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Abstract

Recent research has shown that a reliable vector autoregression (VAR) for forecast-

ing and structural analysis of macroeconomic data requires a large set of variables and

modeling time variation in their volatilities. Yet, there are no papers that provide a gen-

eral solution for combining these features, due to computational complexity. Moreover,

homoskedastic Bayesian VARs for large datasets so far restrict substantially the allowed

prior distributions on the parameters. In this paper we propose a new Bayesian esti-

mation procedure for (possibly very large) VARs featuring time-varying volatilities and

general priors. We show that indeed empirically the new estimation procedure performs

well in applications to both structural analysis and out-of-sample forecasting.
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1 Introduction

The recent literature has shown that two main ingredients are key for the specification of a

good vector autoregression (VAR) for forecasting and structural analysis of macroeconomic

data: a large cross section of macroeconomic variables, and time variation in their volatilities.

Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and Marcellino (2015), Giannone,

Lenza, and Primiceri (2015), and Koop (2013) point out that larger systems perform better

than smaller systems in forecasting and structural analysis. Clark (2011), Clark and Ravaz-

zolo (2015), Cogley and Sargent (2005), D’Agostino, Gambetti and Giannone (2013), and

Primiceri (2005) highlight the importance of time variation in the volatilities, most typically

modeled as stochastic volatility.

Both of these ingredients are commonly accommodated with Bayesian estimation meth-

ods, which rely on a posterior distribution that is the product of the likelihood and the

prior distribution. Bayesian shrinkage is helpful to accommodating the many parameters

that come with large models, and Bayesian computation is helpful for stochastic volatility.

Accordingly, in this paper we focus on Bayesian estimation methods for VARs with sto-

chastic volatility. However, the basic computational problem we describe and our solution

would also apply with other formulations of time-varying error volatility, such as GARCH.

Although the aforementioned literature suggests that it would be ideal to combine a large

cross-section of variables with stochastic volatility in a VAR, to this point computational

challenges have precluded doing so in a general way. To understand why, it is helpful to

begin with the familiar VAR with constant error variances (conditional homoskedasticity).

With N variables, p lags, and an intercept included, the model has N(Np + 1) regression

coeffi cients. Homoskedastic VARs are SUR models featuring the same set of regressors in

each equation, which is commonly referred to as symmetry across equations. The symmetry

yields a Kronecker structure in the variance-covariance matrix of the VAR’s coeffi cients and

means that, in a maximum likelihood (ML) context, the model can be estimated via OLS

equation by equation. In a Bayesian setting with conditionally homoskedastic errors, as long

as the prior distribution governing the VAR’s coeffi cients takes a Kronecker structure, the

posterior distribution also has a Kronecker structure. That structure makes feasible com-

putation with large (conditionally homoskedastic) models, by reducing key computations

to manipulation of Kronecker products rather than larger matrices. In particular, exist-

ing work with large Bayesian VARs has relied on the natural conjugate Normal-Wishart

prior proposed by Kadiyala and Karlsson (1993, 1997).1 For example, Banbura, Giannone,

1See Geweke and Whiteman (2006) and Karlsson (2013) for excellent surveys on priors for Bayesian VARs.

Studies including Chib and Greenberg (1995) and Korobilis and Pettenuzzo (2017) have developed alternative
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and Reichlin (2010) estimate a homoskedastic Bayesian VAR with 130 variables, using the

natural conjugate prior.

Adding the macro literature’s common formulation of stochastic volatility to the VAR

breaks the symmetry of the model and the Kronecker structure of the posterior distribution

of the VAR’s coeffi cients, effectively precluding the estimation of large models. To under-

stand why, it helps to return to the ML context. With the error term of each equation of

the VAR featuring time-varying volatility, dividing the terms of each equation by its time-

varying variance yields a system of equations with homoskedastic errors but with different

regressors in each equation. The system of equations lacks the symmetry that applies with

conditional homoskedasticity. The ML estimator is obtained by GLS applied to the sys-

tem of equations instead of OLS applied equation-by-equation. The speed of computation

that comes with the Kronecker structure of the conditional homoskedasticity case is lost;

estimation must apply to the joint system of equations and involve very large matrices in

large models. In the Bayesian setting, computations with the posterior distribution of the

VAR’s coeffi cients involve a variance matrix with N(Np+1) rows and columns and without

a Kronecker structure. The size of this matrix increases with the square of the number of

variables in the model, making CPU time requirements highly nonlinear in the number of

variables. Estimation becomes rapidly unmanageable as the number of variables increases.

With large models, even with conditional homoskedasticity, the same challenge to es-

timation can arise if the prior distribution of the VAR’s coeffi cients lacks the symmetry

that comes with a Kronecker structure. In this case, despite the symmetry of the model’s

equations, the posterior distribution of the VAR’s coeffi cients lacks a Kronecker structure,

and posterior computations involve a variance matrix with N(Np + 1) rows and columns,

the size of which increases with N2. Although much work has made use of priors with

symmetry to circumvent computational challenges, priors without symmetry can be useful.

One such prior is the original Litterman (1986) implementation of the so-called Minnesota

prior, which puts additional shrinkage on the lags of all the variables other than the depen-

dent variable of the i-th VAR equation, with the idea that these lags should be less relevant

than the lag of the dependent variable itself. In this case the prior is not symmetric across

equations and therefore, despite symmetry of the model’s equations, the resulting posterior

lacks a Kronecker structure, which implies that the model must be estimated as a system of

equations. Incidentally, it is for this reason that Litterman (1986) assumed a (fixed) diag-

onal prior variance for the disturbance term, since this assumption allows one to estimate

his model equation by equation. In general, the common Normal-diffuse and independent

Bayesian approaches for large VARs (without stochastic volatility) that rely on hierarchical priors.
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Normal-Wishart priors also introduce asymmetry in the posterior of the VAR coeffi cients.

In the face of the computational challenges to including stochastic volatility in large

VARs, a few studies have developed approaches that make use of some shortcuts. Koop

and Korobilis (2013) and Koop, Korobilis, and Pettenuzzo (2016) propose a computational

(not fully Bayesian) shortcut that allows for time-varying volatility using, roughly speaking,

a form of exponential smoothing of volatility that allows them to estimate a large VAR.

However, the resulting estimates are not fully Bayesian and do not allow, for example,

computing the uncertainty around the volatility estimates in a coherent fashion. Carriero,

Clark, and Marcellino (2016) instead make fully Bayesian inference feasible by assuming a

specific factor structure for the volatilities in the VAR. Although their evidence indicates

that the proposed model improves over an homoskedastic VAR in density forecasting, the

restrictions implied by the factor structure do not necessarily hold in a typical dataset of

macroeconomic and financial variables, especially so as the cross-sectional dimension grows.

In this paper, we develop a new, more general Bayesian estimation procedure – one with-

out shortcuts – for large VARs with time-varying volatility or asymmetric (non-conjugate)

priors. Our procedure is based on a simple triangularization of the VAR, which permits

sampling the posterior of the VAR’s coeffi cients by drawing them equation by equation.

