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Abstract
Wind-generated ocean waves are key inputs for several studies and applications, both near the coast (coastal vulnerability
assessment, coastal structures design, harbor operativity) and off-shore (a.o. oil and gas production, ship routes, and
navigation safety). As such, the evaluation of trends in future wave climate is fundamental for the development of efficient
policies in the framework of climate change adaptation and mitigation measures. This study focuses on the Mediterranean
Sea, an area of primary interest, since it plays a crucial role in the worldwide maritime transport and it is highly populated
along all its coasts. We perform an analysis of wave climate changes using an ensemble of 7 models under emission scenario
RCP8.5, over the entire Mediterranean basin. Future projections of wave climate and their variability are analyzed taking
into account annual statistics of wave parameters, such as significant wave height, mean period, and mean direction. The
results show, on average, a decreasing trend of significant wave height and mean period, while the wave directions may be
characterized by a slight eastward shift.

Keywords Wave climate projection · Mediterranean Sea · Trend analysis

1 Introduction

Since the dawn of human history, many civilizations thrived
along the shores of the Mediterranean Sea (MS), deriving
sustenance from its resources, and trading and spreading
across its waters. Until present times, this basin retained a
prominent role in the development of human culture and
economy. Today, about half billion people live along the
Mediterranean shores, with consequent concentration of
critical infrastructures and sites of cultural heritage. About
20% of the world’s seaborne commerce, and 10% of the
container traffic pass through the MS, making it one of the
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busiest seas in the world (Leone 2017). Therefore, a detailed
knowledge and monitoring of oceanographic variables in
this basin is of foremost importance. In particular, gravity
waves play a relevant role on several aspects of ocean
and coastal dynamics. They are one of the main drivers of
coastal erosion and accretion (De Leo et al. 2016; Harley
et al. 2017; Mentaschi et al. 2018). Extreme and multi-
modal sea states can pose a threat to the safety of navigation
and to coastal structures (Soares and Teixeira 2001; de Osés
and Castells 2008; Ventikos et al. 2018). Wave setup and
runup contribute to the extreme sea levels that drive coastal
floods (Didier et al. 2015; De Leo et al. 2019) and coastal
erosion (Shih et al. 1995; Ruggiero et al. 2001), together
with storm surges and tides (e.g., Cazenave and Cozannet
2014; Melet et al. 2018).

According to projections of future climate, the ongoing
sea level rise (SLR) will increase the magnitude and
frequency of coastal hazard worldwide (Hinkel et al. 2014;
Vousdoukas et al. 2018). However, local increases/decreases
in wave height and periods or directional shifts of waves
could exacerbate or mitigate this tendency. The important
question of understanding how the wave climate will evolve
in view of future climate changes has been tackled by
a number of research groups worldwide, which in the
last decade started coordinating their efforts within the
Coordinated Ocean Waves Climate Project (COWCLIP,
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www.cowclip.org). Among the existing global and large-
scale studies, it is worth mentioning the joint COWCLIP
analyses (Hemer et al. 2013; Morim et al. 2019; Morim et al.
2020a), as well as the publications of individual research
groups on mean wave climate and on the extremes (e.g.,
Mori et al. 2010; Semedo et al. 2012; Hemer et al. 2013;
Wang et al. 2014; Perez et al. 2015; Shimura et al. 2016;
Aarnes et al. 2017; Mentaschi et al. 2017; Bricheno and
Wolf 2018). On the basis of global altimetry Young and
Ribal (2019), and earlier Young et al. (2011), produced
analyses of the global historical trends of significant wave
height (Hs). Other authors estimated how changes in
wave climate will translate into wave setup and wave
runup along the world’s coasts (Vousdoukas et al. 2018;
Melet et al. 2019). These studies shed light on the
present and future changes of wave climate and on their
consequences; however, they lack the spatial resolution for
a comprehensive analysis in smaller basins or at a regional
scale. Few studies were developed specifically for the MS
or its sub-basins, notably the work of De Leo et al. (2020),
the pioneering work by Lionello et al. (2008), based on a
single model with a resolution of 50 km, and the study by
Casas-Prat and Sierra (2013), limited to the northwestern
Mediterranean. The advancement of our knowledge of local
basins is the objective of a specific task of the COWCLIP
initiative, dedicated to the development and intercomparison
of comprehensive regional projections.

