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Abstract

We determine the complete space-time metric from the bootstrapped Newtonian potential
generated by a static spherically symmetric source in the surrounding vacuum. This metric
contains post-Newtonian parameters which can be further used to constrain the underlying
dynamical theory and quantum state of gravity. For values of the post-Newtonian parameters
within experimental bounds, the reconstructed metric appears very close to the Schwarzschild
solution of General Relativity in the whole region outside the event horizon. The latter is
however larger in size for the same value of the mass compared to the Schwarzschild case.
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1 Introduction and motivation

General Relativity predicts that the gravitational collapse of any compact source will generate geode-
tically incomplete space-times whenever a trapping surface appears [1]. Moreover, eternal point-like
sources are mathematically incompatible with the Einstein field equations [2]. A consistent quantum
theory should fix this pathological classical picture of black hole formation, like quantum mechanics
explains the stability of the hydrogen atom. Whether this can be achieved by modifications of
the gravitational dynamics solely at the Planck scale or with sizeable implications for astrophysical
compact objects remains open to debate, because it is intrinsically very difficult to describe quan-
tum states of strongly interacting systems. Strong interactions imply large nonlinearities, so that
the space of classical solutions does not admit a vector basis for the canonical variables which are
usually lifted to quantum operators. Of course, this quantisation process can be introduced in a
linearised version of any theory, but it becomes questionable that one can then effectively obtain
a reliable approximation for the quantum state of what would classically be a strongly interacting
configuration. For instance, the physical relevance of the quantum theory of linear perturbations
around a given classical solution entirely relies on whether the chosen “background” is actually the
one realised in nature.

In the Einstein theory of gravity, we know classical solutions, like the Schwarzschild metrics for
the interior of a homogenous spherical star and the exterior of any spherical source, which cannot
be obtained by perturbing the Minkowski vacuum. On the other hand, Deser [3] conjectured that it
should be possible to reconstruct the full dynamics of General Relativity from the Fierz-Pauli action
in Minkowski space-time by adding gravitational self-coupling terms consistent with diffeomorphisms
invariance. On a closer inspection, this reconstruction of the Einstein-Hilbert action does not appear
free of ambiguities since, for instance, it involves fixing the very important boundary terms in a
specific way [4]. Generically, we know that any (modified) metric theory of gravity is invariant under
changes of coordinates and must therefore be covariant under diffeomorphisms. Different choices
of those boundary terms in the reconstruction proposed by Deser would therefore lead to different
modified theories of gravity. What we do not know a priori is which (if any) of such theories describes
the dynamics realised in nature and what the quantum state of the Universe really is. 1 Moreover,
any reconstruction of the dynamics starting from the Minkowski vacuum can be practically effective
only if the contribution of matter sources is perturbatively small, which introduces the further
problem of reconstructing a large astrophysical source along with the ensuing gravitational field.
Such considerations inspired a programme called bootstrapped Newtonian gravity [6,7], which consists
in adding gravitational self-coupling terms to a Fierz-Pauli-type of action for the static Newtonian
potential generated by an arbitrarily large matter source. Furthermore, the coupling constants for
such additional terms are allowed to vary from their Einstein-Hilbert values in order to effectively
accommodate for corrections arising from the underlying dynamics which, as mentioned above, we
do not wish to restrict a priori. The direct outcome of this programme is a nonlinear equation,
which determines the gravitational potential acting on test particles at rest, and which is generated
by a static large source, including pressure effects and the gravitational self-interaction to next-to-
leading order in the Newton constant. 2 It is important to remark that our main aim eventually is
to investigate the actual quantum state of such systems and the resulting bootstrapped Newtonian
potential must therefore be viewed as a mean-field result depending on effective coupling constants

1We also remark that Lovelock’s theorem [5] only holds in the vacuum, whereas our Universe is obviously a very
different state and so are astrophysical compact objects.

2One could ideally iterate the process to any order, but the equations become quickly intractable analytically.
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which entail properties of such a (otherwise unknown) state. Our approach is not meant to provide
solutions of the linearised Einstein equations (or any modifications thereof), but to describe features
of the proper quantum state of gravity. Compact objects were studied with this equation [8–10] and,
at least for the simplest case of homogenous density, one can explicitly build a coherent quantum
state (for a scalar field) which reproduces the classical gravitational potential [11,12]. Interestingly,
these quantum states share some of the properties [13] found in the corpuscular model of black
holes [14,15].

Accurate descriptions of the interior of matter sources, whether it is a black hole or a more
regular, yet highly compact, distribution, should be given in terms of quantum physics, possibly
resulting in an effective equation of state. The relevant observables would eventually be represented
by the radius and the mass of stable configurations. Instead, the exterior region of any astrophysical
compact object is phenomenologically characterised by the (geodesic) motion of test particles, in-
cluding photon trajectories. Studying these trajectories, and comparing them with those predicted
by General Relativity, is more directly done by means of a full (effective) metric tensor, rather than
the bootstrapped Newtonian potential describing only forces which act on static particles.

The aim of this work is precisely to reconstruct a complete space-time metric from the boot-
strapped Newtonian potential in the vacuum outside a spherically symmetric source. Of course,
by employing an effective metric tensor we implicitly assume the effective dynamics is also invari-
ant under changes of coordinates, which is compatible with the underlying fundamental theory of
gravity being covariant under diffeomorphisms, although the particular metric we will find does
not need to be a solution of the Einstein equations in the vacuum. Moreover, we will express this
metric in terms of quantities which, if not directly observable, have at least an intrinsic geometric
meaning. In particular, we will take advantage of the spherical symmetry and employ the usual
angular coordinates on the spheres (as surfaces of symmetry of the system) of area A = 4π r̄2, along
with the areal radius r̄. The latter differs from the radial coordinate r associated with the harmonic
coordinates used to express the potential [16], which is a source of significant technical complication.
Furthermore, starting from the potential acting on test particles at rest in a given (harmonic) ref-
erence frame does not fix the reconstructed spherically symmetric metric uniquely. For this reason,
it will be useful to write the metric in the weak-field region in terms of post-Newtonian parameters,
which allow for a direct comparison with experimental bounds. This procedure should, in principle,
determine the entire metric in terms of the post-Newtonian parameters all the way into the strong
coupling region, if we could solve all equations exactly. However, the post-Newtonian expansion
fails near the horizon, so that an explicit calculation will require us to employ also a different near-
horizon expansion. Since the potential is a smooth function of r, so must be the metric and the
relation r̄ = r̄(r). The coefficients in the near-horizon expansion are therefore fully determined
by the post-Newtonian parameters via matching conditions in a suitable intermediate region, but
analytical expressions become rather involved very quickly. In the present work, we shall therefore
just carry out the analysis by including the first few terms in each of the above two expansions.

