 = yH |FT
)

= Pois
(
yH |λ̂H

T+1|T = 1.8104
)
, whereas the forecast distribution of goals scored by

Chelsea (away team) against Aston Villa is P̂
(
yA

T+1 = yA|FT
)

= Pois
(
yA|λ̂A

T+1|T = 1.5814
)
. Therefore,

since the expected value of a Poisson distribution equals the intensity parameter, the expected number of

goals scored by Aston Villa versus Chelsea is 1.8104. On the other hand, Chelsea is expected to score

1.5814 goals against Aston Villa.

[Table 3 about here]

The joint probability distribution summarised in Table 3 allows the computation of any possible

match result and, thus, it is extremely useful for pursuing a profitable betting strategy. For instance,

the results in Table 3 allow us to compute the probability that either Aston Villa or Chelsea wins

and the probability of a draw; i.e., P̂
(
yH

T+1 > yA
T+1|FT

)
= 0.4349, P̂

(
yH

T+1 < yA
T+1|FT

)
= 0.3398, and

P̂
(
yH

T+1 = yA
T+1|FT

)
= 0.2253, respectively, which are obtained as the sum of the probabilities above the

main diagonal, below the main diagonal and those on the main diagonal, respectively. The results in

Table 3 show that the most likely match result is 1-1 with probability 0.0963, followed by 2-1 (0.0872).

The probability associated with the true result (1-0) is 0.0609.

Using the specification tests discussed in section 2.1 we check the model specifications for the ex-

ample considered. In Panel A of Table 4 we report the Kolmogorov-Smirnov tests to check if the PIT

in (6) is a uniform (0,1) distribution. Both asymptotic and bootstrap (in brackets in Table 4) p-values

confirm that the PITs for Aston Villa and Chelsea are two i.i.d. sequences of uniform (0,1) distributions.

To complete our specification analysis we also perform the test proposed by Kheifets (2015) and outlined

in 7 to jointly evaluate uniformity and l-th lag (l = 1, ..., 5) pairwise independence of the PIT. The results

reported in Panel B of Table 4 confirm the uniform distribution and serial independence of the PIT for

the first five lags. These two diagnostic tools ensure that the two PARX models are correctly specified

and can thus be used for forecasting purposes.

[Table 4 about here]
8All the analyses were performed using MATLAB. The programs are available on request. Alternatively, the recent R

package ‘tscount’ by Liboschik, Fokianos and Fried (2016) can be used to estimate PAR and PARX models, as well as other
generalised linear models.
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The forecasting accuracy is evaluated using the Mean-Squared Forecasting Error (MSFE)

MS FEi =
1
N

N∑
s=1

(
yi

s − λ̂
i
s

)2
, i = H, A (10)

where N is the number of matches analysed, yi
s is the true number of goals scored in match s and λ̂i

s is

the one-step ahead forecast of the intensity, that is the expected value of the number of goals for team i

in match s.

3.1 Betting strategy

We now define a simple and profitable betting strategy, which is similar in spirit to the one adopted by

Dixon and Coles (1997) and Koopman and Lit (2015), which exploits the predictions obtained by the

PARX models.

In particular, we use the joint distribution in (9) to derive the probability associated with any possible

outcome. Table 3 shows the results of the example analysed in the previous section (Aston Villa vs.

Chelsea). Once a table like Table 3 is computed for each match, it is easy to develop a betting strategy

for the results 1 (home win), X (draw), and 2 (away win), which is one of the most popular betting

choices offered by the market. To each of the results 1, X and 2 is associated an odd. An odd is how

much the bet is paid. For instance, the odd associated with result 1 for Aston Villa vs. Chelsea match

(played on March 15th, 2014) is 6.80, this means that if someone bets £1 on Aston Villa he wins £6.80

(i.e., the net profit is 6.80−1 = £5.80). In our analysis, we consider a set of 26 international bookmakers.9

The different odds are averaged and the mean odd is considered in the analysis. The data are taken from

the website www.betexplorer.com, a large database containing the results and the odds for different

football championships, as well as other sports.