This contribution aims to improve our understanding of
the future changes of wave climate in the MS, within the
framework of the regional projection task of the COWCLIP
initiative. We carried out wave simulations with the model
Wavewatch III (WW3DG 2019) with a resolution of about
10 km in longitude and latitude, forced by an ensemble
of 7 Euro-CORDEX regional models (Jacob et al. 2014)
in Representative Concentration Pathway (RCP) scenario
RCP8.5 (Van Vuuren et al. 2011). Then, we computed
some annual statistics of the expected future significant
wave height {Hs}, mean period {Tm}, and mean direction
{θm}, and studied the relative trends. Section 2 describes
the regional climate models (RCM) and wave model
used to derive the projections of future wave climate in
the Mediterranean, along with the analysis employed to
characterize trends in wave parameters. Results are outlined
and discussed in Section 3, followed by conclusions in
Section 4.

2 Data andmethods

2.1 CORDEX-Forced regional wavemodel

Simulations for future wave climate conditions in the MS
were performed employing the third-generation wave model

WavewatchIII v5.16 with a resolution of 0.127◦ in longitude
and 0.09◦ in latitude, corresponding to about 10 km, and
a time output for all the wave bulk variables equal to 3 h.
The model was implemented with the ST4 source term
(Ardhuin et al. 2010), and a setup similar to that employed
by Mentaschi et al. (2015) for the implementation and
validation of a wave hindcast in the MS.

The future projections of wave climate were forced by
seven different Euro-CORDEX climate projections under
scenario RCP8.5 (see Table 1). These RCM were chosen
due to their relatively high resolution (11 km), which is
needed to resolve adequately the complex orography and
geography of the MS. A similar assumption motivated the
studies of Bricheno et al. (2013) and Menendez et al.
(2014), who showed that an improved accuracy is achieved
in coastal waters and in the MS owing to the regional
downscaling of wind forcing. Due to the uncertainties
inherent in modeling future climate, we opted to develop
an ensemble approach employing seven different RCM
in order to exhaustively investigate the variability of
future projections of wave climate. Simulations available
for control (historical) period and RCP8.5 scenario were
carried out for the time slices 1970–2005 and 2006–2100,
respectively, saving the maps (i.e., gridded fields) of Hs ,
Tm, and θm every 3 h along with other variables over the
entire MS. The historical output of each ensemble member,
for each of the analyzed variables, was compared with
hindcast values (Mentaschi et al. 2013, 2015) to assess the
performance of the models. The hindcast was developed on
the same computational grid used for the RCM projections,
and provides hourly data of wave parameters in the 1979–
2019 period. The common time slice 1979–2005 was used
for the comparison: first, the time series of Hs and Tm were
averaged over the whole period, resulting in a single data
point for each node. Then, for each ensemble member, we
computed the maps of the bias and the spatial correlation
among the nodes between the hindcast and the RCM data.

2.2 Trend analysis

The annual means, annual 90th percentiles, and annual
maxima of Hs and Tm were computed for each grid point
using the COWCLIP utility getStat. The annual means
of θm were computed instead with the utility getStatDir
(Morim et al. 2020b). For the sake of brevity, the series
of annual mean Hs , annual 90th percentile Hs , and annual
maxima Hs are hereon referred to as Hmean

s , H
p90
s , and

Hmax
s , respectively. A similar notation is used for the

time series of Tm statistics. The yearly ensemble values
were then computed as the mean over the seven models.
As for θm, the arithmetic mean was first computed on
the components projected into Cartesian coordinates, then
it was subsequently converted back to polar coordinates
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Table 1 List of
EURO-CORDEX simulations
employed for the present study

Institute RCM Driving model Driving ensemble

CLMcom CCLM4-8-17 CanESM2 r1i1p1

CLMcom CCLM4-8-17 MIROC5 r1i1p1

SMHI RCA4 CNRM-CM5 r1i1p1

SMHI RCA4 IPSL-CM5A-MR r1i1p1

SMHI RCA4 HadGEM2-ES r1i1p1

SMHI RCA4 MPI-ESM-LR r1i1p1

SMHI RCA4 NorESM1-M r1i1p1

(Fisher 1995). Such an approach allows to account for
the discontinuity in the 0/2π space: given a series of n

directions θmj
, the circular mean can be defined as:

θmean
m = arg

⎛
⎝

n∑
j=1

exp
(
iθmj

)
⎞
⎠ (1)

In case of the θm time series, the computation of the
ensenmble mean values took advantage of the CircStat
Matlab toolbox (Berens et al. 2009).