The main result is that the bootstrapped metric at large distance from the source approaches the
Schwarzschild form in a way that can make it compatible with bounds from Solar system tests and
other measurements of the first post-Newtonian parameters. The bootstrapped metric is however
necessarily different from the exact Schwarzschild form, and this can be interpreted from the point of
view of General Relativity as indicating the presence of an effective fluid, filling the space around the
source with a non-vanishing energy-momentum tensor which violates the classical energy conditions.
The presence of an effective fluid in bootstrapped Newtonian gravity was already noted in Refs. [17].
Moreover, the near-horizon region differs from the General Relativistic prediction mostly in that
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the horizon size is larger than the Schwarzschild radius for given black hole mass.
The paper is organised as follows: in Section 2, we review the derivation of the bootstrapped

Newtonian potential acting on a static test particle generated by a static spherically symmetric
source. In Section 3, we discuss the relation between the harmonic coordinates used to express the
potential and the more common areal radius. This relation plays a crucial role in the reconstruction
of the metric performed at large distance from the source in Section 4, where corrections to the
perihelion precession, light deflection and time delay are also estimated. The geometry near the
horizon is studied in Section 5 by matching with the weak-field expressions. We conclude with
comments and an outlook in Section 6.

2 Potential in the vacuum

In General Relativity (and metric theories of gravity in general), the motion of test particles is
determined by the entire metric tensor and there is no invariant notion of a gravitational potential.
However, one can still introduce a potential for specific types of motion on specific metric space-times
starting from the corresponding geodesic equation. For example, the geodesic equation in the weak
field and non-relativistic limit reduces to the Newtonian equation of motion with the potential which
solves the linearised Einstein equations in the vacuum provided one uses harmonic coordinates. In
the following, we will reverse this argument and start from a bootstrapped Newtonian potential
obtained in harmonic coordinates in order to reconstruct a compatible metric.

2.1 Potential for static test particles

We consider a massive particle moving along the trajectory xµ = xµ(τ) that satisfies the geodesic
equation

ẍµ + Γµαβ ẋ
α ẋβ = 0 , (2.1)

where dots denote derivatives with respect to the particle’s proper time τ and Γµαβ are the Christoffel
symbols of the metric gµν . If the space-time is static, one can choose a time coordinate x0 in which
the metric reads

gµν = ηµν + ε hµν(xi) , (2.2)

where ε is a parameter we introduce to keep track of deviations from flat space-time. We can now
say that the particle is (initially) at rest if ẋi = 0 in this reference frame, which implies that ẋ0 ' 1
and, as long as |ẋi| ' ε� 1 (weak-field approximation), Eq. (2.1) to first order in ε reduces to

ẋi ' 1

2
ε h00,i , (2.3)

which yields Newton’s second law for a particle in the potential V if we set

g00 = −1 + ε h00 = −(1 + 2V ) , (2.4)

and the spatial coordinates xi in Eq. (2.3) are the analogue of Cartesian coordinates in Newtonian
mechanics.
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In fact, the explicit form of the potential V generated by a given source can be obtained from
the linearised Einstein equations, which then reduce to the Poisson equation for the Newtonian
potential in the de Donder gauge

∂αhαµ −
1

2
∂µh = 0 , (2.5)

where h ≡ ηαβ hαβ . We must correspondingly assume that the coordinates xµ in which the compo-
nents of the metric take the form in Eq. (2.2) are harmonic coordinates satisfying

�xµ = 0 . (2.6)

Note that for a static metric with |hij | � 1, the condition (2.5) is always satisfied.

2.2 Bootstrapped Newtonian vacuum

We just recalled that the interpretation of V in Eq. (2.4) as the gravitational potential for massive
particles at rest is consistent with the fact that, in the same approximation, the linearised Einstein
field equations reduce to the Poisson equation of Newton’s theory,

4V = 4πGN ρ , (2.7)

where ρ is the energy density of the static source and 4 the flat space Laplacian. The de Donder
gauge condition (2.5) implemented in the derivation of Eq. (2.7) was thus employed explicitly also in
deriving the equation for the bootstrapped Newtonian potential V from the Einstein-Hilbert action
in Ref. [12]. For the sake of brevity, we here review a more heuristic derivation of V = V (r) outside
static and spherically symmetric sources from a bootstrapped Newtonian effective action [6,8,10,12].

We start from the Newtonian Lagrangian for a source of density ρ = ρ(r), to wit

LN[V ] = −4π

∫ ∞
0

r2 dr

[
(V ′)2

8πGN
+ V ρ

]
(2.8)

from which Eq. (2.7) can be derived, and stress that the radial coordinate r is the one obtained
from harmonic coordinates xi, as we shall see more in details in Section 3. To this action several
interacting terms for the field potential V will be added for the motivation, stated in the introductory
section, of describing mean-field deviations from General Relativity induced by quantum physics.
First of all, we couple V to a gravitational current proportional to its own energy density,

JV ' 4
dUN

dV
= − [V ′(r)]2

2πGN
, (2.9)

where V is the spatial volume and UN the Newtonian potential energy. Moreover, we add the “loop
correction” Jρ ' −2V 2, which couples to ρ and, since the pressure gravitates and becomes relevant
for large compactness, we also add to the energy density the term [8] 3

Jp ' −
dUp
dV

= p , (2.10)

3We only consider isotropic fluids.
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where Up is the potential energy associated with the work done by the force responsible for the
pressure. The total Lagrangian then reads

L[V ] = LN[V ]− 4π

∫ ∞
0

r2 dr [qV JV V + 3 qp Jp V + qρ Jρ (ρ+ 3 qp p)]

= −4π

∫ ∞
0

r2 dr

[
(V ′)2

8πGN
(1− 4 qV V ) + (ρ+ 3 qp p)V (1− 2 qρ V )

]
, (2.11)

where the coupling constants qV , qp and qρ can be used to track the effects of the different contribu-
tions. As we mentioned previoulsy, different values of these couplings would correspond to different
quantum states and depend on the underlying microscopic quantum theory of gravity and matter.
For instance, the case qV = qp = qρ = 1 reproduces the Einstein-Hilbert action at next-to-leading
order in the expansion in ε in Eq. (2.2) and can be naturally used as a primary reference [12] (see
also Refs. [8,10] for more details on the role of these coupling parameters). Eventually, their values
should be fixed by experimental constraints. Finally, the field equation for V reads

4V = 4πGN
1− 4 qρ V

1− 4 qV V
(ρ+ 3 qp p) +

2 qV (V ′)2

1− 4 qV V
, (2.12)

which must be solved along with the conservation equation p′ = −V ′ (ρ+ p).
In vacuum, where ρ = p = 0, Eq. (2.12) simplifies to

4V =
2 qV (V ′)2

1− 4 qV V
, (2.13)

which allows for absorbing the coupling constant V → Ṽ = qV V . The exact solution was found in
Ref. [6] and reads

V0 =
1

4 qV

[
1−

(
1 +

6 qV GNM

r

)2/3
]
. (2.14)

The asymptotic expansion away from the source yields

V0 ' −
GNM

r
+ qV

G2
NM

2

r2
− q2

V

8G3
NM

3

3 r3
, (2.15)

so that the Newtonian behaviour is always recovered and the post-Newtonian terms are seen to
depend on the coupling qV . The value of qV can be constrained by experimental bounds once we
compute trajectories to compare with.