With N variables in the model, this reduces the computational complexity to the order N4,

which is considerably faster than the complexity of N6 arising from the traditional algo-

rithms. Our new algorithm is very simple and, importantly, it can be easily inserted in any

pre-existing algorithm for Bayesian estimation of VARs. With our method, estimation of

very large VARs with stochastic volatility and non-conjugate priors becomes feasible, and

this is important both for reduced form applications, such as forecasting or constructing co-

incident and leading indicators, and for structural applications, such as computing responses

to structural shocks or variance decompositions. Hence, our method also paves the way for

a large number of empirical applications.

As an example and illustration, we estimate a VAR with stochastic volatility (VAR-SV),

using a cross-section of 125 variables for the U.S. extracted from the dataset in McCracken

and Ng (2016). Results show substantial homogeneity in the estimated volatility patterns for

variables belonging to the same group, such as industrial production and producer price com-

ponents or interest rates at different maturities, but there is some heterogeneity across groups

of variables. When we use this very large VAR-SV to analyze U.S. monetary policy shocks

and their transmission, we obtain impulse responses similar to those from homoskedastic

specifications such as Bernanke, Boivin and Eliasz (2005) and Banbura, Giannone and Re-

ichlin (2010), although with our time-varying variances, the size of the policy shock and
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overall response magnitudes are varying over time.

Finally, we analyze the effect that the size of the cross-section and the time variation

in the volatilities has on out-of-sample forecasting performance. We compare small and

medium-sized (20 variable) VARs for the U.S., with and without stochastic volatility, in a

recursive out-of-sample exercise, where the inclusion of the medium-sized VAR-SV is only

feasible thanks to our new estimation method. We show that, jointly, the inclusion of time-

varying volatilities and the use of a large dataset improve point and density forecasts for

macroeconomic variables, with gains that are larger than what would be obtained by using

these two ingredients separately.

The paper is structured as follows. Sections 2 and 3 introduce the model and develop

the estimation method. Section 4 illustrates the gains obtained by our algorithm in terms

of computing time, convergence, and mixing. Section 5 discusses the empirical application.

Section 6 presents the out-of-sample forecasting exercise. Section 7 concludes.

2 Challenges in estimating large VARs with asymmetric pri-

ors and time varying volatilities

2.1 The model

Consider the following VAR with stochastic volatility:

yt = Π0 + Π(L)yt−1 + vt; (1)

vt = A−1Λ0.5
t εt, εt ∼ iid N(0, IN ), (2)

where t = 1, ..., T , the dimension of the vectors yt, vt and εt is N , Π(L) = Π1L+Π2L
2 + · · ·+

ΠpL
p, Λt is a diagonal matrix with generic j-th element λj,t, and A−1 is a lower triangular

matrix with ones on its main diagonal.

The specification above implies a time-varying variance matrix, Σt, for the disturbances

vt. Importantly, our approach can be applied to any model featuring a time-varying error

variance matrix, regardless of how its time variation is modeled. In what follows we use

stochastic volatility and a factorization of Σt common in many macroeconomic applications:

Σt ≡ V ar(vt) = A−1ΛtA
−1′. (3)

The diagonality of the matrix Λt implies that the generic j-th element of the rescaled VAR

disturbances ṽt = Avt is ṽj,t = λ0.5
j,t εjt. Taking logs of squares of ṽj,t yields the following set

of observation equations:

ln ṽ2
j,t = lnλj,t + ln ε2j,t, j = 1, . . . , N. (4)
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The model is completed by specifying laws of motion for the unobserved states:

lnλj,t = lnλj,t−1 + ej,t, j = 1, . . . , N, (5)

where the vector of innovations to volatilities et is i.i.d. N(0,Φ), with full variance matrix

Φ as in Primiceri (2005), not diagonal as in Cogley and Sargent (2005).2

In equation (2) we do not allow the elements in A−1 to vary over time. We do so because

Primiceri (2005) found little variation in such coeffi cients (as we did in robustness checks of

Carriero, Clark, and Marcellino 2017 with larger models), and specifying variation in these

coeffi cients would imply an additional N(N−1)/2 state equations. Note, however, that even

if one were to specify A−1 as time-varying, this would not impact the main computational

advantage arising from the estimation method we propose below, as the main bottleneck in

estimating large VARs is the inversion of the variance matrix of the Π(L) coeffi cients, not

the simulation of the drifting covariances and volatilities. That said, although our proposed

approach solves the main bottleneck due to the size of the variance matrix of the VAR

coeffi cients, in large systems (e.g., 30 or more variables), the estimation of a time-varying

A matrix would still be challenging. For example, with a 30 variable model, an additional

29 equations with 435 states in A would need to be estimated.3 Finally, as a simpler or less

computationally challenging matter, one can modify equation (5) so that the states lnλj,t

follow an autoregressive process rather than a random walk, but again this is not essential

to the main point we make in this paper.

In a Bayesian setting, to estimate the model the likelihood needs to be combined with

a prior distribution for the unobserved states Λt and the model coeffi cients Π, A, and Φ,

where Π = (Π0,Π1, ...,Πp)
′ is a (Np+ 1)×N matrix. Typically the priors for the coeffi cient

2The specification of Primiceri (2005) is more general and allows for the volatilities to be hit by a common

shock (while their conditional means are modeled independently of one another). However, as N gets large

with respect to T , allowing correlations across variables might become problematic. In the case of a full Φ

matrix, innovations to the volatility are modeled with an inverse Wishart prior, which needs to use at least

N + 2 degrees of freedom to be proper. With large N , this makes the prior highly informative, more so with

quarterly data than monthly. A researcher worried about that could treat the innovations as independent

and draw them from individual inverse gamma distributions, as in Cogley and Sargent (2005). Of course

this amounts to imposing the restriction that both the prior and the likelihood have a diagonal Φ matrix,

which can be seen as an even more informative prior than the Wishart one.
3There is also a related problem on how to calibrate the prior on so many state variables under an

approach like that of Primiceri (2005), since pre-sample data are very limited.
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blocks of the model are specified as follows:

vec(Π) ∼ N(vec(µ
Π

),ΩΠ); (6)

A ∼ N(µ
A
,ΩA); (7)

Φ ∼ IW (dΦ · Φ, dΦ), (8)

where N(µ,Ω) denotes a multivariate Normal distribution with mean µ and variance Ω and

IW (dΦ ·Φ, dΦ) denotes an inverse Wishart distribution with dΦ degrees of freedom and scale

matrix dΦ · Φ. The model is completed by eliciting a prior for the initial value of the state
variables Λt, for which we use an uninformative Normal distribution.

2.2 Model estimation

The VAR-SV model is typically estimated as follows. First, the conditional posterior distri-

butions of all the coeffi cients blocks are derived:

vec(Π)|A,ΛT , yT ∼ N(vec(µ̄Π),ΩΠ); (9)

A|Π,ΛT , yT ∼ N(µ̄A,ΩA); (10)

Φ|ΛT , yT ∼ IW ((dΦ + T ) · Φ̄, dΦ + T ), (11)

where ΛT and yT denote the history of the states and data up to time T , and where the

posterior moments µ̄Π, ΩΠ, µ̄A, ΩA, and Φ̄ can be derived by combining prior moments

and likelihood moments.4 In particular, defining Xt = [1, y′t−1, ..., y
′
t−p]

′ as the (Np + 1)-

dimensional vector collecting the regressors in equation (1), the mean and variance of the

conditional posterior of the VAR’s coeffi cients are given by

vec(µ̄Π) = Ω̄Π

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
; (12)

Ω
−1
Π = Ω−1

Π +

T∑
t=1

(Σ−1
t ⊗XtX

′
t). (13)

Defining the collection of model coeffi cients as Θ = {Π, A,Φ}, a step of a Gibbs sampler
cycling through (9)-(11) provides a draw from the joint posterior distribution p(Θ|ΛT , yT ).

