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ABSTRACT

This paper investigates the potentials of the bootstrap as a tool for infer-
ence on the parameters of macroeconometric models which admit a state
space representation. We consider a bootstrap estimator of the parame-
ters of state space models and show that the bootstrap realizations of
this estimator, usually employed to approximate asymptotic confidence
intervals, p-values and critical values of tests, can be also constructively
used to build a test for forms of misspecifications which invalidate as-
ymptotic normality. The test evaluates how ‘close or distant’ the esti-
mated state space model is from the case where asymptotic inference
based on the Gaussian distribution applies. We derive sufficient condi-
tions on the number of bootstrap repetitions, B, relative to the number
of sample observations, T', for the test statistic to have a well-defined
asymptotic distribution under the null. Throughout the paper we fo-
cus on the state space form of small-scale monetary dynamic stochastic
general equilibrium (DSGE) models and investigate the usefulness of our
approach through Monte Carlo experiments and empirical illustrations
based on U.S. quarterly data. Results show that (i) bootstrapping the
state space form provides highly reliable inference, and (ii) the suggested
test detects weakly identified parameters reasonably well in finite sam-
ples.
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1 INTRODUCTION

State space models provide flexible representations of time series models, see
Hannan and Deistler (1988), Caines (1988), Harvey (1989), Durbin and Koop-
man (2001) and Commandeur and Koopman (2007). Combined with Kalman
filtering techniques, these models permit the estimation of the parameters
of interest of, among others, first-order solutions of dynamic stochastic gen-
eral equilibrium (DSGE) models, dynamic factor models, stochastic volatility
models and affine term structure models. Understanding how the bootstrap
performs in state space models is therefore crucial to envisage to what extent
inference can be improved in a variety of models. Nevertheless, the literature
on the bootstrap in these models is still scant, see e.g. Stoffer and Wall (1991)
and Berkowitz and Kilian (2000).

This paper investigates the potential of the bootstrap in state space macro-
econometric models along an important dimension, i.e. as a diagnostic tool
to check whether conditions for asymptotic inference based on the Gaussian
distribution hold. To do so, we adapt Stoffer and Wall’s (1991) nonparametric
bootstrap algorithm and consider the bootstrap Quasi-Maximum Likelihood
(QML) estimator of the time-invariant parameters of state space models, and
show that the distribution of the bootstrap QML estimator can be informative
and useful also in situations in which the likelihood function is ‘not well be-
haved’. The test is based on a number, say B, of realizations of the bootstrap
QML estimator of the parameters and is essentially a standard normality test,
hence straightforward to compute in practice. Contrary to standard boot-
strap asymptotics where the number of bootstrap repetitions can be taken
arbitrarily large, we derive sufficient conditions on B relative to the number of
sample observations, T, for the test statistic to have a well-defined asymptotic
distribution under the null that standard regularity conditions hold.

The suggested ‘omnibus’ test of model misspecification controls size in
situations in which the QML estimator of the parameters is asymptotically
Gaussian, and is expected to have power against situations where the QML
estimator deviates asymptotically from the Gaussian distribution. Main (albeit
not exhaustive) sources of violations of the asymptotic normality of the QML
estimator include unidentified and/or weakly identified parameters, parame-
ters which lie near the boundaries of the parameter space, infinite higher order
moments in the distribution of innovation errors and nonstationary variables.
Importantly, by design the test does not capture other types of misspecifica-
tions of the state space model which typically affect the consistency of the
QML estimator but not its asymptotic normality, such as e.g. the omission of
relevant variables/shocks and propagation mechanisms and the imposition of



wrong parametric restrictions.

The suggested test is particularly useful for at least two reasons. First, the
practitioner is not required to take a stand on the causes of failure of asymptotic
normality. For instance, imagine that the suspect is that the parameters of
the state space model are weakly identified. In this case, the practioner is
not required to know a-priori which are the weakly and the strongly identified
parameters. Second, despite there exists a large literature on identification-
robust methods in structural dynamic macro models (e.g. Kleibergen and
Mavroeidis, 2009), there is also a substantial lack of easily implementable
tools to measure the strength of identification. We cover this gap and provide a
general and computationally straightforward bootstrap-based method to assess
the quality of the inference in an estimated state space model.

DSGE models are prominent examples of dynamic macro models whose
equilibria can be represented in state space form. They are stylized descrip-
tions of the economy and are widely used to evaluate macroeconomic policies
or to predict the stance of the business cycle. It is well recognized that the
sampling distribution of estimators of DSGE structural parameters tends to
be non-normal and/or pile up on the boundary of the theoretically admissible
parameter space as reflection of weakly identified parameters' and/or solu-
tion multiplicity; see An and Schorfheide (2007), Canova and Sala (2009) and
Morris (2017). Identification-robust methods of inference for DSGE models
have been developed in e.g. Guerron-Quintana et al. (2013), Dufour et al.
(2013), Qu (2014), Andrews and Mikusheva (2015) and Guerron-Quintana et
al. (2017). For these reasons, throughout the paper we investigate the perfor-
mance of the bootstrap in state space models through the lens of small-scale
monetary DSGE models, keeping in mind that the suggested test has power
not only against weakly identified parameters but also against other possible
sources of asymptotic non-normality.

We investigate the empirical properties of our bootstrap approach by a
set of Monte Carlo experiments and an empirical illustration based on U.S.
quarterly data. In both cases we consider the state space form associated with
the small-scale monetary DSGE model analyzed in Guerron-Quintana et al.
(2013). Simulation and empirical results point out that a proper combined use
of univariate and multivariate normality tests provides highly reliable inference
in correctly specified models. In these cases bootstrap standard errors track
closely their non-bootstrap counterparts and the empirical coverage probabil-
ity of bootstrap confidence intervals is close to nominal size. Simulation and

!This phenomenon mirrors the weak identification problem studied in the instrumental
variable literature (Staiger and Stock, 1997) and in the generalized method of moments
literature (Stock and Wright, 2000).



empirical evidence also suggests that the proposed test detects situations char-
acterized by weakly identified parameters reasonably well in finite samples, no
matter whether the structural shocks are non-Gaussian. This is an impor-
tant result which suggests that bootstrapping the state space form of dynamic
macro models is advantageous for practitioners as they can evaluate the re-
liability of Gaussian asymptotic inference through simple normality tests at
small computational costs.

Two aspects of our approach are worth mentioning. First, the suggested
test can be easily implemented in state space models for which estimation
through Kalman filtering does not represent a major issue, which is typically
the case in small-scale models. Second, our diagnostic test can be interpreted
as a pretest in the sense that while ‘standard’ methods based on the Gaussian
distribution can be applied when the null is not rejected, non-standard methods
of inference are required otherwise.

1.1 RELATED LITERATURE

Our analysis exploits results in Stoffer and Wall (1991) on bootstrap con-
sistency in state space models. However, to prove that the bootstrap QML
estimator replicates the asymptotic distribution of the QML estimator, Stoffer
and Wall (1991) rely on the regularity conditions reported in Ljung and Caines
(1979) which, unfortunately, can hardly be framed and checked in the class of
models applied in empirical macroeconomics and finance. We revisit and rein-
terpret bootstrap consistency by relying on assumptions which are specific to
DSGE models and therefore are more easily understandable and interpretable
in the context of dynamic macro models.

Ours is not the first application of the bootstrap to DSGE models. Guerron-
Quintana et al. (2017) develop a new theory for impulse response matching
estimation of DSGE models based on the bootstrap, see also Féeve et al. (2009).
Cho and Moreno (2006) and Béardsen and Fanelli (2015a) apply bootstrap
methods in small-scale New-Keynesian DSGE models that have a finite-order
vector autoregressive (VAR) representation. Le et al. (2011) combine the use
of bootstrap methods with indirect inference techniques for DSGE models; see
also Khalaf et al. (2019). All these contributions, however, are based on VAR
approximations of the DSGE equilibrium. The novel feature of our approach,
when focusing on DSGE models, is that the bootstrap involves directly the
innovation form representation of the model. This exempts practitioners from
putting the DSGE equilibrium in VAR form and from choosing which moments
or features of the data to match with the theoretical model as, e.g., in Hall et
al. (2012) and Guerron-Quintana et al. (2017).



A test for the null hypothesis of ‘strong identification’ against weak identi-
fication in nonlinear dynamic macro models has been also developed by Inoue
and Rossi (2011). Their test, however, does not apply to models featuring
unobservable (latent) components and does not involve the bootstrap.

There are earlier (but few) contributions in the literature where the use of
the bootstrap as diagnostic tool has been advocated. In the statistical liter-
ature, Beran (1997) suggests diagnostic plots for detecting bootstrap failure
in regression models, considering however a setup which can not be easily
reconciled with the features of dynamic macro models. In the econometric lit-
erature, Zhan (2018) has shown in the context of instrumental variable regres-
sions that a substantial difference between the distribution of the standardized
Two-Stage-Least-Squares estimator and the Gaussian distribution indicates
the existence of weak instruments.? Zhan’s (2018) approach is peculiar to
instrumental variable regressions and requires a preliminarily conventional de-
finition of weak and strong instruments along the lines of Staiger and Stock
(1997). Our approach is more general: it covers the broad class of econometric
models which can be represented in state space form involving time-invariant
parameters, and reads as an omnibus test for checking whether conditions for
Gaussian asymptotic inference are supported. Importantly, we do not need
any preliminary (and arbitrary) definition of model misspecification, in the
sense that it is the bootstrap distribution to inform the practitioner on the
extent of deviations from the case in which standard regularity conditions are
at work.?

Finally, in the literature on Structural VARs identified with external in-
struments (proxy-SVARs or SVARs-1V) recently popularized by Mertens and

2The use of plots of the bootstrap distribution of estimated parameters of interest as
‘graphical diagnostic tool’ may be also found in Bardsen and Fanelli (2015b), Figures 1-2.
These authors contrast the bootstrap distribution of the estimators of the structural para-
meters of a DSGE models with the Gaussian distribution, and ascribe the discrepancy they
observe for some parameters to identification issues. Also Stoffer and Wall (1991) plot the
bootstrap distribution of the estimated parameters of a ‘nearly redundant’ ARMA (2,2) model
represented in state space form, see their Figures 1 and 2, and observe that the bootstrap
provides (p.1028) ‘vital information concerning the problems with model specification due to
near parameter redundancy when sample sizes are small’.

3There exist only few studies in the bootstrap literature where the applicability of the
bootstrap is discussed in situations where not all regularity conditions for inference are as-
sumed to hold. While the results in Moreira et al. (2004) suggest that the bootstrap might
be valid in some weak identification cases, more recently Dovonon and Gongalves (2017)
address the bootstrap estimation of the standard test of overidentification restrictions in the
generalized method of moments framework when the model is globally identified but the rank
condition is not valid, a situation referred to as lack of first-order local identification. Instead
Cavaliere et al. (2017) analyze bootstrap consistency in testing problems where a parameter
is on the boundary of the parameter space.



Ravn (2013) and Stock and Watson (2018), Angelini et al. (2021) formalize a
boostrap-based test of instrument relevance.