The betting strategy we propose is based on two conditions:

1. Select the result associated with the highest probability;

2. Evaluate whether this probability is appealing with respect to the offered odd.10

More formally, let P1 = P̂
(
yH

T+1 > yA
T+1|FT

)
, PX = P̂

(
yH

T+1 = yA
T+1|FT

)
, P2 = P̂

(
yH

T+1 < yA
T+1|FT

)
be the

probabilities and O1,OX ,O2 the odds associated with results 1, X and 2, respectively. The first step of the

betting strategy is to select the most likely result, i.e. arg maxb=1,X,2Pb, which, in the case of Aston Villa

vs. Chelsea, is the home win with P1 = 0.4349. The second step consists of deciding whether betting on
9The 26 bookmakers considered in the analysis are: 10Bet, 12BET, 188BET, 888sport, bet-at-home, bet365, Betclic, Bet-

fair, Betsafe, Betsson, BetVictor, Betway, bwin, ComeOn, Expekt, Interwetten, Ladbrokes, mybet, Paddy Power, Pinnacle,
SBOBET, Sportingbet, Tipico, Unibet, William Hill, youwin.

10The proposed betting strategy is chosen in order to maximise the probability of winning. Indeed, condition 1 implies that
the probability of selecting the correct match outcome is higher than one third.
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this result is profitable. Let Po
b be the implicit probability defined as the inverse of the odds associated

with result b, for b = 1, X, 2. In the previous example, Po
1 = 6.80−1 = 0.1471. Therefore, according to

the bookmakers, the probability of an Aston Villa’s win is less than 15%, against 43.5% predicted by the

PARX model, hence the payout proposed by the bookmaker’s odd is higher than expected. The expected

value of the bet for result 1 (home win), say B1, is then given by E[B1] =
P1

Po
1
− 1. We bet on home win

only if E[B1] > 0, i.e., only if the probability estimated by the PARX model is higher than the implicit

probability (the inverse of the odd) proposed by the market (P1 > Po
1). In the case of the match between

Aston Villa and Chelsea, P1 = 0.4349 > Po
1 = 0.1471, hence, according to our betting strategy, it is

rational to place a bet on an Aston Villa win. In this way we develop a betting strategy which detects and

exploits the most profitable (underpriced) odds in the market.

Following the idea proposed by Dixon and Coles (1997) and Koopman and Lin (2015), we also

propose an alternative strategy. In particular, we consider picking only the matches whose E[Bb] > τ,

i.e., only if Pb > Po
b(1 + τ), where τ > 0 and b = 1, X, 2. Therefore, we only bet on the match outcomes

whose profitability is higher than a specific threshold τ. In the example considered, we bet on a Aston

Villa’s win in its home match against Chelsea because P1 > Po
1 (case of τ = 0). However, by adopting

this alternative strategy, we bet only if 0 < τ < E[B1] =
P1

Po
1
− 1 = 1.957. Thus, it is still convenient to

bet on an Aston Villa win in this match as long as we select a threshold τ < 1.957.

4 Empirical analysis of the English Premier League

In this section we evaluate the forecasting accuracy discussed in section 3 and the performance of the

betting strategy described in section 3.1 in predicting the outcomes of one of the most popular and betted

football championships in Europe: the English Premier League. In particular, we analyse the matches

played in the Premier League in 2013/2014, 2014/2015 and 2015/2016 seasons. We exclude from the

analysis the matches (i) where at least one team played fewer than 15 matches in the past 3 years in the

Premier League; (ii) played in the first 18 rounds of each season; (iii) played in the last month of each

season. These conditions are found to increase the profitability of the betting strategy. In particular, point

(i) is necessary to guarantee a sufficient number of observations for the model estimation. Moreover, as

pointed out in (ii), the first 18 rounds of each season are used as burn-in with the purpose to capture the

information on the current season by using the first part of the season. Finally, point (iii) is considered

in order to avoid biases due to the different levels of motivation of teams when playing end of season

matches.11 Indeed, we find that the last month of each season always leads to negative returns for the

11It is indeed well-known that, at the end of the season, there may be teams with no possibility of improving their standing
position, while others are in desperate need of points (e.g., teams seeking to achieve a prestigious standing position or teams
closed to relegation). It is likely that the latter will make an incredible effort to achieve their objective, while the former do not
have the same level of motivation.
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proposed betting strategy.