Conditional on this draw, a draw from the distribution of the states p(ΛT |Θ, yT ) is obtained

using the observation and transition equations (4) and (5), by using a mixture of normals

4Note that knowledge of the full history of the states ΛT renders redundant conditioning on the hyper-

parameters Φ regulating the law of motions of such states when drawing Π and A, as well as conditioning

on Π and A when drawing Φ.
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approximation and multi-move algorithm proposed by Kim, Shephard, and Chib (1998).5

Cycling through p(Θ|ΛT , yT ) and p(ΛT |Θ, yT ) provides the joint posterior of the model

coeffi cients and unobserved states p(Θ,ΛT |yT ).

In this paper we are interested in one specific step of the algorithm: the draw from

vec(Π)|A,ΛT , yT described in equation (9). The main problem is that this step involves

the manipulation of the variance matrix of the coeffi cients Π, which is a square matrix of

dimension N(Np+ 1).

Consider drawing m = 1, ...,M draws from the posterior of Π. To perform a draw Πm

from (9), one needs to draw a N(Np + 1)−dimensional random vector (distributed as a

standard Gaussian), denoted rand, and to compute:

vec(Πm) = Ω̄Π

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
+ chol(Ω̄Π)× rand . (14)

This calculation involves computations of the order of 4×O(N6). Indeed, it is necessary to:

i) compute the matrix Ω̄Π by the inversion given in equation (13); ii) compute its Cholesky

factor chol(Ω̄Π); and iii) multiply the matrices obtained in i) and ii) by the vector in the

curly brackets of (14) and the vector rand, respectively. Since each of these operations

requires O(N6) elementary operations, the total computational complexity to compute a

draw Πm is 4 × O(N6). Also, computation of Ω−1
Π vec(µ

Π
) requires O(N6) operations, but

this is fixed across repetitions so it needs to be computed just once.6

For a system of 20 variables, the “medium”size in studies such as Banbura, Giannone,

and Reichlin (2010), Carriero, Clark, and Marcellino (2016), Giannone, Lenza, and Primiceri

(2015) and Koop (2013), this amounts to 4× 206 = 256 million elementary operations (per

single draw). This is the main bottleneck that so far prevented estimation of models with

stochastic volatility using more than a handful of variables, typically 3 to 5.7

5 In such case one needs to introduce another set of state variables sT used to approximate the error

term appearing in (4). In the case of volatilities independent across equations one could instead use the

single-move sampler of Jacquier, Polson and Rossi (1994) and avoid drawing the mixture states sT .
6Some speed improvements can be obtained as suggested by Chan (2015) by using

vec(Πm) = C\
[
C′\

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
+ rand

]
, (15)

where C′ is the Cholesky factor of Ω̄−1
Π and \ stands for the command for backward solution of a linear

system. While this is twice as fast as using (14), it is just a linear improvement and it is not suffi cient to

solve the bottleneck in estimation of large systems, as the overall computational complexity for calculating a

draw is still of the order O(N6). In the remainder of the paper we use the strategy outlined in this footnote

for all the models we consider.
7Carriero, Clark, and Marcellino (2016) estimate a larger system by assuming a specific structure for
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2.3 Non-conjugate priors

The computational problem related to the dimension of the variance matrix of the coeffi cients

can also arise in a homoskedastic setting. In particular, consider making the model (1)-(2)

homoskedastic by substituting (2) with:

vt ∼ iid N(0,Σ). (16)

For this model, commonly used prior distributions take a Normal-diffuse or independent

Normal-Wishart form (e.g., Karlsson 2013). Although our results also apply in the Normal-

diffuse case, we will focus on the independent Normal-Wishart (N-W) prior:

vec(Π) ∼ N(vec(µ
Π

),ΩΠ); (17)

Σ ∼ IW (dΣ · Σ, dΣ). (18)

The implied posteriors are

vec(Π)|Σ, y ∼ N(vec(µ̄Π),ΩΠ); (19)

Σ|Π, y ∼ IW ((dΣ + T ) · Σ̄, dΣ + T ), (20)

with

Ω̄−1
Π = Ω−1

Π +

T∑
t=1

(Σ−1 ⊗XtX
′
t). (21)

The matrix in (21) still has the same dimension as the one in (13), notwithstanding the fact

that the matrix Σ does not vary with time.

The papers that have estimated homoskedastic VARs with a large cross section all use

a different prior for Π, of the conjugate Normal-Wishart form:

vec(Π)|Σ ∼ N(vec(µ
Π

),Σ⊗ Ω0). (22)

In this case, the prior is conditional on knowledge of Σ, and the matrix Σ is used to elicit

the prior variance ΩΠ = Σ⊗Ω0. Under these assumptions, the posterior variance becomes:

Ω̄−1
Π = Σ−1 ⊗

{
Ω−1

0 +

T∑
t=1

XtX
′
t

}
, (23)

the volatilities in the VAR, with Σt in (13) given by the product of a scalar σt and a constant matrix Σ

(Σt = σtΣ), and with the prior variance ΩΠ specified conditionally on the error variance, ΩΠ = Σ ⊗ Ω0,

where the Kronecker product constrains the prior to be symmetric across equations. Under these restrictions,

equation (13) can be written as Ω̄−1
Π = Σ−1⊗{Ω−1

0 +
∑T

t=1 σ
−1
t XtX

′
t}, which does have a Kronecker structure

and therefore can be easily handled. However, the assumption Σt = σtΣ imposes a specific factor structure

on the volatilities which implies that all the conditional volatilities are driven by a single factor (σt) with a

loading of 1, and there is no idiosyncratic component. This setup implies that the order of magnitude of the

movements in volatility is proportional across variables.
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which has a Kronecker structure that permits manipulating the two terms in the Kronecker

product separately (for details, see Carriero, Clark and Marcellino 2015), which provides

huge computational gains and reduces the complexity to N3. This specification allowed

researchers, starting with Banbura, Giannone and Reichlin (2010), to estimate Bayesian

VARs with more than a hundred variables.

However, a specification such as (22) is restrictive, as highlighted by Rothenberg (1963),

Zellner (1973), Kadiyala and Karlsson (1993, 1997), and Sims and Zha (1998), and there

are many situations in which the form (22) can turn out to be particularly unappealing.

First, it prevents permitting any asymmetry in the prior across equations, because the

coeffi cients of each equation feature the same prior variance matrix Ω0 (up to a scale factor

given by the elements of Σ). For example, the traditional Minnesota prior in the original

Litterman (1986) implementation cannot be cast in such a convenient form, because it

imposes extra shrinkage on lags of variables that are not the lagged dependent variable in

each equation. As another example, consider the case of a bivariate VAR in the variables

y1 and y2 and suppose that the researcher has a strong prior belief that y2 does not Granger

cause y1, while he/she has not strong beliefs that y2 itself follows a univariate stationary

process. This system of beliefs would require shrinking strongly towards zero the coeffi cients

attached to y2 in the equation for y1. However, in order to keep the conjugate structure

(22), this would also necessarily require shrinking strongly towards their prior means also the

coeffi cients attached to y2 in the equation for y2, and this is unpleasant since the researcher

does not have such strong priors in this respect.