1.2 STRUCTURE OF THE PAPER

This paper is organized as follows. Section 2 introduces the state space repre-
sentations and summarizes the assumptions under which the QML estimator
of the parameters is asymptotically Gaussian. Section 3 discusses bootstrap
inference and Section 4 presents our bootstrap-based test of model misspec-
ification. Section 5 explores the finite sample performance of our test by a
set of Monte Carlo simulations based on Guerron-Quintana et al. (2013)’s
small-scale monetary DSGE model. Section 6 applies Guerron-Quintana et al.
(2013)’s DSGE model to U.S. quarterly data and investigates the reliability of
Gaussian asymptotic inference. Section 7 contains some concluding remarks.
Notation, technical proofs and additional Monte Carlo and empirical results
are provided in an online Supplementary Material, SM henceforth.

2 REPRESENTATIONS, ASSUMPTIONS AND ASYMPTOTIC
INFERENCE

In this section we focus on models admitting a state space representation that
can be cast in the form:

Zt = A(Q) Zt—l -+ B(Q) Wt (1)
nyx1 NyXny nyX1 Nz XN NwX1

ye = C(0) Zy1+ DO) w . (2)
nyx1 nyXnz nzx1 Ny XMy Nw X1

known as the ‘ABCD representation’ (Fernédndez-Villaverde et al. 2007). Here
Zy; is a n, x 1 vector of endogenous state variables, y; := (y1,4, Y2z, - - - ,yn%t)’
is a ny x 1 vector of (demeaned) observed variables and w; is a n,, X 1 vector
of shocks with covariance matrix ¥, := ¥,,(0), where ¥,(0) can be diagonal
or ‘full’. The matrices A(#), B(#), C(0), D(6) and X,(#) depend nonlinearly
on the ng x 1 vector of (time-invariant) parameters § € © (O being a compact
subset of R™). The true value of 6 is denoted by 6. (Bootstrap) inference on
0o is the object of interest of this paper.

The state space representation in (1)-(2) is general enough to cover DSGE
models, VARMA models and dynamic factor models. Given a sample of T
observations {y1, ..., yr}, an equivalent representation of (1)-(2), useful for es-
timation purposes, is the innovation form which, for t = 1,...,T — 1, can be



written as

Zisrjp = AO)Zy + Ki(0) e (3)
Yi+1 = C(H)Zﬂt + €41 (4)

where K;(0) is the Kalman gain, ¢, = y; — C’(G)ZAt_l‘t_l are the innovation
errors with covariance matrix X ;11 (¢), and Zt|t defined as 2t|t = E(Z; |
Fy) for FYy = oy, ..,y1) € F_ o The initial condition Zy); is fixed in
the statistical analysis. The mapping that links the parameterization (A(9),
B(0),C(0), D(0), ¥,(0)) in (1)-(2) and the parameterization (A(9), K.(0),
C(0), Xe+1(0)) in (3)-(4) is explicitly derived in Hansen and Sargent (2005).
The covariance matrix .41 (6) in (3)-(4) obeys

Sert1(0) = C(0) Py (0) C(0) + D(0)S.,(0)D(0) , t=1,...,T—1  (5)

with Py, (0) :== E((Z; — ZAt‘t)(Zt — Zt‘t)’ | /) and Py|p being given. In general,
the matrices ¥, (0), K¢ (0) and Py, () in the innovation form are updated
recursively through the standard Gaussian Kalman recursions, and due to
regularity conditions stated below, as t grows, these matrices converge (expo-
nentially fast) to time-invariant counterparts ¥, (6) and K (6) and P (). The
corresponding time-invariant (steady state) innovation form (Anderson and
Moore 1979; Hansen and Sargent, 2005) is

Zivp = A0 Zy+ KO)ern (6)
Y41 = C(G)Zt|t+€t+1' (7)

In (6)-(7), K(0) is the steady state Kalman gain and the innovation errors
€ = Yt — C’(H)ZAt,l‘t,l can be interpreted by considering the quantity Zt‘t =
E(Z | F{_.) as the optimal predictor of Z;, based on the filtration F}_ :=
o(Yty .-, y1,-..). The (steady state) innovation variance is therefore . (0) :
E (e:€;). Hereafter we call the representation (6)-(7) ‘AKC form’.

We now consider, in Assumptions A1-A5 below, a set of regularity condi-

tions on the state space model which permit ‘standard’ asymptotic and boot-

strap inference on the parameters 6.

AssuMPTION A1l. For every 6 € O:
(i) For all t, s, E(w;) =0, E(wwh) =X, (0)1(t = s).
(ii) For every z € C, det (I, — A(f) z) = 0 implies |z| > 1.
Assumption A1(%) requires the shocks w; to be white noise with uncondi-

tional covariance matrix ¥, (0). Assumption Al(7i) implies that the matrix
A(0) in (1)-(2) is stable (i.e. with eigenvalues inside the unit disk) and, com-



bined with Assumption A1(%), that the stochastic process that generates {y;}
is covariance stationary and ergodic. This condition subsumes that all the nec-
essary variable transformations have been performed such that the variables
of the state space model are stationary. The stability condition in Assumption
A1(ii) guarantees that the AKC form (6)-(7) can be written as the innovation
form (3)-(4) with the Kalman gain K;(#) and the innovation covariance ma-
trix Xc ;11 (0) replaced with their steady state counterparts K (6) and X (6),
respectively. As in Komunjer and Ng (2011, p.2007), we also consider the
following assumptions that guarantee the (population) local identifiability of

6.

AssumpTION A2. With A (0) := (vec(A(0))',vec(K(0))',vec(C(0)), vech(3(0))"),
it holds that, for every 6 € ©:

(i) A (0) is continuously differentiable on ©;

(ii) D (0) ¢ (0) D ()" is nonsingular;

(iii) The matrices

(K (0),A(0) K (0), ..., A1 (0) K (9))
0) C (0, ..., A" (0) C (6))

—~~
Q
—~
s
~—
=~
—~~

have full row rank.

AssuMPTION A3. Define the matrix

QecldO) 4 (0)' @ I, — I, ® A(0)

8116(?(90(9)) /

A (0) = 8’[}66‘?%(6)) r (0) “ Inz
Ovec(Xe (0
S Oy (ny+1)/2)xn2

It holds that A (fp) has full column rank ny + n? and is regular in the neigh-
borhood Ns(0p) := {6 € © : ||6 — 6p]| < §} for some § > 0.

Assumption A2(i) is a standard differentiability condition. Assumption
A2 (ii), along with Assumption A1(ii), ensures that the covariance matrix asso-
ciated with the innovation errors in system (6)-(7) exists. Assumption A2 (%ii)
ensures that the system in (6)-(7) is ‘minimal’, in the sense that Z; does not
contain more states than strictly necessary to fully characterize the dynamics
of the system. Minimality mimics the left-coprime condition typically imposed
on (or assumed in) VARMA processes (see e.g. Liitkepohl, 2005, p. 452). Im-
portantly, Assumption A2 implies that 3 admits a Wold representation in
terms of €, specifically

ye = He (L, 0o) & (8)



where

He(2,0) = In, + C (0) (In. — A(0) 2)"" K (6) (9)

is square and invertible for |z| > 1, a condition known as left-invertibility (Ko-
munjer and Ng, 2011). In this case, the innovations ¢; in (8) are fundamental
(meaning that €; is spanned by .7-"5{ _ o) and have nonsingular covariance matrix
Ye(0) for every 6.

Assumption A3 is a necessary and sufficient rank condition for identification
which ensures that 6g is locally identified from the complete set of autocovari-
ances I'y, := Cov(ys, y1—x), k = 0,£1, ..., of {y;}; see Definition 1 in Komunjer
and Ng (2011) or Definition 1 in Qu and Tkachenko (2012) for an equivalent
formulation in terms of the spectral density of {y;}. Komunjer and Ng (2011)
show that the system information matrix is nonsingular iff the rank condition
in Assumption A3 holds. Another implication of Assumptions A2-A3 is that,
for all 6 # 6y in the neighborhood N5(6p) := {0 € O : ||0 — 0| < ¢} for some
0 > 0, it holds that H.(z,0) # H(z,0p) on a subset of {z € C : |z| = 1}
of positive Lebesgue measure. This condition is crucial to establishing the
asymptotic properties of standard and bootstrap estimators considered in the
paper, denoted with 61 and 9*T, respectively.

It is worth stressing that the necessary and sufficient conditions in Assump-
tion A3 refer to the (population) local identifiability of 6, not to its global
identifiability.*

In order to derive the asymptotic properties of 9T, we also introduce some
conditions on the innovation errors and on the smoothness of the function
A(0) = (vec(A(B)),vec(K(0)),vec(C(0)),vech(E(0))). Assumption A4
below involves the higher-order moments of the innovation errors €; := €; (6p)
evaluated at the true parameter value 6y in the AKC form representation
where, by construction, E(e; | F{ 1 ) = On,x1 (as.), hence {e,F/} is a
martingale difference sequence.

AsSSUMPTION A4. The innovation errors ¢ associated with the AKC form in
(6)-(7) satisfy:

(i) E(eey | Fiy—l,l) = 3 (0o) (a-s.);

(ii) E|let||” < oo for some v > 4.

Assumption A5 focuses on A (6).

AssumpTION Ab5. The function A (6) is thrice differentiable in the neighbor-
hood Ns(6g) := {0 € © : |0 — || < &} for some § > 0.

*We refer to Qu and Tkachenko (2017) and Kociecki and Kolasa (2018) for global identi-
fication in a class of models which can be represented as in (1)-(2).



Assumption A4 (i) rules out conditional heteroskedasticity,> while Assump-
tion A4 (i) ensures that the innovation disturbances €; have finite fourth-order
moments. Assumption A5 is a technical condition which extends the differ-
entiability of the function A (f) up to the third-order in the neighborhood
Ni(60).

Throughout the paper we consider the case n, > n,, which implies that
there are at least as many shocks as observable variables. This is known as
‘nonsingular case’, see Komunjer and Ng (2011); models for which n, < n,
can be covered by adding artificially n, := n, — n, measurement errors vy
and rewriting system (1)-(2) by replacing w; with the n,-dimensional vector
ug := (wy, v;) (ny:=ny + ny,) so that nonsingularity is automatically restored.