Then, analyses of wave climate changes were performed
on the 2006–2100 time series, that is, for the future time
slice. First, trends on the time series of Hs and Tm annual
statistics were quantified through the slope of the respective
best linear fit. In this work, we employed the Theil-Sen’s
slope (Sen 1968, Theil 1992), henceforth referred to as b.
Given a series of xi data (i = 1...n, n being the number of
samples), its computation reads:

b = Median

(
xj − xl

j − l

)
∀l < j , l, j = 1...n, (2)

where xj and xl are the j th and lth data of the series,
respectively. Then, the (1-α) confidence interval of b was
computed according to Hollander et al. (2013):

b± = N ± �(α/2)

2
(3)

where � denotes the inverse of the standard normal
distribution, and N is the number of slopes related to
the n(n − 1)/2 possible pairs of sample points; this
computation was performed through the Matlab built-
in function provided by Burkey (2006). The confidence

interval of b allows assessing whether the computed trend
is significant or not. Namely, if a change of sign occurs
between b+ (the upper confidence level) and b− (the lower
confidence level), this may indicate that the data are too
dispersed to compute a reliable linear trend.

As a second step, the estimates of b were analyzed in
the context of the Mann-Kendall test (Mann 1945; Kendall
1955). This test allows to check whether an either upward
or downward monotonic trend is present within a dataset on
the basis of the test p value, computed as:

pMK = 2�(−|ZMK |) , (4)

said pMK the p value related to the Mann-Kendall test, and
ZMK being the test statistic, that depends on the ranks of
the data within the series they belong to. The values of pMK

can be used to evaluate whether the data behave consistently
with the hypothesis that there is no trend (pMK close to
1) or, at the opposite, that a trend affects the data (pMK

close to 0). Such a combined use of b and pMK was already
used by De Leo et al. (2020) that showed how to use these
information jointly to strengthen the analysis of long-term
trends on time series of Hs data.

Furthermore, the present work referred to the innovative
trend analysis (referred to as ITA, Şen 2011, 2013), a simple
and intuitive graphical analysis. Given a time series of
data, the ITA implies selecting two subsets of equal length
belonging to successive time periods. These subsets are
subsequently sorted in ascending order, and plotted versus
each other in a common range. If the resulting scatters lie
entirely above (below) the 45◦ straight line, the existence
of a positive (negative) trend can be deduced. An example

Fig. 1 ITA for dataset
characterized by no trend (panel
A), positive trend (panel B), and
negative trend (panel C)
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Table 2 Spatial correlation between the hindcast and RCM time series of annual statistics averaged over the whole MS

Driving model Hmean
s H

p90
s Hmax

s T mean
m T

p90
m T max

m

CanESM2 0.95 0.97 0.95 0.96 0.95 0.90

MIROC5 0.97 0.97 0.95 0.97 0.96 0.85

MPI-ESM-LR 0.98 0.97 0.91 0.98 0.95 0.89

NorESM1-M 0.97 0.94 0.88 0.96 0.93 0.84

CNRM-CM5 0.97 0.94 0.92 0.97 0.94 0.85

IPSL-CM5A-MR 0.97 0.94 0.91 0.97 0.94 0.90

HadGEM2-ES 0.97 0.93 0.90 0.97 0.93 0.87

of the ITA for three synthetic datasets characterized by
different trends is shown in Fig. 1. In this case, the sorted
subsets are referred to as x1 (belonging to the earlier time
slice) and x2 (belonging to the later time slice).