Second, the Kronecker structure Σ⊗Ω0 in (22) also implies the unappealing consequence

that prior beliefs must be correlated across the equations of the reduced form representa-

tion of the VAR, with a correlation structure proportional to that of the disturbances (as

described by the matrix Σ). Sims and Zha (1998) discuss this issue in depth, and propose

an approach which allows for a more reasonable structure of the coeffi cient prior variance,

and which also attains – like our proposal below – computational gains of order O(N2).

Their approach is based on eliciting a prior featuring independence among the structural

equations of the system, but does not achieve computational gains for an asymmetric prior

on the reduced form equations’coeffi cients.8

8 In particular, the approach of Sims and Zha (1998) achieves conceptual and computational gains by (i)

working on the structural representation of the VAR, in which the matrix of the errors is diagonal (an identity

matrix in their normalization scheme), and (ii) allowing independence across the coeffi cients belonging to

different structural equations, which amounts to the prior variance of the coeffi cients being block-diagonal,

which is desirable as it breaks the unreasonable symmetry across equations implied by the conjugate N-W

prior. These two ingredients ensure that the posterior variance matrix has a block-diagonal structure, and
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As we shall see, our estimation method solves the problems outlined above, making the

independent N-W prior applicable in general, regardless of the size of the cross-section.

3 An estimation method for large VARs

We propose a very simple estimation method that solves the problems we discussed above

by blocking the conditional posterior distribution in (9) in N different blocks.9 Recall

that in the step of the Gibbs sampler that involves drawing Π, all of the remaining model

coeffi cients are given, and the matrix Σt is known. Defining Σ0.5
t as the lower-triangular

Cholesky factor of Σt we have:10
v1,t

v2,t

...

vN,t

 =


σ∗1,1,t 0 ... 0

σ∗2,1,t σ∗2,2,t
...

...
. . . 0

σ∗N,1,t ... σ∗N,N−1,t σ∗N,N,t




ε1,t

ε2,t
...

εN,t

 , (24)

where σ∗j,i,t denotes the generic (j, i)-th element of Σ0.5
t . We will also denote by π

(j) the

vector of coeffi cients of equation j contained in column j of the matrix Π, for the intercept

and coeffi cients on lagged yt, and use π
(j)
i,l to refer to the coeffi cient on lag l of variable i in

therefore achieves computational gains of order N2. However, such a strategy still implies that the beliefs

about the reduced form coeffi cients are correlated across equations in a way that depends on the covariance

of the reduced form errors of the model, and gains are not attainable if one wants to impose an asymmetric

prior on these reduced form coeffi cients, as explained in section 5.2 of their paper.
9Note that our triangularization applies to the draw of Π and as a result differs from the equation-by-

equation approach used by Cogley and Sargent (2005) and Primiceri (2005) to draw the elements in the

A matrix. In the case of the A matrix, the equation-by-equation approach obtains immediately from the

posterior implied by the likelihood and prior. In the case of Π, the equation-by-equation approach requires

the triangularization of the posterior associated with subtracting the appropriate linear combinations of

residuals from both sides of the VAR’s equations.
10That is, Σ0.5

t Σ0.5′
t = Σt. Of course, if a researcher is using the diagonalization in (3) then this matrix is

readily available via Σ0.5
t = A−1Λ0.5

t . However, it is important to stress that the triangularization illustrated

here works for any error variance matrix Σt, not only those modeled as in (3).
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equation j. The VAR can be written as:

y1,t = π
(1)
0 +

N∑
i=1

p∑
l=1

π
(1)
i,l yi,t−l + σ∗1,1,tε1,t

y2,t = π
(2)
0 +

N∑
i=1

p∑
l=1

π
(2)
i,l yi,t−l + σ∗2,1,tε1,t + σ∗2,2,tε2,t

...

yN,t = π
(N)
0 +

N∑
i=1

p∑
l=1

π
(N)
i,l yi,t−l + σ∗N,1,tε1,t + · · ·+ σ∗N,N−1,tεN−1,t + σ∗N,N,tεN,t,

with the generic equation for variable j:

yj,t − (σ∗j,1,tε1,t + · · ·+ σ∗j,j−1,tεj−1,t) = π
(j)
0 +

N∑
i=1

p∑
l=1

π
(j)
i,l yi,t−l + σ∗j,j,tεj,t. (25)

Consider estimating these equations in order from j = 1 to j = N . When estimating

the generic equation j the term on the left hand side in (25) is known, since it is given by

the difference between the dependent variable of that equation and the estimated residuals

of all the previous j − 1 equations. Therefore, we can define:

y∗j,t = yj,t − (σ∗j,1,tε1,t + · · ·+ σ∗j,j−1,tεj−1,t), (26)

and equation (25) becomes a standard generalized linear regression model for the variables

in equation (26), with independent Gaussian disturbances with mean 0 and variance σ∗j,j,t.

The distribution (9) can be factorized as:

p(Π|ΣT , y) = p(π(N)|π(N−1), π(N−2), . . . , π(1),ΣT , y)

×p(π(N−1)|π(N−2), . . . , π(1),ΣT , y)

...

×p(π(1)|ΣT , y), (27)

with generic element:

p(π(j)|π(j−1), π(j−2), . . . , π(1),ΣT , y) = p(Π{j}|Π{1:j−1},ΣT , y)

∝ p(y|Π{j},Π{1:j−1},ΣT )p(Π{j}|Π{1:j−1}),

where Π{j} = π(j) denotes the j-th column of the matrix Π and Π{1:j−1} all of the previous

1, ..., j − 1 columns. The term p(y|Π{j},Π{1:j−1}, A,ΛT ) is the likelihood of equation j,

which coincides with the likelihood of the general linear regression model in (25). The term

11



p(Π{j}|Π{1:j−1}) is the prior on the coeffi cients of the j-th equation, conditionally on the

previous equations. The moments of p(Π{j}|Π{1:j−1}) can be found recursively from the

joint prior (6) using p(Π{j}|Π{1:j−1}) = p(Π{j},Π{1:j−1})/p(Π{1:j−1}).

It follows that using the factorization in (27) together with the model in (25) allows one

to draw the coeffi cients of the matrix Π in separate blocks Π{j} which can be obtained from:

Π{j}|Π{1:j−1},ΣT , y ∼ N(µ̄Π{j} ,ΩΠ{j}), (28)

with

µ̄Π{j} = ΩΠ{j}

{
Ω−1

Π{j}
µ

Π{j}
+

T∑
t=1

Xtσ
∗−1
j,j,ty

∗
j,t

}
; (29)

Ω
−1
Π{j} = Ω−1

Π{j}
+

T∑
t=1

Xtσ
∗−1
j,j,tX

′
t, (30)

where y∗j,t is defined in (26) and where Ω−1
Π{j}

and µ
Π{j}

denote the prior moments on the

j-th equation, given by the j-th column of µ
Π
and the j-th block on the diagonal of Ω−1

Π .