We now briefly discuss the estimation of the structural parameters 6. This
is a necessary step in order to prove the bootstrap consistency in state space
models for which standard asymptotic inference applies. Let L7 (6) be the
log-likelihood function computed from system (3)-(4), as given by

Ly(0) ==Y £:(6) (10)

where, under the auxiliary assumption of Gaussian innovation errors,
C(0) == Uye | FiLy150) = —{log det(See (0)) + € (0) Zer (0) " e (0)} (1)

with ¢ (f) denoting the ¢; term already defined in (3)-(4) (we now stress ex-
plicitly its dependence on #). The QML estimator of 6 solves the problem

Or = arg max Lr(0) (12)

®The conditional homoskedasticity hypothesis in Assumption A4(i) implies that also the
shocks w; in the original formulation (1)-(2) of the state space model are conditionally ho-
moskedastic. To see this, observe that from the innovation form (3)-(4) and from standard
Gaussian Kalman recursions it is possible to derive the expression

E(ee; | Fiy 1) = C(O)Provje-1 (0) C(0)' + D(O) E(wew | FYy 1) D(0)

which, as t grows and P;_1;;—1 (§) collapses to P (6) in the time-invariant (steady state)
innovation form, qualifies to

Elerel | Fra) = CO)P (6) C(6) + D(O)E(wrsr | Fy 1)D(6)'

The last expression shows that Assumption A4(i) could be alternatively derived by assuming
conditional homoskedasticity for the shocks wy in (1)-(2). It is worth remarking that specifi-
cation tests can be naturally implemented after estimation of the innovation form (this would
essentially require to test for conditional homoskedasticity and for higher order moments).
For these reasons our preference is to place assumptions on €;, rather than on wy.

10



where 7 CO is the user-chosen optimizing (compact) set and Lz () is maxi-
mized recursively through Gaussian Kalman filtering.

The proposition that follows establishes the convergence of O and Wy :=
TY 2(@T — 0p). We implicitly maintain the assumption that the user-chosen
maximization set 7 belongs to the neighborhood N5s(0y) of 6y. See Lemma 1
in Qu and Tkachenko (2012) for an equivalent set of conditions. Proofs are in
the accompanying supplement, SM.

ProOPOSITION 1 Consider the ABCD form in (1)-(2), the QML estimator of
0 defined in (12) and Assumptions A1-A4. Then, as T — oco:

(i) 60 2 6y;

(ii) Provided 0y € int(7T), the interior of T, and Assumption A5 holds, then

Wi = TY2(07 — 00) 5 N (Onyx1, ),

where Qo 1= (AoBalA{))_l with By := limp_, T_ll/))U’T, Bo,r := E(VoL7(0p)x
V@LT(H())/), and .A() = hmT—>oo TﬁlAO,T, .A()’T = E(—VgeLT(go)).6

Some remarks are in order.

REMARK 2.1 Proposition 1 ensures that when the state space model is cor-
rectly specified (up to the probability model), O is consistent for 8y and Wy :=
T'/2(07—6y) is asymptotically Gaussian. When the innovation errors are actu-
ally Gaussian, the information matrix equivalence Ag+By = 0 holds and the as-
ymptotic covariance matrix of Wz collapses to Qg := Aj . Consistent analytic
standard errors for the estimated parameters are taken from the main diagonal
of the matrix Qp := ATBT*IAT, where By 1= T! Zthl Vgﬁt(éT) X Vgét(éT)’
and AT =71 Zle Vgggt(éT)

REMARK 2.2 Proposition 1 is based on a maintained assumption of ‘correct
specification’ of the state space model. Actually, the convergence facts in
Proposition 1 can be extended to the case in which the true parameter value
6o is replaced with a vector §; interpreted, along the lines of White (1982),
as the (non-random) ‘pseudo-true’ parameter value. Indeed, there are forms
of misspecification of the state space model which affect the consistency of
f7 but not the asymptotic normality of T'/2(07 — 6;) (e.g. the omission of
important propagation mechanisms or relevant variables, the imposition of

SUnder Assumptions A1-A5, the incremental observed information matrix Br =
T3, Vole(07) % Voli(07) (evaluated at O7), and the observed information matrix
Ar = -7 Zthl Vggét(@T) (evaluated at @T), estimate By and Ap, respectively. The
asymptotic variance matrix of éT can be estimated by QT = ATBTAAT.

11



invalid parametric restrictions, etc.). The diagnostic test we develop in the
next sections is designed to have power against forms of misspecification of the
state space model which depend on violations of the conditions in Assumptions
A1-A5, therefore it has no power against other types of model misspecification.

An appealing feature of Proposition 1 is that the asymptotic normality of
the QML estimator of 6 is derived by circumventing some of the involved regu-
larity conditions considered by e.g. Ljung and Caines (1979), Caines (1988) or
Harvey (1989, pp.128-130), which can be hard to check in the class of dynamic
models used in macroeconomics and finance.

3 BOOTSTRAP INFERENCE

In this section we discuss bootstrap inference. We introduce our main boot-
strap algorithm which defines the bootstrap parameter estimator, 9;, and
then discuss first-order validity of the bootstrap and consistency of the related
bootstrap standard errors. The use of the bootstrap as a diagnostic tool is
considered separately in Section 4.

Consider the innovation form representation in (3)-(4). As in the previous
section, A7 denotes the QML estimator from (12), obtained on the original
sample {y1,92,...,yr}. The bootstrap analog of @T, @;, is defined through
the following nonparametric algorithm, adapted from Stoffer and Wall (1991,
2004); see also Berkowitz and Kilian (2000). Henceforth, with “*’ we denote
bootstrap analogs of estimators and test statistics.”

ALGORITHM 1 (NONPARAMETRIC BOOTSTRAP)

1. Given the innovation residuals & := y; — C (@T)Zt,l‘t,l and the estimated

covariance matrices X = X ;(07), construct the standardized innova-

tions as
=S¢, t=2,..T, (13)

where ¢§, t = 2, ..., T, are the centered residuals € := &—(T—1)"! 23:2 &8

2. Sample, with replacement, 7' — 1 times from {és,...,ér} to obtain the
bootstrap standardized innovations {e3, ..., e7 };

3. Mimicking the innovation form representation in (3)-(4), the bootstrap

"Matlab codes for the computation of the bootstrap estimator are available upon request.
$We strictly follow Stoffer and Wall (1991) with this standardization.
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sample {y7,v3,...,y}} is generated recursively, for t =1,...,7 — 1, as

Zivasr | = [ AO7) Onoxn, Zij +< e ) iifﬂe:—kl
yzk-t,-l C(QT) Onyxny yf Iny ’
(14)

with initial condition Zi‘“ = 21‘1 and ¥ = y1;

4. Using the bootstrap sample {y}, y3,...,y}}, the bootstrap estimator 9; of
the parameters of the DSGE model is given by

O = arg max L7(0) (15)

where L%(0) is the bootstrap analog of Lp(#), defined by L3.(6) :=
I 0x(0) where, for t =1,..., T,

0;(0) := —{log det(Ses (0)) + €' Xc 0) Lery, (16)

and € := € (0) := yf — C(0)Z}_y,_;-

With 7 as defined in Algorithm 1, the distribution of W3 := T2 (6 —07)
conditional on the data, say G%(-), is used to approximate the (unknown)
distribution of Wr = T1/2(9T —by), say Gr (+).

Although the conditional cumulative distribution function (CDF) G%. (+)
is unknown, in practice, as is standard, it can be approximated by repeating
Steps 2-4 an arbitrarily large number of times, say N, such that a set of
independent and identically distributed bootstrap realizations of A7, say {9;:1,
9;22, ,Q*T N}, is obtained. Then, G% (-) is approximated by the empirical
distribution function

Gy (@) = 3 T(Wi, <) (17)

where I(-) is the indicator function and W7, := Tl/Q(@;:b — 67). By the
Glivenko-Cantelli theorem, sup,cp |G¥. () — G1 ()| — 0 as. as N — oo.
The bootstrap misspecification test we discuss in Section 4 will be based on
B < N bootstrap realizations {9;11, 9;2, ...,9*T:B} (or {W7.y, ..., Wi g}).

REMARK 3.1 The algorithm is a nonparametric, or i.i.d., bootstrap scheme,
in the sense that in step 1 the bootstrap innovations are obtained as random
draws from the standardized residuals é;, t = 2,...T. However, if the normality
hypothesis holds true, one may alternatively employ a parametric version of the
bootstrap algorithm, which simply requires ignoring steps 1 and 2 and starting
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from the step 3, with the e;’s now taken as independent random draws from
the N(0n,x1, In,) distribution.

REMARK 3.2 An alternative algorithm to our i.i.d. bootstrap is the wild
bootstrap, which allows to mimic possible (conditional and unconditional) het-
eroskedasticity patterns present in the original data (e.g. when the conditional
variance E(ee; | F{ 1) in Assumption A4(i) might change over time); we con-
jecture that results in Gongalves and Kilian (2004) for the case of stationary
univariate autoregressions carry over the state space framework. The wild
bootstrap shocks would be generated in Step 3 as

et = Wy, t=2,....T

where wj is an i.i.d. scalar sequence with 0 mean, unit variance, and finite
fourth order moments. Using the wild bootstrap, the standardization of the
residuals in (13) (Step 1) is no longer necessary (since, conditionally on the
original data, E* (e}, el ;) = €/¢{’) and, consequently, the recursion in (14) can

be replaced by the simpler recursion

t*H‘tH = A@T) On. xn, t*‘t +<Kt(éT))effut+1
y;tk+1 C(HT) Onyxny y}f Iny ’

fort =1,...,T — 1, again initialized at Zi‘\l = Zl‘l, Y =u.

The bootstrap implemented as in Algorithm 1 above is first-order valid.
Specifically, we have that under regularity conditions the distribution of W7 :=
T 2(9; 9T) conditionally on the original data, converges in probability to
the asymptotic distribution of Wy := T 2(0T — 0p); hence, the bootstrap
replicates the asymptotic distribution of the original estimator. Similarly, the
bootstrap standard errors converge to the QML standard errors. The technical
result is provided in the following Proposition, whose proof may be found in
SM. However, in order to establish bootstrap consistency we also need the in-
novations €; to possess finite eigtht-order moments. We strengthen Assumption
A4 accordingly.

AssumMPTION A4’. Assumption A4 holds for some v > 8.
PROPOSITION 2 Consider the state space model in (1)-(2), with fixred zmtml

conditions Zl|1 With 07 as defined in (12) and its bootstrap analog 9T as
defined in Algorithm 1, under Assumptions A1-AS8, A}’, A5, as T — oo:

O — éT g’p Ongx1 (18)
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* AN— * d*
R =00 PWr S N (Ot Iny) - (19)

Moreover,
Q% - QT p_>p OneXne (20)

where QT = ApBy VAL, By = T 0L Vol (0r) x Voli (0r) and Aj =
=T~ Y04y Vigli (07).

Proposition 2 is novel and generalizes Stoffer and Wall’s (1991) main result
on state space models by formalizing the consistency of the bootstrap under
different conditions relative to those in Ljung and Caines (1979).”

A remark on the construction of boostrap standard errors is in order.