For each match played, we estimate the PARX model in (1)-(2), the joint probabilities in (9) and then

we apply the betting strategies proposed in section 3.1.

To evaluate its forecasting performance, we compare the predictions of the PARX model with those

obtained by the popular approach proposed by Dixon and Coles (1997) [D&C, hereafter]. In addition,

with the purpose of evaluating the role of the exogenous variable in forecasting the number of goals, we

also compare the PARX forecasting performance with that of the pure PAR model. In Table 5 we show

the ratios between the MSFEs of the PARX and D&C models (Panel A) and the MSFE ratios between the

PARX and the PAR models (Panel B). The results in Panel A of Table 5 show that the prediction of the

number of goals of the away team by the PARX model is significantly better than the one provided by the

D&C model, while there is no significant improvement in predicting the number of goals scored by the

home team. Specifically, for all the seasons considered (a total of N = 330 matches), we obtain a ratio

of 0.8119 for the away team, which, according to the Diebold-Mariano test (see the asterisks reported in

Table 5), is statistically significant. As for the comparison between PARX and PAR models, the results

for ‘All seasons’ reported in the last row of Panel B in Table 5 show that the PARX model outperforms in

terms of forecasting performance the pure PAR model in predicting the number of goals for both home

and away teams. In particular, according to the Diebold-Mariano tests, the MSFE ratios are significant at

1% and 10% levels for the home and away teams, respectively. These results show that the inclusion of

the exogenous covariate in the model specification significantly improves the one-step ahead forecasting

accuracy.

Before focusing on the betting strategy, we first consider the percentages for results 1, X and 2 for

all the matches in the 2013/2014, 2014/2015, and 2015/2016 seasons which satisfy the three conditions

outlined above. Result 1 is observed 46.76% of the time, 23.53% of the time matches ended with a

draw, while the percentage of result 2 is 29.71%. The corresponding percentages obtained by the PARX

model are very close to the actual ones: 46.00% for result 1, 23.02% for X and 30.98% for result 2. It

is therefore interesting to note that, unlike other Poisson-based models proposed in the literature, our

approach does not seem to underestimate draws.

[Table 5 about here]

We now summarise the main results of the betting strategy which are reported in Table 6 and Figure

3. In particular, we consider the percentage and absolute returns for different values of τ, namely τ ∈

{0, 0.1, 0.2, 0.3}. The results reported in the first column of Table 6 show that this strategy performs

reasonably well, even with τ = 0, leading to an absolute return of 24.23 for the 2013/2014 season,

21.58 for the 2014/2015 season and 8.84 for the 2015/2016 season. These absolute returns correspond

to a percentage return of 43.27%, 44.96% and 12.63% for the 2013/2014, 2014/2015, and 2015/2016
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seasons, respectively. The number of bets placed for these three seasons are 56, 48, and 70, with a

winning percentage of 62.50%, 48.00%, and 42.86% respectively. Overall, our betting strategy leads to

an aggregate percentage return of 31.41% and an absolute return of 54.65 for all three seasons.

[Table 6 and Figure 3 about here]

In line with Koopman and Lin (2015), the return of the betting strategy improves for higher τ values.

This is somewhat expected as consequence of the fact that the higher the value of τ the higher the

underpricing, then we are reasonably confident that the bookmaker odds are inaccurate. Given this

increased confidence at higher τ values, we expect profitability to increase. Obviously, the number of

bets decreases as the value of τ increases. In fact, as reported in the lower panel of Table 6, the number of

bets for all three seasons is 174 when τ = 0 and decreases to 115, 80 and 50 when τ = 0.1, 0.2 and 0.3.12

The results in Table 6 and the upper-left panel of Figure 3 show that τ = 0.3 leads to the best performance

in terms of percentage return, that is 76.36%, 124.08%, and 75.29% for the 2013/2014, 2014/2015, and

2015/2016 seasons, respectively, corresponding to an aggregate percentage return of 87.30% for all three

seasons. The results in Table 6 and the lower-left panel in Figure 3 show the percentage of winning bets.