Here, the annual statistics of Hs and Tm were averaged
across all the computational nodes, leading to the regional
mean annual statistics of the parameters at hand. Then,
the data of 2010–2040 and 2070–2100 time slices were
selected and compared according to the ITA, to get further
indications on the future trends of Hs and Tm. Similarly to
De Leo et al. (2020), the trend magnitude resulting from
the ITA was assessed computing the distances (hereinafter
referred to as δ) of the scatters with respect to the 45◦
straight line (which identifies the absence of trend). Positive
and negative trends can be therefore discussed in terms
of the empirical cumulative distribution function (ecdf) of
delta, and of its position relative to the 45◦ line. The ITA
should be carefully used, as to rely only on this test could
lead to wrong conclusions (Serinaldi et al. 2020). However,
in this work, the outcomes related to three different tests
were compared, in order to discuss and strengthen the
outcomes related to each single method.

Besides the statistical significance of the trend, in a
study on climate projections it is important to assess the
consistency of the projected changes across the ensemble
(Knutti and Sedláček 2013). In this work, this has been
accomplished by evaluating the number of ensemble
members indicating either positive or negative trends at
each point of the computational grid. Finally, θmean

m was

investigated by means of polar plots of the time series at six
locations, selected in different sub-basins of the MS.

3 Results and discussion

3.1 Analysis of historical wave climate simulations

First, the historical wave climate in the MS driven by each of
the RCM was compared to the hindcast data developed and
validated by Mentaschi et al. (2013) and Mentaschi et al.
(2015). Attached in the Appendix are the comparison maps
for Hs (Figs. 19, 20, and 21) and Tm (Figs. 22, 23, and
24), which show the different spatial patterns of the biases
models-hindcast. The maps also show the mean biases
averaged over the MS. In case of the Hs statistics, the mean
biases are between [−15.3%, −1.8%], [−6.8%, 7.7%], and
[−15.9%, 3.8%] for Hmean

s , H
p90
s , and Hmax

s , respectively.
When the annual statistics of Tm are considered, the
mean biases attain values between [−0.9%, 6%] (T mean

m ),

[−2.7%, 5.6%] (T p90
m ), and [−5.6%, 6%] (T max

m ). Table 2
reports the spatial correlations between the hindcast and
the RCM data, computed through Pearson’s coefficient.
The high values of the spatial correlation indicate that the
spatial patterns are adequately captured by each model,
for all the examined parameters and statistics. Altogether,
these results show the ability of the models to reproduce
reasonably well the wave dynamics on the historical
period.

Fig. 2 Values of b computed
over the MS for the annual
statistics investigated (annual
means, 90th percentiles, and
annual maxima). Left panel: Hs ;
right panel: Tm
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Fig. 3 Spatial distribution of b

for the time slice 2006–2100.
Values of b are scaled in the
[−1, 1] range. Panel A, Hmean

s ;

panel B, T mean
m ; panel C, H

p90
s ;

panel D, T
p90
m ; panel E, Hmax

s ;
panel F, T max

m

3.2 Analysis of trends on the future wave climate

First, the trends were computed on the ensemble time series
of each wave parameter for each grid point. Trend analysis
could be also performed directly on the series related to each
single ensemble member, averaging the trend metrics at a
second time. Such approach will be discussed in the second
part of this section.

Figure 2 summarizes the values of b related to Hs and
Tm. First of all, it can be noticed how for all the examined
statistics the vast majority of highlighted trends is negative,
indicating an average reduction in the expected future wave
parameters. According to the boxplots, positive values of b

(i.e., upward trends) lie always above the upper bars, which
denote the 75th percentile of the whole series. Moreover, the
highest positive trends are generally less pronounced than
the negative ones, especially as far as annual maxima data
are concerned. Besides, the boxplots of Fig. 2 also reveal
that the variability of b among the grid nodes increases with
the order (mean, p90, and maxima) of the annual statistic
considered. This can be clearly noticed by looking at the
whiskers outside the upper and lower quartiles of the boxes,
and leaves room for a further consideration: annual maxima
data are more dispersed with respect to the annual lower
percentiles, since the latter are influenced by mild sea states

which, being more frequent, matter the most. This affects
the estimations of b which show a higher variability for the
annual maxima than for the other two statistics.

The aforementioned considerations are confirmed by the
spatial distribution of b in the MS, as reported in Fig. 3.
In this case, positive and negative values of b were linearly
scaled in the [0,1] and [−1, 0] ranges, respectively, to
better compare the trends location rather than the trends
magnitude. To this end, we used the general formula:

bs = L +
[

b − bmin

bmax − bmin

]
× (U − L) (5)

where U and L denote the upper and lower values of
the desired range, respectively; bmin and bmax indicate the
minimum and the maximum values in the dataset of b,
respectively.