REMARK 3.3 Given the N bootstrap realizations {@*T:l, @*T:Q,...,@*T:N}, stu-
dentized bootstrap confidence intervals for the parameters can be constructed
in the usual way. Let ; be the i-th element of 0, i = 1,...,ng, 0,7 the cor-
responding QML estimate with associated standard error s(@zT), and 9:T:b its
bootstrap QML analog with associated standard error S(GlT ») obtained from
the b-th bootstrap sample, b = 1,..., N, see the matrix Q in Proposition 2.
Compute the bootstrap t-statistic as t}, := s(@jT:b)_l(éjT:b — 0;7); then the
studentized bootstrap confidence interval for 6g; is given by [élT fci_n /28(97;T),
i — cj]/?s(éiT)], where ¢} , and ¢]_, , are the n/2 and 1 — n/2 quantiles of
{t:q1, .., ti.n}. Likewise, the percentile bootstrap confidence interval for g; is
given by the 1/2 and 1 —1/2 quantiles of {#;7.;, Gi.o, ..., Oip.y }, denoted éZn/Z
and 9;1_” /2, respectively. Finally, the basic bootstrap confidence interval for

Ak

fp; is given by [29iT - 93,1777/27 20;r — 91’,77/2]-

4 BOOTSTRAP DIAGNOSTIC TEST

In the previous section we have established the validity of bootstrap inference
in state space models under a set of regularity conditions as stated in Proposi-

9F(3r sufficiently large N, one can always obtain an arbitrarily accurate estimate of
Var*(0r) from the bootstrap realizations Or.1, 0.2, ..., Op.n5, by computing

— N N
=, =k 1 ~ s
Var *Nz:: 9Tb—9T OT:b_gT) , 9T3:N ;OTIJ

Squarcd bootstrap standard errors correspond to the elements on the main diagonal of

Var* (QT) hence practitioners can skip the direct evaluation of the Hessian. Our simula-
tion esperiments (available upon request) show that under the conditions of Proposition

2, the standard errors obtained from Var* (GT) approximate fairly well the standard errors
obtained from €% (hence the analytic ones obtained from Q7).
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tion 2. One key result is that, under such conditions, the bootstrap estimator
is asymptotically normal. As a consequence, lack of normality of the bootstrap
estimator, in large samples, may indicate that some of the regularity condi-
tions are violated. In DSGE models this mostly happens when the structural
parameters are weakly identified; see e.g. Guerron-Quintana et al. (2013),
Andrews and Mikusheva (2014, 2015) and references therein.

The null hypothesis we have in mind is that the regularity conditions under
which Proposition 2 holds are valid; more precisely, that the statistic R} in
(19) is asymptotically Gaussian, conditional on the data. We want to show
that B < N bootstrap repetitions out of the N from Algorithm 1 can indeed
be used to form a diagnostic test which evaluates model misspecifications along
directions that make R} asymtotically non-Gaussian. In particular, our idea
is to assess whether the deviations of R} from normality are large enough to
reject the null.

To fix ideas, let G (z) := P*(R} < ) = P(R} < z | data) denote the
CDF (conditional on the original data) of the normalized bootstrap estimator
R} = Q;l/ *TY2(6—07), see (19), which without loss of generality we assume
to be scalar (like in the case where all structural parameters of the state space
model but one have been calibrated). Under the conditions of Proposition 2,
R, converges to a standard normal random variable. That is, G’(-) satisfies

sup |G (z) — @z ()| —p 0

z€eR
as T — oo. Since this is an asymptotic result, for T fixed the distribution
G%. (conditional on the original data) will in general deviate from the normal
even in cases where Proposition 2 holds. Therefore, our idea is to evaluate the
significance of such deviations.

It would be tempting to build a test based on G7.(z) — ®z (x); however,
the distribution of this quantity is unknown even in cases where the bootstrap
admits an Edgeworth expansion of G%.(z) — ®z (x) of order O, (T_1/2). Hence,
we take an alternative route based on the bootstrap realizations, i.e. on B i.i.d.
draws of (conditional on the data).

Let R}.q, ..., R}. 5 denote an i.i.d. sample of B bootstrap realizations of R7.
Since the distribution G%. (z) of R}, is unknown, it is customary to estimate
it from Rj.,..., Ry.p using G p(z) :==B~1 7 | I{R},, < x}, see (17). For
any x, deviation of G p(x) from the normal distribution can be evaluated by
considering

Grp(r) — Pz(2). (21)

To derive a proper normalization for (21), notice that the (conditional) inde-

16



pendence of R}, ..., Ry 5 implies that, as B — oo (keeping 7" fixed)
B (G p(x) = Gi(x)) % N (0. Vi (2)) (22)
where Vr(z) := G%(x) (1 — Gi(x)). Therefore, we may consider the statistic
dr,p(x) = BY?Vp ()" 2(Gh p(z) — ®z(x)), (23)

where Vip(z) is a consistent estimator of Vp(z) (for instance, one may con-
sider Vp(z) = Gr y(@)(1 — G} n(x)) for an arbitrary large value of N, or
can be simply set to its theoretical value under normality, i.e. VT(Q?) =
D(2) (1 - D).

Statistic (23) captures the (normalized) distance between the estimated
(over B repetitions) bootstrap distribution G7 p(z) and the normal distribu-
tion. Its asymptotic distribution under the assumptions of Proposition 2 can
be investigated by noticing that dr p(z) can be decomposed as:

drp(x) = BY?Vp(z) *(Ghp(x) — Gi(x)) (24)
+ B2V (2) V(G (z) — D y(x)).

For T fixed, by the CLT in (22) the first term on the right-hand side of (24)
converges, as B — 0o, to a N (0, 1) variate regardless of the validity of the as-
sumptions underlying Proposition 2. Second, suppose that G.(z) — ®z(x) ad-
mits a standard Edgeworth expansion such that G (z) — @z (z) = O, (T~/?),
see e.g. Bose (1988) and Kilian (1998). Horowitz (2001, p. 3171) notices that
an Edgeworth expansion such that Gi(z) — ®z(z) = O, (T -V ?) is the typical
case in the presence of asymptotically normal statistics. This would imply that
the second term in (24) is of O, (Bl/ 21 2) and hence converges to zero in
probability provided B = o(T") as both B — oo and T" — oco. Summing up,
under the convergence facts in Proposition 2 and G (z) —®z(z) = O, (I'"/?),
dr p(z) is expected to be asymptotically N (0,1) provided

T,B — o jointly and BT ™! = 0(1). (25)

Conversely, if (19) in Proposition 2 does not hold, then G%.(z) — ®z(x) does
not converge (in probability) to 0, the second term on the right hand side
of (24) does not vanishes asymptotically and hence dr p(x) diverges at the
rate of B2 as B,T — oo. This is e.g. what we expect to happen when
Wy =TV 2(@T — 0p) is not asymptotically Gaussian, which includes e.g. the
case where 6 is unidentified or weakly identified, the case where 6y lies on
the boundaries of O, the case of non stationary variables, etc. This result is
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formalized in the next theorem.

PROPOSITION 3 (BOOTSTRAP DIAGNOSTICS) Consider the state space model
in (1)-(2) under Assumptions A1-A8, Aj’, A5, with 6 one-dimensional, and
assume that for some o > 0,

Gr(z) — ®z(x) =0, (T77). (26)

Furthermore, for x € R and some positive B, let GT g() = B0 {R, <
x}, where Ry, b=1,...,B, are i.i.d. draws from G(x), the distribution of
R} conditional on the original sample. Finally, let

dr p(x) = BY*Vp () /(Gh g () — 22(x))
where Vip(x) := ®5(x)(1 — D4 (x)). Then, for T, B — oo jointly and
BT™2* =0 (1), (27)

it holds the convergence

*

drp(x) T N(0,1).
Conversely, if G (x) —p G (x) # ®z(x), dr.g(x) diverges at the rate of BY/2.

Notice that a test based on dr g(x) is simply a normality test based on the
B bootstrap realizations of the QML estimator of 8. Such B realizations are
usually available from the N used e.g. to compute bootstrap standard errors
for the structural parameters, critical regions or p-values, see Section 3, hence
no extra computational effort is required to compute the test.

Few remarks are in order.

REMARK 4.1 In (26) the notation O, (T~%) is consistent with the fact that G7.(z)
is by definition a function of the original data only. In the standard case where
the bootstrap admits an Edgeworth expansion such that a in (26) equals 1/2,
the number of bootstrap repetitions used to compute the test should not be
large compared to T, i.e. BT~! should be of order o(1). In general, if the
ratio BT~® does not converge to zero, the normalized distance dr p(z) in
Proposition 3 does not converge to the Gaussian distribution, even when the
bootstrap is consistent. This means that in practice the ratio B/T must be
selected carefully in finite samples in order to reduce the risk of false rejections.
In the next sections and SM we provide some practical examples which show
that even in relatively small samples the suggested test detects violations from
asymptotic normality with reasonable finite sample power.
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REMARK 4.2 Proposition 3 covers the case of a simple test based on the CDF
of the normal distribution at a given point x. Different normality tests could
be employed as well, following the same principle; see the next sections where
different (univariate and multivariate) normality tests will be considered and
applied to small scale monetary DSGE models.

REMARK 4.3 When 6 and R} are ng x 1 (ng > 1) it is possible to associate
a quantity like dr p(z) in (23) to any component of the vector R, hence
our diagnostic test can be computed by considering multivariate normality
tests for R} as well as univariate normality tests on the single components.
Our suggestion is to look at the univariate normality tests conditional on the
outcome of the multivariate normality tests.

We explore the empirical performance of our bootstrap approach in Sec-
tions 5 and 6 below.

5 MONTE CARLO STUDY

In this section we investigate the empirical performance of our diagnostic test
on simulated data. The reference model is the state space form associated
with Guerron-Quintana et al. (2013)’s DSGE model. Section 5.1 describes the
design and Sections 5.2-5.3 summarize the results obtained with two versions
of the model, one where the estimated parameter is strongly identified, and
the other where the estimated parameters are, according to the literature,
suspected to be weakly identified.! Additional Monte Carlo results based on
the ARMA(1,1) model are confined in SM.

5.1 DESIGN

The state space model is taken from the first-order equilibrium of the small-
scale DSGE model analyzed in Guerron-Quintana et al. (2013), simulation
design 1; see also Guerron-Quintana et al. (2017). The structural equations
are given by:

T = BEmip + kg (28)
Tt = PrTt-1 + (1 - pr)gbﬂﬂt + (1 - pr)¢mxt + Orért (29)
Ty = Etxt+1 — O'(’l"t — Et77t+1 — Zt) (30)

""DSGE models have been extensively used in the econometric literature to study identi-
fication issues, see among others, Komunjer and Ng (2011), Qu and Tkachenko (2012), Qu
(2014) and Castelnuovo and Fanelli (2015).
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zZr = pZthlﬁ’O'zé‘z’t. (31)

Equation (28) is a purely forward-looking New-Keynesian Phillips Curve
(170{)&17@3 ) U(E‘:fe)), 7 is the inflation rate and x; the output
gap; (29) is the monetary policy rule, 7 is the policy rate and €, is monetary

policy shock assumed to be i.i.d. with unit variance; (30) is a forward-looking

with slope x =

output-gap equation; finally, (31) maintains that the aggregate demand distur-
bance (z) is an autoregressive process driven by i.i.d. shock e, ; with unit vari-
ance. The whole vector of structural parameters is (5, o, w, 0,60, p,, o, b, P,
o2,02).