3 Harmonic and areal coordinates for static spherical systems

The argument leading to the potential (2.14) starting from a general metric involves several ap-
proximations, which makes it impossible to determine the starting metric uniquely. In order to
reconstruct a metric compatible with Eq. (2.14), we will therefore have to supply further condi-
tions. Before we get to that point, however, we need to discuss in details the relation between the
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radial coordinate r used to express the potential in the previous section and the areal coordinate r̄
usually employed to write the general static spherically symmetric metric as

ds2 = −B̄ dt̄2 + Ādr̄2 + r̄2 dΩ2 , (3.1)

where Ā = Ā(r̄), B̄ = B̄(r̄), and dΩ2 = dθ2 + sin2 θ dφ2 is the usual solid angle on the unit sphere,
with 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

Cartesian coordinates xi = (x, y, z) in flat space satisfy Eq. (2.6). This condition can be extended
to general space-times by defining harmonic coordinates xµ = (t, x, y, z) = (t,x) such that

�xµ = gαβ Γµαβ = 0 , (3.2)

which coincides with the de Donder gauge condition (2.5). In particular, we are interested in
spherically symmetric space-times with a metric of the form (3.1) and we therefore find it convenient
to employ polar coordinates associated to the harmonic ones by

x = r(r̄) sin θ cosφ , y = r(r̄) sin θ sinφ , z = r(r̄) cos θ , (3.3)

where we assume that the “harmonic” 4 r is an invertible smooth function of the areal coordinate
r̄. A straightforward calculation of Eq. (3.2) reveals that the function r = r(r̄) must satisfy [16]

d

dr̄

(
r̄2

√
B̄

Ā

dr

dr̄

)
= 2

√
Ā B̄ r . (3.4)

Expressing the metric (3.1) in terms of the the rotationally invariant forms dx2 = dr2 + r2 dΩ2 and
(x · dx)2 = r2 dr2, we deduce that the line element in harmonic coordinates reads

ds2 = −B dt2 +
r̄2

r2
dx2 +

[
A

(
dr̄

dr

)2

− r̄2

r2

]
(x · dx)2

r2
, (3.5)

where dt = dt̄, r̄ = r̄(r), A = Ā(r̄(r)) and B = B̄(r̄(r)).
The unique Schwarzschild solution of the Einstein field equations in the vacuum outside a spher-

ical source 5 is given by

B̄S =
1

ĀS
= 1− RH

r̄
, (3.6)

where

RH = 2GNM (3.7)

is the gravitational radius. By solving Eq. (3.4), one finds that the harmonic radial coordinate for
the Schwarzschild metric is simply given by

r = r̄ − RH

2
≡ r̄ − rS , (3.8)

4Polar coordinates do not satisfy Eq. (3.2) even in Minkowski space-time, but we shall refer to r as the “harmonic”
radial coordinate for the sake of brevity.

5Birkhoff’s theorem ensures that uniqueness follows from spherical symmetry. In more general cases, other vacuum
solutions can be obtained from the linearised solutions [18].
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Figure 1: Comparison between the Newtonian VN, Schwarzschild VS and bootstrapped Newtonian
V0 (with qV = 1).

which leads to the potential for the Schwarzschild metric in harmonic coordinates

VS =
1

2
[BS − 1] = −GNM

r

(
1 +

GNM

r

)−1

. (3.9)

By comparing with the expansion of V0 in Eq. (2.15), we then see that the unique prediction of
General Relativity is recovered to first order in qV if qV = 1 (see Fig. 1).

We can now replace VS with the potential V0 in Eq. (2.14), that is

B = 1 + 2V0 , (3.10)

and start to reconstruct the bootstrapped metric in the areal coordinate r̄. In particular, we notice
that the metric coefficient B̄ is fully determined by the potential V0 and the relation r = r(r̄).
Moreover, the Schwarzschild metric has the important property that ĀS B̄S = 1, which is related
with the vanishing of the light-like component of the Ricci tensor, Rµν kµ kν = 0 for any kµ kµ =
0 [19], and the validity of the Equivalence Principle. Using C̄ ≡ Ā B̄, it is also convenient to rewrite
Eq. (3.4) as

r̄ r′′ +

(
2− r̄ C̄ ′

2 C̄
+ r̄

B̄′

B̄

)
r′ = 2

C̄ r

B̄ r̄
, (3.11)

where a prime denotes the derivative with respect to r̄. This equation determines the relation
between Ā and r̄, but one equation is not sufficient to determine both r = r(r̄) and Ā = Ā(r̄) given
B = B(r), and we will have to resort to further conditions.

4 Effective space-time picture: weak field

We first analyse the region far from the source by Taylor expanding the metric coefficients and
r = r(r̄) in powers of the dimensionless ratio RH/r̄ ∼M/r̄, that is

Ā = 1 +
∑
k=1

ak

(
RH

r̄

)k
,

B̄ = 1 +
∑
k=1

bk

(
RH

r̄

)k (4.1)
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and

r

r̄
= 1 +

∑
k=1

σk

(
RH

r̄

)k
. (4.2)

We also introduce

C̄ = 1 +
∑
k=1

ck

(
RH

r̄

)k
, (4.3)

in which the coefficients ak’s are fully determined by the ck’s and bk’s since C̄ = Ā B̄. The above
expressions for C̄, B̄ and r/r̄ solve Eq. (3.11) [equivalently, Eq. (3.4)] at zero order in RH/r̄ and
ensure asymptotic flatness for r ∼ r̄ → ∞. In the following, we will solve Eq. (3.11) in order to
determine the metric up to third order in RH/r̄.

At first and second order in RH/r̄ we obtain

σ1 =
b1
2
− 3

4
c1

σ2 =
c1

4
(2 c1 − b1)− c2

2
,

(4.4)

and the third-order equation yields

c3 =
5

2
c1 c2 −

1

2
b21 c1 − b1 c2 + b2 c1 +

5

4
b1 c

2
1 − 2 b3 −

3

2
c3

1 . (4.5)

We can now fix the coefficients bk to match Eq. (3.10), that is

B̄ ' 1− RH

r(r̄)
+

qV R
2
H

2 [r(r̄)]2
−

2 q2
V R

3
H

3 [r(r̄)]3
, (4.6)

which yields b1 = −1 and

b2 =
qV
2
− 3

4
c1 −

1

2

b3 =
qV
4

(2 + 3 c1)− 2

3
q2
V −

c1

16
(8 + c1)− c2

2
− 1

4
.

(4.7)

Upon replacing the above expressions in the expansion of Ā, we obtain

a1 = 1 + c1

a2 =
3

2
− qV

2
+

7

4
c1 + c2

a3 =
11

4
+

(
2 qV −

5

2
− 9

4
c1

)
qV +

7

2
(c1 + c2) +

c1

2

(
5 c2 −

17

8
c1 − 3 c2

1

)
.