The interesting feature is that this percentage does not decrease with the value of τ, but remains rather

constant. Conversely, the mean of the odds associated with winning bets increases as τ increases (see the

results in Table 6 and the lower-right panel of Figure 3). This result is particularly interesting because

it provides a clear evidence that our approach is able to detect the mispricing of the odds offered by the

betting market, without any loss in the forecasting ability. Indeed, the higher the value of τ, the higher

the underpricing of the odd. Nevertheless, our betting strategy delivers similar performances in terms of

winning percentage for all the values of τ considered, but an increasing expected profitability.

Finally, we compare the PARX-based betting strategy with three popular ‘naive’ strategies, namely

Home, Longshot, and Favourite (see the caption in Table 6 for more details). The results in Table 6

show that the betting strategy based on the PARX model outperforms the three naive strategies. As a

further comparison, we also consider the performance of the same betting strategy as outlined in section

3.1 but based on a simple PAR model. Results show that the inclusion of the exogenous covariate in

the model specification improves the performance of the betting strategy for the all seasons and τ values

considered.13 This result can be explained by the fact that, overall in our analysis, the coefficient of the

exogenous covariate is statistically significant in 80% of PARX estimations.

12When τ ≥ 0.3 the number of bets is very small and therefore it becomes somewhat worthless to consider values of τ higher
than 0.3.

13The results for the PAR-based betting strategies are not reported for reasons of space, but are available from the authors
upon request.
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5 Conclusions

In this paper we have proposed a novel approach to predict football match outcomes. The analysis

is based on the PARX model introduced by Agosto et al. (2016) which allows to model and forecast

the goals distribution of a football team by including exogenous variables in the Poisson autoregressive

model specification. The role of the covariates is crucial in capturing the key features of the performance

of a football team such as attack and defence abilities and form. This method is able to model the

autoregressive intensity of the goal scored distributions and the goal clustering phenomenon. With this

approach we determine the joint probability distribution of all possible match outcomes. We can then

define a suitable betting strategy comparing the probabilities estimated by PARX models and the odds

proposed by the bookmakers. The main idea of our betting strategy is to bet only on matches where the

probability estimated on the basis of the PARX model is larger than the implicit probability provided

by odds, thus identifying the potential mispricing of the odds offered on the betting market. As shown

in the empirical analysis based on the matches played in the 2013/2014, 2014/2015 and 2015/2016

English Premier League seasons, the PARX model outperforms the popular Dixon and Coles (1997)

approach and the simple PAR model in terms of accuracy in forecasting the number of goals. Moreover,

the proposed PARX-based betting strategy leads to a return of 43.27%, 44.96% and 12.63% for the

2013/2014, 2014/2015 and 2015/2016 seasons, respectively. Interestingly, by selecting a threshold τ =

0.3 we achieve a return larger than 87% for these three Premier League seasons.
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Panel A: Home goals distribution

Panel B: Away goals distribution

Panel C: Mean and variance of goals distribution
Arsenal Aston Villa Chelsea Man. City

Mean (variance) Home 2.14 (2.37) 1.22 (1.42) 2.14 (2.33) 1.99 (2.40)
Mean (variance) Away 1.63 (1.69) 1.12 (1.15) 1.61 (1.75) 1.39 (1.76)

Figure 1: Preliminary analysis of the goals distributions for Arsenal, Aston Villa, Chelsea and Manch-
ester City. Panels A and B depict the home and away goals distribution, respectively, where the blue bars
represent the empirical distribution and the black line is the corresponding theoretical Poisson distribu-
tion. Panel C reports the means and variances of the goals distributions.
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Figure 2: Time series of the goals scored at home by Aston Villa and away by Chelsea in the three years
previous to March 15th, 2014. The right panel of the figure shows the autocorrelation and the partial
autocorrelation functions (ACFs). Blue lines in the ACFs indicate the 90% confidence bands.
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Figure 3: Evaluation of the performance of the PARX-based betting strategy described in section 3.1 for
different values of τ, for the 2013/2014 (blue line), 2014/2015 (red line), and 2015/2016 (yellow line)
seasons as well as the aggregate results for all three seasons (black dashed line). The upper-left panel
shows the percentage returns of the betting strategy, the upper-right panel shows the absolute returns,
the lower-left panel displays the percentage of correct bets, and the lower-right panel shows the mean of
odds for the winning bets.
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Aston Villa Chelsea
Date Opponent Team yH