The structural model (28)-(31) can be solved for rational expectations and
the implied equilibrium can be represented in the state space form (1)-(2) with
associated AKC form as in (3)-(4). Our Monte Carlo experiments consider
two versions of this model, denoted GQ-DGP1 and GQ-DGP2, respectively.
In GQ-DGP1 the estimated structural parameter is the probability of not
adjusting prices for firms, 6;:=(a) (ng,=1), and all the other parameters are
calibrated at their DGP values as in Guerron-Quintana et al. (2017). In GQ-
DGP2, the estimated structural parameters are all policy rule coefficients 05 :=
(Pys Orr @) (ng,=3), and all the other structural parameters are calibrated at
their DGP values as in Guerron-Quintana et al. (2017).

For both DGPs we generate samples of length 7" = 100 and 500 from the
AKC form (3)-(4) M = 2000 times, assuming non-Gaussian shocks. More
precisely, for each structural shock of the model we use independent Student-t
distributions with 5 degrees of freedom. The initial condition Z;|; is fixed to
zero. For each replication, a sample of T" 4 200 observations is actually gener-
ated and the first 200 observations are then discarded. Estimation is carried
out by combining the Kalman filter with the ‘BFGS’ likelihood maximization
algorithm, imposing bounds on the permissible parameter values and deter-
minacy.'! Bootstrap estimation follows the algorithm described in Section 3.
Bootstrap confidence intervals are computed as explained in the Remark 3.3,
using N = 499 bootstrap replications.

Assumptions A1-A5 are satisfied for GQ-DGP1. As concerns GQ-DGP2,
based on the empirical evidence reported in Mavroeidis (2010), Qu and Tkachenko
(2012), Qu (2014) and Castelnuovo and Fanelli (2015), we expect some of the
policy rules parameters in 03 := (p,., ¢, ¢,) to be weakly identified with pos-
sible consequence on the validity of standard asymptotic inference. It is worth

"'The condition ¢, > 1 sufficies to ensure determinacy in this DSGE model. The de-
terminacy condition ensures that the rational expectations solution of the structural model
(28)-(31) can be represented in the form (1)-(2) without involving ‘additional’ parameters
other those considered in the analysis that follows, or ‘additional’ shocks other (.fs,«,,hsz,t)'7
see e.g. Castelnuovo and Fanelli (2015) for details.
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observing that in this state space model it is not possible to directly tie the
strength of identification to a local-to-zero embedding as we can easily do e.g.
for the class of ARMA(1,1) models analyzed in SM. While this fact represents
a challenge to the reliability of our diagnostic test, we do not need to take a
stand a-priori on the directions of near identification or unidentification.

5.2 GQ-DGP1

Results obtained from GQ-DGP1 are summarized in Tables 1-2, and in the
left-panel of Figure 1. Table 1 reports estimation results and Table 2 the
diagnostic tests. Figure 1 reports the fan chart of the empirical cumulative
density functions (CDFs) of the bootstrap realizations of the QML estimator
(across Monte Carlo simulations) of the parameter 6;:=(«) used to compute
the tests, see Cavaliere and Georgiev (2020) for details.

From Table 1 we observe a situation in which the bootstrap QML estimates
and standard errors of f1:=(«) tend to closely replicate their non-bootstrap
analogs in line with the results (18) and (20) in Proposition 2. The lengths
of 90% bootstrap confidence intervals for « track closely their non-bootstrap
counterparts. The empirical coverage probabilities of 90% bootstrap confidence
intervals tend to nominal size as the sample length increases.

For T' = 100, the empirical coverage probability of the 90% bootstrap confi-
dence interval for #1:=(«) is comparable with the empirical coverage probabili-
ties reported for the strongly identified « in Table 2 of Guerron-Guintana et al.
(2017), who generate the data under Gaussian shocks. In Guerron-Guintana et
al. (2017), empirical rejection probabilities vary with the lag order of the VAR
model used to approximate the observable variables, the maximum horizon for
the impulse response functions used in the impulse response matching estima-
tion exercise, and the choice of the weighting matrix (diagonal or optimal).
Our approach does not require any VAR specification, lag order and weighting
matrix. It can be noticed from Table 1 that the empirical coverage probabili-
ties of the 90% bootstrap confidence intervals are not inferior, on average, to
the coverages reported in Table 2 of Guerron-Guintana et al. (2017).

Table 2 refers to computationally straightforward versions of our tests of
model misspecification. The tests are designed to verify the asymptotic nor-
mality of the sequences {éiT:l, v 911 5}, where B < N is selected as detailed
below. The table reports the empirical rejection frequencies of Doornik and
Hansen’s (2008) multivariate normality test (DH),'? Jarque and Bera’s (1987)

2Since in GQ-DGP1 ng, = 1, the DH multivariate test of normality boils down to a
univariate test.
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univariate normality test (JB)!® and Shapiro and Wilk’s (1965) univariate
normality test (SW). All tests are computed at the 5% nominal level of signif-
icance. Recall that B, the number of bootstrap realizations used to compute
the misspecification tests, must be chosen to satisfy the condition (25) (see
Remark 4.1) and, therefore, should be small relative to T. We select B by the
practical rule: B :=int[(1/i)T%®], i = 2,3 which, as it will be shown below,
provides a reasonable compromise between size control and power increasing
with samples length. In practice, for e.g. T' = 100, the tests are computed by
using B = 19 and B = 13 bootstrap replications (out of the N = 499 used
to compute confidence intervals) of the QML estimator of the parameters,
respectively.

The left-panel of Figure 1 plots the percentiles of the empirical CDF of the
sequences {99{7@1, ...,91@ gt generated across the Monte Carlo simulations.
The graph confirms that the CDFs tend to normality as the sample size T
increases (and B/T remaining ‘small’).

Summing up, the results in Table 2 and the left-panel of Figure 1 appear
consistent with the result (19) of Proposition 2, i.e. they support the con-
vergence of the bootstrap QML estimator of the parameter 01:=(«) to the
Gaussian distribution. With the chosen rules for B, the empirical size of the
normality tests tend to fluctuate around the 5% nominal level of significance.
In general, size appears under control for all tests. Overall, the validity of stan-
dard asymptotic inference can safely be considered valid for this state space
model.

5.3 GQ-DGP2

Results obtained from GQ-DGP2 are also summarized in Tables 1-2 and in
the right-panel of Figure 1.

Based on the estimates in Table 1, we notice that regardless of the sample
size, the bootstrap standard errors of the QML estimator of the policy rule
parameters 6 := (p,, ¢, ¢,) tends to depart from the analytic standard er-
rors (i.e those taken from the diagonal of the matrix QT; see Propositions 1
and 2). The same phenomenon can be observed by inspecting the lengths of
the bootstrap and non-bootstrap 90% confidence intervals, especially for the
parameter which captures the policy response to inflation, ¢,. We interpret
these facts as prima facie evidence of discrepancy of the bootstrap distribution
of the QML estimator of 0 from its non-bootstrap counterpart.

The results of the asymptotic normality tests in Table 2, considered jointly

B3 Throughout the paper we apply a version of the JB test which does not incorporate
Kilian and Demiroglu’s (2000) correction.
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at the multivariate and individual levels, lead us to challenge the idea that
inference is standard in this state space model. This is seen from the rejection
frequencies of the normality tests which tends to increase with the sample size.
In general, the tests suggest deviations from the Gaussian distribution with
rejection frequencies of the DH multivariate normality test which lie in the
range 0.25-0.37 for T' = 100, and in the range 0.40-0.51 for T" = 500. The
rejection frequencies of the asymptotic univariate normality tests JB and SW
tend to approach one for 7" = 500.

The CDFs of the bootstrap distributions plotted in the right-panel of Fig-
ure 1 show that deviations from the Gaussian distribution are substantial and
persist when 1" increases. The graphs point out that deviations from normal-
ity are particularly marked for the parameters capturing the central bank’s
response to inflation and the output gap.

Overall, the simulation experiments based on model GQ-DGP2 confirms
that the bootstrap distribution of the QML estimator is very informative and
useful in this model. The policy rule parameters in equation (29) are weakly
identified so that in this estimated state space model inference on the structural
parameters cannot be conducted and interpreted ‘in the usual way’. Impor-
tantly, the test displays power against weakly identified parameters even in
relatively short samples (7' = 100), which means that practitioners can robus-
tify their inference by moving to the identification-robust methods discussed
e.g. in Dufour et al. (2013), Guerron-Quintana et al. (2013), Qu (2014) and
Andrews and Mikusheva (2015).

The simulation experiments discussed in this and in the previous section
suggest some simple practical rules-of-thumb that practitioners can follow to
interpret the outcomes of the normality tests. For instance, practitioners
should interpret the normality tests with caution when the rejection/non-
rejection of normality is associated with the observation of mild/sharp dif-
ferences between Hessian-based and bootstrap-based standard errors and con-
fidence intervals. Second, simulation results stress that one of the advantages
of our approach is that we do not need to take a stand on the directions of
(near) identification failures. In this respect, we suggest to primarily assess
the multivariate normality of @; and, in case or rejection, move to the uni-
variate normality tests in order to envisage the possible directions of (near)

identification failure.'4

4 Obviously, in order to assess asymptotic multivariate normality, alternative strategies
could be implemented based on the univariate asymptotic normality tests. In these cases,
while we know that there exists multivariate non-Gaussian distributions that have normal
univariate marginals, rejection of normality of a single component of 9; would suffice to
reject multivariate normality. However, strategies based on univariate normality tests entail
multiple testing problems that can be addressed through Bonferroni-type procedures. We
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6 EMPIRICAL ILLUSTRATION

In this section we take the state space form of Guerron-Quintana et al. (2013)’s
DSGE model (28)-(31) already analyzed in the Monte Carlo section to U.S.
data. The objective is to test the reliability of standard asymptotic inference in
two distinct versions of this model. We employ quarterly observations relative
to the ‘Great Moderation’ sample 1984Q2-2008Q3 (7=98). The starting date,
1984Q)2, is justified by McConnell and Pérez-Quirds (2000), who find a break
in the variance of the U.S. output growth in 1984Q1. The ending date is
instead motivated by the fact that, with data after 2008Q3, it would be hard
to identify a ‘conventional’ monetary policy shock with our structural model
during the well known zero lower bound episodes.

Based on an extensive literature, we can assume that the monetary DSGE
models is determinate on the Great Moderation period 1984Q2-2008Q3, see e.g.
Lubik and Schorfheide (2004), Castelnuovo and Fanelli (2015) and references
therein. This ensures that QML estimation based on the specification (1)-
(2) does not omit propagation mechanisms, ‘additional’ parameters unrelated
to 6 and additional shocks unrelated to the fundamental shocks that would
arise in the presence of multiple solutions. However, to check the performance
of our test in situations in which the estimated state space model might be
misspecified because of unaccounted shocks or unaccounted changes of regimes,
in the SM we estimate the model also on the ‘Great Inflation’ sample, 1954Q3-
1984Q1, and on the full sample, 1954Q3-2008Q3, respectively.

The two observable variables in y; := (7, ;)" are measured as follows. The
inflation rate, 7y, is the quarterly growth rate of the GDP deflator. The short-
term nominal interest rate r; is proxied by the effective Federal funds rate
expressed in quarterly terms (averages of monthly values). Data are collected
from the Federal Reserve Bank of St. Louis’ web site.