(4.8)

In order to uniquely fix all of the coefficients in the above expansions from physical consid-
erations, it is useful to introduce the Eddington-Robertson parameterised post-Newtonian (PPN)
formalism, in which the metric reads [16]

ds2 ' −
[
1− α RH

r̄
+ (β − αγ)

R2
H

2 r̄2
+ (ζ − 1)

R3
H

r̄3

]
dt̄2 +

[
1 + γ

RH

r̄
+ ξ

R2
H

r̄2

]
dr̄2 + r̄2 dΩ2 , (4.9)
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where one can set α = 1 by the definition of the gravitational radius (3.7). This is in agreement
with b1 = −α = −1 and allows us to identify the first order PPN parameters

c1 = γ − 1 and qV = β +
γ − 1

2
. (4.10)

Finally, we obtain

B̄ ' 1− RH

r̄
+ (β − γ)

R2
H

2 r̄2

+
[
7 + 4β (5 + γ)− 32β2 − γ (26− 7 γ)− 24 c2

] R3
H

48 r̄3
(4.11)

and

Ā ' 1 + γ
RH

r̄
− (β − 3 γ − 2 c2)

R2
H

2 r̄2

+
[
5 + 32β2 − 4β (9 + γ) + 3 γ (6 + 15 γ − 8 γ2) + 8 c2 (2 + 5 γ)

] R3
H

16 r̄3
(4.12)

so that

C̄ ' 1 + (γ − 1)
RH

r̄
+ c2

R2
H

r̄2
(4.13)

+
[
11 + 32β2 − 8β (4− γ)− γ (22− 59 γ − 36 γ2)− 12 c2 (1− 5 γ)

] R3
H

24 r̄3
. (4.14)

The harmonic radius is also given by

r ' r̄ +
1− 3 γ

4
RH +

(
1− 3 γ + 2 γ2 − 2 c2

) R2
H

4 r̄
. (4.15)

Experimental data strongly constrain |γ − 1| ' |β − 1| � 1. Upon assuming β = γ = 1, that is
c1 = 0 and qV = 1, we find that the bootstrapped metric which describes the minimum deviation
from the Schwarzschild form is given by

B̄ ' 1− 2GNM

r̄
− 2 (5 + 6 c2)

G3
NM

3

3 r̄3

' BS(r̄)− 2 (6 ξ − 1)
G3

NM
3

3 r̄3
(4.16)

Ā ' 1 +
2GNM

r̄
+ 4 (1 + c2)

G2
NM

2

r̄2
+ 2 (9 + 14 c2)

G3
NM

3

r̄3

' AS(r̄) + (ξ − 1)
G2

NM
2

r̄2
+ 2 (14 ξ − 9)

G3
NM

3

r̄3
, (4.17)

and

r ' r̄ −GNM − 2 (ξ − 1)
G2

NM
2

r̄
. (4.18)
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For completeness, we also display the Ricci scalar obtained from the above metric coefficients to
next-to-leading order in the RH/r expansion,

R̄ '
(
1− 4 c2 − 5 γ + 4 γ2

) R2
H

2 r4

−
(
9 + 16 c2 − 40β + 32β2 + 14 γ + 16 c2 γ + 16β γ + 5 γ2 − 16 γ3

) R3
H

8 r5

' −2 c2
R2

H

r4
− (5 + 8 c2)

R3
H

2 r5
, (4.19)

where we set β = γ = 1 in the second expression. Clearly, the above expression of R̄ shows that the
effective metric increasingly differs from Schwarzschild’s R̄S = 0 as one goes closer to the source.

In the above, the second order PPN parameters are both determined by the one parameter c2

as

ξ = 1 + c2 , and ζ = 1− 5 + 6 c2

12
=

13− 6 ξ

12
, (4.20)

so that the combination ξ = ζ = 1 corresponding to the PPN expansion of the Schwarzschild metric
is not allowed. We can see that the new contribution to Ā at second order in RH/r̄ only vanishes
for c2 = 0, but higher-order corrections then cannot be eliminated. Correspondingly, for β = γ = 1,
we have

C̄ ' 1 + (ξ − 1)
R2

H

r̄2
+ (12 ξ − 7)

R3
H

6 r̄3
, (4.21)

and the Schwarzschild case C̄ = 1 cannot be reproduced. In the following, we shall analyse the
effects of these second order terms in Eqs. (4.16) and (4.17).

4.1 Effective energy-momentum tensor

Since the effective metric with components (4.16) and (4.17) differs from the Schwarzschild geometry,
the space-time must contain a non-vanishing effective spherically symmetric energy-momentum
tensor

T eff
µν = ρeff uµ uν + peff

r rµ rν + peff
t θµ θν + peff

t φµ φν , (4.22)

where ρeff = ρeff(r̄), peff
r = peff

r (r̄) and peff
t = peff

t (r̄) are respectively the energy density, the radial
pressure and the surface tension of the static effective fluid. In the coordinates x̄µ = (t̄, r̄, θ, φ) of
Eq. (3.1), we also have the tetrad components

uµ =
δµ0
B̄1/2

, rµ =
δµ1
Ā1/2

, θµ =
δµ3
r̄
, φµ =

δµ4
r̄ sin θ

. (4.23)

We can compute the density and pressures from the Einstein tensor,

ρeff = T eff
µν u

µ uν =
G00

8πGN B̄
=

(Ā− 1) Ā+ r̄ Ā′

8πGN r̄2 Ā2

peff
r = T eff

µν r
µ rν =

G11

8πGN Ā
=
B̄ − C̄ + r̄ B̄′

8πGN r̄2 C̄
(4.24)

peff
t = T eff

µν θ
µ θν =

G22

8πGN r̄2
=

2 C̄
(
2 B̄′ + r̄ B̄′′

)
−
(
2 B̄ + r̄ B̄′

)
C̄ ′

32πGN r̄ C̄2
,
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where a prime denotes differentiation with respect to r̄. The above expressions of course vanish for
the Schwarzschild metric, whereas we obtain 6

ρeff ' GNM
2

2π r̄4

[
1− ξ + (1− 6 ξ)

GNM

r̄

]
(4.25)

peff
r ' (1− ξ) GNM

2

2π r̄4

(
1 +

2GNM

r̄

)
' −peff

t . (4.26)

For ξ = 1 (that is c2 = 0), the pressure and tension vanish, at this order of approximation, but one
is still left with a negative energy density.

4.1.1 Energy conditions

One can now check if the effective source satisfies (some of) the energy conditions. Since pr ' −pt
the effective fluid is in general anisotropic. In particular, for anisotropic fluids, the null energy
condition is implied by all other energy conditions and requires

0 ≤ ρ+ pr =
B̄ C̄ ′

8πGN r̄ C̄2
(4.27)

0 ≤ ρ+ pt =
2 r̄2 C̄ B̄′′ − r̄2 B̄′ C̄ ′ + B̄

(
2 r̄ C̄ ′ − 4 C̄

)
+ 4 C̄2

32πGN r̄2 C̄2
, (4.28)

where primes again denote differentiation with respect to r̄.
For β = γ = 1, we have

ρ+ pr '
GNM

2

π r̄4

[
1− ξ + (3− 8 ξ)

GNM

2 r̄

]
(4.29)

ρ+ pt ' −(1 + 4 ξ)
G2

NM
3

2π r̄5
, (4.30)

and, in order to enforce the above conditions (4.27) and (4.28) for r̄ � RH, we would then need
ξ < −1/4 (that is, c2 < −5/4). The case ξ = 1 (or c2 = 0) of minimal deviation from the
Schwarzschild metric necessarily violates the classical energy conditions. In principle, this conclusion
is in line with the original idea that the effective metric should incorporate corrections stemming
from quantum physics. The fact that the effective energy-momentum tensor does not vanish at
large distance from the source means that quantum effects associated with a localised source will
affect the space-time even at much larger scales.