Similarities can be appreciated in the spatial distribution
of upward trends for Hmean

s and H
p90
s (panels A and C) and

T mean
m and T

p90
m (panels B and D), where positive values

of b mainly characterize two areas in the Aegean Sea and
close to the strait of Gibraltar. On the other hand, the most
negative trends for Hmean

s and H
p90
s are located around the

Balearic islands, in the southern part of the Ionian Sea and
in the South-East Mediterranean basin around Cyprus. As
for Tm, the lowest values of b (i.e., the strongest downward
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trends) are found in the west coast of Greece and Crete. The
weakest trends for annual mean and annual 90th percentile
series of both Hs and Tm are located in the Adriatic Sea,
the North Tyrrhenian Sea, the Aegean Sea (but a small area
characterized by positive trends, as previously highlighted)
and east of the Tunisia coastline. When annual maxima are
taken into account, the spatial distribution of expected trends
becomes much more irregular (panels E and F for Hmax

s

and T max
m , respectively). Positive trends are scattered over

isolated spots in the Adriatic Sea, the Ionian Sea and off
the south coast of Tunisia, while no broad areas uniformly
characterized by significantly low values of b can be detected.

Figure 3 allows assessing where trends characterized by
different magnitude are most likely expected to take place, but
it does not provide any information about their significance.
To this end, the reliability of the b estimates was further
evaluated looking at their 90% confidence interval, and
coupling this information with the values of pMK computed
on the respective time series, as explained in Sect. 2. Results
related to the Hs annual statistics are presented in Fig. 4,
while results related to the Tm annual statistics are presented
in Fig. 5. The locations showing a change of sign between
the upper and the lower confidence intervals of b are
underlined in the leftmost side of the figures.

As regards Hmean
s and Hmax

s , the areas characterized by
non-significant trends are similarly located. In particular,
attention is posed to the strait of Gibraltar and the Aegean
Sea, being characterized by widespread marked areas
(panels A and C of Fig. 4). A majority of the time series
within such areas are in turn characterized by close-to-1
values of pMK , indicating the absence of a significant trend.
A similar result characterizes the upward trends of Hmax

s

(panels E and F of Fig. 4). In fact, positive values of b in
the Adriatic and in broad areas to the east of Tunisia and
the Ionian Sea, are associated to change of sign between
the respective b− and b+. A clear correlation exists also
when negative trends are considered, that is, the values of
b closest to 0 occur jointly with high values of pMK and
no significant trends (e.g., in the southeast Mediterranean
basin, the areas to the east of the Balearic islands, and in the
North Tyrrhenian Sea).

As regards the time series of Tm (Fig. 5), most of the
positive trends in the Aegean Sea are still found to be not
significant in case of annual mean (panels A and B) and
annual 90th percentile (panels C and D). An exception is the
area close to the Strait of Gibraltar, where positive trends of
T mean

m are significant, while in case of T
p90
m a majority of

the locations are characterized by negligible trends. For both

Fig. 4 Significance of trends for
the time slice 2006–2100.
Panels A, C, and E highlight the
grid nodes where b+ and b−
show opposite sign for Hmean

s ,

H
p90
s , and Hmax

s , respectively;
panels B, D, and F show the
values of pMK for each grid
node and Hmean

s , H
p90
s , and

Hmax
s , respectively
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Fig. 5 Significance of trends for
the time slice 2006–2100.
Panels A, C, and E highlight the
grid nodes where b+ and b−
show opposite sign for T mean

m ,

T
p90
m , and T max

m , respectively;
panels B, D, and F show the
values of pMK for each grid
node and T mean

m , T
p90
m , and

T max
m , respectively

the statistics considered, trends in the North-Tyrrhenian east
of Corsica and Sardinia are generally not relevant, and these
are indeed related to low values of b (reference is made to
panels B and D of Fig. 3). When the time series of T max

m

are considered (panels E and F), the locations showing not
significant trends are concentrated in the Adriatic Sea, the
Ionian Sea, the Aegean Sea, and the southeast basin of the
Mediterranean Sea.

