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Distributed Constraint-Coupled Optimization via Primal Decomposition
over Random Time-Varying GraphsI

Andrea Camisa, Francesco Farina, Ivano Notarnicola, Giuseppe Notarstefano

Department of Electrical, Electronic and Information Engineering,
Alma Mater Studiorum – Università di Bologna, Bologna, Italy.

Abstract

The paper addresses large-scale, convex optimization problems that need to be solved in a distributed way by agents
communicating according to a random time-varying graph. Specifically, the goal of the network is to minimize the sum of
local costs, while satisfying local and coupling constraints. Agents communicate according to a time-varying model in
which edges of an underlying connected graph are active at each iteration with certain non-uniform probabilities. By
relying on a primal decomposition scheme applied to an equivalent problem reformulation, we propose a novel distributed
algorithm in which agents negotiate a local allocation of the total resource only with neighbors with active communication
links. The algorithm is studied as a subgradient method with block-wise updates, in which blocks correspond to the
graph edges that are active at each iteration. Thanks to this analysis approach, we show almost sure convergence to
the optimal cost of the original problem and almost sure asymptotic primal recovery without resorting to averaging
mechanisms typically employed in dual decomposition schemes. Explicit sublinear convergence rates are provided under
the assumption of diminishing and constant step-sizes. Finally, an extensive numerical study on a plug-in electric vehicle
charging problem corroborates the theoretical results.

Keywords: Distributed Optimization, Constraint-coupled Optimization, Time-varying Networks, Large-scale Systems, Block Subgradient

1. Introduction

Large-scale systems consisting of several independent
control systems can be found in numerous contexts ranging
from smart grids to autonomous vehicles and cooperative
robotics. In order to perform cooperative control tasks,
such systems (or agents) must employ their computation
capabilities and collaborate with each other by means of
neighboring communication, without resorting to a central-
ized computing unit. These cooperative tasks can be often
formulated as distributed optimization problems consisting
of a large number of decision variables, each one associ-
ated to an agent in the network and satisfying private
constraints. Furthermore, a challenging feature of such
optimization problems is that all the decision variables are
intertwined by means of a global coupling constraint, that

IA preliminary version of this work has appeared in the Proceed-
ings of the 58th Conference on Decision and Control [1]. The present
manuscript provides all the theoretical proofs under a more general
communication model, with nonuniform edge probabilities. More-
over, convergence rates are established and a discussion about the
algorithm tuning is provided.
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can be used to model, e.g., formation maintenance require-
ments or a total budget that must not be exceeded. This
set-up is referred to as constraint coupled optimization.

The majority of the literature on distributed optimization
has focused on a framework in which, differently from the
constraint-coupled set-up, cost functions and constraints
depend on the same, common decision variable, and agents
aim for consensual optimal solutions. An exemplary, non-
exhaustive list of works for this optimization set-up is [2–8].
Only recently has the constraint-coupled set-up gathered
more attention from our community, due to its applicability
in control. In [9] consensus-based dual decomposition is
combined with a primal recovery mechanism, whereas [10]
considers a distributed dual algorithm based on proximal
minimization. In [11] a distributed algorithm based on suc-
cessive duality steps is proposed. Differently from [9, 10],
which employ running averages for primal recovery, [11] can
guarantee feasibility of primal iterates without averaging
schemes. In [12] a consensus-based primal-dual pertur-
bation algorithm is proposed to solve smooth constraint-
coupled optimization problems. A distributed saddle-point
algorithm with Laplacian averaging is proposed in [13]
for a class of min-max problems. In [14], a distributed
algorithm based on cutting planes is formulated. Recently,
in [15] a primal-dual algorithm with constant step-size is
proposed under smoothness assumption of both costs and
constraints. The works in [16–18] consider a similar set-up,
but the proposed algorithms strongly rely on the sparsity
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pattern of the coupling constraints. Linear constraint-
coupled problem set-ups have been also tackled by means
of distributed algorithms based on the Alternating Direc-
tion Method of Multipliers (ADMM). In [19] the so-called
consensus-ADMM is applied to the dual problem formu-
lation, which is then tailored for an application in Model
Predictive Control by [20]. In [21] an ADMM-based algo-
rithm is proposed and analyzed using an operator theory
approach while in [22] an augmented Lagrangian approach
equipped with a tracking mechanism is proposed. However,
the last two approaches require agents to perform multiple
communication rounds to converge in a neighborhood of
an optimal solution. In [23] ADMM is combined with a
tracking mechanism to design a distributed algorithm with
exact convergence to an optimal solution.

The analysis of our algorithm for random time-varying
graphs builds on randomized block subgradient methods,
therefore let us recall some related works from the cen-
tralized literature. A survey on block coordinate methods
is given in [24], while a unified framework for nonsmooth
problems can be found [25]. In [26], a randomized block
coordinate descent method is formulated, whereas [27] in-
vestigates a stochastic block mirror descent approach with
random block updates. In [28], a distributed algorithm for
a linearly constrained problem is analyzed with coordinate
descent methods. This technique is also used in [29], which
considers a constraint-coupled problem. However, the ap-
proach used in [28, 29] only allow for a single pair of agents
updating at a time and requires smooth cost functions.

In this paper, we propose a distributed algorithm to
solve nonsmooth constraint-coupled optimization problems
over random, time-varying communication networks. We
consider a communication model in which edges of an
underlying, connected graph have a certain probability of
being active at each time step. The proposed algorithm
consists in a two-step procedure in which agents first solve
a local optimization problem and then update a vector
representing the local allocation of total resource.

The algorithmic structure is inspired to the algorithm for
fixed graphs in [11]. However, the line of analysis proposed
in [11] hampers extension to time-varying graphs. There-
fore, in this paper, we develop a new theoretical analysis
to deal with the significant challenges arising in the time-
varying context. In particular, this method is interpreted
as a primal decomposition scheme applied to an equivalent,
relaxed version of the target constraint-coupled problem.
For this scheme, we prove that almost surely the objective
value converges to the optimal cost, and any limit point
of the local solution estimates is an optimal (feasible) so-
lution. Moreover, we prove a sublinear convergence rate
of the objective value under the assumption of constant
or diminishing step-size. As for constant step-size, conver-
gence to a neighborhood of the solution is attained with a
rate O(1/

√
t), while for a diminishing step-size of the type

1/t, exact convergence is attained with rate O(1/ log(t)).
To show these results, we employ a graph-induced change
of variables to derive an equivalent, unconstrained prob-

lem formulation. This allows us to recast the distributed
algorithm as a randomized block subgradient method in
which blocks correspond to edges in the graph. As a side
result, we also provide an almost sure convergence result
for a block subgradient method in which (multiple) blocks
are drawn according to non-uniform probabilities. This
generalized block subgradient method results into updates
in which different combinations of multiple blocks can be
chosen. To the best of our knowledge, these nontrivial
challenges have not been addressed so far in the block
subgradient literature. A thorough comparison of the con-
tributions provided in this paper with existing work will
be performed in light of the analysis provided in Section 4.

The paper is organized as follows. In Section 2, we
introduce the distributed optimization set-up and we de-
scribe the proposed distributed algorithm. In Section 3,
we provide intermediate results on a (centralized) block
subgradient method, which are then used in Section 4 for
the analysis of the distributed algorithm. Convergence
rates and a discussion on algorithm tuning are enclosed
in Section 5. Finally, in Section 6, an extensive numerical
study on a control application is presented.