As in the Monte Carlo study, we consider two estimable versions of this
model. In the former, denoted GQ-M1, the estimated structural parameter
is the probability of not adjusting prices 6; := (a) (ng,=1), and all other
parameters are calibrated as in the Monte Carlo exercise. Based on Monte
Carlo results we expect standard asymptotic inference to hold in this model.
In the second, denoted GQ-M2, the estimated parameters are the policy rule
parameters 03 := (p,, ¢, d,) (ne,=3) and, again, all other parameters are
calibrated as in the Monte Carlo exercise. The Monte Carlo results in the
previous section and the available empirical evidence on U.S. quarterly data
suggest that the policy rule parameters might be poorly identified on ‘Great

refer to e.g. Looney (1995) for a practical treatment of how multivariate normality can be
assessed based on univariate normality tests.
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Moderation’ samples, see e.g. Mavroeidis (2010) and Castelnuovo and Fanelli
(2015). Hence, we expect standard asymptotic inference to be problematic in
model GQ-M2.

Estimation is performed by combining the Kalman filter with the ‘BFGS’
likelihood maximization algorithm maintaining a Gaussian distribution. In all
models, the bootstrap standard errors associated with the QML estimates of
01 = () and 0 := (p,, ¢y, ¢,) are computed by using N := 1999 boot-
strap replications and the algorithm summarized in Section 3. The bounds
on the permissible parameter values are specified as in the Monte Carlo ex-
15 Driven by the results of the Monte Carlo experiments, the rule
used to select the number of bootstrap replications in the diagnostic tests is
B =int[(1/i)T*5], i = 2,3; since T' =98, in practice this means using B = 19
and B = 13 replications of the QML estimator, respectively. The normality
tests are the same used in the Monte Carlo experiments (DM, JB and SW)
and are computed at the 5% nominal level of significance. Empirical results

periments.

are summarized in Table 3.

As regards model GQ-M1, we notice that bootstrap standard errors and
the associated 90% bootstrap confidence intervals for #; := («) are numer-
ically similar to the Hessian-based standard errors and the 90% asymptotic
confidence intervals, respectively. Our diagnostic tests indicate that asymp-
totic normality is strongly supported at the 5% level. The left panel of Figure
2 plots the CDF and the empirical probability distribution function (PDF)
(bottom panel) of the sequence {9;@1, e @I’T:B} (with B = 19) of the boot-
strap estimates of 0; := («), contrasted with the Gaussian distribution. The
graphical inspection seems to confirm the results of the tests. We can conclude
that in the estimated GQ-M1 model the conditions for standard asymptotic
inference are at work on the Great Moderation period. It turns out that the
reported asymptotic and bootstrap standard errors and asymptotic and boot-
strap 90% confidence intervals for the probability parameter of not adjusting
prices for firms can be considered highly reliable.

As regards model GQ-M2, from Table 3 we observe a substantial discrep-
ancy between the bootstrap QML estimates, bootstrap standard errors and
their non-bootstrap counterparts. This is particularly true for the policy pa-
rameters ¢, and ¢,. For this model, the combination of the outcomes of the
multivariate and univariate normality tests point towards the rejection that

15 Actually, in order to avoid computational issues in the likelihood maximization, the
interval of permissible parameter values for the policy parameter ¢ is (0.5, 5) rather than
(1, 5) (that would ensure determinacy). Estimation results on the Great Inflation sample,
however, show that the QML point estimate of ¢, lies in the determinacy region even in
the absence of any restriction. As our diagnostic test will show, the main issue with the
parameter ¢_ is weak identification.
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that standard asymptotic inference holds. The multivariate DH test rejects
normality at the 5% level of significance. The univariate tests: (i) seem to
support normality for the estimator of the inertia parameter p,; (ii) are more
controversial for the estimator of the response to output gap ¢,; (iii) firmly
reject asymptotic normality for the estimator of the response to inflation pa-
rameter ¢,.. These evidences are consistent with the graphs reported in the
right-panel of Figure 2, where the empirical CDF and empirical PDF of B = 19
bootstrap replications of the QML estimator of 05 := (p,., ¢, ¢,)" are plotted
against the Gaussian distribution. The graphs show that departure from as-
ymptotic normality is substantial for ¢.

Overall, and in line with the results of the Monte Carlo experiments, our
empirical analysis suggests that the validity of standard asymptotic inference
should not be taken for granted in model GQ-M2 on the Great Moderation
sample. Thus, reported asymptotic and bootstrap standard errors and as-
ymptotic and bootstrap 90% confidence intervals should be interpreted with
caution. In this model the inference on the policy parameters in 65 can be ro-
bustified by resorting to the methods discussed in e.g. Mavroeidis (2010),
Guerron-Quintana et al. (2013), Qu (2014) and Andrews and Mikusheva
(2015).

7 (CONCLUSIONS

We have proposed a novel approach for state space models where the boot-
strap is used as a diagnostic tool. Using the state space form associated with
a small-scale monetary DSGE model, we have investigated how our approach
works on simulated and actual data in the presence of weakly identified pa-
rameters. Finite sample results suggest that the bootstrap distribution of the
QML estimator of the parameters of interest is informative about the strength
of identification and the quality of the inference in an estimated state space
model.

For a proper choice of the ratio B/T, the suggested test controls size and
has power against forms of misspecification of the state space model which
lead to deviations from asymptotic normality. When the null is not rejected,
the bootstrap can be used in the ‘conventional’ way to improve finite sample
inference. Conversely, practitioners should interpret bootstrap (and asymp-
totic) standard errors and p-values of tests with caution when the bootstrap
distribution deviates asymptotically from the Gaussian. In these cases the in-
ference can be robustified along the lines suggested by e.g. Guerron-Quintana
et al. (2013), Dufour et al. (2013), Qu (2014) and Andrews and Mikusheva
(2015).
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S.1 CONTENT AND STRUCTURE

This supplement material to Angelini, Cavaliere and Fanelli (2020), henceforth
ACF, provides: (i) a short preliminary section which introduces the notation
used throughout (Section S.2); (ii) the proofs of our main results and aux-
iliary lemmas (Section S.3), (iii) further Monte Carlo results based on the
ARMA(1,1) model (Section S.4), (iv) further empirical results (Section S.5),
(v) a summary of computation time (Section S.6).

S.2 NOTATION

With P denoting the probability measure for the data, we use E(-) and Var(-)
to denote expectations and variance computed under P, respectively. We use
P* to denote the probability measure induced by the bootstrap, i.e. conditional
on the original sample. Expectation and variance computed under P* are
denoted by E*(-) and Var*(-), respectively.

Define, for 6 > 0, pi(9) := P*(||67 — b7|| > &), where 67 is the bootstrap
analog of the QML estimator O, and ||-|| is the Euclidean norm. With the
notation ‘@; —Or p—*>p (0’, which reads ‘9*T —0p convergences in p*-probability
to 0, in probability’, we mean that the (stochastic) sequence {p}.(6)} converges
in probability to zero (pi(8) 2 0) for any & .

“Department of Economics, University of Bologna, Italy. ® Department of Economics, Uni-
versity of Exter Business School, UK.



Likewise, for § > 0, define s%(0) := P*(suppee |Q%(0) — Qo(#)| > §), where
Q7 (0) is a criterion functions defined on the set © and Qi_}(@) is its bootstrap
analog. With ‘Q*T(H) — Qr(#) converges uniformly in p*-probability to 0, in
probability’ we mean that the stochastic sequence {s3.(6)} converges to zero
in probability (s%(6) 2 0) for anyd, i.e. that supyeg |Qi(6) — Qr(0)] p—*>p 0.

Finally, consider a random variable X, with associated CDF denoted Gx () :
P(X < z), and let {X}.} be a sequence of bootstrap counterparts of X, with
associated CDF (conditional on the data) G}; () == P*(X} < z). We say
that X7, ‘converges in conditional distribution to X, in probability’, denoted
by ‘X7 ﬂp X', if G};(m) —p Gx(z) at all continuity points of Gx. [let
Gy () i= P*(Ry < 2) = P(R} < o | data)]

S.3 PROOFS

S.3.1 PROOF OF PROPOSITION 1

PRELIMINARIES. Consider the linear filter H (z,0) := > 22, hj(60)z which
defines the VMA(o00) representation for y; in terms of € under the stated
assumptions. Let Oh(z,0)/00 be a shortcut for the derivative of the vector
field h(z,-): R™ — R"™. Then, for all # € © and all z in the complex unit
disk {z € C: [2] < 1} it holds that h(z,0) = > 72, hj(6)z7 is bounded and
bounded away from zero and ho(f) = 1. Moreover, the function ¢(z,6) =
Z;io wj(e)zj = H(z,0)7! is well-defined by its power series expansion for
|z| < 1+ € for some ¢ > 0, and is also bounded and bounded away from
zero on the complex unit disk and 14(0) = 1. The coefficients h;(0), ¥,(0),
hj (0) := 0hj(0)/00, and 1%-(9) := 01;(0)/00 are exponentially decaying, and
satisfy

O(i~*7%), Ibj(¥)| =03 >7¢)
= OG>, b))l =0 *)

for all ¢ > 0, uniformly in 6 € O; see Zygmund (2003, pp. 46 and 71). In the
following, we will also assume that (i) h(e, 0) is twice differentiable in A with
second derivative in Lip(¢) for ¢ > 0 and (ii) the function h(z, ) := % =
>0 h;(0)27 exists and (e, ) is differentiable in A with derivative in Lip(¢)
for ¢ > 0.

Finally, notice that for all # € N;(6p) it holds that H(z,0) # H(z,6p) on a

subset of {z € C: |z| = 1} of positive Lebesgue measure.

PART (i) (Consistency). According to Theorem 2.1 in Newey and McFadden



(1994) (see also Theorem A1l in Wooldridge, 1994), if there are functions Qo (6)
and QT(H) defined in the parameter space © such that: (dd.1) © is compact;
(dd.2) 6y is the unique maximizer of Qo(#) in ©; (dd.3) Qo(#) is continuous in
0; (dd.4) Q7(0) converges uniformly in probability to Qo(6) in ©, then

arg max Qr(0) =: 07 —p 0 := argroneaécQo(G).

We show how to verify that these conditions hold in a neighborhood Nj (6p).
Notice that Q7 () := T~ S_L, £;(6), with £;(#) given in (11) of ACF, and

QuO):=E(Qr(6) = BT'Y. 40) =13 Eu6) = E(4(0)).

where the last equality holds because of the weakly stationarity and ergodicity
of {y:} in Assumption Al. First, dd.1 holds by assumption. Second, in case
0o is globally identified, dd.2 follows from Assumptions A2-A3, while under
local identification dd.2 holds in the neighborhood Ns (6p). In the latter case,
0o is a local unique maximizer (cf. Definition 3 in Qu and Tkachenko, 2012)
of Qo(#). Third, dd.3 follows from Assumption A2 and the postulated normal
distribution used to construct the QML estimator.