t xt−1 Date Opponent Team yA
t xt−1

2011-04-10 Newcastle 1 1.53 2011-04-02 Stoke City 1 1.00
2011-04-23 Stoke City 1 1.62 2011-04-16 West Brom. 3 1.63

...
...

...
...

...
...

...
...

2014-02-08 West Ham 0 1.68 2014-02-11 West Brom. 1 1.32
2014-03-02 Norwich 4 2 2014-03-01 Fuhlam 3 1.53
2014-03-15 Chelsea ? 1.09 2014-03-15 Aston Villa ? 1.32

Table 1: Dataset example of the match between Aston Villa (home team) and Chelsea (away team)
played on March 15th, 2014. The first (fifth) column reports the home (away) match dates for Aston
Villa (Chelsea) in the three years before 2014-03-15, the second (sixth) column reports the opponent
teams, the third (seventh) column reports the number of goals scored by Aston Villa (Chelsea) and the
fourth (eighth) column indicates the mean of the goals conceded by the opponent team when it played
away (at home) in the three years before the date of the match.
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Aston Villa Chelsea
Parameters PARX(0,3) PARX(2,0)

ω 0.0001 (0.0001) 0.0001 (0.0005)
α1 - 0.0001 (0.0005)
α2 - 0.7205 (8.1657)
β1 0.0001 (0.0009) -
β2 0.0001 (0.0008) -
β3 0.3116 (15.471) -
γ 0.5129 (9.4535) 0.3943 (5.3485)

Table 2: Results for the two PARX models estimated for the example discussed in section 3 of the match
between Aston Villa and Chelsea played on March 15th, 2014; t-statistics are reported in brackets.
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aaaaaa
yH

t
yA

t P(yA
t ) = 0 1 2 3 4 5 6 7 8

P(yH
t ) = 0 0.034 0.053 0.042 0.022 0.090 0.002 0.000 0.000 0.000
1 0.061 0.096 0.076 0.040 0.016 0.005 0.001 0.000 0.000
2 0.055 0.087 0.069 0.036 0.014 0.004 0.001 0.000 0.000
3 0.033 0.052 0.042 0.022 0.009 0.003 0.000 0.000 0.000
4 0.015 0.024 0.019 0.010 0.004 0.001 0.000 0.000 0.000
5 0.005 0.009 0.007 0.004 0.001 0.000 0.000 0.000 0.000
6 0.002 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3: Estimated joint probability goal distribution for the match between Aston Villa (yH
t ) and Chelsea

(yA
t ) played on March 15th, 2014. In bold, the probability associated with the true result.
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Panel A: Kolmogorov-Smirnov test
H0 : ũt ∼ U(0, 1)

Aston Villa Chelsea
p-value = 0.7282 (0.8788) p-value = 0.5287 (0.6768)
Panel B: Test for uniformity and independence (Kheifets, 2015)

H0 : P(ũt ≤ r1, ũt−l ≤ r2) = r1r2
Aston Villa Chelsea

l = 1, p-value = 0.5915 l = 1, p-value = 0.6466
l = 2, p-value = 0.5414 l = 2, p-value = 0.7218
l = 3, p-value = 0.3860 l = 3, p-value = 0.6165
l = 4, p-value = 0.4962 l = 4, p-value = 0.5639
l = 5, p-value = 0.3684 l = 5, p-value = 0.7544