Given that the wave model was only forced by the RCM
wind data, the trends previously highlighted are to be related to
expected variations in the atmospheric circulation pat-
terns. The MS is an enclosed basin at the mid-latitudes;
thus, there is no environmental forcing affecting the wave
climate as much as the wind (for instance, swells gener-
ated elsewhere or variation in the ice coverage). Overall,
the results presented so far indicate a widespread decrease
in the future wave heights and periods over the MS,
and this seems to be consistent with expected decreases in the surface
wind speed in this area, as shown for example by Mori et al.
(2013) and Casas-Prat et al. (2018) (even though the latter
considered a shorter period for the future projection, i.e.,
2081–2100).

It can be clearly noticed that, when annual max-
ima are taken into account, the number of locations

where trends are not significant increases dramatically
(panels E and F in Figs. 4 and 5). This is due to
the fact that the most negative trends are concentrated
in isolated spots (as shown in panels E and F of
Fig. 3); thus, it is difficult to detect homogeneous beha-
viors at basin level, compared with T mean

m and T
p90
m . More-

over, annual maxima refer to single instantaneous values per
year, resulting in noisier datasets. Even though the method-
ology of Sen (1968) and Theil (1992) is sound with respect
to possible outliers, this affects the computation of the
confidence intervals, often leading to not significant trends.

In addition to the analysis so far described, as a
compulsory step in the evaluation of the significance of
the projected changes, we looked at the consistency of the
trends related to the each single ensemble member. To this
end, we computed the number of members resulting in
concordant/discordant values of b for all the time series
analyzed. Such number ranges from 7−, meaning that all
the models present negative trends, to 7+ (all the models
presenting positive trends). Results are shown in Fig. 6.

A small stripe of fully consistent positive trends is
found in the South Aegean Sea for Hmean

s and H
p90
s ,

which exactly overlap with the locations characterized by
significant upward trends according to panels A, B, C, and
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Fig. 6 Number of ensemble
members presenting consistent
sign of b for the time slice
2006–2100. Panel A, Hmean

s ;

panel B, T mean
m ; panel C, H

p90
s ;

panel D, T
p90
m ; panel E, Hmax

s ;
panel F, T max

m

D of Fig. 4. When annual maxima are considered, there
are instead no locations characterized by positive trends
according to all the members. On the contrary, broad areas
of fully consistent negative trends are placed in the South
Tyrrhenian, and off the southern coastlines of Spain up
to the westmost side of the Mediterranean Sea, consistent
with results reported in panels E and F of Fig. 4. In
case of T mean

m , a remarkable correlation can be noticed
between the areas close to the Strait of Gibraltar, being
characterized by significant positive trends according to
both the approaches. Extending the analysis to T

p90
m , a

wide area east of Sardinia shows poor agreement among
the ensemble members (panels C and D of Fig. 6), and this
is exactly corresponding to the areas characterized by not
significant trends underlined in panels A, B, C, and D of
Fig. 5. Again, results related to the time series of annual
maxima show a much more irregular spatial distribution (see
panels E and F of Fig. 6).

As a further step, b was computed on the series of the
2006–2100 annual statistics averaged over the entire MS
(i.e., across all the hindcast nodes taken into account), to
derive an insight on the expected variation in the regional
future wave climate. The ensemble values of regional b

were carried out in 2 ways: (a) computing the slope of
the ensemble values of the wave parameters. This estimate
is hereinafter referred to as br1; (b) computing the slope

separately for each ensemble member, and then averaging
on the ensemble members. This estimate is hereinafter
referred to as br2.

Figures 7, 8, and 9 show the time series of the regional Hs

statistics, while Figs. 10, 11, and 12 show the regional statis-
tics relative to Tm. In all the panels, the whole period
covered by the models (1970–2100) is shown, along with
the historical series computed from the hindcast developed
and validated by Mentaschi et al. (2015). It can be seen
from the orange lines in Figs. 7, 8, 9, 10, 11, and 12 that
the hindcast series fall within the envelopes of the simulated
ensembles for both Hs and Tm. Accordingly, the trends
computed on the hindcast series are within the ranges
provided by the estimates of b related to the ensemble mem-
bers and summarized in Table 4 (see the Appendix),
and serve to confirm the validity of the simula-
tion models in producing reliable future wave climate
projections. Results of br1 and br2 are reported in
Table 3.