Note we have implicitly assumed here that Ω−1
Π is block diagonal, which means that we are

ruling out any prior correlation among the coeffi cients belonging to different equations (i.e.

p(Π{j}|Π{1:j−1}) = p(Π{j})). This assumption is frequent in the literature, but can be eas-

ily relaxed and we discuss how to do so below.11 Therefore, the joint posterior distribution of

Π can be simulated recursively in separate blocksΠ{1},Π{2}|Π{1},Π{3}|Π{1:2}, ...,Π{N}|Π{1:N−1}

using (28). Note that this amounts to simple Monte Carlo simulation which will produce

draws numerically identical to those that would be obtained using system-wide estimation,

meaning that any difference in the simulated posterior draws will be due to random variation

(which eventually vanishes) and numerical rounding errors.

The dimension of the matrix Ω
−1
Π{j} in (30) is (Np + 1), so that its manipulation only

involves operations of order O(N3). However, since to obtain a draw for the full matrix Π

one needs to draw separately all of its N columns, the total computational complexity of this

estimation algorithm is O(N4), considerably smaller than the complexity of O(N6) implied

by the standard estimation algorithm, with a gain of N2. For a model with 20 variables this

difference amounts to a 400-fold improvement in estimation time. Where is the computa-

tional gain coming from? In the traditional algorithm the sparsity implied by the possibility

11Some widely used priors within the independent N-W paradigm involve prior correlations among coeffi -

cients of the same equations, but not across equations. These include the sum of coeffi cients and unit root

prior proposed by Sims (1993) and Sims and Zha (1998). As we already mentioned, the conjugate prior for

a homoskedastic VAR in (22) does impose prior dependence across equations, but for this case an algorithm

of computational complexity O(N3) is already available.
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of triangularizing the system is not exploited, and all computations are carried out using

the whole vectorized system. In our algorithm, instead, the triangularization allows one to

estimate equations with Np+1 regressors, and the correlation among the different equations

typical of SUR models is implicitly accounted for by the triangularization scheme.

While prior independence across equations is common in priors elicited in the literature,

there might be cases in which a researcher wishes to specify priors which feature correlations

across coeffi cients belonging to different equations. Examples include rational expectations,

present-value models such as the expectation theory of the term structure of interest rates,

the uncovered interest rate parity, and the permanent income hypothesis (see, e.g., Campbell

and Shiller 1987). For this case, the general form of the posterior can be obtained easily

using a similar triangularization argument on the joint prior distribution, and equation (28)

generalizes to

Π{j}|Π{1:j−1},ΣT , y ∼ N(µ̄Π{j|1:j−1} ,ΩΠ{j|1:j−1}), (31)

with

µ̄Π{j|1:j−1} = ΩΠ{j|1:j−1}

{
Ω−1

Π{j|1:j−1}µΠ{j|1:j−1} +

T∑
t=1

Xtσ
∗−1
j,j,ty

∗
j,t

}
; (32)

Ω
−1
Π{j|1:j−1} = Ω−1

Π{j|1:j−1} +

T∑
t=1

Xtσ
∗−1
j,j,tX

′
t, (33)

where µ
Π{j|1:j−1} and ΩΠ{j|1:j−1} are the moments ofΠ{j}|Π{1:j−1} ∼ N(µ

Π{j|1:j−1} ,ΩΠ{j|1:j−1}),

i.e. the conditional priors (for equation j conditional on all of the previous equations) implied

by the joint prior specification. The conditional prior moments can be obtained recursively

using (17) and standard results on multivariate Gaussian distributions:

µ
Π{j|1:j−1} = µ

Π{j}
+ ΩΠ{[j][1:j−1]}Ω−1

Π{[1:j−1][1:j−1]}(Π
{1:j−1} − µ

Π{1:j−1}); (34)

ΩΠ{j|1:j−1} = ΩΠ{j} − ΩΠ{[j][1:j−1]}Ω−1
Π{[1:j−1][1:j−1]}Ω

′
Π{[j][1:j−1]} , (35)

where ΩΠ{j} denotes the block of ΩΠ corresponding to equation j, ΩΠ{[1:j−1][1:j−1]} all the

blocks on the main block-diagonal, north-west of ΩΠ{j} , and ΩΠ{[j][1:j−1]} all the blocks to

the left of ΩΠ{j} . The computational cost of deriving these conditional prior moments is

negligible as they need to be computed only once outside the main MCMC sampler. Clearly

in the case of a prior featuring independence across equations, ΩΠ{[j][1:j−1]} is a zero matrix

and these expressions simplify to µ
Π{j|1:j−1} = µ

Π{j}
and ΩΠ{j|1:j−1} = ΩΠ{j} , yielding (29)

and (30).

The non-conjugate priors common in the literature are entirely compatible with the al-

gorithm described above, including the Minnesota prior (possibly with cross-variable shrink-

age), the Sims and Zha (1998) priors (including the sum of coeffi cients and dummy initial
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observation priors), the steady-state prior of Villani (2009), the long-run prior of Giannone,

Lenza, and Primiceri (2016), and theory-based priors such as those of Ingram and Whiteman

(1994) and Del Negro and Schorfheide (2004).

Finally, note that in a homoskedastic model the same reasoning for drawing the coeffi -

cients Π applies, so that the relevant posterior distributions for the Gibbs sampler would

again be given by equation (28), with prior mean and variance given by (29) and (30) (or

(31), (32), and (33) in case of prior dependence), with the only difference being that the

subscript t would be omitted from the volatility terms σ∗j,i,t. For this reason, the equation-

by-equation step can be also used to estimate large VARs with asymmetric priors, such as,

e.g., the Minnesota prior.12

3.1 The role of variable ordering

The fact that expression (24) and the following triangular system are based on a Cholesky

decomposition of Σt might lead to the intuition that changing the ordering of the variables

in the triangularization (24) would change the resulting draw of Π. However, this is not

the case. The triangularization is used exclusively to obtain a draw from the conditional

posterior Π by means of the recursion in (27), and the ordering of the equations within such

recursion is completely inconsequential to the final result (i.e., the draw from Π|ΣT , yT ).

Furthermore, it is worth clarifying that the Cholesky decomposition in (24) is simply used

as an estimation device, not as a way to identify structural shocks. Once the MCMC sim-

ulations delivered posterior draws from the reduced form system, any identification scheme

can be applied to perform structural analysis, including different Cholesky orderings, sign

restrictions, and long run restrictions.

A more subtle point is related to the choice of the diagonalization (3) typically used in

macroeconomics to model Σt. As noted by Sims and Zha (1998) and Primiceri (2005), since

priors are elicited separately for the elements in the matrices A−1 and Λt, the implied prior

of Σt is not invariant to the equation ordering. Clearly, different priors on Σt will lead to

different posteriors, which means that different variable orderings would lead to different

results. This problem – which we label the “prior ordering problem”– is not a feature of

our algorithm, but rather it is inherent to all models using the diagonalization (3).