Finally, to verify dd.4 observe first that pointwise convergence of QT(Q) to
Q0(0) holds for any 6 € © as discussed e.g. in Stoffer and Wall (1991). This
result can be strengthened to uniform convergence in probability by showing
that Qr (0) is stochastically equicontinuous. From Newey (1991, Corollary
2.2), this holds if the derivative of Q7(#) is dominated uniformly in 6 by a
random variable Ur = Op(1). To prove this, first notice that, as in Watson
(1989, p.79), under Assumption Al we can neglect the initial values and define
Qr as the average (log-)likelihood associated with the steady state solution to
the model, see (6)-(7) in ACF; that is,

T
0) = —Q};Iogrze (0)] ~ 5 Dt (0) S () eu (6).

Then, the i-th element of the score (see Watson, 1989) is given by

aQT ZL1”+ ZLQ,t, (S.1)

where

Lli = —5tr (Mi(6)(In, — 5e(6) e ®)ee(6)),



M;(0) = ()71 e (0) /90,

L2i,t = - (aEt >

To see that (S.1) is bounded uniformly in 6, notice that

@) = yi—> v (O)u- 1—€t+z ) Yt—1
j=1

de; (6) <
(;0 = —jz::l%' (0) yt—1

with supy 222, [); — ¥, (0)| < co. Then, simple algebra as in Lemma B.3
of Cavaliere, Nielsen and Taylor (2017) shows that this fact, together with
infp [Xc(6)| > 0 and the moment Assumption A4, implies F|supy 0Qr(0)/00| <
00. The desired result is thus obtained.

PART (ii) (Asymptotic normality). We now refer to Theorem 3.1 in Newey
and McFadden (1994) (see also Theorem A2 in Wooldridge, 1994), which
states that if there are functions Qo(0) and Qr(0) as defined before and
such that 67 —, 6g, and if: (dd.5) 6y €int(©), the interior of ©; (dd.6)
Qr(0) is twice continuously differentiable in a neighborhood Ny, of fp; (dd.7)
TY2VeQr(00) —q N(0,V), with V nonsingular; (dd.8) there is W(6) that is
continuous at g such that suppepg, HVggQT(Q) - \I/(H)H L0; (dd.9) ¥ =

U(6p) is nonsingular; then
TY2(0r — 09) % N (Opgx1, W VI

In our case, (dd.5) is assumed and (dd.6) follows from the postulated normal
distribution for the innovation errors. (dd.7) holds under Assumption A5 with
V = By := limgp o Var(T~ Y21 Vpli(60)), see Stoffer and Wall (1991).
Consider now (dd.8). The second derivative V2,Q7(6) is tight (stochastically
equicontinuous) by Newey (1991, Corollary 2.2) if its derivative is dominated
uniformly in a neighborhood of 6y, i.e. for # € Ny(6p), by a random variable
Ur = Op(1). Again, this condition can be verified under Assumption A4 as
e.g. in Lemma B.3 of Cavaliere, Nielsen and Taylor (2017). Tightness, together
with the result éT—GO 2,0 from part (i), implies that the second derivative can
be evaluated at the true value only, see Lemma A.3 of Johansen and Nielsen
(2010). This evaluation is done in Stoffer and Wall (1991), where it is shown

that V2,Q7(0) oy~ () 2,0 for W(hy) = ¥ = Ay, where Ag := Ao(fo)



is as stated in the Proposition. Finally, (dd.9) follows from Assumption A3.
This proves part (ii). W

S.3.2 PROOF OF PROPOSITION 2

Let Wi = TY2(67 — O7) be as in Section 3 and let Q5(0) == T7'L%(9) =
T-! Zthl 25(0). Moreover, let the variance (conditional on the original sample)
of the bootstrap score be denoted by B3 (f7) := Var*(T~1/2 ZtT:1 Volt(07)).

We first provide a lemma which characterizes the properties of the boot-
strap log-likelihood function and its derivatives.

LEMMA S.1 Under Assumptions A1-A8, A4’ and A5:
(i) with Q3(0) := E*(Q(0)), it holds that V5" Q3(0) = VI Qr(8)+0, (T71/2)
forall@ € ©, and h =0,1,2;

(”) B;(éT) - BT(éT) p—>p 0n9><n9;'
(iii) TV2V g Q% (07) Ly N (0ny 1, B*), B i=plimr_—.ooBi(07).

PROOF. The proof of part (i) mimics the proof of Lemma 1 in Stoffer and Wall
(1991). The op (1) term in (i) is erroneously missing in Lemma 1 of Stoffer and
Wall (1991) and is due to the fact that the initial value Ff\o = F1|0 is not
necessarily zero.

Part (ii) follows from Lemma 2 in Stoffer and Wall (1991).

To prove part (iii), we first show that the bootstrap score, evaluated at the
bootstrap pseudo-true parameter 67 — that is, T*I/QVQL}(éT) =712 Zthl
Vol (07) - satisfies a CLT. As for the proof of Proposition 1, we can neglect the
initial values and define L} as the (log-)likelihood associated with the steady
state solution to the state space model. At the bootstrap pseudo-true values,
the i-th element of the associated score can be written as (see also Stoffer and
Wall, 1991, proofs of Lemmas 1 and 2)

_ N 96(9)
_Z 90.

0=0r 1= E

T T
= Ll;,kt +ZL2;§t7
0=0r =1 t=1

where

A

1 X . .
L1y = =5 tr{Mi(07)(n, — Se(Or) e (0)€; (07)')}

with M;(6) := X (0) "' 9%, () /96;, and

. €t (6)

!/
A ) Se(0r) '€ (0r),
0=0r




i =1,..,n5. Since e (O7) = S (O7) %€}, where e} is (conditionally on the
original data) i.i.d., the vector Ly := (L1j,,...,L15, ;, L2],, ..., L2} ;) is a
Martingale Difference Array (MDA). We can therefore make use of a bootstrap
CLT for MDAs, see e.g. Gongalves and Kilian (2004, Theorem A.1, and the
proof of their Lemma A.3). To do so, it suffices to prove that (a) the variance of
T-125"T  Vot:(07) (conditional on the original sample), Bi(f7), converge in
probability and that (b) moments of higher order exist, see below. Regarding
(a), let Br(r) = T1 Zthl Voly(07)Vely(A7) which, under Assumptions
A1-A4 is such that BT(éT) —p Bp. This result, together with part (ii) of
the lemma, implies that B}(@T) —p B*, as requested. For part (b), Theorem
A1 in Gongalves and Kilian (2004) and a standard application of the Cramér-
Wold device applied to L£; require that, for all A € R™ and some r > 0,
TS E¥ 000 M(L1f 4+ L2;,)|* —, 0. Taking r = 2, by the ¢, inequality
we have (with K. denoting a generic constant)

T ng
< K T2 N (Bl

t=1 =1
+E* L2,

4
> ON(LLy 4+ L25y)

T ng
ey p
t=1 i=1

Consider Ll?,t first. Since
tr{M;(07)(In, — Se(0r) 'ef (Or)ef (01)')} =
= tr{M;(07)(In, — Se(0r) 'S (01)2ej e}’ Se(0r) %)}

= tr{Se(07)" 2 My(07)Ze(01) 2 (1, — efe}’)}

and, under the stated assumption, supy ||S(6)Y2M;(0)2(0)"/?|| < K. < oo,
we have that, for all ¢ and ¢,

Y Yy
E*|L1:|! < K.E* Sl —eieinl] <Ko Y EY(1—efein)t =
k,k'=1 k,k'=1

= K. Z Z EhtChre — =0, (1)

k’l t=1

under the assumption of 8" order moments, see also Gongalves and Kilian
(2004). Consider now L27,. As in Watson (1989, pp. 87-88), up to an o}, (1)



term (in probability) we can write

t—1
L2f, = | Y Mij(Or)e;_;(0r) | Sc ()" i (br),
j=1

which, using the fact that supy > 22, |M;;(0)] < oo, is of Oy (1) under the
assumption of finite 8" order moments. This finally implies that (S.2) is of
0y (1), in probability, hence proving (iii). W

We can now turn to the proof of our main Proposition 2. The proof mimics
the one given for the original statistic in Proposition 1 using the additional
results provided in Lemma S.1.

For the consistency part, we need to show that the condition given in
Theorem 2.1 of Newey and McFadden (1994) holds conditionally on the original
data with probability tending to one in a neighborhood N(;(éT) of the bootstrap
true value 9T, see the proof of Proposition 1. Conditions dd.1 and dd.3 are
obviously satisfied. Condition dd.2 holds since, by Lemma S.1(i), E*Q%(6) =
QT(G) +0p (T‘l/ 2), which for T large enough has the unique IAnaXirnizerA Or.

We now focus on dd.4. Again, pointwise convergence of Q7.(f) to Qr(6)
for any 6 € O holds as discussed e.g. in Stoffer and Wall (1991) and stochastic
equicontinuity can be shown by proving that the derivative of Q*T(H) is dom-
inated uniformly in 6 by a random variable By which is of order O;(1), in
probability. To prove this we can proceed as in the proof of Lemma S.1(iii)
and evaluate the average bootstrap (log-)likelihood associated to the steady
state solution to the model, which lead to the equation

Li(0) =00 < 3
OL%(0) _ Zaét(,) _ Zlet (9)+ZL2:¢ 0),
t=1 t=1

06;  ~= 0b;
with
L134(0) 1= — g tr{M:(0) (I, — Sc(0) "6 (0)6; 00},
M;(0) := % (0)" ' 0% (0) /06;




Here for ¢, := ,;(f7), we have

oo

8

GO = v =2 Ovia =g+ (b)) v
j=1 j=1
etag = - ]Z; ¢j (0) yi_q

with supy 22, l; — 1, (0)| < oo. Again, as in the proof of Lemma B.3 of
Cavaliere, Nielsen and Taylor (2017), we can prove that this fact, together
with infg [Z.(0)] > 0 and the 8" order moment Assumption A4 implies that
E*|sup, 0Q%(6) /06| < oo, as required.

For the asymptotic normality and the consistency of the bootstrap standard
errors we refer again to Theorem 3.1 in Newey and McFadden (1994), whose
conditions dd.5, dd.6 and dd.9 trivially hold while dd.7 holds in probability
as T diverges with V = B* := limp_, o, Var*(T~1/2 Z?zl Voli(0r)) as demon-
strated in Stoffer and Wall (1991). For dd.8, it is sufficient to show that the
second derivative VZ,Q%(6) is tight if its derivative is dominated uniformly in
a neighborhood of 7, i.e. for 0 € Ni(f7), by a random variable B = 0,(1),
in probability. Again, this condition can be verified under Assumption A4 as
done for the non-bootstrap proposition. The rest of the proof mimics the one
given for Proposition 1. B

S.3.3 PROOF OF PROPOSITION 3

Consider the decomposition

dr,p(z) = (K7)"?S} 5 + B,

with
. Gr(@) (1 - Gp (2))
T 0y(x)(1 — 0z(2))
. 1 &L (R, < ) — G ()
Stpi=—>5 Ly Lo = :
B Bl bz_; T (G () (1 — G (2)) M2
and

vy = Vi(z) V3G () — @4(2)),

see (24) in ACF. Under (26) in ACF, k% —, 1 as T' — oo; moreover, mry =
O, (T~*) and hence BY?mr is of order O, (Bl/zT_o‘), which converges in
probability to zero under the assumption in (27) in ACF. Finally, consider St 5.