From Figs. 7, 8, 9, 10, 11, and 12, it is clear at a glance
that the regional time series of the investigated parameters
are characterized by a downward trend. This finding can be
also verified by the ITA, performed over the mean data of the
regional averaged statistics (i.e., the black lines in Figs. 7, 8,
9, 10, 11, and 12) for two different time periods, 2010–2040
and 2070–2100. Results are shown in Figs. 13 and 14. The
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Fig. 7 Time series of regional
Hmean

s for all the ensemble
members. The thick black line
indicates the mean over the
models, while the thick orange
line is related to the hindcast data

Fig. 8 Time series of regional
H

p90
s for all the ensemble

members. The thick black line
indicates the mean over the
models, while the thick orange
line is related to the hindcast data

Fig. 9 Time series of regional
Hmax

s for all the ensemble
members. The thick black line
indicates the mean over the
models, while the thick orange
line is related to the hindcast data
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Fig. 10 Time series of regional
T mean

m for all the ensemble
members. The thick black line
indicates the mean over the
models, while the thick orange
line is related to the hindcast data

Fig. 11 Time series of regional
T

p90
m for all the ensemble

members. The thick black line
indicates the mean over the
models, while the thick orange
line is related to the hindcast data

Fig. 12 Time series of regional
T max

m for all the ensemble
members. The thick black line
indicates the mean over the
models, while the thick orange
line is related to the hindcast data

Table 3 Comparison between
the values of br1 (trend on the
parameters averaged across the
members) and br2 (mean of the
single members trends) for
different parameters and annual
statistics averaged over the
whole Mediterranean Sea

br1 br2

Hs [mm/year] Mean −0.82 −0.84

P90 −1.50 −1.50

Max −2.60 −2.90

Tm [ms/year] Mean −1.00 −1.00

P90 −1.60 −1.60

Max −1.90 −2.00
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Fig. 13 ITA for the 2010–2040 and 2070–2100 time series of regional Hmean
s (panel A), H

p90
s (panel B), and Hmax

s (panel C)

Fig. 14 ITA for the 2010–2040 and 2070–2100 time series of regional T mean
m (panel A), T

p90
m (panel B), and T max

m (panel C)

Fig. 15 ecdf of δ following the ITA analysis. Panel A, annual statistics of regional Hs ; panel B, annual statistics of regional Tm
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Fig. 16 Time series of regional
θmean
m for all the ensemble

members. The thick black line
indicates the circular mean over
the models

ITA on the regional T mean
m , T

p90
m , and T max

m series reveals
negative trends, as the scatters of the 2010–2040 period lie
below the no-trend line. Similarly, the series of regional
Hmean

s and H
p90
s show negative trends. As for the series of

regional Hmax
s , the ITA seems to be noisier, with a couple of

data being above the no-trend line, though a clear negative
trend can be pointed out also in this case.

Differences in the trends according to the ITA can be bet-
ter appreciated by looking at the ecdf of δ, as shown in
Fig. 15. Here, it can be noticed how the δ related to the
annual maxima are generally farther from the zero line with
respect to the other statistics, indicating a stronger negative
trend. Similarly, the 90th percentile series are characterized
by a trend more negative than the mean data. This particu-
larly applies to the series of regional Hs (panel A), while in
case of Tm the ITA trends are more similar among the inves-
tigated statistics (panel B). Such finding is further supported
by the results of br1 and br2, which show values increasing
from the annual mean to the annual maxima.

These results show also that the differences between br1

(trends computed on the parameters averaged across the
models) and br2 (trends computed as mean of the single
model trends) are small. Indeed, the highest difference is
observed for the time series of regional Hmax

s , where using

Fig. 17 Test locations for the analysis of trends in 2006–2100 time
series of θmean

m

br1 (br2) would result in a variation of −24.4 cm (−27.3 cm)
between 2006 and 2100.

Finally, the mean direction θmean
m was considered. The

trend analysis was carried out on the time series averaged
over the whole MS, as shown in Fig. 16. Here, all the
ensemble members agree on a slight clockwise shift.