Models in which the prior is elicited directly on the matrix Σt do not suffer from the prior

12For the homoskedastic case Waggoner and Zha (2003) proposed an effi cient Gibbs sampler also based on

an equation-by-equation approach, and Koop, Korobilis, and Pettenuzzo (2016) proposed to use the method

of compression to achieve computational gains. However these approaches are grounded on the Sims and

Zha (1998) prior specification, and as such they cannot handle the case of asymmetric priors for the reduced

form parameters.
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ordering problem. The most prominent (and straightforward) example is the homoskedastic

VAR with the non-conjugate prior given by (17) and (18), but of course this model features

a constant error variance. Models featuring both a time-varying variance and a prior invari-

ant to the ordering include Shin and Zhong (2016) (which uses the multivariate stochastic

volatility specification of Philipov and Glickman 2006), and Bognanni (2018) (whose model

has a reduced-form representation shared by all structural models in the class).

As mentioned above, the contribution of this paper is the triangularization of the draw

from Π|ΣT , yT , and this is invariant to the ordering of the equations. However, since in

our empirical application we follow the macroeconomics literature in modeling Σt via the

diagonalization in (3), our empirical results are potentially affected by the prior ordering

problem. The online Appendix (Section C) further discusses the prior ordering problem and

shows that in our application it has a very mild effect on both the reduced form coeffi cients

and the implied predictive densities.

4 A numerical comparison of the estimation methods

We now compare the proposed triangular algorithm with the traditional system-wide algo-

rithm for estimation of the VAR-SV in (1)-(2). As detailed in the online Appendix (Section

A), in this comparison and subsequent applications we use standard priors (independent

Normal-Wishart for the VAR’s coeffi cients, of the Minnesota prior form) and MCMC algo-

rithms, but for the algorithm modifications associated with our triangularization.13

4.1 Computational complexity and speed of simulation

First, we compare the results obtained with the two algorithms as the dimension of the cross

section N increases. We use monthly data taken from the dataset of McCracken and Ng

(2016) (MN dataset), for the period January 1960 to December 2014, transformed as in their

paper. Table 1 lists the 20 most widely followed, aggregate time series variables included in

the medium-sized model used for many of the results reported below. The online Appendix

(Section B) provides the full list of data series. We start by simply comparing computational

times obtained using the two alternative algorithms, focusing on a medium-sized system of

20 variables and 13 lags. Of course, the two algorithms produce the same results. Impor-

tantly, though, the estimation of the model using the traditional system-wide algorithm was

about 356 times slower. Our algorithm represents a substantial improvement in the ease of

13This means that we do impose cross-variable shrinkage, so the prior is asymmetric and could not be cast

in the form (22).
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estimating and handling these models, which is relevant especially in consideration of the

fact that models of this size have been markedly supported by the empirical evidence.

Figure 1 illustrates the computational gains arising from the use of the triangular algo-

rithm. The top panel shows the computational time (on a 3.5 GHz Intel Core i7) needed to

perform 10 draws as a function of the size of the cross section using the triangular algorithm

and the system-wide algorithm.14 The bottom panel compares the gain in theoretical com-

putational complexity (dashed line – which is equal to N2) with the actual computational

time. Since the computational gains become so large that they create scaling problems,

results in this figure are displayed using a logarithmic vertical axis. As is clear, the com-

putational gains from the triangular algorithm grow quadratically, and after N = 25 they

become even larger than the theoretical gains, which we attribute to the fact that for such

large systems the size of the operations is so large that it saturates the CPU computing

power. Indeed, we do not extend this comparison to N = 125, which is the size used in

the empirical application we present below in Section 5, because for a model of this size

the system-wide algorithm would be extremely computationally demanding: a scalar num-

ber stored in double-precision floating-point format requires 8 bytes, and for a system with

N = 125 the size of the covariance matrix of the coeffi cients is of dimension 203250, which

would require about 330 GB of RAM (2032502 × 8/109).

4.2 Convergence and mixing

The traditional step-wise and our proposed triangular algorithm produce draws from the

same posterior distribution. It could be argued that – as long as we have an increasing

computing power – using the triangular algorithm only achieves gains in terms of speed.

However, it is important to stress that – regardless of the power of the computers used to

perform the simulation – the triangular algorithm will always produce many more draws

than the traditional system-wide algorithm in the same unit of time. This has important

consequences in terms of producing draws with good mixing and convergence properties.

To illustrate this point, we consider the quality of the draws that we can obtain from

the two algorithms within a given amount of time. Specifically, for the 20-variable model

with stochastic volatility described in the previous subsection, we first run the system-wide

algorithm to obtain 5000 draws and record the total time needed to produce these draws.

Then, we run our triangular algorithm for the same amount of time, and out of all the draws

produced in this time interval, which are 356 times more – since our algorithm is about

356 times faster – we perform skip-sampling by saving only each 356-th draw.

14The size of the cross section is extended up to N = 40, using additional variables from the MN dataset.
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Obviously, this exercise results in the same number of final draws (5000), but those

obtained with our algorithm have dramatically improved convergence and mixing properties.

Figure 2 illustrates the recursive means for some selected coeffi cients and shows that the

triangular algorithm with split-sampling reaches convergence much faster than the system-

wide algorithm. This pattern is particularly marked for the volatility component of the

model. In addition, ineffi ciency factors (see Figure A1 in the online Appendix) of 5000 draws

obtained by running the two alternative algorithms for the same amount of time are much

lower for draws produced by the triangular algorithm than for the system-wide algorithm.

The triangular algorithm can produce in the same amount of time draws many times closer to

i.i.d. sampling, which therefore feature better convergence properties. Instead, the system-

wide algorithm is slower to converge (in a unit of time), especially so for the innovations to

volatility and the volatility states.

Since these gains increase nonlinearly with the system size, we conclude that, for fore-

casting or structural analysis with medium and large Bayesian VARs, our estimation method

based on the triangular algorithm offers computational gains large enough that many re-

searchers should find it preferable. This should be especially true in forecasting analyses

that involve model estimation at many different points in time.

5 A large structural VAR with drifting volatilities

In this section we summarize three key results of an application of structural analysis using

our estimation method based on the triangular algorithm to estimate a very large VAR

with stochastic volatility and asymmetric priors. The online Appendix provides the detailed

results. In this application, we consider a VAR(13) with 125 variables, including all of the

variables considered by McCracken and Ng (2016) with the exception of housing permits and

their disaggregate components, which we exclude for their collinearity. The total number

of objects to be estimated is extremely large: 203250 mean coeffi cients, 7750 covariance

coeffi cients, 125 latent states (each of length T ), and 7875 covariances of the states.

First, our algorithm makes feasible estimation of such a very large model, and works

well. Despite the huge dimension of the system, our estimation algorithm can produce 5000

draws (after burning 500) in just above 7 hours on a 3.5 GHz Intel Core i7. Ineffi ciency

factors and potential scale reduction factors for the various parameters and latent states

indicate that, once a skip-sampling of 5 is performed – leaving 1000 clean draws – the

convergence and mixing properties are good (see Figure C1 in the online Appendix (Section

C.1)). Note that, with a model this large, skip-sampling greatly reduces storage costs.
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Second, consistent with previous research, our estimates show considerable time variation

in volatility (see Figures C2, C3, C4, and C5 in the online Appendix (Section C.1)). There

is substantial homogeneity in the estimated volatility patterns for variables belonging to the

same group, such as industrial production (IP) and producer price indexes (PPI) or interest

rates at different maturities, but there is some heterogeneity across groups of variables. The

Great Moderation starting around 1985 is much more evident when the data are aggregated

to the quarterly frequency (Appendix Figures C4 and C5). The effects of the recent crisis

are more heterogeneous. In particular, while volatility of real variables, such as IP and

employment, and financial variables, such as stock price indexes, interest rates and spreads,

goes back to lower levels after the peak associated with the crisis, there remains a much

higher level of volatility than before the crisis in price indicators, in particular in the PPI

and its components and in several CPI components, as well as in monetary aggregates

and housing starts. Overall, the first principal component of all the estimated volatilities

explains about 45% of overall variance, and the first three 73%, confirming that commonality

is indeed present but idiosyncratic movements also matter (as in the GFSV specification

of Carriero, Clark, and Marcellino 2016 and the factor volatility specification of Carriero,

Clark, and Marcellino 2017).