Notation. The symbols 0 and 1 denote the vector of zeros
and ones respectively. The n×n identity matrix is denoted
by In. Where the size of the matrix is clear from the
context, we drop the subscript n. Given a vector x ∈ Rn
and a positive definite matrix W ∈ Rn×n, we denote by
‖x‖W =

√
x>Wx the norm of x weighted by W , which

we also term W -norm. Given two vectors x,y ∈ Rn we
write x ≤ y (and consistently for other sides) to denote
component-wise inequalities. The symbol ⊗ denotes the
Kronecker product. Given a convex function f(x) : Rn →
R and a vector x̄ ∈ Rn, we denote by ∇̃f(x̄) a subgradient
of f at x̄. Given a vector z arranged in m blocks, its `-th
block (or portion) is denoted by z` or, interchangeably, by
[z]`, and the complete vector is written z = (z1, . . . , zm).

2. Optimization Set-up and Distributed Algorithm

In this section, we formalize the investigated problem and
network set-up. Then, we present the proposed distributed
algorithm together with its convergence result. Finally, we
recall some preliminaries for the subsequent analysis.

2.1. Distributed Constraint-Coupled Optimization

We deal with a network of N agents that must solve
a constraint-coupled optimization problem, which can be
stated as follows

min
x1,...,xN

N∑
i=1

fi(xi)

subj. to

N∑
i=1

gi(xi) ≤ 0,

xi ∈ Xi, i ∈ {1, . . . , N},

(1)
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where x1, . . . ,xN are the decision variables with each xi ∈
Rni , ni ∈ N. Moreover, for all i ∈ {1, . . . , N}, fi : Rni →
R depends only on xi, Xi ⊂ Rni is the constraint set
associated to xi and gi : Rni → RS is the i-th contribution
to the (vector-valued) coupling constraint

∑N
i=1 gi(xi) ≤ 0.

In the considered distributed computation framework,
the problem data are assumed to be scattered throughout
the network. Agents have only a partial knowledge of
the entire problem and must cooperate with each other in
order to find a solution. Each agent i is assumed to know
only its local constraint Xi, its local cost fi and its own
contribution gi to the coupling constraints, and is only
interested in computing its own portion x?i of an optimal
solution (x?1, . . . ,x

?
N ) of problem (1).

The following two assumptions guarantee that (i) the
optimal cost of problem (1) is finite and at least one optimal
solution exists, (ii) duality arguments are applicable.

Assumption 2.1. For all i ∈ {1, . . . , N}, the set Xi is
non-empty, convex and compact, the function fi is convex
and each component of gi is a convex function. �

Assumption 2.2 (Slater’s constraint qualification). There

exist x̄1 ∈ X1, . . . , x̄N ∈ XN such that
∑N
i=1 gi(x̄i) < 0.�

2.2. Random Time-Varying Communication Model

Agents are assumed to communicate according to a time-
varying communication graph, obtained as subset of an un-
derlying graph Gu = ({1, . . . , N}, Eu), assumed to be undi-
rected and connected, where Eu ⊆ {1, . . . , N}×{1, . . . , N}
is the set of edges. An edge (i, j) belongs to Eu if and
only if agents i and j can transmit information to each
other, in which case also (j, i) ∈ Eu. In many applications,
the communication links are not always active (due, e.g.,
to temporary unavailability). This is taken into account
by considering that each undirected edge (i, j) ∈ Eu has
a probability σij ∈ (0, 1] of being active. As a result, the
actual communication network is a random, time-varying
graph Gt = ({1, . . . , N}, Et), where t ∈ N represents a uni-
versal time index and Et ⊆ Eu is the set of active edges at
time t. The set of neighbors of agent i in Gt is denoted
by N t

i = {j ∈ {1, . . . , N} | (i, j) ∈ Et}. Consistently, the
set of neighbors of agent i in the underlying graph Gu is
denoted by Ni,u.

Let us define νtij as the Bernoulli random variable that
is equal to 1 if (i, j) ∈ Et and 0 otherwise, for all (i, j) ∈ Eu
with j > i and t ≥ 0. The following assumption is made.

Assumption 2.3. For all (i, j) ∈ Eu with j > i, the
random variables {νtij}t≥0 are independent and identically
distributed (i.i.d.). Moreover, for all t ≥ 0, the random
variables {νtij}(i,j)∈Eu, j>i are mutually independent. �

A pictorial representation of the time-varying communica-
tion model is provided in Figure 1.
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Figure 1: Example of random time-varying network with N = 4
agents. Active edges are denoted with red lines, while inactive edges
are depicted with dashed gray lines. The (connected) underlying
graph is the union of all such edges, and the activation probabilities
are specified in the table.

2.3. Distributed Algorithm Description

Let us now introduce the Distributed Primal Decompo-
sition for Time-Varying graphs (DPD-TV) algorithm to
compute an optimal solution (x?1, . . . ,x

?
N ) of problem (1).

Informally, the algorithm works as follows. Each agent
stores and updates a local solution estimate xti ∈ Rni and
the auxiliary variables ρti ∈ R,µti,yti ∈ RS . At the begin-

ning, the variable yti is initialized such that
∑N
i=1 y

0
i = 0

(e.g., y0
i = 0 for all i). At each iteration t, agents solve

a local optimization problem using the current value of
yti . The variables (xti, ρ

t
i) are set to the primal solution

of this problem, where xti forms an estimate of x?i and ρti
is a transient violation of the coupling constraints (more
details are given in Section 2.4). The variable µti is set to
the dual solution of the problem and, together with the
information gathered from neighbors, is used to update yti .

Formally, let αt ≥ 0 denote the step-size and let M > 0
be a tuning parameter (see Section 5.2 for a discussion).
The next table summarizes the DPD-TV algorithm from
the perspective of node i, where the notation “µi :” in (2)
means that µi is the Lagrange multiplier associated to
gi(xi) ≤ yti + ρi1.

Algorithm DPD-TV

Initialization: y0
i such that

∑N
i=1 y

0
i = 0

For t = 0, 1, 2, . . .

Compute ((xti, ρ
t
i), µ

t
i) as a primal-dual solution of

min
xi,ρi

fi(xi) +Mρi

subj. to µi : gi(xi) ≤ yti + ρi1

xi ∈ Xi, ρi ≥ 0

(2)

Gather µtj from j ∈ N t
i and update

yt+1
i = yti + αt

∑
j∈N t

i

(
µti − µtj

)
(3)

The algorithmic updates of DPD-TV are inspired to the
scheme proposed in [11], where different agent states are
considered in place of yi. This notational variation reflects
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the different analysis approach of DPD-TV based on primal
decomposition.

Some appealing features of the DPD-TV are worth high-
lighting. The algorithm naturally preserves privacy of all
the agents, in the sense they do not communicate any of
their private information (such as the local cost fi, the
local constraint Xi or the local solution estimate xti). In
addition, the algorithm is scalable, i.e., the amount of local
computation only depends on the number of neighbors and
not on the network size.

In order to state the main result of this paper, let us
make the following assumption on the step-size sequence.

Assumption 2.4. The step-size sequence {αt}t≥0, with
each αt ≥ 0, satisfies

∑∞
t=0 α

t=∞ and
∑∞
t=0(αt)2<∞.�

Next we provide the convergence properties of DPD-TV.
Despite its simple form, the analysis is quite involved and
requires several technical tools that will be provided in the
forthcoming sections.

Theorem 2.5. Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold.
Moreover, let µ? be an optimal Lagrange multiplier of prob-
lem (1) associated to the constraint

∑N
i=1 gi(xi) ≤ 0 and

assume M > ‖µ?‖1. Consider a sequence {xti, ρti}t≥0, i ∈
{1, . . . , N} generated by the DPD-TV algorithm with allo-

cation vectors y0
i initialized such that

∑N
i=1 y

0
i = 0. Then,

almost surely,

(i)
∑N
i=1

(
fi(x

t
i) +Mρti

)
→ f? as t→∞, where f? is the

optimal cost of (1);

(ii) every limit point of {(xt1, . . . xtN )}t≥0 is an optimal
(feasible) solution of (1). �

In principle, in order to satisfy the assumption M >
‖µ?‖1 in Theorem 2.5, knowledge is needed of the dual
optimal solution µ?. However, this is not necessary in
practice, as a lower bound of M can be efficiently computed
when a Slater point is known. In Section 5.2, we provide a
sufficient condition to select valid values of M without any
knowledge on µ?.