4.1.2 Misner-Sharp-Hernandez mass

It is also interesting to cast the above result in terms of the Misner-Sharp-Hernandez mass [20–22]

m(r̄) =
r̄

2GN

(
1− 1

A(r̄)

)
, (4.31)

6The general expressions in terms of Eddington-Robertson parameters is given in Appendix A.
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which is known to play an important role in the study of the viability of quantum and quantum-
corrected black hole solutions (see e.g. [23, 24] and references therein).7 For β = γ = 1, we find

m(r̄) 'M
[
1 + (ξ − 1)

2GNM

r̄
+ (6 ξ − 1)

G2
NM

2

r̄2

]
, (4.32)

which equals

m(r̄) = Ms + 4π

∫ r̄

r̄s

ρeff(x)x2 dx , (4.33)

where r̄s � RH is the areal radius of the source of mass Ms = m(r̄s). For ξ ≥ 1 (or c2 ≥ 0), one
therefore finds that the asymptotic ADM [25] mass m(r̄ → ∞) = M < Ms (the effective negative
energy density screens gravity), whereas for ξ < 1 (or c2 < 0) we have M > Ms (the positive
effective energy density causes an anti-screening effect [26]).

4.2 Geodesics

Geodesics x̄µ = x̄µ(λ) in a metric of the form in Eq. (3.1) can be obtained from the Lagrangian

2L = B̄ ˙̄t2 − Ā ˙̄r2 − r̄2
(
θ̇2 + sin2 θ φ̇2

)
= k , (4.34)

where a dot denotes differentiation with respect to λ. The constant k = 1 and λ = τ is the proper
time for massive particles, whereas k = 0 and λ is an affine parameter for light signals. Staticity
and spherical symmetry ensure the existence of the usual integrals of motion, namely

E =
∂L

∂ṫ
= B̄ ˙̄t (4.35)

and

J = −∂L
∂φ̇

= r̄2 φ̇ , (4.36)

which is proportional to the angular momentum around the axis that defines the angle φ having
chosen the trajectory to lie on the plane θ = π/2.

We are now left with just the equations of motion for φ = φ(τ) and r = r(τ), for which it is
easier to use the mass-shell condition (4.34), which we write as

˙̄r2 + Veff =
E2

C̄
, (4.37)

where the effective potential

Veff =
1

Ā

(
k +

J2

r̄2

)
. (4.38)

7It is also worth mentioning that the Misner-Sharp-Hernandez has a role in determining the location of horizons
for static spherically symmetric spacetimes, thus providing a straightforward method for the characterization of the
causal structure of such spaces (see e.g. Ref. [22]).
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An interesting feature is that C̄ = Ā B̄ 6= 1 in general, see Eq (4.14), and one therefore expects an
energy-dependent term in the acceleration experienced by a particle, in apparent violation of the
equivalence principle [27], as predicted by some quantum models of gravity [28].

For the purpose of studying orbits with J 6= 0, it is more useful to parameterise the trajectories
with the angle φ, and therefore solve (

dr̄

dφ

)2

=

(
˙̄r

φ̇

)2

. (4.39)

We next analyse massive (k = 1) and massless (k = 0) cases separately.

4.2.1 Perihelion precession

The precession of almost Newtonian orbits of planets and stars (k = 1) with semilatus rectum ` and
eccentricity ε can be easily expressed in terms of the PPN parameters. In particular, at first order
in RH/`, one finds [16]

∆φ(1) = 2π (2− β + 2 γ)
GNM

`
, (4.40)

which reproduces the General Relativistic result

∆φ
(1)
S = 6π

GNM

`
(4.41)

for β = γ = 1 of the Schwarzschild metric. The second order correction depends on both ξ and ζ
and, for β = γ = 1, is given by

∆φ(2) = π

[
(41 + 10 ξ − 24 ζ) + (16 ξ − 13)

ε2

2

]
G2

NM
2

`2

' π

[
(37 + 22 c2) + (3 + 16 c2)

ε2

2

]
G2

NM
2

`2

' ∆φ
(2)
S + 2π

[
11 ξ − 7 + 4 (ξ − 1) ε2

] G2
NM

2

`2
, (4.42)

where we used Eq. (4.20), and the General Relativistic result ∆φ
(2)
S corresponds to ξ = ζ = 1. We

see that, in the minimal case with c2 = 0, we have ξ = 1 but ζ 6= 1, and a correction remains which
is independent of the eccentricity. Binary systems could therefore be employed in order to test the
effective bootstrapped Newtonian metric at the second PPN order.

4.2.2 Light deflection

For light signals (k = 0), one can likewise express the weak lensing angle for a trajectory reaching
the minimum areal radius r̄0 from infinity in terms of the PPN parameters. At first order in RH/r̄0,
we have [16]

∆φ(1) = (1 + γ)
2GNM

r̄0
, (4.43)
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which reproduces the result from the Schwarzschild geometry for γ = 1 by construction. The second
order correction for β = γ = 1, however, only depends on ξ and is given by

∆φ(2) =

[(
11

4
+ ξ

)
π − 4

]
G2

NM
2

r̄2
0

' [(15 + 4 c2)π − 16]
G2

NM
2

4 r̄2
0

' ∆φ
(2)
S + (ξ − 1)π

G2
NM

2

r̄2
0

, (4.44)

which equals the General Relativistic result in the minimal case ξ = 1 (or c2 = 0). This shows that
light is not significantly affected and weak gravitational lensing cannot be efficiently used to test
the bootstrapped Newtonian metric.

4.2.3 Time delay

The radial equation (4.37) for β = γ = 1 reads

˙̄r2 ' −k
{

1− 2GNM

r̄

[
1 +

2 c2GNM

r̄
+ (5 + 6 c2)

G2
NM

2

r̄2

]}
− J2

r̄2

(
1− 2GNM

r̄

)
+E2

{
1−

4G2
NM

2

r̄2

[
c2 + (5 + 12 c2)

GNM

3 r̄

]}
, (4.45)

which, even for the minimal deviation with c2 = 0, contains an additional term proportional to E2.
This terms will give rise to an additional acceleration

¨̄r ∼
G3

NM
3

r̄4
E2 , (4.46)

which will affect the time of flight of both massive and light signals compared to the General
Relativistic expectation.

Let us consider, in particular, a trajectory with J = 0 between r̄1 = r̄(λ1) and r̄2 = r̄(λ2) > r̄1.
Eq. (4.37) with c2 = 0 then reads

˙̄r2 ' −k
[
1− 2GNM

r̄

(
1 +

5G2
NM

2

r̄2

)]
+ E2

(
1−

20G3
NM

3

3 r̄3

)
, (4.47)

For light signals, since k = 0, (
1 +

10G3
NM

3

3 r̄3

)
˙̄r ' E , (4.48)

which yields

λ2 − λ1 '
r̄2 − r̄1

E

[
1 +

5G3
NM

3

3 r̄2
1 r̄

2
2

(r̄1 + r̄2)

]
≡ ∆λ

(
1 +

δλ

∆λ

)
. (4.49)

The expected relative time delay δλ/∆λ for light signals is therefore independent of E.
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5 Effective space-time picture: near horizon

The task of reconstructing a metric from the potential (2.14) is more challenging near the horizon,
as we have far less experimental constraints to rely upon. Moreover, we need to first discuss how
the horizon would be determined by the potential in harmonic coordinates. For the Schwarzschild
solution (3.6), the horizon areal radius is given by r̄ = RH, which corresponds to the harmonic
radius rS = RH/2 = GNM , according to Eq. (3.8). The potential (3.9) then takes the value