Third, estimated impulse responses for a unitary shock to the federal funds rate (for

identification, the federal funds rate is ordered after slow-moving and before fast-moving

variables) display patterns in line with economic theory (see Figures C6 and C7 in the

Appendix (Section C.1)). The estimates show a significant deterioration in real variables

such as IP, unemployment, employment, and housing starts, only very limited evidence of

a price puzzle, with most price responses not statistically significant, a significant deterio-

ration in stock prices, a less than proportional increase in the entire term structure, which

leads to a decrease in the term spreads, progressively diminishing over time, and a nega-

tive impact on the ISM indexes. Overall, the responses are in line with those reported in

Banbura, Giannone and Reichlin (2010), since the presence of heteroskedasticity does not

affect substantially the VAR coeffi cient estimates, but it matters for calculating the confi-

dence bands and understanding the evolution of the size of the shock (and therefore of the

actual responses that are proportional to the actual size of the shock) over time. Stochastic

volatility would also matter for variance decompositions, omitted in the interest of brevity.
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6 The role of model size and volatility for forecasting

To further illustrate the use of our proposed approach to large models, this section assesses

the effects of time variation in volatility and a large information set on the accuracy of out-

of-sample point and density forecasts from VARs.15 The out-of-sample exercise is performed

recursively, starting with the estimation sample 1960:3 to 1970:2 (ten years of monthly data)

and ending with the estimation sample 1960:3 to 2014:5. We compute forecasts up to 12

step-ahead; therefore the forecasting samples range from 1970:3-1971:2 to 2014:6-2015:5, for

a total of 531 sets of 12-step ahead forecasts.

We consider four models. The first model is a small homoskedastic VAR including the

growth rate of industrial production (∆ ln IP ), the inflation rate for the price index of con-

sumption expenditures (∆ lnPCEPI) and the effective Federal Funds Rate (FEDFUNDS).

The second model is also a homoskedastic VAR, but includes the 20 macroeconomic variables

listed in Table 1. As similar models have been shown to be very competitive in forecasting

in papers such as Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and Marcellino

(2015), Giannone, Lenza, and Primiceri (2015) and Koop (2013) we set this as our bench-

mark; namely, we will provide results relative to the performance of this model. The third

model is still based on a tri-variate specification, but it allows for time variation in volatil-

ities. Also, small models of this type have received support in the literature in terms of

their forecasting performance; see, e.g., Clark (2011), Clark and Ravazzolo (2015), Cogley,

Morozov, and Sargent (2005), and D’Agostino, Gambetti and Giannone (2013). Moreover,

models of this scale have been used in the structural analyses of Cogley and Sargent (2005)

and Primiceri (2005). The fourth model includes both time variation in the volatilities and a

larger, medium-scale (20 variable) information set, thereby using both the ingredients that

seem to be important to improve density and point forecasts. This model can be rather

easily estimated using the approach proposed in this paper.

A priori, we expect the inclusion of time variation in volatilities to improve density

forecasts via a better modeling of error variances, while the use of a larger dataset should

improve point forecasts via a better specification of the conditional means. However, this

is not the whole story, as there are also interaction effects: a better point forecast should

improve the density forecast as well, by centering the predictive density around a more

15As noted by Diebold (2015), pseudo-out-of-sample forecasting exercises are not superior to several other

model comparison techniques, notably F-tests and posterior odds, and are actually less powerful. However,

performing posterior odds analysis presents problems in the case at hand because for the independent N-W

prior used in this paper the marginal likelihood is not available in closed form and its computation would

require an extremely demanding Monte Carlo integration.
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reliable mean, and time-varying volatilities should improve the point forecasts – especially

at longer horizons – because the heteroskedastic model will provide more effi cient estimates

(through a GLS argument) and therefore a better characterization of the predictive densities,

with the predictive means gradually deviating from their homoskedastic counterparts as the

predictive densities cumulate nonlinearly with the forecast horizon.

This is precisely the pattern we find in the data. The left panels of Figure 3 display

the Root Mean Squared Forecast Error (RMSFE) relative (ratio) to the benchmark (the 20-

variable homoskedastic VAR), so that a value below 1 denotes a model outperforming the

benchmark. The large homoskedastic model outperforms the small homoskedastic model

for all variables at all horizons, suggesting that the inclusion of more data does improve

the specification of the conditional means and therefore the point forecasts. The inclusion

of time variation in volatilities consistently improves the performance of the small model,

and for FEDFUNDS it also outperforms the benchmark at long horizons. However, the

small heteroskedastic model is still largely dominated by the benchmark at short forecast

horizons. The model with both time-varying volatilities and a large cross section instead

provides systematically better point forecasts than the benchmark (and than the other

models), with the only exception of inflation for the 1, 2, and 3 step-ahead horizons.

The right-hand panels of Figure 3 present results for density forecasts, based on the

average log scores. The figure displays the average log scores relative (difference) to the

benchmark (the 20-variable homoskedastic VAR), so that a value above 0 denotes a model

outperforming the benchmark. Both homoskedastic specifications perform quite poorly in

density forecasting, while the heteroskedastic ones can achieve very high gains. Moreover,

the large heteroskedastic system consistently outperforms the small heteroskedastic system.

In combination with the findings for point forecasts, this result suggests that while both

the heteroskedastic models provide a better assessment of the overall uncertainty around

the forecasts, the model based on the large cross section centers such uncertainty around a

more reliable mean, thereby obtaining further gains in predictive accuracy.

For the larger specifications (the VAR with 20 variables) it is of course possible to com-

pare forecasts for all the variables included in the cross section. Results of this comparison

are displayed in Figure 4 (for point forecasts) and Figure 5 (for density forecasts). In

these graphs each subplot corresponds to a different variable.

In all of the subplots in Figure 4 the x axes measure the RMSFE obtained by the

large VAR when we allow for stochastic volatility, while the y axes measure the same loss

function (RMSFE) obtained by the homoskedastic specification. Each point corresponds to

a different forecast horizon, and when a point is above the 45 degree line this shows that
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the RMSFE of the heteroskedastic specification is smaller, indicating that the inclusion of

variation in the volatility improved point forecasting performance. As is clear in the graph,

in several instances the models produce point forecasts of similar accuracy. However, as

the forecast horizon increases (which can be indirectly inferred from the graph as in general

higher RMSFE correspond to longer forecast horizons) the specification with variation in

the volatilities tends to outperform the homoskedastic version of the model. The mechanism

at play is as follows: the heteroskedastic model provides more effi cient estimates and there-

fore a better characterization of the predictive densities, while the homoskedastic model is

misspecified and therefore provides an inferior characterization of the predictive densities.