Note also that the algorithm does not employ any aver-
aging mechanism typically appearing in dual algorithms
when the cost functions are not strictly convex. However,
thanks to the primal decomposition approach, we are still
able to prove asymptotic feasibility (other than optimality)
of the sequence {(xt1, . . . xtN )}t≥0. As shown in Section 6.3,
the absence of running averages allows for faster practical
convergence, compared to existing methods.

Remark 2.6 (Computational load of DPD-TV). As many
of duality-based distributed algorithms, DPD-TV requires
the repeated solution of local optimization problems and
also to compute the Lagrange multiplier µti associated to
the inequality constraint. As a matter of fact, the com-
putation of µti has a minor impact on the computational
load. Indeed, if a solver based on interior-point methods is
used, it will provide µti as a byproduct of the solution pro-
cess. Alternatively, denoting (xti, ρ

t
i) the optimal solution

at time t, a Lagrange multiplier µti can be easily computed
as the solution of a linear system with positivity constraints
(cf. [30, Proposition 5.1.5]), i.e.,

µi,s(gi,s(x
t
i)− yti,s − ρti) = 0 ∀ s, with µi ≥ 0. �

2.4. Preliminaries on Relaxation and Primal Decomposi-
tion

In this subsection we recall two preliminary building
blocks for the algorithm analysis, namely the relaxation
and the primal decomposition approach for problem (1)
originally introduced in [11, 30–32]. In a primal decompo-
sition scheme, also called right-hand side allocation, the
coupling constraints

∑N
i=1 gi(xi) ≤ 0 are interpreted as a

limited resource to be shared among nodes. A two-level
structure is formulated, where independent subproblems,
with a fixed resource allocation, are “coordinated” by a
master problem determining the optimal resource alloca-
tion. We will apply such approach to an equivalent, relaxed
version of problem (1). Formally, consider the following
modified version of problem (1),

min
x1,...,xN ,ρ

N∑
i=1

fi(xi) +Mρ

subj. to

N∑
i=1

gi(xi) ≤ ρ1,

ρ ≥ 0, xi ∈ Xi, i ∈ {1, . . . , N},

(4)

where M > 0 is a scalar and we added the scalar optimiza-
tion variable ρ. In principle, the new variable allows for
a violation of the coupling constraints (in this sense, we
say that problem (4) is a relaxed version of problem (1)).
However, if the constant M appearing in the penalty term
Mρ is large enough, problem (4) is equivalent to (1), as we
recall in the next lemma.

Lemma 2.7 ([11], Proposition III.3). Let Assumptions 2.1
and 2.2 hold. Moreover, let M be such that M > ‖µ?‖1,
with µ? ∈ RS an optimal Lagrange multiplier for prob-
lem (1) associated to the constraint

∑N
i=1 gi(xi) ≤ 0. Then,

the optimal solutions of the relaxed problem (4) are in the
form (x?1, . . . ,x

?
N , 0), where (x?1, . . . ,x

?
N ) is an optimal so-

lution of (1), i.e., the solutions of (4) must have ρ = 0.
Moreover, the optimal costs of (4) and (1) are equal. �

The primal decomposition scheme applied to problem (4)
can be formulated as follows. For all i ∈ {1, . . . , N} and
yi ∈ RS , the i-th subproblem is

pi(yi) , min
xi,ρi

fi(xi) +Mρi

subj. to gi(xi) ≤ yi + ρi1

ρi ≥ 0, xi ∈ Xi,

(5)

where yi ∈ RS is a (given) local allocation for node i and
pi(yi) denotes the optimal cost as a function of yi. The
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local allocations are “coordinated” by the master problem,
i.e.,

min
y1,...,yN

N∑
i=1

pi(yi)

subj. to

N∑
i=1

yi = 0.

(6)

In the next, we will denote the cost function of (6) as p(y) =∑N
i=1 pi(yi), where y = (y1, . . . ,yN ) ∈ RSN . Notice that

subproblem (5) is always feasible for all yi ∈ RS . The
following lemma establishes the equivalence between the
master problem (6) and the relaxed problem (4).

Lemma 2.8 ([31]). Let Assumption 2.1 hold. Then, prob-
lems (4) and (6) are equivalent, in the sense that (i) the
optimal costs are equal, (ii) if (x?1, . . . ,x

?
N ) is an optimal

solution of (4) and (y?1, . . . ,y
?
N ) is an optimal solution

of (6), then (x?i , 0) is an optimal solution of (5), with
yi = y?i , for all i ∈ {1, . . . , N}. �

Thanks to Lemma 2.7 and Lemma 2.8, solving prob-
lem (1) is equivalent to solving problem (6). We will show
that indeed the DPD-TV algorithm solves (6), thereby
indirectly providing a solution to (1). Consider now the
update (3). Owing to the discussion in [30, Section 5.4.4],
can be rewritten as

yt+1
i = yti − αt

∑
j∈N t

i

(
∇̃pi(yti)− ∇̃pj(ytj)

)
,

for i ∈ {1, . . . , N}. This equivalent form highlights that, at
each iteration t, agents adjust their local allocation yti by
performing a subgradient-like step, based only on local and
neighboring information. Note also that, by direct calcula-
tion, using the fact that the underlying graph is undirected,
one can see that

∑N
i=1 y

t
i =

∑N
i=1 y

0
i = 0 for all t, which

means that the allocation sequence produced by the algo-
rithm satisfies the constraint

∑N
i=1 yi = 0 appearing in

problem (6) at each time step t.

Remark 2.9 (On the variables ρi). Finally, let us com-
ment on the role of the variables ρi appearing in problem (2).
If we impose ρi = 0, problem (2) may become infeasible for
some values of yi. Thus, the variable ρi guarantees that
the agents can always select a sufficiently large value of ρi
in order to satisfy the constraint gi(xi) ≤ yti + ρi1. By
Theorem 2.5, the sequences {ρti}t≥0 converge to zero and,
hence, they represent only a temporary violation.

Strictly speaking, if one wanted to apply the primal de-
composition method directly to problem (1) (or, equivalently,
to problem (4) with ρi = 0), additional constraints of the
type yi ∈ Yi, i ∈ {1, . . . , N} should be included in prob-
lem (6), with each Yi being the set of yi such that the
subproblems are feasible [30, Section 6.4.2]. However, as
it will be clear from the forthcoming analysis, this would
prevent us from obtaining a purely distributed scheme (in
particular, problem (14) would not be unconstrained). �

3. Randomized Block Subgradient for Convex
Problems

In this section, we formulate a (centralized) randomized
block subgradient method for convex problems and formally
prove its convergence. This algorithm will be used in the
next to solve an equivalent form of problem (6), where the
update of blocks is associated to the activation of edges
in the graph. The results provided here hold for a more
general class of optimization problems, therefore for this
section we temporarily stop our discussion to formalize
and analyze the randomized block subgradient method.
Subsequently, we loop back to the main focus of this work
and apply the results of this section for the analysis of
DPD-TV.

Let us consider the unconstrained convex problem

min
θ∈Rm

ϕ(θ), (7)

where θ is the optimization variable and ϕ : Rm → R is a
convex function. We assume that problem (7) has finite
optimal cost, denoted by ϕ?, and that (at least) an optimal
solution θ? ∈ Rm exists, such that ϕ? = ϕ(θ?).

Let us consider a partition of Rm into B ∈ N parts, i.e.,
Rm = Rm1×· · ·×RmB , such thatm =

∑B
`=1m`. Therefore,

the optimization variable is the stack of B blocks,

θ = (θ1, . . . , θB),

where θ` ∈ Rm` for all ` ∈ {1, . . . , B}. Now, we develop
a subgradient method with block-wise updates to solve
problem (7). At each iteration t ∈ N, each block ` is
updated with a probability σ` > 0.