VS(rS) = −1/2 , (5.1)

in agreement with the Newtonian concept of escape velocity being equal to the speed of light.
In Refs. [6,8,9,13], we relied on this result and likewise defined the horizon as the radius where

the escape velocity equals the speed of light for the bootstrapped Newtonian potential, that is

2V0(rH) = −1 , (5.2)

which yields

rH =
6 qV GNM

(1 + 2 qV )3/2 − 1
, (5.3)

provided qV > 0. Note also that

lim
qV→0

rH = RH , (5.4)

which is twice the Schwarzschild value rS = RH/2. Considering Eq. (4.10) and the constraints on
the PPN parameters γ and β from the weak-field regime, we must have qV ' 1. In particular, for
the minimal deviation from Schwarzschild given by qV = 1, we have

rH =
6GNM

3
√

3− 1
' 1.43GNM , (5.5)

which is also significantly larger than the corresponding harmonic Schwarzschild radius rS.
Since RH/rH ∼ 1, the perturbative PPN expansion (4.1) cannot be effectively extended into the

near-horizon region. We instead have

B = 1 + 2V0 =
(

1− rH

r

)
B , (5.6)

where B = B(r) is a regular and strictly positive function for r ≥ rH, which can be Taylor expanded
as

B =
∑
k=0

βk

(
r − rH

rH

)k
. (5.7)

Of course, the coefficients βk are fully determined from the explicit form of V0, although their
expressions are rather cumbersome. The first few ones, for instance, are given by

β0 =
(1 + 2 qV )3/2 − 1

3 qV
√

1 + 2 qV
' 0.81

β1 =
qV
(
3 + 6 qV + 4 q2

V

)
− (1 + 2 qV )3/2

9 qV (1 + 2 qV )2
' 0.11

β2 ' −0.07 ,

(5.8)
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where the numerical estimates are obtained by setting qV = 1.
In order to change to the standard coordinates, we similarly expand the harmonic coordinate r

around r̄H ≡ r̄(rH) as

r = ρ0 r̄H + r̄H

∑
k=1

ρk

(
r̄ − r̄H

r̄H

)k
, (5.9)

where rH = ρ0 r̄H is again the harmonic horizon radius in Eq. (5.3). By inserting Eq. (5.9) into
Eq. (5.6), one can write

B̄ =
(

1− r̄H

r̄

)
B̄ , (5.10)

with

B̄ =
∑
k=0

Bk

(
r̄ − r̄H

r̄H

)k
, (5.11)

where the coefficients Bk are determined by the known βj ’s in Eq. (5.7) and the still undetermined
ρj ’s in Eq. (5.9). We notice in particular that B̄(r̄ > r̄H) > 0 implies that B0 > 0 and each Bk

depends on the ρj≤k+1’s, which quickly makes all expressions very cumbersome.
In order to have a proper event horizon, we must require that both B̄ and Ā become negative

for r̄ < r̄H. We thus assume 8

Ā =
(

1− r̄H

r̄

)−1

Ā , (5.12)

where the function Ā is also regular and strictly positive for r̄ ≥ r̄H and can be expanded as

Ā =
∑
k=0

Ak

(
r̄ − r̄H

r̄H

)k
, (5.13)

where A0 > 0. It follows that C̄ = Ā B̄ and, upon replacing into Eq. (3.11), we obtain

r̄ r′′ − 2 Ā r

r̄ − r̄H
+

(
2 +

r̄H

r̄ − r̄H
+
r̄ B̄′

2 B̄
− r̄ Ā′

2 Ā

)
r′ = 0 , (5.14)

where primes again denote derivatives with respect to r̄. In principle, this equation can be solved
order by order in (r̄ − r̄H), thus relating the coefficients Ak to the Bk’s and ρk’s (equivalently, to
the βk’s and ρk’s).

At leading order, for r̄ ' r̄H, we have

r̄H

r̄ − r̄H
(ρ1 − 2 ρ0 A0) ' 0 , (5.15)

which implies

A0 =
ρ1

2 ρ0
. (5.16)

8Note that we require that the determinant of the metric g ∼ Ā B̄ is regular everywhere for r̄ ≥ r̄H.
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At next to leading order, we then have

ρ2 = ρ0 A1 + ρ1 A0 −
ρ1

4

(
4 +

B1

B0
− A1

A0

)
=

ρ0

2

[
3A1 −A0

(
4− 4A0 +

B1

B0

)]
, (5.17)

where we recall that A0 and B0 must be positive. In particular, if ρ1 ' 1 and |ρ2| � 1, 9 we must
have

A0 '
1

2 ρ0
, A1 '

2

3 ρ0

(
1− 1

2 ρ0
− B1

4B0

)
, (5.18)

where the known and exact coefficient

B0 =
β0

ρ0
=

(1 + 2 qV )3/2 − 1

3 ρ0 qV
√

1 + 2 qV
, (5.19)

and, since B1 depends also on ρ2, we do not show its rather long expression here.
It is important to remark that the unknown coefficients Ak’s depend on the coefficients ρk’s,

both through Eq. (5.14) and because the Bk’s depend on the ρk’s. The only way to fix this
ambiguity, related with the expression of the harmonic r = r(r̄), on physical grounds is to match
the near-horizon expressions of the metric components Ā and B̄ with their analogue in the weak-
field regime. The latter was obtained previously by imposing observational constraints to partly fix
r = r(r̄) therein. The matching between the two regimes will therefore leave unspecified only those
parameters which do not conflict with the experimental bounds at large distance from the source.

5.1 Matching with weak field

Let us start from noting that the Taylor expansion for the near-horizon regime is comparable with
the one for weak field when

r̄ − r̄H

r̄H
' RH

r̄
, (5.20)

or r̄ ' r̄m, with

r̄m =
r̄H

2

(
1 +

√
1 + 4

RH

r̄H

)

=
rH

2 ρ0

(
1 +

√
1 + 4 ρ0

RH

rH

)
, (5.21)

where we recall that ρ0 > 0 and the harmonic rH is given in Eq. (5.3). Moreover, the first few terms
in the two expansions still provide a reliable approximation at r̄ = r̄m if

RH

r̄m
= 2 ρ0

RH

rH

(
1 +

√
1 + 4 ρ0

RH

rH

)−1

. 1 . (5.22)

9We will see next that this is a rather accurate estimate.
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The above condition is satisfied for

ρ0 . ρc ≡ 2
rH

RH
=

6 qV
(1 + 2 qV )3/2 − 1

. (5.23)

In particular, by matching the expressions of the harmonic coordinates (4.2) and (5.9) at r̄ = r̄m,
that is

r̄m −
RH

2
+ r̄m

∑
k=2

σk

(
RH

r̄m

)k
= ρ0 r̄H + r̄H

∑
k=1

ρk

(
r̄m − r̄H

r̄H

)k
= ρ0 r̄H + ρ1 (r̄m − r̄H) + r̄H

∑
k=2

ρk

(
RH

r̄m

)k
, (5.24)

we obtain

ρ0 = (1− ρ1)
r̄m

r̄H
+ ρ1 −

RH

2 r̄H
−
∑
k=2

(
ρk −

r̄m

r̄H
σk

)(
RH

r̄m

)k
. (5.25)

At leading order, we thus find

ρ0 ' (1− ρ1)
r̄m

r̄H
+ ρ1 −

RH

2 r̄H
. (5.26)

This estimate can be further improved by considering yet another expansion about r̄ = r̄m and
determining the corresponding Taylor coefficients from the matching with the weak-field expansion
for r̄ & r̄m and with the near-horizon expansion for r̄ . r̄m. This is equivalent to imposing continuity
of the function r = r(r̄) and its derivatives across r̄m (see Appendix B). We remark here that the
result for |c2| = |ξ − 1| . 1 is consistent with the above expressions for ρ1 ' 1 and |ρ2| � 1.