Conditional on the original sample, the Z7.,’s are i.i.d. with zero mean, unit
variance (provided T is sufficiently large, such that G% (z) (1 — G} (x)) > 0)
and a.s. bounded third order moment. Hence, by the Berry-Esseen bound, for
some constant c,

sup < ¢B71/?

z€R

B
* 1 *
F <Bl/2 > Zig < Z) — Pz (2)
=1

This implies that, for T" large enough, ST g ﬁp N (0,1) for B — oo, which
completes the proof. B

S.4 FURTHER MONTE CARLO RESULTS

In this section we provide additional Monte Carlo results other the ones re-
ported in Section 5 of ACF. Section S.4.1 investigates the performance of the
suggested bootstrap approach by considering the state space form associated
with an ARMA(1,1) model. Relative to the DSGE model analyzed in ACF,
with the ARMA(1,1) we can easily control the strength of identification of the
associated state space model.

S.4.1 THE ARMA(1,1) MODEL

The ARMA(1,1) model reads as an interesting case study for our bootstrap
approach because it is particularly suited to characterize the case of weakly
and strongly identified parameters.

Let y; be a scalar that obeys the ARMA(1,1) model:

ye = (m+ B)ys—1 +wr — w1, wp~iidN(0,1), t=1,...T (S.3)

where yg and wg are given, and the vector of parameters is ¢ := (¢q, Py) =
(m, 7+ B)".} With this parameterization, 3 = ¢, — ¢; can be interpreted as
the difference between the autoregressive and moving average parameters. It
is seen that in the special case where 5 =0 (¢ = ¢;), the model collapses to

Yt = Wt

and the moving average parameter 7 is unidentified. More precisely, Assump-
tions A2-A3 in ACF are violated and the ML estimator of ¢; = 7 is not con-
sistent and is not asymptotically Gaussian. Indeed, when [ gets close to zero

'In this section we consider Gaussian w;s to simplify computations. Results obtained with
non-normal w:s do not change significantly and are available upon request to the authors.



the likelihood function becomes flat in the direction of 7 and the identification
of this parameter 7 from the data deteriorates.?

For 6 := (01,02)" = (¢4, 95 — ¢1) = (m, B)’, the associated (minimal) state-
space representation of the ARMA(1,1) model in (S.3) is given by

7, = (Fgﬁ (1)>ZH+<_17T>W,5 (S.4)

A(9) B(0)
v = (1,0) Z (S.5)

where the parameters satisfy the conditions —1 < 7 < 1, -1 < 7w+ 3 < 1,
which ensure stationarity and invertibility. The alternative representations
discussed in Section 2 of ACF can be easily obtained from (S.4)-(S.5).

We generate M = 2000 samples of length 7" = 100,500 from this model
and, as in Andrews and Cheng (2012), we select the parameter 629 = [,
from the set {—0.76,0.5/T%/2}. The data generating process for the case of
strongly identified parameters is obtained with fy(= 62) = —0.76 and 7o(=
01,0) = 0.40, and is denoted ‘ARMA-DGP1’ (see Tables SM.1-SM.2); the data
generating process corresponding to the case of weakly identified parameters
is obtained with the local-to-zero embedding Bq(= 02,0) = 0.5/T"/? (keeping
mo(= 61,0) = 0.40), and is denoted ‘ARMA-DGP2’ (see Tables SM.1-SM.2).
ARMA-DGP2 features a ‘near cancelling roots’ scenario in the sense that the
AR and MA roots tend to coincide (and cancel) as T increases. Notably,
under this setup only the MA parameter 7 is weakly identified (unidentified
asymptotically), while the parameter ( is strongly identified. Andrews and
Cheng (2012) prove formally that the ML estimator of 7 is not consistent in
ARMA-DGP2.

The log-likelihood of the model is maximized by combining the Kalman
filter with the ‘BFGS’ method by imposing that the optimization parame-
ter spaces for the MA and AR coefficients are constrained to [—0.90,0.90]
and [—0.90,0.90], respectively. Bootstrap estimation follows the algorithm
described in ACF. The Steps 2-4 of the bootstrap algorithm are repeated
N := 499 times. Bootstrap confidence intervals are computed as explained in
Remark 3.3 in ACF.

We consider computationally straightforward versions of our test of model
misspecification. The tests are designed to verify the asymptotic normality of

? Andrews and Mikusheva (2015) show that if the parameter 3 is defined through the
embedding S, = C’/Tl/2 for some constant C, then suitably normalized versions of the
measures of information Bo,r and Ao,z of the state space model (see Section 3 of ACF) are
no longer interchangeable measures of information even if White’s (1982) information matrix
equality is still valid.
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the sequences {9:}:1, ceey 9;3} of the ML bootstrap estimator, where B < N is
selected by using the practical rules suggested used in ACF. In particular, we
set B = %T‘l/ 5 and B = %T‘l/ 5 respectively. The computed normality tests
are the same as in the Monte Carlo experiments in ACF and are run at the 5%
nominal significance level. Results for the two DGPs are discussed separately.

S.4.1.1 ARMA-DGP1: STRONG IDENTIFICATION

From Table SM.1 we observe that the ML estimates of m and § are substantially
similar to their bootstrap counterparts and tend to converge to their true
population values as T increases. Hessian-based standard errors associated
with 77 and BT tend to be similar to the bootstrap standard errors. The
coverage of the 90% bootstrap confidence intervals for the two parameters
converges to the nominal 90% level as T increases and, in general, do not
perform worse than the corresponding asymptotic 90% confidence intervals.
The tests of model misspecification in Table SM.2 display rejection frequencies
that approach the nominal 5% level as T increases.

The left-panel of Figure SM.1 reports the fan chart of the empirical cumu-
lative density functions (CDFs) of the bootstrap realizations of the ML esti-
mator of § := (m,3)" used in the normality tests (see Cavaliere and Georgiev,
2020). The graphs clearly show that the bootstrap distributions converge to
the Gaussian as T increases (and B/T — 0).

Overall, the results in Tables SM.1-SM.2 and in Figure SM.1 show that
the bootstrap works in the expected direction in ARMA models with strongly
identified parameters. Bootstrap and asymptotic inference are highly reliable
in this model.

S.4.1.2 ARMA-DGP2: WEAK IDENTIFICATION

From Table SM.1 we observe that, regardless of the sample size, the ML esti-
mator of the MA parameter 7(=607) and its bootstrap analog deviate markedly
from the true parameter value, while the mismatch between Hessian-based and
bootstrap standard errors seems to increase with 1. Instead, the ML estimator
of 5(=602) and its bootstrap analog tend to converge to the true population
value as T increases, consistently with Andrews and Mikusheva’s (2015) find-
ings. Interestingly, for this state space model, the coverages of 90% bootstrap
confidence intervals perform generally better than 90% asymptotic confidence
intervals for both parameters.

The empirical rejection frequencies of the tests of model misspecification
in Table SM.2 suggest that for large 7' the tests detects non-normality of
9; = (éiT, 9?T)’ quite convincingly. As it should be the case, focusing on the

11



univariate normality tests, departures from normality characterize the QML
estimator 77 (z@?T), not the QML estimator B*T(zézT) (recall that ( is
strongly identified). Admittedly, for 7" = 100 the power of the test tends to be
low.

The left-panel of Figure SM.1 plot the empirical CDF's of the B bootstrap
realizations (across Monte Carlo simulations) of the ML estimator of 6 :=
(7, B) used in the tests of model misspecification. The graphs confirm what
already observed in Table SM.2.

By combining all these evidences, we can conclude that in the estimated
ARMA(1,1) model with ‘near cancelling roots’, our bootstrap diagnostic test
tends to inform a practitioner that standard inference does not hold for the
MA parameter 7.

S.5 FURTHER EMPIRICAL RESULTS

In this section we turn on the monetary DSGE models estimated in Section 6
of ACF on the Great Moderation sample, and repeat our empirical analyses
by estimating and testing the model on different samples. In particular, we
estimate models GQ-M1 and GQ-M2 on the ‘Great Inflation’ sample, 1954Q3-
1984Q1, and the full sample 1954Q3-2008Q3, respectively. We do so to check
the reliability of the suggested bootstrap-based diagnostic tests in situations in
which the estimated state space model might be misspecified along dimensions
that do not necessarily affect the asymptotic normality of the QML estima-
tor. On both samples estimation is carried out by imposing the determinacy
condition.

Great Inflation sample

Assuming determinacy on the Great Moderation sample, a monetary DSGE
model like the one estimated in Section 6 of ACF can be expected to be mis-
specified on the Great Inflation period 1954Q3-1984Q1 (especially if determi-
nacy is imposed in estimation). This is so because of the omission of inde-
terminacy parameters unrelated to 6 and, possibly, because of the omission of
shocks unrelated to the fundamental shocks (e.g. Lubik and Schorfheide 2004;
Castelnuovo and Fanelli, 2015, and references therein). Results, reported in
Table SM.3 show that asymptotic normality is not rejected by the normality
tests in model GQ-M1. This evidence is somehow expected because 67 := («)
is a strongly identified parameter and the misspecification that possibly char-
acterizes model GQ-M1 on the Great Inflation sample is expected to affect the
consistency of the QML estimator él,T = (ar), not its asymptotic normality.
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Conversely, asymptotic normality is rejected in model GQ-M2 which in-
volves the estimation of the monetary policy rule parameters 05 := (p,., ¢.., d,)"-
In particular, for the parameter ¢, we observe a boundary estimation issue
(due to the fact that we impose determinacy in estimation). Overall, em-
pirical results on the Great Inflation period 1954Q3-1984Q1 confirm that our
test solely captures misspecifications of the state space model that affect the
asymptotic normality of the QML estimator.

Full sample

The estimation of the monetary DSGE model on the full sample 1954Q3-
2008Q3 does not possibly account for a potential change in the conduct of
monetary policy (e.g. Lubik and Schorfheide 2004; Castelnuovo and Fanelli,
2015, and references therein). In model GQ-MI, the fact that 6; := («) is
a strongly identified parameter should not be altered by the occurrence of a
break in the slope of the Phillips curve around the mid-eighties. Empirical
results in Table SM.3 confirm this fact.

Conversely, in model GQ-M2, the QML estimates of 0 := (p,., ¢, &)
obtained by ignoring a possible structural break in ¢, and ¢, around the mid-
eighties should not improve their identifiability. Empirical results in Table
SM.3 confirm that Gaussian asymptotic inference on ¢, and ¢, remains prob-
lematic also in the full sample where determinacy is imposed and an important
structural break is not accounted for.

Overall, estimation and testing results discussed in this section confirm
that our test tends to capture misspecifications of the state space model that
affect the asymptotic normality of the QML estimator.

S.6 COMPUTATION TIME

Table SM.4 summarizes computation time (in seconds) employed to run the
Monte Carlo experiments and the estimations on US quarterly data discussed
both in ACF and in this supplement.
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