We stress that according to the considered model, blocks
can have different update probabilities and multiple blocks
can be updated simultaneously.

For all t, we denote by Bt ⊆ {1, . . . , B} the index set of
the blocks selected at time t. For all ` ∈ {1, . . . , B} and
t ≥ 0, let us define νt` as the Bernoulli random variable
that is equal to 1 if ` ∈ Bt and 0 otherwise. The following
assumption is made (compare with Assumption 2.3).

Assumption 3.1. For all ` ∈ {1, . . . , B}, the random vari-
ables {νt`}t≥0 are independent and identically distributed
(i.i.d.). Moreover, for all t ≥ 0, the random variables
{νt`}`∈{1,...,B} are mutually independent. �

The algorithm considered here is based on a subgradient
method. However, at each iteration t, only the blocks in
Bt are updated, i.e.,

θt+1
` =

{
θt` − αt[∇̃ϕ(θt)]`, if ` ∈ Bt,
θt`, if ` /∈ Bt,

(8)

where αt is the step-size. Note that algorithm (8) allows
for multiple block updates at once and, furthermore, blocks
have non-uniform update probabilities. To the best of our
knowledge, this general block-subgradient method has not
been studied in the literature. Therefore, we now provide
the convergence proof for algorithm (8).
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Theorem 3.2. Let Assumption 3.1 hold and let the step-
size sequence {αt}t≥0 satisfy Assumption 2.4. Moreover,
assume the subgradients of ϕ are block-wise bounded, i.e.,
assume for all ` ∈ {1, . . . , B} there exists C` > 0 such

that ‖[∇̃ϕ(θ)]`‖ ≤ C` for all θ ∈ Rm. Consider a sequence
{θt}t≥0 generated by algorithm (8), initialized at any θ0 ∈
Rm. Then, almost surely, it holds

lim
t→∞

ϕ(θt) = ϕ?.

Proof. To keep the notation light, let us denote the com-
puted subgradients by βt , ∇̃ϕ(θt). Each block ` is de-

noted by βt` = [∇̃ϕ(θt)]`. Moreover, for all ` ∈ {1, . . . , B},
let us define the matrix U` ∈ Rm×m, obtained by setting to
zero in the identity matrix all the blocks on the diagonal,
except for the `-th block. Thus, when applied to a vector
θ ∈ Rm, all the blocks other than the `-th one are set to
zero, i.e.,

[U`θ]κ =

{
θ` if κ = `,

0 otherwise,
∀ κ ∈ {1, . . . , B}.

Moreover, for the sake of analysis, let us define

W , diag
( 1

σ1
Im1

, . . . ,
1

σB
ImB

)
,

where diag(·) is the (block) diagonal operator and we recall
that Im`

is the m` ×m` identity matrix. Note that W is
positive definite, thus we can consider the weighted norm
‖θ‖W , for which, by definition, it holds

‖θ‖2W =

B∑
`=1

‖θ`‖2

σ`
, θ ∈ Rm.

Next we analyze algorithm (8). Let us focus on an
iteration t and consider any vector θ ∈ Rm. As for the
activated blocks ` ∈ Bt, it holds

‖θt+1
` − θ`‖2 = ‖θt` − αtβt` − θ`‖2

= ‖θt` − θ`‖2 + (αt)2‖βt`‖2

− 2αt(βt`)
>(θt` − θ`),

≤ ‖θt` − θ`‖2 + (αt)2C2
`

− 2αtU`(β
t)>
(
θt − θ

)
, ∀ ` ∈ Bt,

where ‖βt`‖ ≤ C` holds by assumption. As for the other
blocks ` /∈ Bt, we have

‖θt+1
` − θ`‖2 = ‖θt` − θ`‖2, ∀ ` /∈ Bt.

Let us now write the overall evolution in W -norm, i.e.,

‖θt+1− θ‖2W =
∑
`∈Bt

‖θt+1
` − θ`‖2

σ`
+
∑
`/∈Bt

‖θt+1
` − θ`‖2

σ`

≤
B∑
`=1

‖θt` − θ`‖2

σ`
+ (αt)2

∑
`∈Bt

C2
`

σ`

− 2αt
( ∑
`∈Bt

1

σ`
U`

)
(βt)>

(
θt − θ

)
≤ ‖θt − θ‖2W + (αt)2C

− 2αt
( ∑
`∈Bt

1

σ`
U`

)
(βt)>

(
θt − θ

)
, (9)

where C ,
∑B
`=1

C2
`

σ`
> 0. Regarding the matrix∑

`∈Bt
1
σ`
U` appearing in (9), its expected value is

E

[ ∑
`∈Bt

1

σ`
U`

]
= E

[
B∑
`=1

νt`
σ`
U`

]
=

B∑
`=1

U` = Im. (10)

Now, by taking the conditional expectation of (9) with
respect to F t = {θ0, . . . , θt} (namely the sequence gener-
ated by algorithm (8) up to iteration t), we obtain for all
θ ∈ Rm and t ≥ 0

E
[
‖θt+1− θ‖2W

∣∣ F t] (a)

≤ ‖θt − θ‖2W + (αt)2C

− 2αt(βt)>
(
θt − θ

)
,

(b)

≤ ‖θt − θ‖2W + (αt)2C

− 2αt
(
ϕ(θt)− ϕ(θ)

)
,

where in (a) we used (10) and the independence of the
drawn blocks from the previous iterations (cf. Assump-
tion 3.1), and (b) follows by definition of subgradient of
the function ϕ. By restricting the above inequality to any
optimal solution θ? of problem (14), we obtain

E
[
‖θt+1− θ?‖2W

∣∣ F t] ≤ ‖θt − θ?‖2W + (αt)2C

− 2αt
(
ϕ(θt)− ϕ?

)
. (11)

Inequality (11) satisfies the assumptions of [33, Proposi-
tion 8.2.10]. Thus, by following the same arguments as
in [33, Proposition 8.2.13], we conclude that, almost surely,

lim
t→∞

ϕ(θt) = ϕ?. �

We point out that when there are multiple block updates
with non-uniform probabilities, one cannot simply write the
typical subgradient method inequality using the Euclidean
norm. We deal with this non-standard setting by using
the probability-induced weighted norm ‖ · ‖W , which is
still positive definite but allows for an analysis based on
supermartingale arguments.

6



Remark 3.3. By employing a different probabilistic model
and by slightly adapting the previous proof, almost sure
cost convergence can also be proved for a block subgradient
method with single block update, thus complementing, e.g.,
the results in [27]. �

4. Analysis of DPD-TV

In this section, we provide the analysis of DPD-TV.
To this end, we first reformulate problem (6) by properly
exploiting the graph structure. This reformulation is then
used to show that our distributed algorithm is equivalent to
a (centralized) randomized block subgradient method. We
finally rely on the results of Section 3 to prove Theorem 2.5.

4.1. Encoding the Coupling Constraints in Cost Function

As already mentioned in Section 2.4, a solution of prob-
lem (1) can be indirectly obtained by solving problem (6).
In order to put problem (6) into a form that is more con-
venient for distributed computation, let us apply a graph-
induced change of variables. Such a manipulation has a
twofold benefit: (i) it allows for the suppression and im-

plicit satisfaction of the constraint
∑N
i=1 yi = 0, (ii) it

allows for the application of the randomized block subgra-
dient method to take into account the random activation
of edges.