A more detailed analysis was performed on six locations
selected among different sub-basins of the MS, plotting the
θmean
m series versus the respective years on a polar plot,

along with the best linear fit. The investigated locations and
the correspondent polar plots are shown in Figs. 17 and 18,
respectively.

On average, an eastward trend seems to characterize the
wave directions at locations A, D, and E, corresponding to
the Gibraltar, South Mediterranean, and the Aegean basin,
respectively. Conversely, no trends can be highlighted at
location B (North Tyrrhenian Sea) and F (in front of the
Nile Delta), while at location C scatters seem to be too
dispersed to derive a reliable trend analysis, even though an
anti-clockwise shift can be pointed out. This is most likely
due to the local climatology of the Adriatic Sea, which is
influenced by several local circulation patterns, resulting in
no prevailing fetches for the point at hand.

4 Conclusion

In this work, we performed a trend analysis on time series of
wave parameters projected up to the end of the twenty-first cen-
tury in the MS. To this end, we used wave simulations
driven by seven RCM over the 1970–2100 period under the
RCP8.5 emission scenario. The future trends on time series
of annual mean, annual 90th percentile, and annual max-
ima wave heights and periods were assessed through the
Theil-Sen slope and the Mann-Kendall test, while the anal-
ysis of the wave directions relied on the use of polar plots.
As for Hs and Tm, the results show that the trend
metrics employed are generally consistent with each other,

indicating the robustness of the projected changes. Such
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Fig. 18 Polar plots of 2006–2100 time series of θmean
m in the test locations. The red line represents the linear fit of θmean

m series with respect to the
corresponding years. Panels are labeled according to the letters reported in Fig. 17

consideration is further confirmed by the similarities in the
spatial patterns of the b estimates computed either on the
parameters averaged across the models, and as the mean
of the trends resulting from each single model.

Overall, the analysis revealed that the wave climate of the
MS will be mainly characterized by downward trends,
implying a progressive reduction in the magnitude of wave
heights and periods. These results are in line with previous
studies developed under the same emission scenario at larger
scale, both for annual mean (Perez et al. 2015) and annual
maxima (Wang et al. 2014). The trends computed on the

time series of annual mean and annual 90th percentile
are characterized by similar magnitudes and similar spatial
distributions. On the other hand, the trends of annual maxima
are more uncertain and irregularly distributed through the
basin, despite the fact that the slope generally attains higher
values. This suggests that the annual maxima should be used
with caution, as they could result in dispersed time series,
and lead to unreliable estimations of future trends.

Finally, as far as wave direction is concerned, a slight
eastward trend is expected, but such behavior is not
homogeneous across the different sub-basins.
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Appendix

Fig. 19 Mean of the 1979–2005 Hmean
s series according to the hind-

cast of Mentaschi et al. (2015) (panel A), and differences of the latter
with the means of the ensemble members: panel B, CanESM2; panel

C, MIROC5; panel D, MPI-ESM-LR; panel E, NorESM1-M; panel F,
CNRM-CM5; panel G, IPSL-CM5A-MR; panel H, HadGEM2-ES
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Fig. 20 As in Fig. 19, for H
p90
s
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Fig. 21 As in Fig. 19, for Hmax
s
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Fig. 22 As in Fig. 19, for T mean
m
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Fig. 23 As in Fig. 19, for T
p90
m
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Fig. 24 As in Fig. 19, for T max
m
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Table 4 Values of b for different parameters and annual statistics averaged over the whole Mediterranean Sea. Trends are computed on the time
period covered by the hindcast data (1979–2019)

Hs (mm/year) Tm (ms/year)

Mean P90 Max Mean P90 Max

Hindcast 0.19 0.94 0.22 0.29 1.2 1.7

Driving model CanESM2 −0.3 −0.7 −3.2 −0.1 −0.8 −5.0

MIROC5 1.1 2.1 6.5 1.6 2.6 5.7

MPI-ESM-LR 0 0 −1.6 0 0.1 −1.9

NorESM1-M 0.5 0.3 0 0 0 0.6

CNRM-CM5 0.4 0.8 −1.2 0.9 1.8 −0.6

IPSL-CM5A-MR 0 −1.3 4.8 0 −1.5 7.6

HadGEM2-ES −1.7 −6.7 −35 −5 −10 −15
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