At short forecast horizons this does not have much effect on point forecasts, but as the

forecast horizon increases, the predictive densities cumulate nonlinearly and therefore the

misspecification of the homoskedastic model increasingly reduces the relative accuracy.

We now turn to density forecasts, which are described in Figure 5. In the subplots

in Figure 5 the x axes measure the (log) density score obtained by the large VAR when

we allow for stochastic volatility, while the y axes measure the same gain function (score)

obtained by the homoskedastic specification. Each point corresponds to a different forecast

horizon, and when a point is below the 45 degree line this shows that the score of the het-

eroskedastic specification is larger, indicating that the inclusion of variation in the volatility

improved density forecasting performance. In Figure 5 the improvement coming from the

introduction of time variation in the volatilities is striking, and it is common to nearly all

variables. Clearly, stochastic volatility improves the overall assessment of uncertainty with

respect to the homoskedastic model, and it does so both directly, by simply using a bet-

ter variance around the point estimates, and indirectly, by centering the densities towards

improved point forecasts (as documented in Figure 4).

7 Conclusions

This paper introduced a new approach to estimation of large VARs with non-conjugate priors

and drifting volatilities. The method is based on a straightforward triangularization of the

system, and it is very simple to implement. Indeed, if a researcher already has algorithms to

produce draws from a VAR with an independent N-W prior and stochastic volatility, only

the step in which the conditional mean parameters are drawn needs to be modified, which

can be easily done with a few lines of code.

The algorithm ensures computational gains of order N2 with respect to the traditional

algorithm used to estimate VARs with time-varying volatilities, and because of this it is
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possible to achieve much better mixing and convergence properties compared to existing

algorithms and substantial computational gains. This makes estimation of this type of model

feasible regardless of the dimension of the system. Given its simplicity and the advantages

in terms of speed, mixing, and convergence, we argue that the proposed algorithm should

be preferred in empirical applications, especially those involving large datasets.

Moreover, our approach makes viable the estimation of models with independent N-W

priors (as well as Normal-diffuse priors) of any model size. Since the independent N-W prior

is much more flexible than the conjugate N-W prior, we argue that it should be preferred in

most situations, including some in which the model is homoskedastic. The conjugate N-W

prior imposes restrictions on the prior covariance matrix of the coeffi cients which can be in

many instances undesirable, since it implies that the prior precision has to be the same (up

to a scaling factor) in all equations, and that coeffi cients belonging to different equations

have to be correlated, with a correlation structure proportional to that of the error variance.

We have illustrated the method by studying the effects of a monetary policy shock in a

large VAR with stochastic volatilities. Finally, we have shown how, jointly, the inclusion of

time-varying volatilities and the use of a large dataset improve point and density forecasts

for macroeconomic and financial variables, with gains that are larger than what would be

obtained by using these two ingredients separately.

In closing we want to highlight two caveats. First, while the independent N-W prior

avoids putting on the data the straightjacket that the conjugate N-W does, the computation

of the marginal likelihood is not as simple, while for the conjugate N-W prior it is available in

closed form (for homoskedastic models). Second, while the model with stochastic volatility

does produce dramatically superior density forecasts than its homoskedastic counterpart,

some work is still needed to improve the density forecasts in the exact periods a large swing

in volatilities takes place. Both these issues require further research.
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Table 1: Variables in the 20-variable forecasting models

Variable Mnemonic

Real personal income RPI (∆ ln)

Real PCE DPCERA3M086SBEA (∆ ln)

Real manufacturing and trade sales CMRMTSPLx (∆ ln)

Industrial production INDPRO (∆ ln)

Capacity utilization in manufacturing CUMFNS

Civilian unemployment rate UNRATE

Total nonfarm employment PAYEMS (∆ ln)

Hours worked: goods-producing CES0600000007 (ln)

Average hourly earnings: goods-producing CES0600000008 (∆ ln)

PPI for finished goods PPIFGS (∆ ln)

PPI for commodities PPICMM (∆ ln)

PCE price index PCEPI (∆ ln)

Federal funds rate FEDFUNDS

Total housing starts HOUST (ln)

S&P 500 price index S&P 500 (∆ ln)

U.S.-U.K. exchange rate EXUSUKx (∆ ln)

1 yr. Treasury - FEDFUNDS spread T1YFFM

10 yr. Treasury - FEDFUNDS spread T10YFFM

BAA - FEDFUNDS spread BAAFFM

ISM: new orders index NAPMNOI

Note: For those variables transformed for use in the forecasting models, the table indicates

the transformation in parentheses following the variable description.
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Figure 1: Actual computational time and theoretical computational complexity of the al-

ternative algorithms. Note that due to the exponential nature of the gains the y-axes are

in logarithmic scale. Computational times are computed as the average time (over 10 inde-

pendent chains) required to draw 10 draws on a 3.5 GHz Intel Core i7.
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Figure 2: Recursive means of selected coeffi cients. Comparison between the system wide

and triangular algorithm. The chains are initialised at the same value (set equal to the

priors).

28



2 4 6 8 10 12
step­ahead

­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

Av g. log­score (dev iation from benchmark)
INDPRO

2 4 6 8 10 12
step­ahead

­0.15

­0.1

­0.05

0

0.05

0.1

0.15

0.2

Av g. log­score (dev iation from benchmark)
PCEPI

2 4 6 8 10 12
step­ahead

0

0.5

1

1.5

Av g. log­score (dev iation from benchmark)
FEDFUNDS

2 4 6 8 10 12
step­ahead

0.98

1

1.02

1.04

1.06

1.08

1.1

RMSE (ratio to benchmark)
INDPRO

2 4 6 8 10 12
step­ahead

0.96

0.98

1

1.02

1.04

RMSE (ratio to benchmark)
PCEPI

2 4 6 8 10 12
step­ahead

0.95

1

1.05

RMSE (ratio to benchmark)
FEDFUNDS

Figure 3: Forecast comparisons. Panels on the left hand side contain results for the point

forecasts (relative RMSE of different models vs benchmark). The panels on the right hand

side contain results for the density forecasts (Log-score gains of different models vs bench-

mark). In all the panels crosses represent the homoskedastic VAR with 20 variables (the

benchmark model), the squares represent the homoskedastic VAR with 3 variables, the cir-

cles represent the heteroskedastic VAR with 3 variables, and the diamonds represent the

heteroskedastic VAR with 20 variables.
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Figure 4: Comparison of point forecast accuracy. Each panel describes a different variable.

The x axis reports the RMSFE obtained using the BVAR with stochastic volatility (het-

eroskedastic), the y axis reports the RMSFE obtained using the homoskedastic BVAR. Each

point corresponds to a different forecast horizon from 1 to 12 step-ahead (in most cases, a

higher RMSFE corresponds to a longer forecast horizon).
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Figure 5: Comparison of density forecast accuracy. Each panel describes a different variable.

The x axis reports the (log) density score obtained using the BVAR with stochastic volatility

(heteroskedastic), the y axis reports the (log) density score obtained using the homoskedastic

BVAR. Each point corresponds to a different forecast horizon from 1 to 12 step-ahead.
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