Consider the underlying communication graph Gu. As-
suming an ordering of the edges, let Γ ∈ R|Eu|×N denote
the incidence matrix of Gu, where each row (corresponding
to an edge in the graph) contains all zero entries except
for the column corresponding to the edge tail (equal to 1),
and for the column corresponding to the edge head (equal
to −1). Namely, if the k-th row of Γ corresponds to the
edge (i, j), then the (k, `)-th entry of Γ is

(Γ)k` =


1 if ` = i,

−1 if ` = j,

0 otherwise,

for all ` ∈ {1, . . . , N}. For all (i, j) ∈ Eu, let z(ij) ∈ RS be a

vector associated to the edge (i, j) and denote by z ∈ RS|Eu|
the vector stacking all z(ij), with the same ordering as in Γ.
Consider the change of variables for problem (6) defined
through the following linear mapping

y = Πz, z ∈ RS|Eu|, (12)

where the matrix Π is defined as

Π , (Γ> ⊗ IS) ∈ RSN×S|Eu|. (13)

By using the properties of the Kronecker product, the
blocks of y can be written as

yi = [Πz]i =
∑

j∈Ni,u

(z(ij) − z(ji)), ∀ i ∈ {1, . . . , N}.

The next lemma formalizes the fact that the change of
variable (12) implicitly encodes the constraint

∑N
i=1 yi = 0.

Lemma 4.1. The matrix Π in (13) satisfies:

(i)
∑N
i=1[Πz]i = 0 for all z ∈ RS|Eu|;

(ii) for all ỹ ∈ RSN satisfying
∑N
i=1 ỹi = 0 there exists

z̃ ∈ RS|Eu| such that ỹ = Πz̃.

Proof. To prove (i), we see that

N∑
i=1

[Πz]i = (1> ⊗ IS)Πz

= (1> ⊗ IS)(Γ> ⊗ IS)z

=
(
(Γ⊗ IS)(1⊗ IS)

)>
z

(a)
=
(
(Γ1)⊗ IS

)>
z

(b)
=
(
0⊗ IS

)>
z = 0,

where in (a) we used the fact (A⊗B)(C⊗D) = (AC)⊗(BD)
since the matrix dimensions are compatible, and (b) follows
by the property Γ1 = 0 of incidence matrices.

To prove (ii), let ỹ ∈ RSN be such that
∑N
i=1 ỹi = 0, or,

equivalently, (1>⊗IS)ỹ = 0. Let us first show that v>ỹ =
0 for all v ∈ Ker(Π>). To this end, take v ∈ Ker(Π>).
Since Gu is connected, then rank(Γ) = N − 1. Thus, by the
properties of the Kronecker product, it holds

rank(Π>) = rank(Γ⊗ IS)

= rank(Γ) rank(IS)

= (N − 1)S.

Moreover, by the Rank-Nullity Theorem, it holds

dim Ker(Π>) = SN − rank(Π>) = S.

But since the columns of (1 ⊗ IS) ∈ RSN×S are linearly
independent, and since the point (i) of the lemma implies
that they belong to Ker(Π>), it follows that they are
actually a basis of Ker(Π>), so that the vector v can
be written as v = (1⊗ IS)λ, for some λ ∈ RS . Therefore,
it holds

v>ỹ = λ> (1> ⊗ IS)ỹ︸ ︷︷ ︸
= 0

= 0.

Thus, since v is arbitrary, it follows that v>ỹ = 0 for all
v ∈ Ker(Π>). By definition of orthogonal complement,
this means that ỹ ∈ Ker(Π>)⊥ = Im(Π). Equivalently,
there exists z̃ such that ỹ = Πz̃. The proof follows since ỹ
is arbitrary.

We now plug the change of variable (12) into problem (6).
Formally, for all i ∈ {1, . . . , N}, define the functions

p̃i
(
{z(ij), z(ji)}j∈Ni,u

)
, pi

(
[Πz]i

)
, z ∈ RS|Eu|.

By Lemma 4.1, we directly obtain the following result.
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Corollary 4.2. Problem (6) is equivalent to the uncon-
strained optimization problem

min
z∈RS|Eu|

N∑
i=1

p̃i
(
{z(ij), z(ji)}j∈Ni,u

)
, (14)

in the sense that (i) the optimal costs are equal, and (ii)
if z? is an optimal solution of (14), then y? = Πz? is an
optimal solution of (6). �

In the following, we denote the cost function of (14) as

p̃(z) =
∑N
i=1 p̃i

(
{z(ij), z(ji)}j∈Ni,u

)
= p(Πz).

4.2. Equivalence of DPD-TV and Randomized Block Sub-
gradient

Differently from problem (6), its equivalent formula-
tion (14) is unconstrained. Hence, it can be solved via
subgradient methods without projections steps. It is possi-
ble to exploit the particular structure of problem (14) to
recast the random activation of edges as the random update
of blocks within a block subgradient method (8) applied
to problem (14). We will use the following identifications,

θ = z, and ϕ(θ) =

N∑
i=1

p̃i
(
{z(ij), z(ji)}j∈Ni,u

)
. (15)

As for the block structure, the mapping is as follows. Each
block ` ∈ {1, . . . , B} of z, i.e., z` ∈ R2S , is associated to
an undirected edge (i, j) ∈ Eu, with j > i, and is defined as

z` =

[
z(ij)
z(ji)

]
. (16)

Therefore, there is a total of B = |Eu|/2 blocks. At each
iteration t, each block z` is updated if the corresponding
edge (i, j) ∈ Et, i.e., if νtij = 1. A pictorial representation
of the block structure of z is provided in Figure 2.

i

j

l

kz(ij)
z(ji)

z`

Figure 2: Block structure of the variable z. Each block, say `, is
associated to an undirected edge, say (i, j). The block is the stack of
z(ij), associated to the edge (i, j), and z(ji) associated to the edge
(j, i).

Consistently with the notation of Section 3, we use the
shorthands σ` = σij and νt` = νtij . At each iteration t of
algorithm (8), the set Bt contains all and only the blocks
associated to the edges in Et.

Next, we explicitly write the evolution of the sequences
generated by DPD-TV as a function of the sequences gener-
ated by the block subgradient method (8). For this purpose,

let us write a subgradient of p̃ at any z ∈ RS|Eu|. By defini-
tion, it holds p̃(z) = p(Πz). Thus, by using the subgradient
property for affine transformations of the domain1, it holds

∇̃p̃(z) = (Γ⊗ IS)∇̃p(Πz). (17)

By exploiting the structure of p, the i-th block of ∇̃p(y)

is equal to ∂̃p(y)
∂yi

= ∇̃pi(yi). Moreover, since problem (5)
enjoys strong duality, a subgradient of pi at yi can be
computed as ∇̃pi(yi) = −µi, where µi is an optimal La-
grange multiplier of problem (5) (cf. [30, Section 5.4.4]).
By collecting these facts together with (17), it follows that

the blocks of ∇̃p̃(z) can be computed as

∂̃p̃(z)

∂z(ij)
= ∇̃pi

(
[Πz]i

)
− ∇̃pj

(
[Πz]j

)
= µj − µi, ∀ (i, j) ∈ Eu, (18)

where ∂̃p̃(z)
∂z(ij)

denotes the block of ∇̃p̃(z) associated to z(ij)

and, for all k ∈ {1, . . . , N}, µk denotes an optimal La-
grange multiplier for the problem

min
xk,ρk

fk(xk) +Mρk

subj. to gk(xk) ≤ [Πz]k + ρk1

ρk ≥ 0, xk ∈ Xk.

(19)

Combining (15), (16) and (18), the update (8) can be recast
as

zt+1
(ij) =

{
zt(ij) + αt

(
µti − µtj

)
, if (i, j) ∈ Et,

zt(ij), if (i, j) /∈ Et,
(20)

where µtk denotes an optimal Lagrange multiplier of (19)
with z = zt (with a slight abuse of notation2). Thus,

[Πzt+1]i =
∑

j∈Ni,u

(zt+1
(ij) − zt+1

(ji))

(a)
=

∑
j∈Ni,u

(zt(ij) − zt(ji))︸ ︷︷ ︸
yt
i

+2αt
∑
j∈N t

i

(
µti − µtj

)

= yt+1
i , i ∈ {1, . . . , N}, (21)

where (a) follows by (20). Therefore the DPD-TV algo-
rithm and the block subgradient method (8) are equivalent
(up to a factor 2 in front of the step-size αt, which can be
embedded in its definition).