Table 4: Specification tests for the fitted PARX models for the match between Aston Villa and Chelsea
played on March 15th, 2014. Panel A: Kolmogorov-Smirnov tests to check whether the PIT in (6) is
distributed as a uniform (0,1) distribution; bootstrap p-values are reported in brackets. Panel B: Kheifets’
(2015) test to check the PIT l-lag (l = 1, ..., 5) pairwise independence and uniformity.
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Forecasting performance comparison (MSFE Ratio)
Panel A: Dixon and Coles (1997)

Season Home Team Away Team
2013/2014 0.9701 0.7511∗∗

2014/2015 1.0005 0.8220∗

2015/2016 0.9874 0.8184∗∗

All seasons 0.9743 0.8119∗∗∗

Panel B: PAR model
Season Home Team Away Team

2013/2014 0.9315∗∗∗ 0.9603
2014/2015 0.9554 0.9615∗

2015/2016 0.9599 0.9827
All seasons 0.9467∗∗∗ 0.9683∗

Table 5: Forecasting performance comparison between PARX model and Dixon and Coles (1997, D&C)
approach (Panel A), and between PARX and PAR models (Panel B). The values reported are the ratio
between the MSFEs of the PARX-based approach and the D&C-based (Panel A) or PAR-based (Panel
B) approaches. Values lower than one indicate that the PARX provides a better forecasting performance
than the competing approach. ∗, ∗∗ and ∗∗∗ denote significance at 10%, 5%, and 1% levels, respectively.
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PARX model PAR model Naive betting strategies
τ = 0 0.1 0.2 0.3 τ = 0 Home Favourite Longshot

2013/2014 season
Percentage return 43.27 43.94 35.97 76.36 32.19 3.89 3.06 -11.70
Absolute return 24.23 15.82 10.79 10.69 15.45 6.49 1.90 -10.30

Percentage of correct bets 62.50 52.78 46.67 57.14 54.17 49.10 74.19 12.50
Mean of the winning bets odds 2.29 2.72 2.91 3.08 2.44 2.11 1.39 7.06

Number of bets 56 36 30 14 48 167 62 88
2014/2015 season

Percentage return 44.96 76.14 92.05 124.08 42.14 -0.05 13.89 -35.02
Absolute return 21.58 22.08 17.49 14.89 17.70 -0.07 6.25 -30.12

Percentage of correct bets 58.33 65.52 68.42 75.00 54.76 45.64 80.00 12.79
Mean of the winning bets odds 2.48 2.68 2.80 2.98 2.59 2.19 1.42 5.08

Number of bets 48 29 19 12 42 149 45 86
2015/2016 season

Percentage return 12.63 20.96 44.55 75.29 -0.21 -2.68 -19.07 32.35
Absolute return 8.84 10.48 13.81 18.07 -0.12 -4.37 -7.82 26.85

Percentage of correct bets 42.86 42.00 41.94 50.00 38.60 41.72 56.10 22.89
Mean of the winning bets odds 2.62 2.88 3.44 3.50 2.58 2.33 1.44 5.78

Number of bets 70 50 31 24 57 163 41 83
All seasons

Percentage return 31.41 42.07 52.61 87.30 22.47 0.43 0.22 -5.28
Absolute return 54.65 48.38 42.09 43.65 33.03 2.05 0.33 -13.57

Percentage of correct bets 53.45 51.31 50.00 58.00 46.09 45.51 70.95 15.95
Mean of the winning bets odds 2.34 2.64 2.93 3.14 2.54 2.20 1.41 5.93

Number of bets 174 115 80 50 147 479 148 257

Table 6: Performance of the PARX and PAR-based betting strategies and three naive betting strategies. The results for the PARX-based betting
strategy are reported for different values of τ. The results for the PAR-based betting strategy are reported for τ = 0 (results for other values
of τ are available upon request). ‘Home’ identifies a betting strategy where the bettor always wagers on the home team (irrespectively of the
odd); ‘Favourite’ denotes a betting strategy where the bettor always wagers on the favourite team (corresponding to odds lower than 1.67, i.e.,
an implied probability of at least 60%); ‘Longshot’ identifies a betting strategy where the bettor always wagers on underdogs (corresponding to
odds higher than or equal to 4, i.e., an implied probability of 25% at most).
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