5.2 Near-horizon geometry

The better estimate of ρ0 in Eq. (B.11) yields for the areal radius of the bootstrapped Newtonian
horizon

r̄H =
rH

ρ0
' (1.21 + 0.27 c2)RH . (5.27)

The value of c2 = cS
2 which would give r̄H = RH = 2GNM according to this equation is outside our

range of approximation (namely, |c2| � 1). In fact, resorting to Eq. (B.6), we obtain cS
2 ≈ −0.696,

corresponding to ξ = cS
2 + 1 ' 0.3.

On using Eqs. (B.11), (5.19) and (5.16), we obtain

B0 ' 1.37 + 0.50 c2

A0 ' 0.85 + 0.31 c2 .
(5.28)

In particular, for c2 = 0, we find ρ1 ' 1 and Eq. (5.26) yields the same relation between the
harmonic and the areal horizon radii which holds for the Schwarzschild solution, that is

r̄H ' rH +
RH

2
. (5.29)
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Figure 2: Comparison between the Schwarzschild and bootstrapped Newtonian metric components
for RH < r̄ < r̄m. The vertical line in the right panel is the location of the bootstrapped horizon
r̄ = r̄H.

From the bootstrapped potential we thus obtain

r̄H '
(1 + 2 qV )3/2 − 1 + 6 qV

(1 + 2 qV )3/2 − 1
GNM ' 2.43GNM , (5.30)

where the last value is for qV = 1. The corresponding metric coefficients B̄ and Ā at leading order in
the near-horizon expansion are shown in Fig. 2, where they are compared with their Schwarzschild
analogues. The only relevant difference is given by the areal radius of the bootstrapped horizon.
For this reason we plot r̄H in units of RH in Fig. 3, and note that r̄H = RH for

qV =
3 + 2

√
3

2
' 3.23 . (5.31)

Clearly, this much stronger self-coupling would not be compatible with the weak-field bounds,
further supporting the result that the bootstrapped Newtonian metric contains an horizon r̄H larger
than Schwarzschild’s RH.

Since the matching radius r̄m ' 3.73GNM , one can expect a correction for the radius r̄ph of the
photon orbit, whose value is 3GNM in General Relativity. Using C̄ ' A0 B0 ' 1.17 and constant,

1 2 3 4
qV

1.0

1.1

1.2

1.3

1.4

1.5

rH

RH

Figure 3: Bootstrapped horizon r̄H in units of RH. The horizontal dotted line is unity.
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the latter can be estimated from Eq. (4.37) as

0 = V′eff ∼ 3 r̄H − 2 r̄ph , (5.32)

where Veff is the potential in Eq. (4.38) with k = 0 for null trajectories. The result r̄ph ' 3.64GNM
is just short of r̄m, and a better reconstruction of the near-horizon metric including a few higher
order terms Ak and Bk is therefore likely to modify this value. In fact, we note that C̄ must approach
the General Relativistic value C̄ = 1 rather fast in the weak-field regime, according to Eq. (4.21),
and C̄ ′ cannot therefore be neglected near the horizon. For example, if we simply employ a linear
approximation for B̄, and take ρ1 = 1 and ρ2 = 0, we get

r̄ph '
3B0 − 2B1

2B0 − 2B1
r̄H ' 3.26GNM , (5.33)

which is closer to the prediction of General Relativity.
On the other hand, the innermost stable circular orbit of General Relativity is located at r̄ISCO =

6GNM , and its location in the bootstrapped Newtonian metric should instead be recovered rather
accurately from the weak-field approximation. From Eq. (4.16) and (4.17) evaluated at r̄ = r̄ISCO

we indeed obtain for the deviation of the bootstrapped metric from Schwarzschild’s

B̄ − B̄S

B̄S
' 5 + c2

216
' 0.02

Ā− ĀS

ĀS
' 5 + 17 c2

72
' 0.07 ,

(5.34)

where we expect |c2| = |ξ − 1| � 1.

5.3 Harmonic and areal compactness

For a source of harmonic radius R in the Schwarzschild space-time, one can introduce the compact-
ness in the harmonic coordinate as

XS ≡
GNM

R
, (5.35)

or in the areal coordinate as

X̄S ≡
2GNM

R̄
=

2XS

1 +XS
, (5.36)

where we used Eq. (3.8). In particular, X̄S(RH) = XS(rS) = 1 for a Schwarzschild black hole.
For the bootstrapped metric, we could likewise introduce the harmonic compactness

X ≡ rH

R
(5.37)

and the areal compactness

X̄ ≡ r̄H

R̄
=

X

ρ0 + (1− ρ0)X
, (5.38)

in which we employed the leading order transformation (5.9) with ρ1 ' 1,

r ' ρ0 r̄H + r̄ − r̄H , (5.39)

21



so that X̄(r̄H) = X(rH) = 1.
For the purpose of comparing with General Relativity, it is however more convenient to use the

Schwarzschild quantities and note that, for a bootstrapped Newtonian black hole

XS(rH) =
GNM

rH
=

6 qV
(1 + 2 qV )3/2 − 1

' 0.70 (5.40)

and

X̄S(r̄H) = 2 ρ0XS =
2XS

1 +XS
' 0.83 , (5.41)

where the numerical values are those for qV = 1, as usual. We notice incidentally that this value is
just slightly smaller than the Buchdahl limit X̄B = 8/9 ' 0.89.

6 Conclusions and outlook

The bootstrapped Newtonian approach is devised to capture quantum effects which induce large
(mean-field) deviations from classical General Relativity when large matter sources are involved.
Such effects would be completely determined if we knew the proper quantum state describing specific
self-gravitating systems. What we know for certain is that the strong field regime of gravity governed
by the Einstein field equations is not linear. Determining the relevant quantum state therefore
requires that one solves nonlinear quantum dynamics, which seems hardly a tenable task for large
and very compact sources. The bootstrapped Newtonian approach considers a simplified form of
nonlinear dynamics for gravity, compared to General Relativity, but aims at including quantum
deviations from classicality in a form that is sufficiently general to confront observations. This
generality is manifested in the coupling constants appearing in the action (2.11).

The potential experienced by test particle at rest is however not sufficient to determine all devi-
ations from the classical solutions of General Relativity. Starting from the bootstrapped Newtonian
potential outside a static and spherically symmetric source, we here obtained a complete metric by
supplying further conditions of compatibility with observations in the weak-field regime. The main
difference with respect to the unique Schwarzschild solution of General Relativity. is given by the
larger horizon radius estimated in Eq. (5.30). This prediction makes the bootstrapped Newtonian
programme experimentally testable, for instance, by measurements of light trajectories reaching
the photon orbit. A more detailed analysis of these trajectories in terms of the parameters of the
effective metric is the natural continuation of the work presented here.