Before going on, let us state the following technical result.

1This property of subgradients is the counterpart of the chain rule
for differentiable functions.

2 Indeed, the symbol µt
i was already defined in Section 2.3 in the

DPD-TV table. In fact, as per the equivalence of the two algorithms
(which is being shown here), the two quantities coincide.
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Lemma 4.3. For all z ∈ RS|Eu|, the subgradients of p̃ at
z are block-wise bounded, i.e.,

‖[∇̃p̃(z)]`‖ ≤ C`, ∀ ` ∈ {1, . . . , B},∀ z ∈ RS|E|.

where each C` > 0 is a sufficiently large constant propor-
tional to M .

Proof. Fix a block ` and suppose that it is associated to
the edge (i, j). According to the previous discussion, the

`-th block of ∇̃p̃(z) is equal to

[∇̃p̃(z)]` =

[
µj − µi
µi − µj

]
,

where each µk is a Lagrange multiplier of problem (19).
As shown in [11, Section III-B], it holds ‖µk‖1 ≤ M for
all k ∈ {1, . . . , N}. Thus, the proof follows by using the
equivalence of norms and by choosing a sufficiently large
C` > 0.

4.3. Proof of Theorem 2.5

The arguments used here rely on the convergence of
the randomized block subgradient method (8) and on the
algorithm equivalence discussed in Section 4.2.

To prove (i), let us consider the block subgradient
method (8) applied to problem (14). Note that the func-
tion p̃(z) is convex (because the functions pi are convex,
cf. [30, Section 5.4.4]) and its optimal cost is equal to
f?, the optimal cost of (1) (cf. Corollary 4.2, Lemma 2.8
and Lemma 2.7). By Lemma 4.3 and by the theorem’s
assumptions, we can apply Theorem 3.2 to conclude that,
almost surely,

f? = lim
t→∞

N∑
i=1

p̃i
(
{zt(ij), z

t
(ji)}j∈Ni,u

)
(a)
= lim

t→∞

N∑
i=1

pi(y
t
i)

(b)
= lim

t→∞

N∑
i=1

(
fi(x

t
i) +Mρti

)
,

where (a) follows by definition of p̃i and by (21) and (b)
follows by construction of (xti, ρ

t
i).

To prove (ii), it is possible to follow the same line of
proof of [11]. However, as here we are considering a proba-
bilistic setting in a primal decomposition framework, we
report the proof for completeness. Let us consider the
sample set Ω̄ for which point (i) of the theorem holds,
and pick any sample path ω ∈ Ω̄. Consider the primal
sequence {(xt1, . . . ,xtN , ρt1, . . . , ρtN )}t≥0 generated by the
DPD-TV algorithm corresponding to ω. By summing over
i ∈ {1, . . . , N} the inequality gi(x

t
i) ≤ yti + ρti1 (which

holds by construction), it holds

N∑
i=1

gi(x
t
i) ≤

N∑
i=1

yti +

N∑
i=1

ρti1 =

N∑
i=1

ρti1. (22)

Define ρt =
∑N
i=1 ρ

t
i. By construction, the sequence

{(xt1, . . . ,xtN , ρt)}t≥0 is bounded (as a consequence of point
(i) and continuity of the functions fi(xi) +Mρi), so that
there exists a sub-sequence of indices {th}h≥0 ⊆ {t}t≥0
such that the sequence {(xtn1 , . . . ,x

th
N , ρ

th)}h≥0 converges.
Denote the limit point of such sequence as (x̄1, . . . , x̄N , ρ̄).
From point (i) of the theorem, it follows that

N∑
i=1

fi(x̄i) +Mρ̄ = f?.

By Lemma 2.7, it must hold ρ̄ = 0. As the functions gi
are continuous, by taking the limit in (22) as h→∞, with
t = th, it holds

N∑
i=1

gi(x̄i) ≤ ρ̄1 = 0.

Therefore, the point (x̄1, . . . , x̄N ) is an optimal solution
of problem (1). Since the sample path ω ∈ Ω̄ is arbitrary,
every limit point of {(xt1, . . . ,xtN )}t≥0 is feasible and cost-
optimal for problem (1), almost surely. �

4.4. Comparison with Existing Works

In this subsection, we are in the position to properly
highlight how our algorithm differs from other works pro-
posed in the literature. In the special case of static graphs,
the algorithm proposed in this paper can be shown, with
an appropriate change of variables, to have the same evo-
lution of the algorithm proposed in [11]. However, several
differences are present and are listed hereafter. First, note
that DPD-TV requires only one communication step per
iteration and S local states, whereas the algorithm in [11]
requires two communication steps per iteration and has a
storage demand of 2S|Ni| local states. Moreover, the anal-
ysis in [11] relies on a dual decomposition-based technique
which necessarily freezes the graph topology in the problem
formulation and does not allow for time-varying networks.
Instead, in this paper we consider a primal decomposition
approach that allows us to deal with random, time-varying
graphs.

As regards other algorithms for the constraint-coupled
problem (1) working on time-varying networks, one can
apply a dual distributed subgradient method such as [9, 10].
One can also apply primal-dual approaches as [12] (or
continuous-time Laplacian dynamics as [13]). However,
notice that dual and primal-dual approaches require an
averaging mechanism to guarantee feasibility of the primal
iterates, while our approach does not. Indeed, the primal
decomposition rationale behind DPD-TV allows us to avoid
this procedure and obtain a faster convergence rate as
shown through extensive simulations in Section 6.3. In
order to solve problems in the form (1), one can apply
distributed ADMM to the dual problem, see e.g. [20], or
consensus-based ADMM such as [22, 23]. However, these
algorithms require the communication network to be static.
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5. Convergence Rates and Further Discussion

In this section, we provide convergence rates of DPD-TV
and a discussion on the parameter M .

5.1. Convergence Rates

The DPD-TV algorithm enjoys a sublinear rate for both
constant and diminishing step-size rules. For constant
step-size, the cost sequence converges as O(1/t), while for
diminishing step-size, the rate is O(1/ log(t)). The results
provided here are expressed in terms of the quantity

f tbest , min
τ≤t

N∑
i=1

E[fi(x
τ
i ) +Mρτi ],

where the expression in the expected value is the optimal
cost of problem (2) for agent i at time τ . Intuitively,
this value represents the best cost value obtained by the
algorithm up to a certain iteration t, in an expected sense.

The following analysis is based on deriving convergence
rates for our generalized block subgradient method and
thus also complements the ones in, e.g., [27]. In the next
lemma we derive a basic inequality.

Lemma 5.1. Let Assumptions 2.1, 2.2 and 2.3 hold. Then,
for all t ≥ 0 it holds

2

(
t∑

τ=0

ατ

)
(f tbest − f?) ≤ ‖z0 − z?‖2W + C

t∑
τ=0

(ατ )2. (23)

Proof. We consider the same line of proof of Theorem 3.2
up to (11), specialized for θt = zt, θ? = z? (an optimal
solution of problem (14)), with corresponding cost ϕ? =
p̃(z?) = f? (the optimal cost of problem (1)). Taking the
total expectation (with respect to F t) of (11), it follows
that, for all t ≥ 0,

E
[
‖zt+1− z?‖2W

]
= E

{
E
[
‖zt+1− z?‖2W

∣∣F t]}
≤ E

[
‖zt − z?‖2W

]
+ (αt)2C

− 2αt
(
E[p̃(zt)]− f?

)
.

Applying recursively the previous inequality yields

E
[
‖zt+1− z?‖2W

]
≤ ‖z0 − z?‖2W + C

t∑
τ=0

(ατ )2

− 2

t∑
τ=0

ατ
(
E[p̃(zτ )]− f?

)
for all t ≥ 0. By using the fact ‖zt+1−z?‖2W ≥ 0, we obtain

2

t∑
τ=0

ατ
(
E[p̃(zτ )]− f?

)
≤ ‖z0 − z?‖2W + C

t∑
τ=0

(ατ )2,

for all t ≥ 0. The proof follows by combining the previ-
ous inequality with E[p̃(zt)] ≥ min

τ≤t
E[p̃(zτ )] and p̃(zτ ) =

p(yτ ) =
∑N
i=1 pi(y

τ
i ) =

∑N
i=1 fi(x

τ
i ) +Mρτi .

For constant step-sizes, it is possible to prove a sublinear
convergence rate O(1/t), as formalized next.

Proposition 5.2 (Sublinear rate for constant step-size).
Let the same assumptions of Theorem 2.5 hold (except for
Assumption 2.4). Assume αt = α > 0 for all t ≥ 0. Then,
it holds

f tbest − f? ≤
‖z0 − z?‖2W
2α(t+ 1)

+
Cα

2
.

Proof. It is sufficient to set αt = α in (23).

Note that the previous convergence rate has a term
that goes to zero as t goes to infinity, plus a constant
(positive) term. In general, without further assumptions,
only convergence within a neighborhood of the optimum
can be proved when a constant step-size is used.

For the case of exact convergence with diminishing step-
size, we assume it has the form αt = K

t+1 with K > 0 (which
satisfies Assumption 2.4). We can obtain a sublinear rate
O(1/ log(t)), as proved next.

Proposition 5.3 (Sublinear rate for diminishing step-size).
Let the same assumptions of Theorem 2.5 hold. Assume
αt = K

t+1 for all t ≥ 0, with K > 0. Then, it holds

f tbest − f? ≤
‖z0 − z?‖2W + CK2

2K log(t+ 2)
.

Proof. Let us set αt = K
t+1 in (23), then it holds

f tbest − f? ≤
‖z0 − z?‖2W + CK2

∑t+1
τ=1

1
τ2

2K
∑t+1
τ=1

1
τ

.

The proof follows by using the inequalities
∑t
τ=1

1
τ2 ≤ 1

and
∑t
τ=1

1
τ ≥ log(t+ 1).

Remark 5.4. Convergence rates can be also derived under
the assumption of fixed (connected) graph by following es-
sentially the same arguments, without block randomization
in algorithm (8). This recovers the approach in [11]. For
constant step-sizes the rate is

f tbest − f? ≤
‖z0 − z?‖2

2α(t+ 1)
+
Cα

2
,

while for diminishing step-sizes the rate is

f tbest − f? ≤
‖z0 − z?‖2 + CK2

2K log(t+ 2)
,

where here the quantities f tbest and C are defined as f tbest ,
minτ≤t

∑N
i=1 fi(x

τ
i ) +Mρτi and C ,

∑B
`=1 C

2
` . �
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5.2. Discussion on the Parameter M

In this subsection, we discuss the choice of the parame-
ter M in the local minimization problem of the DPD-TV
algorithm (cf. (2)).

As per Theorem 2.5, it must hold M > ‖µ?‖1, where
µ? is any dual optimal solution of the original problem (1).
This assumption is needed for the relaxation approach of
Section 2.4 to apply. In general, a dual optimal solution µ?

of the original problem (1) may not be known in advance.
However, if a Slater point is available (cf. Assumption 2.2),
it is possible for the agents to compute a conservative lower
bound on M . The next proposition provides a sufficient
condition to satisfy M > ‖µ?‖1.

Proposition 5.5. Let Assumptions 2.1 and 2.2 hold.
Moreover, let (x̄1, . . . , x̄N ) be a Slater point, i.e., a fea-

sible point for problem (1) with
∑N
i=1 gi(x̄i) < 0. Then, a

valid choice of M for Theorem 2.5 is any number satisfying

M >
1

γ

N∑
i=1

(
fi(x̄i)− min

xi∈Xi

fi(xi)
)
, (24)

where γ = min1≤s≤S{−
∑N
i=1 gis(x̄i)}.

Proof. Let us consider the dual problem associated to (1)

when only the constraint
∑N
i=1 gi(xi) ≤ 0 is dualized, i.e.,

max
µ∈RS

q(µ)

subj. to µ ≥ 0,
(25)

with q(µ) being the dual function, defined as

q(µ) = inf
x1∈X1,...,xN∈XN

{ N∑
i=1

(
fi(xi) + µ>gi(xi)

)}

=

N∑
i=1

inf
xi∈Xi

(
fi(xi) + µ>gi(xi)

)
,

=

N∑
i=1

min
xi∈Xi

(
fi(xi) + µ>gi(xi)

)
,

where the inf can be split because the summands depend
on different variables and the operator inf can be replaced
by min since the sets Xi are compact and fi, gi are con-
tinuous due to convexity (cf. Assumption 2.1). Let us
denote by µ? an optimal solution of problem (25). By
Assumptions 2.1 and 2.2, strong duality holds, therefore
q(µ?) =

∑N
i=1 fi(x

?
i ), where (x?1, . . . ,x

?
N ) is an optimal so-

lution of problem (1). Also, note that µ? is also a Lagrange
multiplier of problem (1) (see, e.g., [30, Proposition 5.1.4]).

To upper bound ‖µ?‖1, we invoke [34, Lemma 1],

‖µ?‖1 ≤
1

γ

(
N∑
i=1

fi(x̄i)− q(µ?)

)

=
1

γ

N∑
i=1

(
fi(x̄i)− fi(x?i )

)
≤ 1

γ

N∑
i=1

(
fi(x̄i)− min

xi∈Xi

fi(xi)
)
, (26)

where the minimum in the right-hand side of (26) exists by
Weierstrass’s Theorem, and the proof follows by choosing
M as any number strictly greater than the right-hand side
of (26).

Note that, if each agent knows its portion x̄i of the Slater
vector (x̄1, . . . , x̄N ), the network can run a combination of
min-consensus and average consensus protocols to deter-
mine the right-hand side of (24), because the quantities in
the sum are locally computable. As such, the calculation
of M can be completely distributed.

6. Numerical Study

In this section, we show the efficacy of DPD-TV and
validate the theoretical findings through numerical com-
putations. We first concentrate on a simple example to
show the main algorithm features. Then, we perform an
in-depth numerical study on an electric vehicle charging sce-
nario. All the simulations are performed with the disropt
Python package [35] on a desktop PC, with MPI-based
communication.

6.1. Basic Example

We consider a network of N = 100 agents that must
solve the convex problem

min
x1,...,xN

N∑
i=1

‖xi − ri‖1

subj. to

N∑
i=1

i · xi ≤ 0

− 10 · 1 ≤ xi ≤ 10 · 1, i ∈ {1, . . . , N},

(27)

where each xi ∈ R3, and ri ∈ R3 is a random vector
with entries in the interval [15, 20]. Problem (27) is in the
form (1) with the positions fi(xi) = ‖xi−ri‖1, Xi =

{
xi ∈

R3|−10 ·1 ≤ xi ≤ 10 ·1
}

and gi(xi) = i ·xi. Note that the
objective function and the coupling constraint functions
are convex but not smooth.

As for the communication graph, we generate an Erdős-
Rényi graph with edge probability 0.2. The edge activation
probabilities σij are randomly picked in [0.3, 0.9].