A possible conclusion of such a phenomenological analysis could be that a consistent description
of the near-horizon region of black holes requires more than the first few nonlinear terms included in
the bootstrapped Newtonian Lagrangian (2.11). This possibility will be investigated in the future,
but, in this respect, it is important to recall that the entire programme about bootstrap Newtonian
gravity is motivated by the idea that black holes and similarly compact sources might require a fully
quantum, rather than semiclassical, description. It is therefore not a priori clear to what extent
the effective metric we obtained is meaningful at such short distances from the (would-be classical)
horizon. More precisely, one expects that the interaction of matter and light falling towards the
black hole should be described in terms of scattering processes, for which classical geodesic lines
will become an unreliable approximation if black holes are indeed extended quantum objects (for
a non-exhaustive list, see Refs. [13, 14, 29–34]). This viewpoint will also require a more detailed
quantum description of the matter source itself, which is left completely out here.
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Finally, we would like to mention that the weak-field regime is also worthy of further study.
First of all, there is the possibility that deviations from the Schwarzschild geometry reproduce the
kind of effective dark fluid responsible for Dark Matter phenomenology as explored in Refs. [17].
Moreover, propagation of gravitational waves and other signals would also be affected by the non-
trivial background corresponding to the effective metric. All of these developments are left for future
investigations.
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A Weak-field effective energy-momentum tensor

The effective fluid density for general values of the Robertson-Eddington parameters is given by

ρeff ' GNM
2

4π r̄4

{(
β − 3 γ + 2 γ2 − 2 c2

)
−
[
5 + 32β2 − 12β (3− γ) + γ (18− 3 γ − 8 γ2) + 8 c2 (2 + γ)

] GNM

2 r̄

}
, (A.1)

the pressure by

peff
r ' M

4π r̄3

{
(1− γ) +

(
2− β − 3 γ + 2 γ2 − 2 c2

) GNM

r̄

+ (1 + γ)
(
1− 3 γ + 2 γ2 − 2 c2

) G2
NM

2

r̄2

}
, (A.2)

and the tension by

peff
t ' M

8π r̄3

{
(γ − 1) +

(
2β − 3 + 5 γ − 4 γ2 + 4 c2

) GNM

r̄

+
[
(1 + γ)

(
1− 2β + γ + 6 γ2

)
+ c2 (2 + 6 γ)

] G2
NM

2

r̄2

}
. (A.3)

The anisotropy Π ≡ pr − pt therefore is

Π ' M

8π r̄3

{
3 (1− γ) +

(
7− 4β − 11 γ + 8 γ2 − 8 c2

) GNM

r̄

+
[
(1− γ)

(
1 + 2β − 3 γ + 10 γ2

)
− 2 c2 (3 + 5 γ)

] G2
NM

2

r̄2

}
. (A.4)

The Misner-Sharp-Hernandez mass reads

m(r̄) ' M

{
γ −

(
β − 3 γ + 2 γ2 − 2 c2

) GNM

r̄

+
[
5− 32β2 − 12β (3− γ) + 18 γ − 3 γ2 − 8 γ3 + 8 c2 (2 + γ)

] G2
NM

2

4 r̄2

}
. (A.5)

For β = γ = 1, the above expressions reduce to those shown in the main text.
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B Intermediate range expansion

Let us start by expanding the Schwarzschild metric in harmonic coordinates around the horizon
rS = RH/2. From the general form (3.5) and Eq. (3.8) we obtain

BS =
1

AS
' r −GNM

2GNM
. (B.1)

The analogous expansion for the coefficient B of the bootstrapped Newtonian metric can be derived
from Eq. (5.6). To be more specific, we shall only consider the case qV = γ = 1 here, which yields

B ' r − 1.43GNM

1.77GNM
. (B.2)

However, we need both ρ0 and ρ1 in Eq. (5.9) in order to obtain the leading order expression for
the coefficient A.

For this purpose, we expand r = r(r̄) around r̄m defined in Eq. (5.21) as the radius at which
the weak-field expansion becomes comparable to the near-horizon one. This intermediate expansion
of r = r(r̄) can then be constrained by using the weak-field expansion to the right of r̄m and the
near-horizon expansion to the left of r̄m. In particular, continuity of r = r(r̄) and of its first few
derivatives around r̄m implies

r̄H

[
ρ0 + ρ1

RH

r̄m
+ ρ2

(
RH

r̄m

)2

+ O(3)

]
= r̄m

[
1− RH

2 r̄m
− c2

2

(
RH

r̄m

)2

+ O(3)

]
(B.3)

ρ1 + 2 ρ2
RH

r̄m
+ O(2) = 1 +

c2

2

(
RH

r̄m

)2

+ O(3) (B.4)

1

r̄H
[2 ρ2 + O(1)] =

1

r̄m

[
−c2

(
RH

r̄m

)2

+ O(3)

]
, (B.5)

where O(k) denotes a quantity proportional to (RH/r̄m)k. Solving these equations gives

ρ0 = 1− RH

2 r̄m
− c2 + 1

2

(
RH

r̄m

)2

− c2

2

(
RH

r̄m

)3

+ O(3) (B.6)

ρ1 = 1 +
c2

2

(
RH

r̄m

)2

+ O(2) (B.7)

ρ2 = O(1) . (B.8)

We next note that

ρ0 =
rH

r̄H
=

rH

RH

RH

r̄m

r̄m

r̄H
=

rH

RH

RH

r̄m

(
RH

r̄m
+ 1

)
, (B.9)

where the bootstrapped Newtonian horizon rH is given in Eq. (5.3) and the last equality follows
from the definition (5.21). With this expression for ρ0, Eq. (B.6) can be used to relate RH/r̄m to
the weak-field coefficient c2 = ξ − 1, and one can then obtain explicit estimates for ρ0, ρ1 and ρ2.
Using again qV = 1, we get

RH

r̄m
' 0.54− 0.09 c2 + O(3) , (B.10)
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which is smaller than one, as required for the validity of the truncation. Correspondingly, we have

ρ0 ' 0.59− 0.13 c2 + O(3)

ρ1 ' 1 + 0.14 c2 + O(2) .
(B.11)

From Eq. (B.10), we can further estimate the orders of magnitude of neglected quantities, namely
O(1) ≈ 0.54, O(2) ≈ 0.29 and O(3) ≈ 0.15, assuming proportionality constants of order one as well.

Moreover, using the above estimates in Eq. (5.26) yields ρ0 ' 0.59 to leading order. This
confirms that the direct matching between the weak-field and near-horizon expansions is already
rather accurate. In fact, the ratio between the first term that we neglected and the last we included
in the direct matching in Eq. (5.24), that is∣∣∣∣ρ2 r̄H − σ2 r̄m

ρ1 r̄H − σ1 r̄m
· RH

r̄m

∣∣∣∣ ' 0.08 + 0.19 c2 , (B.12)

is reasonably small in the expected range of values of c2 = ξ − 1.
Finally, Eq. (5.16) with the above estimates yields

A ' (2.06 + 1.50 c2)GNM

r − 1.43GNM
, (B.13)

where we used the approximation of small c2 and neglected all O(k) terms.
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