In order to apply the DPD-TV algorithm, we compute a
valid value of the parameter M appearing in problem (2) by

11



using Proposition 5.5 with the Slater vector (x̄1, . . . , x̄N )
with each x̄i = −10 · 1. After performing all the computa-
tions, we obtain the condition M > 1 and we finally choose
M = 6. The DPD-TV algorithm is initialized at y0

i = 0
for all i ∈ {1, . . . , N} and the step-size αt = 1/(t + 1)0.6

is used (which satisfies Assumption 2.4). The simulation
results are reported in Figures 3 and 4. The asymptotic
behavior of Theorem 2.5 is confirmed.
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Figure 3: Evolution of the normalized cost error for the basic example.
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Figure 4: Evolution of the coupling constraint for the basic example.
A value below zero means that the solution computed by the algorithm
at that iteration is feasible. The inset figure shows the behavior of
the algorithm in the early iterations.

6.2. Electric Vehicle Charging Problem

Let us now consider the charging of Plug-in Electric Ve-
hicles (PEVs), which is formulated in detail in [36] and is
slightly changed here in order to better highlight the algo-
rithm behavior. The simulations reported in the remainder
of this section are all referred to this application scenario.

The problem consists of determining an optimal charging
schedule of N electric vehicles. Each vehicle i has an initial
state of charge Einit

i and a target state of charge Eref
i that

must be reached within a time horizon of 8 hours, divided
into T = 12 time slots of ∆T = 40 minutes. Vehicles
must further satisfy a coupling constraint, which is given
by the fact that the total power drawn from the (shared)
electricity grid must not exceed Pmax = N/2. In this paper,
we consider the “charge-only” case. In order to make sure
the local constraint set are convex (cf. Assumption 2.1), we
drop the additional integer constraints considered in [36].

Thus, the vehicles optimize their charging rate rather than
activating or de-activating the charging mode at each time
slot. Formally, the resulting linear program is

min
x1,...,xN

N∑
i=1

c>i xi

subj. to

N∑
i=1

Aixi ≤ b,

xi ∈ Xi, i ∈ {1, . . . , N},

where the local constraint sets Xi are compact polyhedra
and a total of S = 12 coupling constraints are present. For
a complete reference on the other quantities involved in
the problem and not explicitly specified here, we refer the
reader to the extended formulation in [36].

We consider a network of N = 50 agents where the
underlying graph Eu is generated as an Erdős-Rényi graph
with edge probability 0.2. The edge activation probabilities
σij are randomly picked in [0.3, 0.9]. In particular, in the
next subsections we (i) compare our algorithm with the
state of the art, (ii) discuss the parameter M and (iii)
show the convergence rate.

6.3. Comparison with State of the Art

We compare DPD-TV with the algorithms in [10, 12].
As for the algorithm tuning (i.e., the step-size αt in the
update (3) and the parameter M appearing in problem (2)),
we choose M = 30 and the diminishing step-size αt =

0.1
(t+1)0.6 . The same step-size is also used for [10, 12]. As

regards the algorithm [12], the additional parameters are set
to ρ1 = ρ2 = 10−3, Dλ = 30 and δ = 0.1. Our algorithm is
initialized in y0

i = 0 for all i, while the algorithms [10, 12]
are initialized in λ0

i = 0 and x0
i = PXi(0) for all i, where

PXi
denotes the Euclidean projection onto Xi.

In Figure 5, we show the cost error for the three algo-
rithms, compared with the result of a centralized problem
solver. For our algorithm, the sequence {xti} represents
the local solutions of problem (2). For the algorithms [10]
and [12], in order to guarantee primal feasibility, it is in-
stead necessary to consider the running average of the
local solutions over the past iterations. Thus, in Figure 5,
for [10, 12] the sequence {xti} actually consists of running
averages. The figure highlights that, in this simulation,
DPD-TV reached less than 10−5 relative cost error and
completely outperformed the algorithms [10] and [12].

In Figure 6, we show the value of the coupling constraints.
The picture confirms the primal recovery property and
highlights that DPD-TV and the algorithm in [10] are
able to provide feasible solutions within a short amount
of iterations, while the algorithm in [12] requires more
iterations.

6.4. Impact of the Parameter M

We also perform a numerical comparison of the algo-
rithm behavior for different values of the parameter M (see
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Figure 5: Evolution of the normalized cost error for the comparative
study with the state of the art.
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Figure 6: Evolution of the coupling constraint for the comparative
study with the state of the art. A value below zero means that the
solution computed by the algorithm at that iteration is feasible.

also Section 5.2). Under the same set-up of the previous
simulation, we use a different initialization to guarantee the
requirements imposed by Theorem 2.5 and also to create
some asymmetry among the initial allocations of the agents.
Thus, in this simulation we consider the initialization rule
y0
i = 5(N − 2i)1 for all i, which satisfies

∑N
i=1 y

0
i = 0.

In Figure 7 we plot the cost error, including the extra
penalty term

∑N
i=1Mρti, for three different values of M

(all of which satisfy the assumption M > ‖µ?‖1). It can be
seen that the slope of the curve decreases as M increases,
which agrees with the fact that the larger is M , the larger
is the set in which subgradients can be found (Lemma 4.3).
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Figure 7: Evolution of the normalized cost error for different values
of M , under diminishing step-size.

Figure 8 shows the maximum value of ρti among agents.
Recall that ρti is an upper bound on the violation of the
local allocation yti . The picture underlines that such a
quantity is forced to zero faster as M gets bigger. This can
be intuitively explained by the fact that larger values of
the penalty Mρi drive the algorithm more quickly towards
feasibility of the coupling constraint.
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Figure 8: Evolution of the value of maxi ρ
t
i for varying values of M .

The quantity represents an upper bound on the coupling constraint
violation.

6.5. Numerical Study on Convergence Rates

We finally perform a simulation to point out the different
behavior of the algorithm with constant and diminishing
step-sizes. Under the same set-up of the previous example,
with M = 10, we run the algorithm with the diminishing
step-size law αt = 0.5

(t+1)0.6 and with the constant step-size

αt = 0.01. As before, agents initialize their local allocation
at y0

i = 5(N − 2i)1 for all i.
Figure 9 shows the different algorithm behavior under

the two step-size choices. For constant step-size, the algo-
rithm converges within a certain tolerance (which is seen
in the picture at around iteration 6, 000), confirming the
observations in Section 5. Moreover, the sublinear behavior
with the diminishing step-size is confirmed. Interestingly,
in this example the constant step-size behaved linearly up
to iteration 4, 000 and superlinearly in the interval 4, 000–
6, 000, therefore performing much better than the sublinear
bound in Proposition 5.2.
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Figure 9: Evolution of the cost error for the comparative study on
step-sizes.
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7. Conclusions

In this paper, we presented the DPD-TV algorithm to
solve constraint-coupled, large-scale, convex optimization
problems over random time-varying networks. The pro-
posed algorithm is based on a relaxation and primal decom-
position approach, and, for the sake of analysis, it is viewed
as an instance of a randomized block subgradient method,
in which blocks correspond to edges in the communication
graph. Almost sure convergence to the optimal cost of the
original problem and an almost sure asymptotic primal
recovery property are proved. Sublinear convergence rates
are provided under different step-size assumptions. Numer-
ical computations on an electric vehicle charging problem
substantiated the theoretical results.
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M. Morari, A decomposition method for large scale MILPs,
with performance guarantees and a power system application,
Automatica 67 (2016) 144–156.

14


	Introduction
	Optimization Set-up and Distributed Algorithm
	Distributed Constraint-Coupled Optimization
	Random Time-Varying Communication Model
	Distributed Algorithm Description
	Preliminaries on Relaxation and Primal Decomposition

	Randomized Block Subgradient for Convex Problems
	Analysis of DPD-TV
	Encoding the Coupling Constraints in Cost Function
	Equivalence of DPD-TV and Randomized Block Subgradient
	Proof of Theorem 2.5
	Comparison with Existing Works

	Convergence Rates and Further Discussion
	Convergence Rates
	Discussion on the Parameter M

	Numerical Study
	Basic Example
	Electric Vehicle Charging Problem
	Comparison with State of the Art
	Impact of the Parameter M
	Numerical Study on Convergence Rates

	Conclusions

